Elasticsearch: The Definitive Guide

Foreword

One of the most nerve-wracking periods when releasing the first version of an open source project occurs when the IRC channel is created. You are all alone, eagerly hoping and wishing for the first user to come along. I still vividly remember those days.
One of the first users that jumped on IRC was Clint, and how excited was I. Well… for a brief period, until I found out that Clint was actually a Perl user, no less working on a website that dealt with obituaries. I remember asking myself why couldn’t we get someone from a more "hyped" community, like Ruby or Python (at the time), and a slightly nicer use case.
How wrong I was. Clint ended up being instrumental to the success of Elasticsearch. He was the first user to roll out Elasticsearch into production (version 0.4 no less!), and the interaction with Clint was pivotal during the early days in shaping Elasticsearch into what it is today. Clint has a unique insight into what is simple, and he is very rarely wrong, which has a huge impact on various usability aspects of Elasticsearch, from management, to API design, to day-to-day usability features. It was a no brainer for us to reach out to Clint and ask if he would join our company immediately after we formed it.
Another one of the first things we did when we formed the company was offer public training. It’s hard to express how nervous we were about whether or not people would even sign up for it.
We were wrong.
The trainings were and still are a rave success with waiting lists in all major cities. One of the people who caught our eye was a young fellow, Zach, who came to one of our trainings. We knew about Zach from his blog posts about using Elasticsearch (and secretly envied his ability to explain complex concepts in a very simple manner) and from a PHP client he wrote for the software. What we found out was that Zach had actually paid to attend the Elasticsearch training out of his own pocket! You can’t really ask for more than that, and we reached out to Zach and asked if he would join our company as well.
Both Clint and Zach are pivotal to the success of Elasticsearch. They are wonderful communicators who can explain Elasticsearch from its high-level simplicity, to its (and Apache Lucene’s) low-level internal complexities. It’s a unique skill that we dearly cherish here at Elastic. Clint is also responsible for the Elasticsearch Perl client, while Zach is responsible for the PHP one - both wonderful pieces of code.
And last, both play an instrumental role in most of what happens daily with the Elasticsearch project itself. One of the main reasons why Elasticsearch is so popular is its ability to communicate empathy to its users, and Clint and Zach are both part of the group that makes this a reality.
Shay Banon

Preface

The world is swimming in data. For years we have been simply overwhelmed by
the quantity of data flowing through and produced by our systems. Existing
technology has focused on how to store and structure warehouses full of data.
That’s all well and good—until you actually need to make decisions in
real time informed by that data.
Elasticsearch is a distributed, scalable, real-time search and analytics engine.
It enables you to search, analyze, and explore your data, often in ways that
you did not anticipate at the start of a project. It exists because raw data
sitting on a hard drive is just not useful.
Whether you need full-text search, real-time analytics of structured data, or
a combination of the two, this book introduces you to the fundamental
concepts required to start working with Elasticsearch at a basic level. With
these foundations laid, it will move on to more-advanced search techniques,
which you will need to shape the search experience to fit your requirements.
Elasticsearch is not just about full-text search. We explain structured
search, analytics, the complexities of dealing with human language,
geolocation, and relationships. We will also discuss how best to model your
data to take advantage of the horizontal scalability of Elasticsearch, and how
to configure and monitor your cluster when moving to production.
1. Who Should Read This Book

This book is for anybody who wants to put their data to work. It doesn’t
matter whether you are starting a new project and have the flexibility to
design the system from the ground up, or whether you need to give new life to
a legacy system. Elasticsearch will help you to solve existing problems and
open the way to new features that you haven’t yet considered.
This book is suitable for novices and experienced users alike. We expect you
to have some programming background and, although not required, it would help
to have used a relational database and SQL. We explain concepts from first
principles, helping novices to gain a sure footing in the complex world of
search.
The reader with a search background will also benefit from this book.
The more experienced user will gain an understanding of how familiar search
concepts have been implemented and how they interact in the context of
Elasticsearch. Even the early chapters contain nuggets of information that
will be useful to the more advanced user.
Finally, maybe you are in DevOps. While the other departments are stuffing
data into Elasticsearch as fast as they can, you’re the one charged with
stopping their servers from bursting into flames. Elasticsearch scales
effortlessly, as long as your users play within the rules. You need to know
how to set up a stable cluster before going into production, and then be able to
recognize the warning signs at three in the morning in order to prevent
catastrophe. The earlier chapters may be of less interest to you, but the last
part of the book is essential reading—all you need to know to avoid
meltdown.

2. Why We Wrote This Book

We wrote this book because Elasticsearch needs a narrative. The existing
reference documentation is excellent—as long as you know what you are
looking for. It assumes that you are intimately familiar with information-retrieval concepts, distributed systems, the query DSL, and a host of other
topics.
This book makes no such assumptions. It has been written so that a complete
beginner—to both search and distributed systems—can pick it up and start
building a prototype within a few chapters.
We have taken a problem-based approach: this is the problem, how do I solve
it, and what are the trade-offs of the alternative solutions? We start with the
basics, and each chapter builds on the preceding ones, providing practical
examples and explaining the theory where necessary.
The existing reference documentation explains how to use features. We want
this book to explain why and when to use various features.

3. Elasticsearch Version

The initial print version of this book targeted Elasticsearch version 1.4.0. We
are actively updating the explanations and code examples in the online version
to target Elasticsearch 2.x.
You can track the updates by visiting the GitHub repository.

4. How to Read This Book

Elasticsearch tries very hard to make the complex simple, and to a large
degree it succeeds in this. That said, search and distributed systems are
complex, and sooner or later you have to get to grips with some of the
complexity in order to take full advantage of Elasticsearch.
Complexity, however, is not the same as magic. We tend to view complex
systems as magical black boxes that respond to incantations, but there are
usually simple processes at work within. Understanding these processes helps
to dispel the magic—instead of hoping that the black box will do what you
want, understanding gives you certainty and clarity.
This is a definitive guide: we help you not only to get started with
Elasticsearch, but also to tackle the deeper more, interesting topics. These include Chapter 2, Life Inside a Cluster, Chapter 4, Distributed Document Store,
Chapter 9, Distributed Search Execution, and Chapter 11, Inside a Shard, which are not essential
reading but do give you a solid understanding of the internals.
The first part of the book should be read in order as each chapter builds on
the previous one (although you can skim over the chapters just mentioned). Later chapters such as Chapter 15, Proximity Matching and Chapter 16, Partial Matching
are more standalone and can be referred to as needed.

5. Navigating This Book

This book is divided into seven parts:
	
Chapters Chapter 1, You Know, for Search… through Chapter 11, Inside a Shard provide an introduction to Elasticsearch. They
 explain how to get your data in and out of Elasticsearch, how Elasticsearch
 interprets the data in your documents, how basic search works, and how to
 manage indices. By the end of this section, you will already be able to
 integrate your application with Elasticsearch. Chapters
 Chapter 2, Life Inside a Cluster, Chapter 4, Distributed Document Store, Chapter 9, Distributed Search Execution, and Chapter 11, Inside a Shard
 are supplemental chapters that provide more insight into the distributed
 processes at work, but are not required reading.

	
Chapters Chapter 12, Structured Search through Chapter 17, Controlling Relevance
 offer a deep dive into search—how to index and
 query your data to allow you to take advantage of more-advanced concepts
 such as word proximity, and partial matching. You will understand how
 relevance works and how to control it to ensure that the best results are
 on the first page.

	
Chapters Chapter 18, Getting Started with Languages through Chapter 24, Typoes and Mispelings
 tackle the thorny subject of dealing with human
 language through effective use of analyzers and queries. We start with
 an easy approach to language analysis before diving into the complexities
 of language, alphabets, and sorting. We cover stemming, stopwords, synonyms,
 and fuzzy matching.

	
Chapters Chapter 25, High-Level Concepts through Chapter 34, Doc Values and Fielddata
 discuss aggregations and analytics—ways to summarize and group your data to show overall trends.

	
Chapters Chapter 36, Geo Points through Chapter 39, Geo Shapes
 present the two approaches to geolocation
 supported by Elasticsearch: lat/lon geo-points, and complex geo-shapes.

	
Chapters Chapter 40, Handling Relationships through Chapter 43, Designing for Scale
 talk about how to model your data to work
 most efficiently with Elasticsearch. Representing relationships
 between entities is not as easy in a search engine as it is in
 a relational database, which has been designed for that purpose.
 These chapters also explain how to suit your index design to
 match the flow of data through your system.

	
Finally, Chapters Chapter 44, Monitoring through Chapter 46, Post-Deployment
 discuss moving to production: the important configurations, what to monitor, and how to diagnose and prevent problems.

6. Online Resources

Because this book focuses on problem solving in Elasticsearch rather than syntax, we sometimes refer to the detailed descriptions in the Elasticsearch Reference. You
can find the latest Elasticsearch Reference and related documentation at:
https://www.elastic.co/guide/
If you have questions that aren’t addressed in this book or in the reference documentation, we encourage
you to visit the Elasticsearch Discussion Forum where you can ask questions, learn how other people are using Elasticsearch, and share your own experience. To join the conversation, go to:
https://discuss.elastic.co/c/elasticsearch

7. Conventions Used in This Book

The following typographical conventions are used in this book:
	
Italic

	
Indicates emphasis, and new terms or concepts.

	
Constant width

	
Used for program listings, as well as within paragraphs to refer to program elements such as variable or function names, databases, data types, environment variables, statements, and keywords.

Tip
This icon signifies a tip, suggestion.

Note
This icon signifies a general note.

Warning
This icon indicates a warning or caution.

8. Using Code Examples

This book is here to help you get your job done. In general, if example code is offered with this book, you may use it in your programs and documentation. You do not need to contact us for permission unless you’re reproducing a significant portion of the code. For example, writing a program that uses several chunks of code from this book does not require permission. Selling or distributing a CD-ROM of examples from O’Reilly books does require permission. Answering a question by citing this book and quoting example code does not require permission. Incorporating a significant amount of example code from this book into your product’s documentation does require permission.
We appreciate, but do not require, attribution. An attribution usually includes the title, author, publisher, and ISBN. For example: Elasticsearch: The Definitive Guide by Clinton Gormley and Zachary Tong (O’Reilly). Copyright 2015 Elasticsearch BV, 978-1-449-35854-9.
If you feel your use of code examples falls outside fair use or the permission given above, feel free to contact us at
permissions@oreilly.com.

9. Acknowledgments

Why are spouses always relegated to a last but not least disclaimer?
There is no doubt in our minds that the two people most deserving of our
gratitude are Xavi Sánchez Catalán, Clinton’s long-suffering husband, and
Genevieve Flanders, Zach’s fiancée. They have looked after us and loved us,
picked up the slack, put up with our absence and our endless moaning about how
long the book was taking, and, most importantly, they are still here.
Thank you to Shay Banon for creating Elasticsearch in the first place, and to
Elastic the company for supporting our work on the book. Our colleagues
at Elastic deserve a big thank you as well. They have helped us pick
through the innards of Elasticsearch to really understand how it works, and
they have been responsible for adding improvements and fixing inconsistencies
that were brought to light by writing about them.
Two colleagues in particular deserve special mention:
	
Robert Muir patiently shared his deep knowledge of search in general and
 Lucene in particular. Several chapters are the direct result of joining
 his pearls of wisdom into paragraphs.

	
Adrien Grand dived deep into the code to answer question after question,
 and checked our explanations to ensure they make sense.

Thank you to O’Reilly for undertaking this project and working with us to make
this book available online for free, to our editor Brian Anderson for cajoling
us along gently, and to our kind and gentle reviewers Benjamin Devèze, Ivan
Brusic, and Leo Lapworth. Your reassurances kept us hopeful.
Finally, we would like to thank our readers, some of whom we know only by
their GitHub identities, who have taken the time to report problems, provide
corrections, or suggest improvements:
Adam Canady, Adam Gray, Alexander Kahn, Alexander Reelsen, Alaattin
Kahramanlar, Ambrose Ludd, Anna Beyer, Andrew Bramble, Baptiste Cabarrou,
Bart Vandewoestyne, Bertrand Dechoux, Brian Wong, Brooke Babcock, Charles
Mims, Chris Earle, Chris Gilmore, Christian Burgas, Colin Goodheart-Smithe,
Corey Wright, Daniel Wiesmann, David Pilato, Duncan Angus Wilkie, Florian
Hopf, Gavin Foo, Gilbert Chang, Grégoire Seux, Gustavo Alberola, Igal Sapir,
Iskren Ivov Chernev, Itamar Syn-Hershko, Jan Forrest, Jānis Peisenieks,
Japheth Thomson, Jeff Myers, Jeff Patti, Jeremy Falling, Jeremy Nguyen, J.R.
Heard, Joe Fleming, Jonathan Page, Joshua Gourneau, Josh Schneier, Jun Ohtani,
Keiji Yoshida, Kieren Johnstone, Kim Laplume, Kurt Hurtado, Laszlo Balogh,
londocr, losar, Lucian Precup, Lukáš Vlček, Malibu Carl, Margirier Laurent,
Martijn Dwars, Matt Ruzicka, Mattias Pfeiffer, Mehdy Amazigh, mhemani, Michael
Bonfils, Michael Bruns, Michael Salmon, Michael Scharf , Mitar Milutinović,
Mustafa K. Isik, Nathan Peck, Patrick Peschlow, Paul Schwarz, Pieter Coucke,
Raphaël Flores, Robert Muir, Ruslan Zavacky, Sanglarsh Boudhh, Santiago
Gaviria, Scott Wilkerson, Sebastian Kurfürst, Sergii Golubev, Serkan Kucukbay,
Thierry Jossermoz, Thomas Cucchietti, Tom Christie, Ulf Reimers, Venkat
Somula, Wei Zhu, Will Kahn-Greene, and Yuri Bakumenko.

Part I. Getting Started

Elasticsearch is a real-time distributed search and analytics engine. It
allows you
 to explore your data at a speed and at a scale never before
possible. It is used for full-text search, structured search, analytics, and all three
in combination:
	
Wikipedia uses Elasticsearch to provide full-text search with highlighted
 search snippets, and search-as-you-type and did-you-mean suggestions.

	
The Guardian uses Elasticsearch to combine visitor logs with social
 -network data to provide real-time feedback to its editors about the
 public’s response to new articles.

	
Stack Overflow combines full-text search with geolocation queries and uses
 more-like-this to find related questions and answers.

	
GitHub uses Elasticsearch to query 130 billion lines of code.

But Elasticsearch is not just for mega-corporations. It has enabled many
startups like Datadog and Klout to prototype ideas and to turn them into
scalable solutions. Elasticsearch can run on your laptop, or scale out to
hundreds of servers and petabytes of data.
No individual part of Elasticsearch is new or revolutionary. Full-text search
has been done before, as have analytics systems and distributed databases. The
revolution is the combination of these individually useful parts into a
single, coherent, real-time application. It has a low barrier to entry for the
new user, but can keep pace with you as your skills and needs grow.
If you are picking up this book, it is because you have data, and there is no
point in having data unless you plan to do something with it.
Unfortunately, most databases are astonishingly inept at extracting actionable
knowledge from your data.
 Sure, they can filter by timestamp or exact values,
but can they perform full-text search, handle synonyms, and score documents by
relevance? Can they generate analytics and aggregations from the same data?
Most important, can they do this in real time without big batch-processing
jobs?
This is what sets Elasticsearch apart: Elasticsearch encourages you to explore
and utilize your data, rather than letting it rot in a warehouse because it is
too difficult to query.
Elasticsearch is your new best friend.

Chapter 1. You Know, for Search…

Elasticsearch is an open-source search engine built on top of
Apache Lucene™, a full-text search-engine
library. Lucene is arguably the most advanced, high-performance, and fully featured
search engine library in existence today—both open source and proprietary.
But Lucene is just a library. To leverage its power, you need to work in Java
and to integrate Lucene directly with your application. Worse, you will likely
require a degree in information retrieval to understand how it works. Lucene
is very complex.
Elasticsearch is also written in Java and uses Lucene internally for all of
its indexing and searching, but it aims to make full-text search easy by hiding
the complexities of Lucene behind a simple, coherent, RESTful API.
However, Elasticsearch is much more than just Lucene and much more than
“just” full-text search.
 It can also be described as follows:
	
A distributed real-time document store where every field is indexed and
 searchable

	
A distributed search engine with real-time analytics

	
Capable of scaling to hundreds of servers and petabytes of structured
 and unstructured data

And it packages up all this functionality into a standalone server that
your application can talk to via a simple RESTful API, using a web client from
your favorite programming language, or even from the command line.
It is easy to get started with Elasticsearch. It ships with sensible defaults
and hides complicated search theory away from beginners. It just works,
right out of the box. With minimal understanding, you can soon become
productive.

As your knowledge grows, you can leverage more of Elasticsearch’s advanced
features. The entire engine is configurable and flexible. Pick and choose
from the advanced features to tailor Elasticsearch to your problem domain.
You can download, use, and modify Elasticsearch free of charge.
It is available under the Apache 2 license,
one of the most flexible open source licenses available. The source is hosted on GitHub
at github.com/elastic/elasticsearch. See
Contributing to
Elasticsearch if you would like to join our amazing community of contributors!
If you have any questions related to Elasticsearch, including specific features,
language clients and plugins, join the conversation at
discuss.elastic.co.
The Mists of Time

Many years ago, a newly married unemployed developer called Shay Banon
followed his wife to London, where she was studying to be a chef. While looking
for gainful employment, he started playing with an early version of Lucene,
with the intent of building his wife a recipe search engine.
Working directly with Lucene can be tricky, so Shay started work on an
abstraction layer to make it easier for Java programmers to add search to
their applications. He released this as his first open source project, called
Compass.
Later Shay took a job working in a high-performance, distributed environment
with in-memory data grids. The need for a high-performance, real-time,
distributed search engine was obvious, and he decided to rewrite the Compass
libraries as a standalone server called Elasticsearch.
The first public release came out in February 2010. Since then, Elasticsearch
has become one of the most popular projects on GitHub with commits from over
300 contributors. A company has formed around Elasticsearch to provide
commercial support and to develop new features, but Elasticsearch is, and
forever will be, open source and available to all.
Shay’s wife is still waiting for the recipe search…

1.1. Installing and Running Elasticsearch

The easiest way to understand what Elasticsearch can do for you is to
play with it, so let’s get started!

The only requirement for installing Elasticsearch is a recent version of Java.
Preferably, you should install the latest version of the
 official Java
from www.java.com.
You can get the latest version of Elasticsearch from
elastic.co/downloads/elasticsearch.
To install Elasticsearch, download and extract the archive file for your platform. For
more information, see the Installation topic in the Elasticsearch
Reference.
Tip
When installing Elasticsearch in production, you can choose to use
the Debian or RPM packages provided on the
downloads page. You can also use
the officially supported
Puppet module or
Chef cookbook.

Once you’ve extracted the archive file, Elasticsearch is ready to run.
 To start it up in the foreground:
cd elasticsearch-<version>
./bin/elasticsearch (1) (2)
	(1)
	
Add -d if you want to run it in the background as a daemon.

	(2)
	
If you’re running Elasticsearch on Windows, simply run bin\elasticsearch.bat instead.

Test it out by opening another terminal window and running the following:
curl 'http://localhost:9200/?pretty'
Tip
If you’re running Elasticsearch on Windows, you can download cURL from
http://curl.haxx.se/download.html. cURL
provides a convenient way to submit requests to Elasticsearch and
installing cURL enables you to copy and paste many of the examples in this
book to try them out.

You should see a response like this:
{
 "name" : "Tom Foster",
 "cluster_name" : "elasticsearch",
 "version" : {
 "number" : "2.1.0",
 "build_hash" : "72cd1f1a3eee09505e036106146dc1949dc5dc87",
 "build_timestamp" : "2015-11-18T22:40:03Z",
 "build_snapshot" : false,
 "lucene_version" : "5.3.1"
 },
 "tagline" : "You Know, for Search"
}
This means that you have an Elasticsearch node up and running, and you can
start experimenting with it. A node is a running instance of Elasticsearch.

 A cluster is
a group of
nodes with the same cluster.name that are working together to share data
and to provide failover and scale. (A single node, however, can form a cluster
all by itself.) You can change the cluster.name in the elasticsearch.yml configuration
file that’s loaded when you start a node. More information about this and other
Important Configuration Changes is provided
in the Production Deployment section at the end of this book.
Tip
See that View in Sense link at the bottom of the example? Install the Sense console
to run the examples in this book against your own Elasticsearch cluster and view the results.

When Elasticsearch is running in the foreground, you can stop it by pressing Ctrl-C.
1.1.1. Installing Sense

Sense is a Kibana
app
 that provides an interactive
console for submitting requests to Elasticsearch directly from your browser.
Many of the code examples in the online version of this book include a View in Sense link. When
clicked, it opens up a working example of the code in the Sense console.
You do not have to install Sense, but it will make this book much more
interactive by allowing you to experiment with the code samples on your local
Elasticsearch cluster.

 To install and run Sense:
	
Run the following command in the Kibana directory to download and install the Sense app:

./bin/kibana plugin --install elastic/sense (1)
	(1)
	
Windows: bin\kibana.bat plugin --install elastic/sense.

Note
You can download Sense from https://download.elastic.co/elastic/sense/sense-latest.tar.gz
to install it on an offline machine.

	
Start Kibana.

./bin/kibana (1)
	(1)
	
Windows: bin\kibana.bat.

	
Open Sense your web browser by going to http://localhost:5601/app/sense.

1.2. Talking to Elasticsearch

How you talk to Elasticsearch depends on
 whether you are using Java or not.
1.2.1. Java API

If you are using
Java, Elasticsearch comes with two built-in clients
that you can use in your code:
	
Node client

	
 The node client joins a local cluster as a non data node. In other
 words, it doesn’t hold any data itself, but it knows what data lives
 on which node in the cluster, and can forward requests directly
 to the correct node.

	
Transport client

	
 The lighter-weight transport client can be used to send requests to
 a remote cluster. It doesn’t join the cluster itself, but simply
 forwards requests to a node in the cluster.

Both Java clients talk to the cluster over port 9300, using the native
Elasticsearch transport protocol. The nodes in the cluster also communicate
with each other over port 9300. If this port is not open, your nodes will
not be able to form a cluster.
Tip
The Java client must be from the same major version of Elasticsearch as the nodes;
otherwise, they may not be able to understand each other.

More information about the Java clients can be found in Elasticsearch Clients.

1.2.2. RESTful API with JSON over HTTP

All other languages can communicate with Elasticsearch over port 9200 using
a RESTful API, accessible with your favorite web client. In fact, as you have
seen, you can even talk to Elasticsearch from the command line by using the
curl command.

Note
Elasticsearch provides official clients
 for several languages—Groovy,
JavaScript, .NET, PHP, Perl, Python, and Ruby—and there are numerous
community-provided clients and integrations, all of which can be found in
Elasticsearch Clients.

A request to Elasticsearch consists of the same parts as any HTTP request:
curl -X<VERB> '<PROTOCOL>://<HOST>:<PORT>/<PATH>?<QUERY_STRING>' -d '<BODY>'
The parts marked with < > above are:
	

VERB

	

The appropriate HTTP method or verb: GET, POST, PUT, HEAD, or DELETE.

	

PROTOCOL

	

Either http or https (if you have an https proxy in front of Elasticsearch.)

	

HOST

	

The hostname of any node in your Elasticsearch cluster, or localhost for a node on your local machine.

	

PORT

	

The port running the Elasticsearch HTTP service, which defaults to 9200.

	

PATH

	

API Endpoint (for example _count will return the number of documents in the cluster). Path may contain multiple components, such as _cluster/stats or _nodes/stats/jvm

	

QUERY_STRING

	

Any optional query-string parameters (for example ?pretty will pretty-print the JSON response to make it easier to read.)

	

BODY

	

A JSON-encoded request body (if the request needs one.)

For instance, to count the number of documents in the cluster, we could use this:
curl -XGET 'http://localhost:9200/_count?pretty' -d '
{
 "query": {
 "match_all": {}
 }
}
'
Elasticsearch returns an HTTP status code like 200 OK and (except for HEAD
requests) a JSON-encoded response body. The preceding curl request would respond
with a JSON body like the following:
{
 "count" : 0,
 "_shards" : {
 "total" : 5,
 "successful" : 5,
 "failed" : 0
 }
}
We don’t see the HTTP headers in the response because we didn’t ask curl to
display them. To see the headers, use the curl command with the -i
switch:
curl -i -XGET 'localhost:9200/'
For the rest of the book, we will show these curl examples using a shorthand
format that leaves out all the bits that are the same in every request,
like the hostname and port, and the curl command itself. Instead of showing
a full request like
curl -XGET 'localhost:9200/_count?pretty' -d '
{
 "query": {
 "match_all": {}
 }
}'
we will show it in this shorthand format:
GET /_count
{
 "query": {
 "match_all": {}
 }
}
In fact, this is the same format that is used by the
 Sense console. If you’re viewing the online version of this book, you can open and run this code example in Sense by clicking the View in Sense link above.

1.3. Document Oriented

Objects in an application are seldom just a simple list of keys and values.
More often than not, they are complex data structures that may contain dates,
geo locations, other objects, or arrays of values.
Sooner or later you’re going to want to store these objects in a database.
Trying to do this with the rows and columns of a relational database is the
equivalent of trying to squeeze your rich, expressive objects into a very big
spreadsheet: you have to flatten the object to fit the table schema—usually
one field per column—and then have to reconstruct it every time you
retrieve it.
Elasticsearch is document oriented, meaning that it stores entire objects or
documents. It not only stores them, but also indexes the contents of
each document in order to make them searchable. In Elasticsearch, you index,
search, sort, and filter documents—not rows of columnar data. This is a
fundamentally different way of thinking about data and is one of the reasons
Elasticsearch can perform complex full-text search.
1.3.1. JSON

Elasticsearch uses JavaScript Object Notation, or JSON, as
 the serialization format for documents. JSON
serialization is supported by most programming languages, and has become the
standard format used by the NoSQL movement. It is simple, concise, and easy to
read.
Consider this JSON document, which represents a user object:
{
 "email": "john@smith.com",
 "first_name": "John",
 "last_name": "Smith",
 "info": {
 "bio": "Eco-warrior and defender of the weak",
 "age": 25,
 "interests": ["dolphins", "whales"]
 },
 "join_date": "2014/05/01"
}
Although the original user object was complex, the structure and meaning of
the object has been retained in the JSON version. Converting an object to JSON
for indexing in Elasticsearch is much simpler than the equivalent process for
a flat table structure.
Note
Almost all languages have modules that will convert arbitrary data
structures or objects
 into JSON for you, but the details are specific to each
language. Look for modules that handle JSON serialization or marshalling. The official
Elasticsearch Clients all handle conversion to and from JSON for you
automatically.

1.4. Finding Your Feet

To give you a feel for what is possible in Elasticsearch and how easy
it is to use, let’s start by walking through a simple tutorial that covers
basic concepts such as indexing, search, and aggregations.
We’ll introduce some new terminology and basic concepts along the way, but it
is OK if you don’t understand everything immediately. We’ll cover all the
concepts introduced here in much greater depth throughout the rest of the
book.
So, sit back and enjoy a whirlwind tour of what Elasticsearch is capable of.
1.4.1. Let’s Build an Employee Directory

We happen to work for Megacorp, and as part of HR’s new "We love our
drones!" initiative, we have been tasked with creating an employee directory.
The directory is supposed to foster employer empathy and
real-time, synergistic, dynamic collaboration, so it has a few
business requirements:
	
Enable data to contain multi value tags, numbers, and full text.

	
Retrieve the full details of any employee.

	
Allow structured search, such as finding employees over the age of 30.

	
Allow simple full-text search and more-complex phrase searches.

	
Return highlighted search snippets from the text in the
 matching documents.

	
Enable management to build analytic dashboards over the data.

1.5. Indexing Employee Documents

The first order of business is storing employee data.
 This will take the form
of an employee document: a single document represents a single
employee. The act of storing data in Elasticsearch is called indexing, but
before we can index a document, we need to decide where to store it.
An Elasticsearch cluster can
 contain multiple indices, which in
turn contain multiple types. These types hold multiple documents,
and each document has multiple fields.
Index Versus Index Versus Index

You may already have noticed that the word index is overloaded with
several meanings in the context of Elasticsearch. A little
clarification is necessary:
	
Index (noun)

	
As explained previously, an index is like a database in a traditional
relational database. It is the place to store related documents. The plural of
index is indices or indexes.

	
Index (verb)

	
To index a document is to store a document in an index (noun) so
that it can be retrieved and queried. It is much like the INSERT keyword in
SQL except that, if the document already exists, the new document would
replace the old.

	
Inverted index

	
Relational databases add an index, such as a B-tree index,
 to specific
columns in order to improve the speed of data retrieval. Elasticsearch and
Lucene use a structure called an inverted index for exactly the same
purpose.

By default, every field in a document is indexed (has an inverted index)
and thus is searchable. A field without an inverted index is not searchable.
We discuss inverted indexes in more detail in Section 6.2, “Inverted Index”.

So for our employee directory, we are going to do the following:
	
Index a document per employee, which contains all the details of a single
 employee.

	
Each document will be
 of type employee.

	
That type will live in the megacorp index.

	
That index will reside within our Elasticsearch cluster.

In practice, this is easy (even though it looks like a lot of steps). We
can perform all of those actions in a single command:
PUT /megacorp/employee/1
{
 "first_name" : "John",
 "last_name" : "Smith",
 "age" : 25,
 "about" : "I love to go rock climbing",
 "interests": ["sports", "music"]
}
Notice that the path /megacorp/employee/1 contains three pieces of
information:
	
megacorp

	
 The index name

	
employee

	
 The type name

	
1

	
 The ID of this particular employee

The request body—the JSON document—contains all the information about
this employee. His name is John Smith, he’s 25, and enjoys rock climbing.
Simple! There was no need to perform any administrative tasks first, like
creating an index or specifying the type of data that each field contains. We
could just index a document directly. Elasticsearch ships with defaults for
everything, so all the necessary administration tasks were taken care of in
the background, using default values.
Before moving on, let’s add a few more employees to the directory:
PUT /megacorp/employee/2
{
 "first_name" : "Jane",
 "last_name" : "Smith",
 "age" : 32,
 "about" : "I like to collect rock albums",
 "interests": ["music"]
}

PUT /megacorp/employee/3
{
 "first_name" : "Douglas",
 "last_name" : "Fir",
 "age" : 35,
 "about": "I like to build cabinets",
 "interests": ["forestry"]
}

1.6. Retrieving a Document

Now that we have some data stored in Elasticsearch,
 we can get to work on the
business requirements for this application. The first requirement is the
ability to retrieve individual employee data.
This is easy in Elasticsearch. We simply execute
 an HTTP GET request and
specify the address of the document—the index, type, and ID.

 Using
those three pieces of information, we can return the original JSON document:
GET /megacorp/employee/1
And the response contains some metadata about the document, and John Smith’s
original JSON document as the _source field:
{
 "_index" : "megacorp",
 "_type" : "employee",
 "_id" : "1",
 "_version" : 1,
 "found" : true,
 "_source" : {
 "first_name" : "John",
 "last_name" : "Smith",
 "age" : 25,
 "about" : "I love to go rock climbing",
 "interests": ["sports", "music"]
 }
}
Tip
In the same way that we changed the HTTP verb from PUT to GET in order to
retrieve the document, we could use the DELETE verb to delete the document,
and the HEAD verb to check whether the document exists. To replace an
existing document with an updated version, we just PUT it again.

1.7. Search Lite

A GET is fairly simple—you get back the document that you ask for.
 Let’s
try something a little more advanced, like a simple search!
The first search we will try is the simplest search possible. We will search
for all employees, with this request:
GET /megacorp/employee/_search
You can see that we’re still using index megacorp and type employee, but
instead of specifying a document ID, we now use the _search endpoint. The
response includes all three of our documents in the hits array. By default,
a search will return the top 10 results.
{
 "took": 6,
 "timed_out": false,
 "_shards": { ... },
 "hits": {
 "total": 3,
 "max_score": 1,
 "hits": [
 {
 "_index": "megacorp",
 "_type": "employee",
 "_id": "3",
 "_score": 1,
 "_source": {
 "first_name": "Douglas",
 "last_name": "Fir",
 "age": 35,
 "about": "I like to build cabinets",
 "interests": ["forestry"]
 }
 },
 {
 "_index": "megacorp",
 "_type": "employee",
 "_id": "1",
 "_score": 1,
 "_source": {
 "first_name": "John",
 "last_name": "Smith",
 "age": 25,
 "about": "I love to go rock climbing",
 "interests": ["sports", "music"]
 }
 },
 {
 "_index": "megacorp",
 "_type": "employee",
 "_id": "2",
 "_score": 1,
 "_source": {
 "first_name": "Jane",
 "last_name": "Smith",
 "age": 32,
 "about": "I like to collect rock albums",
 "interests": ["music"]
 }
 }
]
 }
}
Note
The response not only tells us which documents matched, but also
includes the whole document itself: all the information that we need in order to
display the search results to the user.

Next, let’s try searching for employees who have “Smith” in their last name.
To do this, we’ll use a lightweight search method that is easy to use
from the command line. This method is often referred to as a query-string
search, since we pass the search as a URL query-string parameter:
GET /megacorp/employee/_search?q=last_name:Smith
We use the same _search endpoint in the path, and we add the query itself in
the q= parameter. The results that come back show all Smiths:
{
 ...
 "hits": {
 "total": 2,
 "max_score": 0.30685282,
 "hits": [
 {
 ...
 "_source": {
 "first_name": "John",
 "last_name": "Smith",
 "age": 25,
 "about": "I love to go rock climbing",
 "interests": ["sports", "music"]
 }
 },
 {
 ...
 "_source": {
 "first_name": "Jane",
 "last_name": "Smith",
 "age": 32,
 "about": "I like to collect rock albums",
 "interests": ["music"]
 }
 }
]
 }
}

1.8. Search with Query DSL

Query-string search is handy for ad hoc searches from the command line, but
it has its limitations (see Section 5.4, “Search Lite”). Elasticsearch provides a rich,
flexible, query language called the query DSL, which allows us to build
much more complicated, robust queries.
The domain-specific language (DSL) is specified using a JSON request body.
We can represent the previous search for all Smiths like so:
GET /megacorp/employee/_search
{
 "query" : {
 "match" : {
 "last_name" : "Smith"
 }
 }
}
This will return the same results as the previous query. You can see that a
number of things have changed. For one, we are no longer using query-string
parameters, but instead a request body. This request body is built with JSON,
and uses a match query (one of several types of queries, which we will learn
about later).

1.9. More-Complicated Searches

Let’s make the search a little more complicated.
 We still want to find all
employees with a last name of Smith, but we want only employees who are
older than 30. Our query will change a little to accommodate a filter,
which allows us to execute structured searches efficiently:
GET /megacorp/employee/_search
{
 "query" : {
 "bool": {
 "must": {
 "match" : {
 "last_name" : "smith" (1)
 }
 },
 "filter": {
 "range" : {
 "age" : { "gt" : 30 } (2)
 }
 }
 }
 }
}
	(1)
	
This portion of the query is the same match query that we used before.

	(2)
	
This portion of the query is a range filter, which will find all ages
 older than 30—gt stands for greater than.

Don’t worry about the syntax too much for now; we will cover it in great
detail later. Just recognize that we’ve added a filter that performs a
range search, and reused the same match query as before. Now our results show
only one employee who happens to be 32 and is named Jane Smith:
{
 ...
 "hits": {
 "total": 1,
 "max_score": 0.30685282,
 "hits": [
 {
 ...
 "_source": {
 "first_name": "Jane",
 "last_name": "Smith",
 "age": 32,
 "about": "I like to collect rock albums",
 "interests": ["music"]
 }
 }
]
 }
}

1.10. Full-Text Search

The searches so far have been simple: single names, filtered by age. Let’s
try a more advanced, full-text search—a task that traditional databases
would really struggle with.
We are going to search for all employees who enjoy rock climbing:
GET /megacorp/employee/_search
{
 "query" : {
 "match" : {
 "about" : "rock climbing"
 }
 }
}
You can see that we use the same match query as before to search the about
field for “rock climbing”. We get back two matching documents:
{
 ...
 "hits": {
 "total": 2,
 "max_score": 0.16273327,
 "hits": [
 {
 ...
 "_score": 0.16273327, (1)
 "_source": {
 "first_name": "John",
 "last_name": "Smith",
 "age": 25,
 "about": "I love to go rock climbing",
 "interests": ["sports", "music"]
 }
 },
 {
 ...
 "_score": 0.016878016, (2)
 "_source": {
 "first_name": "Jane",
 "last_name": "Smith",
 "age": 32,
 "about": "I like to collect rock albums",
 "interests": ["music"]
 }
 }
]
 }
}
	(1) (2)
	
The relevance scores

By default, Elasticsearch sorts matching results by their relevance score,
that is, by how well each document matches the query. The first and highest-scoring result is obvious: John Smith’s about field clearly says “rock
climbing” in it.
But why did Jane Smith come back as a result? The reason her document was
returned is because the word “rock” was mentioned in her about field.
Because only “rock” was mentioned, and not “climbing,” her _score is
lower than John’s.
This is a good example of how Elasticsearch can search within full-text
fields and return the most relevant results first. This
concept of relevance
is important to Elasticsearch, and is a concept that is completely foreign to
traditional relational databases, in which a record either matches or it doesn’t.

1.11. Phrase Search

Finding individual words in a field is all well and good, but sometimes you
want to match exact sequences of words or phrases. For instance, we could
perform a query that will match only employee records that contain both “rock”
and “climbing” and that display the words next to each other in the phrase
“rock climbing.”
To do this, we use a slight variation of the match query called the
match_phrase query:
GET /megacorp/employee/_search
{
 "query" : {
 "match_phrase" : {
 "about" : "rock climbing"
 }
 }
}
This, to no surprise, returns only John Smith’s document:
{
 ...
 "hits": {
 "total": 1,
 "max_score": 0.23013961,
 "hits": [
 {
 ...
 "_score": 0.23013961,
 "_source": {
 "first_name": "John",
 "last_name": "Smith",
 "age": 25,
 "about": "I love to go rock climbing",
 "interests": ["sports", "music"]
 }
 }
]
 }
}

1.12. Highlighting Our Searches

Many applications like to highlight snippets
 of text from each search result
so the user can see why the document matched the query. Retrieving
highlighted fragments is easy in Elasticsearch.
Let’s rerun our previous query, but add a new highlight parameter:
GET /megacorp/employee/_search
{
 "query" : {
 "match_phrase" : {
 "about" : "rock climbing"
 }
 },
 "highlight": {
 "fields" : {
 "about" : {}
 }
 }
}
When we run this query, the same hit is returned as before, but now we get a
new section in the response called highlight. This contains a snippet of
text from the about field with the matching words wrapped in
HTML tags:
{
 ...
 "hits": {
 "total": 1,
 "max_score": 0.23013961,
 "hits": [
 {
 ...
 "_score": 0.23013961,
 "_source": {
 "first_name": "John",
 "last_name": "Smith",
 "age": 25,
 "about": "I love to go rock climbing",
 "interests": ["sports", "music"]
 },
 "highlight": {
 "about": [
 "I love to go rock climbing" (1)
]
 }
 }
]
 }
}
	(1)
	
The highlighted fragment from the original text

You can read more about the highlighting of search snippets in the
highlighting reference documentation.

1.13. Analytics

Finally, we come to our last business requirement: allow managers to run
analytics over the employee directory. Elasticsearch has functionality called
aggregations, which allow you to generate sophisticated analytics over your
data. It is similar to GROUP BY in SQL, but much more powerful.
For example, let’s find the most popular interests enjoyed by our employees:
GET /megacorp/employee/_search
{
 "aggs": {
 "all_interests": {
 "terms": { "field": "interests" }
 }
 }
}
Ignore the syntax for now and just look at the results:
{
 ...
 "hits": { ... },
 "aggregations": {
 "all_interests": {
 "buckets": [
 {
 "key": "music",
 "doc_count": 2
 },
 {
 "key": "forestry",
 "doc_count": 1
 },
 {
 "key": "sports",
 "doc_count": 1
 }
]
 }
 }
}
We can see that two employees are interested in music, one in forestry, and one
in sports. These aggregations are not precalculated; they are generated on
the fly from the documents that match the current query. If we want to know
the popular interests of people called Smith, we can just add the
appropriate query into the mix:
GET /megacorp/employee/_search
{
 "query": {
 "match": {
 "last_name": "smith"
 }
 },
 "aggs": {
 "all_interests": {
 "terms": {
 "field": "interests"
 }
 }
 }
}
The all_interests aggregation has changed to include only documents matching our query:
 ...
 "all_interests": {
 "buckets": [
 {
 "key": "music",
 "doc_count": 2
 },
 {
 "key": "sports",
 "doc_count": 1
 }
]
 }
Aggregations allow hierarchical rollups too.
 For example, let’s find the
average age of employees who share a particular interest:
GET /megacorp/employee/_search
{
 "aggs" : {
 "all_interests" : {
 "terms" : { "field" : "interests" },
 "aggs" : {
 "avg_age" : {
 "avg" : { "field" : "age" }
 }
 }
 }
 }
}
The aggregations that we get back are a bit more complicated, but still fairly
easy to understand:
 ...
 "all_interests": {
 "buckets": [
 {
 "key": "music",
 "doc_count": 2,
 "avg_age": {
 "value": 28.5
 }
 },
 {
 "key": "forestry",
 "doc_count": 1,
 "avg_age": {
 "value": 35
 }
 },
 {
 "key": "sports",
 "doc_count": 1,
 "avg_age": {
 "value": 25
 }
 }
]
 }
The output is basically an enriched version of the first aggregation we ran.
We still have a list of interests and their counts, but now each interest has
an additional avg_age, which shows the average age for all employees having
that interest.
Even if you don’t understand the syntax yet, you can easily see how complex aggregations and groupings can be accomplished using this feature.
The sky is the limit as to what kind of data you can extract!

1.14. Tutorial Conclusion

Hopefully, this little tutorial was a good demonstration about what is possible
in Elasticsearch. It is really just scratching the surface, and many features—such as suggestions, geolocation, percolation, fuzzy and partial matching—were omitted to keep the tutorial short. But it did highlight just how
easy it is to start building advanced search functionality. No configuration
was needed—just add data and start searching!
It’s likely that the syntax left you confused in places, and you may have questions
about how to tweak and tune various aspects. That’s fine! The rest of the
book dives into each of these issues in detail, giving you a solid
understanding of how Elasticsearch works.

1.15. Distributed Nature

At the beginning of this chapter, we said that Elasticsearch can scale out to
hundreds (or even thousands) of servers and handle petabytes of data. While
our tutorial gave examples of how to use Elasticsearch, it didn’t touch on the
mechanics at all. Elasticsearch is distributed by nature, and it is designed
to hide the complexity that comes with being distributed.
The distributed aspect of Elasticsearch is largely transparent. Nothing in
the tutorial required you to know about distributed systems, sharding, cluster
discovery, or dozens of other distributed concepts. It happily ran the
tutorial on a single node living inside your laptop, but if you were to run
the tutorial on a cluster containing 100 nodes, everything would work in
exactly the same way.
Elasticsearch tries hard to hide the complexity of distributed systems. Here are some of
the operations happening automatically under the hood:
	
Partitioning your documents into different containers
 or shards, which
 can be stored on a single node or on multiple nodes

	
Balancing these shards across the nodes in your cluster to spread the
 indexing and search load

	
Duplicating each shard to provide redundant copies of your data, to
 prevent data loss in case of hardware failure

	
Routing requests from any node in the cluster to the nodes that hold the
 data you’re interested in

	
Seamlessly integrating new nodes as your cluster grows or redistributing
 shards to recover from node loss

As you read through this book, you’ll encounter supplemental chapters about the
distributed nature of Elasticsearch. These chapters will teach you about
how the cluster scales and deals with failover (Chapter 2, Life Inside a Cluster),
handles document storage (Chapter 4, Distributed Document Store), executes distributed search
(Chapter 9, Distributed Search Execution), and what a shard is and how it works
(Chapter 11, Inside a Shard).
These chapters are not required reading—you can use Elasticsearch without
understanding these internals—but they will provide insight that will make
your knowledge of Elasticsearch more complete. Feel free to skim them and
revisit at a later point when you need a more complete understanding.

1.16. Next Steps

By now you should have a taste of what you can do with Elasticsearch, and how
easy it is to get started. Elasticsearch tries hard to work out of the box
with minimal knowledge and configuration. The best way to learn Elasticsearch
is by jumping in: just start indexing and searching!
However, the more you know about Elasticsearch, the more productive you can
become. The more you can tell Elasticsearch about the domain-specific
elements of your application, the more you can fine-tune the output.
The rest of this book will help you move from novice to expert. Each chapter explains the essentials, but also includes expert-level tips. If
you’re just getting started, these tips are probably not immediately relevant
to you; Elasticsearch has sensible defaults and will generally do the right
thing without any interference. You can always revisit these chapters later,
when you are looking to improve performance by shaving off any wasted
milliseconds.

Chapter 2. Life Inside a Cluster

Supplemental Chapter

As mentioned earlier, this is the first of several supplemental chapters
about how Elasticsearch operates in a distributed environment. In this
chapter, we explain commonly used terminology like cluster, node, and
shard, the mechanics of how Elasticsearch scales out, and how it deals with
hardware failure.
Although this chapter is not required reading—you can use Elasticsearch for
a long time without worrying about shards, replication, and failover—it will
help you to understand the processes at work inside Elasticsearch. Feel free
to skim through the chapter and to refer to it again later.

Elasticsearch is built to be always available, and to scale with your needs.
Scale can come from buying bigger servers (vertical scale, or scaling up)
or from buying more servers (horizontal scale, or scaling out).
While Elasticsearch can benefit from more-powerful hardware, vertical scale
has its limits. Real scalability comes from horizontal scale—the ability to
add more nodes to the cluster and to spread load and reliability between them.
With most databases, scaling horizontally usually requires a major overhaul of
your application to take advantage of these extra boxes. In contrast,
Elasticsearch is distributed by nature: it knows how to manage multiple
nodes to provide scale and high availability. This also means that your
application doesn’t need to care about it.
In this chapter, we show how you can set up your cluster,
nodes, and shards to scale with your needs and to ensure that your data is
safe from hardware failure.
2.1. An Empty Cluster

If we start a single node, with no data and no
indices, our cluster looks like
Figure 2.1, “A cluster with one empty node”.
Figure 2.1. A cluster with one empty node
[image: A cluster with one empty node]

A node is a running instance of
Elasticsearch, while a cluster consists of
one or more nodes with the same cluster.name that are working together to
share their data and workload. As nodes are added to or removed from the
cluster, the cluster reorganizes itself to spread the data evenly.
One node in the cluster is elected to be the master node, which is in charge
of managing cluster-wide changes like creating or deleting an index, or adding
or removing a node from the cluster. The master node does not need to be
involved in document-level changes or searches, which means that having just
one master node will not become a bottleneck as traffic grows. Any node can
become the master. Our example cluster has only one node, so it performs the
master role.
As users, we can talk to any node in the cluster, including the master node.
Every node knows where each document lives and can forward our request
directly to the nodes that hold the data we are interested in. Whichever node
we talk to manages the process of gathering the response from the node or
nodes holding the data and returning the final response to the client. It is
all managed transparently by Elasticsearch.

2.2. Cluster Health

Many statistics can be monitored in an Elasticsearch cluster,
but the single most important one is cluster health, which reports a
status of either green, yellow, or red:
GET /_cluster/health
On an empty cluster with no indices, this will return something like the following:
{
 "cluster_name": "elasticsearch",
 "status": "green", (1)
 "timed_out": false,
 "number_of_nodes": 1,
 "number_of_data_nodes": 1,
 "active_primary_shards": 0,
 "active_shards": 0,
 "relocating_shards": 0,
 "initializing_shards": 0,
 "unassigned_shards": 0
}
	(1)
	
The status field is the one we’re most interested in.

The status field provides an overall indication of how the cluster is
functioning. The meanings of the three colors are provided here for reference:
	
green

	
 All primary and replica shards are active.

	
yellow

	
 All primary shards are active, but not all replica shards are active.

	
red

	
 Not all primary shards are active.

In the rest of this chapter, we explain what primary and replica shards are
and explain the practical implications of each of the preceding colors.

2.3. Add an Index

To add data to Elasticsearch, we need an index—a place to store related
data.
 In reality, an index is just a logical namespace that points to
one or more physical shards.
A shard is a low-level worker unit that holds
 just a slice of all the
data in the index. In Chapter 11, Inside a Shard, we explain in detail how a
shard works, but for now it is enough to know that a shard is a single
instance of Lucene, and is a complete search engine in its own right. Our
documents are stored and indexed in shards, but our applications don’t talk to
them directly. Instead, they talk to an index.
Shards are how Elasticsearch distributes data around your cluster. Think of
shards as containers for data. Documents are stored in shards, and shards are
allocated to nodes in your cluster. As your cluster grows or shrinks,
Elasticsearch will automatically migrate shards between nodes so that the
cluster remains balanced.
A shard can be either a primary shard or a replica shard.
 Each document in
your index belongs to a single primary shard, so the number of primary shards
that you have determines the maximum amount of data that your index can hold.
Note
While a primary shard can technically contain up to Integer.MAX_VALUE - 128 documents,
the practical limit depends on your use case: the hardware you have, the size and
complexity of your documents, how you index and query your documents, and your
expected response times.

A replica shard is just a copy of a primary shard.
 Replicas are used to provide
redundant copies of your data to protect against hardware failure, and to
serve read requests like searching or retrieving a document.
The number of primary shards in an index is fixed at the time that an index is
created, but the number of replica shards can be changed at any time.
Let’s create an index called blogs in our empty one-node cluster.
 By
default, indices are assigned five primary shards,

 but for the purpose of this
demonstration, we’ll assign just three primary shards and one replica (one replica
of every primary shard):
PUT /blogs
{
 "settings" : {
 "number_of_shards" : 3,
 "number_of_replicas" : 1
 }
}
Our cluster now looks like Figure 2.2, “A single-node cluster with an index”. All three primary shards have been allocated to Node 1.
Figure 2.2. A single-node cluster with an index
[image: A single-node cluster with an index]

If we were to check the
cluster-health now,
we would see this:
{
 "cluster_name": "elasticsearch",
 "status": "yellow", (1)
 "timed_out": false,
 "number_of_nodes": 1,
 "number_of_data_nodes": 1,
 "active_primary_shards": 3,
 "active_shards": 3,
 "relocating_shards": 0,
 "initializing_shards": 0,
 "unassigned_shards": 3, (2)
 "delayed_unassigned_shards": 0,
 "number_of_pending_tasks": 0,
 "number_of_in_flight_fetch": 0,
 "task_max_waiting_in_queue_millis": 0,
 "active_shards_percent_as_number": 50
}
	(1)
	
Cluster status is yellow.

	(2)
	
The replica shards have not been allocated to a node.

A cluster health of yellow means that all primary shards are up and
running (the cluster is capable of serving any request successfully) but
not all replica shards are active. In fact, all three replica shards
are currently unassigned—they haven’t been allocated to a node. It
doesn’t make sense to store copies of the same data on the same node. If we
were to lose that node, we would lose all copies of our data.
Currently, our cluster is fully functional but at risk of data loss in case of
hardware failure.

2.4. Add Failover

Running a single node means that you have a single point of failure—there
is no redundancy. Fortunately, all we need to do to protect ourselves from data
loss is to start another node.
Starting a Second Node

To test what happens when you add a second
 node, you can start a new node
in exactly the same way as you started the first one (see
Section 1.1, “Installing and Running Elasticsearch”), and from the same directory. Multiple nodes can
share the same directory.
When you run a second node on the same machine, it automatically discovers
and joins the cluster as long as it has the same cluster.name as the first node.
However, for nodes running on different machines
to join the same cluster, you need to configure a list of unicast hosts the nodes can contact
to join the cluster. For more information, see Prefer Unicast over Multicast.

If we start a second node, our cluster would look like Figure 2.3, “A two-node cluster—all primary and replica shards are allocated”.
Figure 2.3. A two-node cluster—all primary and replica shards are allocated
[image: A two-node cluster]

The
 second node has joined the cluster, and three replica shards have
been
allocated to it—one for each primary shard. That means that we can lose
either node, and all of our data will be intact.
Any newly indexed document will first be stored on a primary shard, and then copied in parallel to the associated replica shard(s). This ensures that our document can be retrieved from a primary shard or from any of its replicas.
The cluster-health now
shows a status of green, which means that all six
shards (all three primary shards and all three replica shards) are active:
{
 "cluster_name": "elasticsearch",
 "status": "green", (1)
 "timed_out": false,
 "number_of_nodes": 2,
 "number_of_data_nodes": 2,
 "active_primary_shards": 3,
 "active_shards": 6,
 "relocating_shards": 0,
 "initializing_shards": 0,
 "unassigned_shards": 0,
 "delayed_unassigned_shards": 0,
 "number_of_pending_tasks": 0,
 "number_of_in_flight_fetch": 0,
 "task_max_waiting_in_queue_millis": 0,
 "active_shards_percent_as_number": 100
}
	(1)
	
Cluster status is green.

Our cluster is not only fully functional, but also always available.

2.5. Scale Horizontally

What about scaling as the demand for our application grows?

 If we start a
third node, our cluster reorganizes itself to look like
Figure 2.4, “A three-node cluster—shards have been reallocated to spread the load”.
Figure 2.4. A three-node cluster—shards have been reallocated to spread the load
[image: A three-node cluster]

One shard each from Node 1 and Node 2 have moved to the new
Node 3, and we have two shards per node, instead of three.
This means that the hardware resources (CPU, RAM, I/O) of each node
are being shared among fewer shards, allowing each shard to perform
better.
A shard is a fully fledged search engine in its own right, and is
capable of using all of the resources of a single node. With our
total of six shards (three primaries and three replicas), our index is capable
of scaling out to a maximum of six nodes, with one shard on each node
and each shard having access to 100% of its node’s resources.
2.5.1. Then Scale Some More

But what if we want to scale our search to more than six nodes?
The number of primary shards is fixed at the moment an

 index is created.
Effectively, that number defines the maximum amount of data that can be
stored in the index. (The actual number depends on your data, your hardware
and your use case.) However, read requests—searches or document retrieval—can be handled by a primary or a replica shard, so the more copies of
data that you have, the more search throughput you can handle.
The number of
replica shards can be changed dynamically on a live cluster,
allowing us to scale up or down as demand requires. Let’s increase the number
of replicas from the default of 1 to 2:
PUT /blogs/_settings
{
 "number_of_replicas" : 2
}
As can be seen in Figure 2.5, “Increasing the number_of_replicas to 2”, the blogs index now
has nine shards: three primaries and six replicas. This means that we can scale out to
a total of nine nodes, again with one shard per node. This would allow us to
triple search performance compared to our original three-node cluster.
Figure 2.5. Increasing the number_of_replicas to 2
[image: A three-node cluster with two replica shards]

Note
Of course, just having more replica shards on the same number of nodes doesn’t
increase our performance at all because each shard has access to a smaller
fraction of its node’s resources. You need to add hardware to increase
throughput.
But these extra replicas do mean that we have more redundancy: with the node
configuration above, we can now afford to lose two nodes without losing any
data.

2.6. Coping with Failure

We’ve said that Elasticsearch can cope when nodes fail, so let’s go
ahead and try it out.

If we kill the first node, our cluster looks like
Figure 2.6, “Cluster after killing one node”.
Figure 2.6. Cluster after killing one node
[image: The cluster after killing one node]

The node we killed was the master node. A cluster must have a master node in
order to function correctly, so the first thing that happened was that the
nodes elected a new master: Node 2.
Primary shards 1 and 2 were lost when we killed Node 1, and our index
cannot function properly if it is missing primary shards.
 If we had checked
the cluster health at this point, we would have seen status red: not all
primary shards are active!
Fortunately, a complete copy of the two lost primary shards exists on other
nodes, so the first thing that the new master node did was to promote the
replicas of these shards on Node 2 and Node 3 to be primaries, putting us
back into cluster health yellow. This promotion process was instantaneous,
like the flick of a switch.
So why is our cluster health yellow and not green? We have all three primary
shards, but we specified that we wanted two replicas of each primary, and
currently only one replica is assigned. This prevents us from reaching
green, but we’re not too worried here: were we to kill Node 2 as well, our
application could still keep running without data loss, because Node 3
contains a copy of every shard.
If we restart Node 1, the cluster would be able to allocate the missing
replica shards, resulting in a state similar to the one described in
Figure 2.5, “Increasing the number_of_replicas to 2”. If Node 1 still has copies of the old
shards, it will try to reuse them, copying over from the primary shard
only the files that have changed in the meantime.
By now, you should have a reasonable idea of how shards allow Elasticsearch to
scale horizontally and to ensure that your data is safe. Later we will examine
the life cycle of a shard in more detail.

Chapter 3. Data In, Data Out

Whatever program we write, the intention is the same: to organize data in a
way that serves our purposes. But data doesn’t consist of just random bits
and bytes. We build relationships between data elements in order to represent
entities, or things that exist in the real world. A name and an email
address have more meaning if we know that they belong to the same person.
In the real world, though, not all entities of the same type look the same.
One person might have a home telephone number, while another person has only a
cell-phone number, and another might have both. One person might have three
email addresses, while another has none. A Spanish person will probably have
two last names, while an English person will probably have only one.
One of the reasons that object-oriented programming languages are so popular
is that objects help us represent and manipulate real-world entities with
potentially complex data structures. So far, so good.
The problem comes when we need to store these entities. Traditionally, we have
stored our data in columns and rows in a relational database, the equivalent
of using a spreadsheet. All the flexibility gained from using objects is lost
because of the inflexibility of our storage medium.
But what if we could store our objects as objects?
 Instead of modeling our
application around the limitations of spreadsheets, we can instead focus on using the data. The flexibility of objects is returned to us.
An object is a language-specific, in-memory data structure.
 To send it across
the network or store it, we need to be able to represent it in some standard
format. JSON
is a way of representing objects in human-readable text.

 It has become the
de facto standard for exchanging data in the NoSQL world. When an object has
been serialized into JSON, it is known as a JSON document.
Elasticsearch is a distributed document store. It can store and retrieve
complex data structures—serialized as JSON documents—in real time. In
other words, as soon as a document has been stored in Elasticsearch, it can be
retrieved from any node in the cluster.
Of course, we don’t need to only store data; we must also query it, en masse
and at speed. While NoSQL solutions exist that allow us to store
objects as documents, they still require us to think about how we want to
query our data, and which fields require an index in order to make data
retrieval fast.
In Elasticsearch, all data in every field is indexed by default.
 That is,
every field has a dedicated inverted index for fast retrieval. And, unlike
most other databases, it can use all of those inverted indices in the same
query, to return results at breathtaking speed.
In this chapter, we present the APIs that we use to create, retrieve,
update, and delete documents. For the moment, we don’t care about the data
inside our documents or how to query them. All we care about is how to store our
documents safely in Elasticsearch and how to get them back again.
3.1. What Is a Document?

Most entities or objects in most applications can be serialized into a JSON
object, with keys and values.
 A key is the name of a field or property,
and a value can be a string, a number, a Boolean, another object, an array
of values, or some other specialized type such as a string representing a date
or an object representing a geolocation:
{
 "name": "John Smith",
 "age": 42,
 "confirmed": true,
 "join_date": "2014-06-01",
 "home": {
 "lat": 51.5,
 "lon": 0.1
 },
 "accounts": [
 {
 "type": "facebook",
 "id": "johnsmith"
 },
 {
 "type": "twitter",
 "id": "johnsmith"
 }
]
}
Often, we use the terms object and document interchangeably. However,
there is a distinction.

 An object is just a JSON object—similar to what is
known as a hash, hashmap, dictionary, or associative array. Objects may contain
other objects. In Elasticsearch, the term document has a specific meaning. It refers
to the top-level, or root object that is serialized into JSON and
stored in Elasticsearch under a unique ID.
Warning
Field names can be any valid string, but may not include periods.

3.2. Document Metadata

A document doesn’t consist only of its data.
 It also has
metadata—information about the document. The three required metadata
elements are as follows:
	
_index

	
 Where the document lives

	
_type

	
 The class of object that the document represents

	
_id

	
 The unique identifier for the document

3.2.1. _index

An index is a collection of documents that should be grouped together for a
common reason. For example, you may store all your products in a products index,
while all your sales transactions go in sales. Although it is possible to store
unrelated data together in a single index, it is often considered an anti-pattern.
Tip
Actually, in Elasticsearch, our data is stored and indexed in shards,
while an index is just a logical namespace that groups together one or more
shards.
 However, this is an internal detail; our application shouldn’t care
about shards at all. As far as our application is concerned, our documents
live in an index. Elasticsearch takes care of the details.

We cover how to create and manage indices ourselves in Chapter 10, Index Management,
but for now we will let Elasticsearch create the index for us. All we have to
do is choose an index name. This name must be lowercase, cannot begin with an
underscore, and cannot contain commas. Let’s use website as our index name.

3.2.2. _type

Data may be grouped loosely together in an index, but often there are sub-partitions
inside that data which may be useful to explicitly define. For example, all your
products may go inside a single index. But you have different categories of products,
such as "electronics", "kitchen" and "lawn-care".
The documents all share an identical (or very similar) schema: they have a title,
description, product code, price. They just happen to belong to sub-categories
under the umbrella of "Products".
Elasticsearch exposes a feature called types which allows you to logically
partition data inside of an index. Documents in different types may have different
fields, but it is best if they are highly similar. We’ll talk more about the restrictions
and applications of types in Section 10.6, “Types and Mappings”.
A _type name can be lowercase or uppercase, but shouldn’t begin with an
underscore or period. It also may not contain commas,

and is limited to a length of 256 characters. We will use blog for our type name.

3.2.3. _id

The ID is a string that,
 when combined with the _index and _type,
uniquely identifies a document in Elasticsearch. When creating a new document,
you can either provide your own _id or let Elasticsearch generate one for
you.

3.2.4. Other Metadata

There are several other metadata elements, which are presented in
Section 10.6, “Types and Mappings”. With the elements listed previously, we are already able to store a
document in Elasticsearch and to retrieve it by ID—in other words, to use
Elasticsearch as a document store.

3.3. Indexing a Document

Documents are indexed—stored and made

searchable—by using the index
API. But first, we need to decide where the document lives. As we just
discussed, a document’s _index, _type, and _id uniquely identify the
document. We can either provide our own _id value or let the index API
generate one for us.
3.3.1. Using Our Own ID

If your document has a natural
identifier (for example, a user_account field
or some other value that identifies the document), you should provide
your own _id, using this form of the index API:
PUT /{index}/{type}/{id}
{
 "field": "value",
 ...
}
For example, if our index is called website, our type is called blog,
and we choose the ID 123, then the index request looks like this:
PUT /website/blog/123
{
 "title": "My first blog entry",
 "text": "Just trying this out...",
 "date": "2014/01/01"
}
Elasticsearch responds as follows:
{
 "_index": "website",
 "_type": "blog",
 "_id": "123",
 "_version": 1,
 "created": true
}
The response indicates that the document has been successfully created
and includes the _index, _type, and _id metadata, and a new element:
_version.
Every document in Elasticsearch has a version number. Every time a change is
made to a document (including deleting it), the _version number is
incremented. In Section 3.9, “Dealing with Conflicts”, we discuss how to use the _version
number to ensure that one part of your application doesn’t overwrite changes
made by another part.

3.3.2. Autogenerating IDs

If our data doesn’t have a natural ID, we can let Elasticsearch autogenerate
one for us.
The structure of the request changes: instead of using
the PUT
verb (“store this document at this URL”), we use the POST verb (“store this document under this URL”).
The URL now contains just the _index and the _type:
POST /website/blog/
{
 "title": "My second blog entry",
 "text": "Still trying this out...",
 "date": "2014/01/01"
}
The response is similar to what we saw before, except that the _id
field has been generated for us:
{
 "_index": "website",
 "_type": "blog",
 "_id": "AVFgSgVHUP18jI2wRx0w",
 "_version": 1,
 "created": true
}
Autogenerated IDs are 20 character long, URL-safe, Base64-encoded GUID strings. These
GUIDs are generated from a modified FlakeID scheme which allows multiple nodes
to be generating unique IDs in parallel with essentially zero chance of collision.

3.4. Retrieving a Document

To get the document
out of Elasticsearch, we use the same _index,
_type, and _id, but the HTTP verb
changes to GET:
GET /website/blog/123?pretty
The response includes the by-now-familiar metadata elements, plus the _source
field, which contains the original JSON document that we sent to Elasticsearch
when we indexed it:
{
 "_index" : "website",
 "_type" : "blog",
 "_id" : "123",
 "_version" : 1,
 "found" : true,
 "_source" : {
 "title": "My first blog entry",
 "text": "Just trying this out...",
 "date": "2014/01/01"
 }
}
Note
Adding pretty to the query-string parameters for any request,
 as in the
preceding example, causes Elasticsearch to pretty-print the JSON response to
make it more readable. The _source field, however, isn’t pretty-printed.
Instead we get back exactly the same JSON string that we passed in.

The response to the GET request includes {"found": true}. This confirms that
the document was found.
If we were to request a document that doesn’t exist,
we would still get a JSON response, but found would be set to false.
Also, the HTTP response code would be 404 Not Found instead of 200 OK.
We can see this by passing the -i argument to curl, which
 causes it to
display the response headers:
curl -i -XGET http://localhost:9200/website/blog/124?pretty
The response now looks like this:
HTTP/1.1 404 Not Found
Content-Type: application/json; charset=UTF-8
Content-Length: 83

{
 "_index" : "website",
 "_type" : "blog",
 "_id" : "124",
 "found" : false
}
3.4.1. Retrieving Part of a Document

By default, a GET request
 will return the whole document, as stored in the
_source field. But perhaps all you are interested in is the title field.
Individual fields can be
requested by using the _source parameter. Multiple
fields can be specified in a comma-separated list:
GET /website/blog/123?_source=title,text
The _source field now contains just the fields that we requested and has
filtered out the date field:
{
 "_index" : "website",
 "_type" : "blog",
 "_id" : "123",
 "_version" : 1,
 "found" : true,
 "_source" : {
 "title": "My first blog entry" ,
 "text": "Just trying this out..."
 }
}
Or if you want just the _source field without any metadata, you can use
the _source endpoint:
GET /website/blog/123/_source
which returns just the following:
{
 "title": "My first blog entry",
 "text": "Just trying this out...",
 "date": "2014/01/01"
}

3.5. Checking Whether a Document Exists

If all you want to do is to check whether a
document exists—you’re not
interested in the content at all—then use
 the HEAD method instead
of the GET method. HEAD requests don’t return a body, just HTTP headers:
curl -i -XHEAD http://localhost:9200/website/blog/123
Elasticsearch will return a 200 OK status code if the document exists:
HTTP/1.1 200 OK
Content-Type: text/plain; charset=UTF-8
Content-Length: 0
And a 404 Not Found if it doesn’t exist:
curl -i -XHEAD http://localhost:9200/website/blog/124
HTTP/1.1 404 Not Found
Content-Type: text/plain; charset=UTF-8
Content-Length: 0
Of course, just because a document didn’t exist when you checked it, doesn’t
mean that it won’t exist a millisecond later: another process might create the
document in the meantime.

3.6. Updating a Whole Document

Documents in Elasticsearch are immutable; we cannot change them.

 Instead, if
we need to update an existing document, we reindex or replace it, which we
can do using the same index API that we have already discussed in
Section 3.3, “Indexing a Document”.
PUT /website/blog/123
{
 "title": "My first blog entry",
 "text": "I am starting to get the hang of this...",
 "date": "2014/01/02"
}
In the response, we can see that Elasticsearch has
incremented the _version
number:
{
 "_index" : "website",
 "_type" : "blog",
 "_id" : "123",
 "_version" : 2,
 "created": false (1)
}
	(1)
	
The created flag is set to false because a document with the same
 index, type, and ID already existed.

Internally, Elasticsearch has marked the old document as deleted and added an
entirely new document. The old version of the document doesn’t disappear
immediately, although you won’t be able to access it. Elasticsearch cleans up
deleted documents in the background as you continue to index more data.
Later in this chapter, we introduce the update API, which can be used to
make partial updates to a document. This API appears to
change documents in place, but actually Elasticsearch is following exactly the
same process as described previously:
	
Retrieve the JSON from the old document

	
Change it

	
Delete the old document

	
Index a new document

The only difference is that the update API achieves this through a single
client request, instead of requiring separate get and index requests.

3.7. Creating a New Document

How can we be sure, when we index a document, that
 we are creating an entirely
new document and not overwriting an existing one?
Remember that the combination of _index, _type, and _id uniquely
identifies a document. So the easiest way to ensure that our document is new
is by letting Elasticsearch autogenerate a new unique _id, using the POST
version of
the index request:
POST /website/blog/
{ ... }
However, if we already have an _id that we want to use, then we have to tell
Elasticsearch that it should accept our index request only if a document with
the same _index, _type, and _id doesn’t exist already. There are two ways
of doing this, both of which amount to the same thing. Use whichever method is
more convenient for you.
The first method uses the op_type query

-string parameter:
PUT /website/blog/123?op_type=create
{ ... }
And the second uses the /_create endpoint in the URL:
PUT /website/blog/123/_create
{ ... }
If the request succeeds in creating a new document, Elasticsearch will
return the usual metadata and an HTTP response code of 201 Created.
On the other hand, if a document with the same _index, _type, and _id
already exists, Elasticsearch will respond with a 409 Conflict response
code, and an error message like the following:
{
 "error": {
 "root_cause": [
 {
 "type": "document_already_exists_exception",
 "reason": "[blog][123]: document already exists",
 "shard": "0",
 "index": "website"
 }
],
 "type": "document_already_exists_exception",
 "reason": "[blog][123]: document already exists",
 "shard": "0",
 "index": "website"
 },
 "status": 409
}

3.8. Deleting a Document

The syntax for deleting a document
 follows the same pattern that we have seen
already, but

uses the DELETE method :
DELETE /website/blog/123
If the document is found, Elasticsearch will return an HTTP response code
of 200 OK and a response body like the following. Note that the _version
number has been incremented:
{
 "found" : true,
 "_index" : "website",
 "_type" : "blog",
 "_id" : "123",
 "_version" : 3
}
If the document isn’t
 found, we get a 404 Not Found response code and
a body like this:
{
 "found" : false,
 "_index" : "website",
 "_type" : "blog",
 "_id" : "123",
 "_version" : 4
}
Even though the document doesn’t exist (found is false), the
_version number has still been incremented. This is part of the internal
bookkeeping, which ensures that changes are applied in the correct order
across multiple nodes.
Note
As already mentioned in Section 3.6, “Updating a Whole Document”, deleting a document doesn’t
immediately remove the document from disk; it just marks it as deleted.
Elasticsearch will clean up deleted documents in the background as you
continue to index more data.

3.9. Dealing with Conflicts

When updating a document with
the index API, we read the original document,
make our changes, and then reindex the whole document in one go. The most recent
indexing request wins: whichever document was indexed last is the one stored
in Elasticsearch. If somebody else had changed the document in the meantime,
their changes would be lost.
Many times, this is not a problem. Perhaps our main data store is a
relational database, and we just copy the data into Elasticsearch to make it
searchable. Perhaps there is little chance of two people changing the same
document at the same time. Or perhaps it doesn’t really matter to our business
if we lose changes occasionally.
But sometimes losing a change is very important. Imagine that we’re using
Elasticsearch to store the number of widgets that we have in stock in our
online store. Every time that we sell a widget, we decrement the stock count
in Elasticsearch.
One day, management decides to have a sale. Suddenly, we are selling several
widgets every second. Imagine two web processes, running in parallel, both
processing the sale of one widget each, as shown in Figure 3.1, “Consequence of no concurrency control”.
Figure 3.1. Consequence of no concurrency control
[image: Consequence of no concurrency control]

The change that web_1 made to the stock_count has been lost because
web_2 is unaware that its copy of the stock_count is out-of-date. The
result is that we think we have more widgets than we actually do, and we’re
going to disappoint customers by selling them stock that doesn’t exist.
The more frequently that changes are made, or the longer the gap between
reading data and updating it, the more likely it is that we will lose changes.
In the database world, two approaches are commonly used to ensure that
changes are not lost when making concurrent updates:
	
Pessimistic concurrency control

	
Widely used by relational databases, this approach assumes that conflicting changes are
likely to happen and so blocks access to a resource in order to prevent
conflicts. A typical example is locking a row before reading its data,
ensuring that only the thread that placed the lock is able to make changes to
the data in that row.

	
Optimistic concurrency control

	
Used by Elasticsearch, this approach assumes that conflicts are unlikely to happen and
doesn’t block operations from being attempted. However, if the underlying data
has been modified between reading and writing, the update will fail. It is
then up to the application to decide how it should resolve the conflict. For
instance, it could reattempt the update, using the fresh data, or it could
report the situation to the user.

3.10. Optimistic Concurrency Control

Elasticsearch is distributed. When documents
 are created, updated, or deleted,
the new version of the document has to be replicated to other nodes in the
cluster. Elasticsearch is also asynchronous and concurrent, meaning that
these replication requests are sent in parallel, and may arrive at their
destination out of sequence. Elasticsearch needs a way of ensuring that an older
version of a document never overwrites a newer version.
When we discussed index, get, and delete requests previously, we pointed out
that every document has a _version number that is incremented whenever a
document is changed. Elasticsearch uses this _version number to ensure that
changes are applied in the correct order. If an older version of a document
arrives after a new version, it can simply be ignored.
We can take advantage of the _version number to ensure
that conflicting
changes made by our application do not result in data loss. We do this by
specifying the version number of the document that we wish to change. If that
version is no longer current, our request fails.
Let’s create a new blog post:
PUT /website/blog/1/_create
{
 "title": "My first blog entry",
 "text": "Just trying this out..."
}
The response body tells us that this newly created document has _version
number 1. Now imagine that we want to edit the document: we load its data
into a web form, make our changes, and then save the new version.
First we retrieve the document:
GET /website/blog/1
The response body includes the same _version number of 1:
{
 "_index" : "website",
 "_type" : "blog",
 "_id" : "1",
 "_version" : 1,
 "found" : true,
 "_source" : {
 "title": "My first blog entry",
 "text": "Just trying this out..."
 }
}
Now, when we try to save our changes by reindexing the document, we specify
the version to which our changes should be applied:
PUT /website/blog/1?version=1 (1)
{
 "title": "My first blog entry",
 "text": "Starting to get the hang of this..."
}
	(1)
	
We want this update to succeed only if the current _version of this
 document in our index is version 1.

This request succeeds, and the response body tells us that the _version
has been incremented to 2:
{
 "_index": "website",
 "_type": "blog",
 "_id": "1",
 "_version": 2
 "created": false
}
However, if we were to rerun the same index request, still specifying
version=1, Elasticsearch would respond with a 409 Conflict HTTP response
code, and a body like the following:
{
 "error": {
 "root_cause": [
 {
 "type": "version_conflict_engine_exception",
 "reason": "[blog][1]: version conflict, current [2], provided [1]",
 "index": "website",
 "shard": "3"
 }
],
 "type": "version_conflict_engine_exception",
 "reason": "[blog][1]: version conflict, current [2], provided [1]",
 "index": "website",
 "shard": "3"
 },
 "status": 409
}
This tells us that the current _version number of the document in
Elasticsearch is 2, but that we specified that we were updating version 1.
What we do now depends on our application requirements. We could tell the
user that somebody else has already made changes to the document, and to review the changes before trying to save them again.
Alternatively, as in the case of the widget stock_count previously, we could
retrieve the latest document and try to reapply the change.
All APIs that update or delete a document accept a version parameter, which
allows you to apply optimistic concurrency control to just the parts of your
code where it makes sense.
3.10.1. Using Versions from an External System

A common setup is to use some other database as the primary data store and
Elasticsearch to make the data searchable,
 which means that all changes to the
primary database need to be copied across to Elasticsearch as they happen. If
multiple processes are responsible for this data synchronization, you may
run into concurrency problems similar to those described previously.
If your main database already has version numbers—or a value such as
timestamp that can be used as a version number—then you can reuse these
same version numbers in Elasticsearch by adding version_type=external to the
query string.
 Version numbers must be integers greater than zero and less than
about 9.2e+18--a positive long value in Java.
The way external version numbers are handled is a bit different from the
internal version numbers we discussed previously. Instead of checking that the
current _version is the same as the one specified in the request,
Elasticsearch checks that the current _version is less than the specified
version. If the request succeeds, the external version number is stored as the
document’s new _version.
External version numbers can be specified not only on
index and delete requests, but also when creating new documents.
For instance, to create a new blog post with an external version number
of 5, we can do the following:
PUT /website/blog/2?version=5&version_type=external
{
 "title": "My first external blog entry",
 "text": "Starting to get the hang of this..."
}
In the response, we can see that the current _version number is 5:
{
 "_index": "website",
 "_type": "blog",
 "_id": "2",
 "_version": 5,
 "created": true
}
Now we update this document, specifying a new version number of 10:
PUT /website/blog/2?version=10&version_type=external
{
 "title": "My first external blog entry",
 "text": "This is a piece of cake..."
}
The request succeeds and sets the current _version to 10:
{
 "_index": "website",
 "_type": "blog",
 "_id": "2",
 "_version": 10,
 "created": false
}
If you were to rerun this request, it would fail with the same conflict error
we saw before, because the specified external version number is not higher
than the current version in Elasticsearch.

3.11. Partial Updates to Documents

In Section 3.6, “Updating a Whole Document”, we said that

the way to update a document is to retrieve
it, change it, and then reindex the whole document. This is true. However, using
the update API, we can make partial updates like incrementing a counter in a
single request.
We also said that documents are immutable: they cannot be changed, only
replaced. The update API must obey the same rules. Externally, it
appears as though we are partially updating a document in place. Internally,
however, the update API simply manages the same retrieve-change-reindex
process that we have already described. The difference is that this process
happens within a shard, thus avoiding the network overhead of multiple
requests. By reducing the time between the retrieve and reindex steps, we
also reduce the likelihood of there being conflicting changes from other
processes.
The simplest form of the update request accepts a partial document as the
doc parameter, which just gets merged with the existing document. Objects
are merged together, existing scalar fields are overwritten, and new fields are
added. For instance, we could add a tags field and a views field to our
blog post as follows:
POST /website/blog/1/_update
{
 "doc" : {
 "tags" : ["testing"],
 "views": 0
 }
}
If the request succeeds, we see a response similar to that
of the index request:
{
 "_index" : "website",
 "_id" : "1",
 "_type" : "blog",
 "_version" : 3
}
Retrieving the document shows the updated _source field:
{
 "_index": "website",
 "_type": "blog",
 "_id": "1",
 "_version": 3,
 "found": true,
 "_source": {
 "title": "My first blog entry",
 "text": "Starting to get the hang of this...",
 "tags": ["testing"], (1)
 "views": 0 (2)
 }
}
	(1) (2)
	
Our new fields have been added to the _source.

3.11.1. Using Scripts to Make Partial Updates

Scripts can be used in the update API to change the contents of the _source
field, which is referred to inside an update script as ctx._source. For
instance, we could use a script to increment the number of views that our
blog post has had:
POST /website/blog/1/_update
{
 "script" : "ctx._source.views+=1"
}
Scripting with Groovy

For those

moments when the API just isn’t enough, Elasticsearch allows you to
write your own custom logic in a script.
 Scripting is supported in many APIs
including search, sorting, aggregations, and document updates. Scripts can be passed in as part of the request,
retrieved from the special .scripts index, or loaded from disk.
The default scripting language is Groovy, a
fast and expressive scripting language, similar in syntax to JavaScript. It was first introduced
in Elasticsearch version v1.3.0 and it runs in a sandbox, however there is vulnerability
in the Groovy scripting engine that allows an attacker to construct
Groovy scripts that escape the sandbox and execute shell commands as the user
running the Elasticsearch Java VM.
Therefore in versions v1.3.8, v1.4.3, and version v1.5.0 and newer it has been disabled by default.
Alternatively you can disable dynamic Groovy scripts by
adding this setting to the config/elasticsearch.yml file in all nodes in the
cluster:
script.groovy.sandbox.enabled: false
This will turn off the Groovy sandbox, thus preventing dynamic Groovy scripts
from being accepted as part of a request or retrieved from the special
.scripts index. You will still be able to use Groovy scripts stored in files
in the config/scripts/ directory on every node.
If your architecture and security is one that does not need worry about the vulnerability,
for example your Elasticsearch endpoints are only exposed and available to trusted applications,
then you can choose to re-enable the dynamic scripting if it is a feature your application needs.
You can read more about scripting in the
scripting reference documentation.

We can also use a script to add a new tag to the tags array. In this
example we specify the new tag as a parameter rather than hardcoding it in
the script itself. This allows Elasticsearch to reuse the script in the
future, without having to compile a new script every time we want to add
another tag:
POST /website/blog/1/_update
{
 "script" : "ctx._source.tags+=new_tag",
 "params" : {
 "new_tag" : "search"
 }
}
Fetching the document shows the effect of the last two requests:
{
 "_index": "website",
 "_type": "blog",
 "_id": "1",
 "_version": 5,
 "found": true,
 "_source": {
 "title": "My first blog entry",
 "text": "Starting to get the hang of this...",
 "tags": ["testing", "search"], (1)
 "views": 1 (2)
 }
}
	(1)
	
The search tag has been appended to the tags array.

	(2)
	
The views field has been incremented.

We can even choose to delete a document based on its contents,
by setting ctx.op to delete:
POST /website/blog/1/_update
{
 "script" : "ctx.op = ctx._source.views == count ? 'delete' : 'none'",
 "params" : {
 "count": 1
 }
}

3.11.2. Updating a Document That May Not Yet Exist

Imagine that we need to store a
 page view counter in Elasticsearch. Every time
that a user views a page, we increment the counter for that page. But if it
is a new page, we can’t be sure that the counter already exists. If we try to
update a nonexistent document, the update will fail.
In cases like these, we can use the upsert parameter to specify the
document that should be created if it doesn’t already exist:
POST /website/pageviews/1/_update
{
 "script" : "ctx._source.views+=1",
 "upsert": {
 "views": 1
 }
}
The first time we run this request, the upsert value is indexed as a new
document, which initializes the views field to 1. On subsequent runs, the
document already exists, so the script update is applied instead,
incrementing the views counter.

3.11.3. Updates and Conflicts

In the introduction to this section, we said

 that the smaller the window between
the retrieve and reindex steps, the smaller the opportunity for
conflicting changes. But it doesn’t eliminate the possibility completely. It
is still possible that a request from another process could change the
document before update has managed to reindex it.
To avoid losing data, the update API retrieves the current _version
of the document in the retrieve step, and passes that to the index request
during the reindex step.
If another process has changed the document between retrieve and reindex,
then the _version number won’t match and the update request will fail.
For many uses of partial update, it doesn’t matter that a document has been
changed. For instance, if two processes are both incrementing the page-view counter, it doesn’t matter in which order it happens; if a conflict
occurs, the only thing we need to do is reattempt the update.
This can be done automatically by
 setting the retry_on_conflict parameter to
the number of times that update should retry before failing; it defaults
to 0.
POST /website/pageviews/1/_update?retry_on_conflict=5 (1)
{
 "script" : "ctx._source.views+=1",
 "upsert": {
 "views": 0
 }
}
	(1)
	
Retry this update five times before failing.

This works well for operations such as incrementing a counter, where the order of
increments does not matter, but in other situations the order of
changes is important. Like the index API, the update API
adopts a last-write-wins approach by default, but it also accepts a
version parameter that allows you to use
optimistic concurrency control to specify
which version of the document you intend to update.

3.12. Retrieving Multiple Documents

As fast as Elasticsearch is, it can be faster still.
 Combining multiple
requests into one avoids the network overhead of processing each request
individually. If you know that you need to retrieve multiple documents from
Elasticsearch, it is faster to retrieve them all in a single request by using the
multi-get, or mget, API, instead of document by document.
The mget API expects a docs array, each
element of which specifies the
_index, _type, and _id metadata of the document you wish to retrieve. You
can also specify a _source parameter if you just want to retrieve one or
more specific fields:
GET /_mget
{
 "docs" : [
 {
 "_index" : "website",
 "_type" : "blog",
 "_id" : 2
 },
 {
 "_index" : "website",
 "_type" : "pageviews",
 "_id" : 1,
 "_source": "views"
 }
]
}
The response body also contains a docs array
 that contains a response
per document, in the same order as specified in the request. Each of these
responses is the same response body that we would expect from an individual
get request:
{
 "docs" : [
 {
 "_index" : "website",
 "_id" : "2",
 "_type" : "blog",
 "found" : true,
 "_source" : {
 "text" : "This is a piece of cake...",
 "title" : "My first external blog entry"
 },
 "_version" : 10
 },
 {
 "_index" : "website",
 "_id" : "1",
 "_type" : "pageviews",
 "found" : true,
 "_version" : 2,
 "_source" : {
 "views" : 2
 }
 }
]
}
If the documents you wish to retrieve are all in the same _index (and maybe
even of the same _type), you can specify a default /_index or a
default /_index/_type in the URL.
You can still override these values in the individual requests:
GET /website/blog/_mget
{
 "docs" : [
 { "_id" : 2 },
 { "_type" : "pageviews", "_id" : 1 }
]
}
In fact, if all the documents have the same _index and _type, you
can just pass an array of ids instead of the full docs array:
GET /website/blog/_mget
{
 "ids" : ["2", "1"]
}
Note that the second document that we requested doesn’t exist. We specified
type blog, but the document with ID 1 is of type pageviews. This
nonexistence is reported in the response body:
{
 "docs" : [
 {
 "_index" : "website",
 "_type" : "blog",
 "_id" : "2",
 "_version" : 10,
 "found" : true,
 "_source" : {
 "title": "My first external blog entry",
 "text": "This is a piece of cake..."
 }
 },
 {
 "_index" : "website",
 "_type" : "blog",
 "_id" : "1",
 "found" : false (1)
 }
]
}
	(1)
	
This document was not found.

The fact that the second document wasn’t found didn’t affect the retrieval of
the first document. Each doc is retrieved and reported on individually.
Note
The HTTP status code for the preceding request is 200, even though one
document wasn’t found. In fact, it would still be 200 if none of the
requested documents were found—because the mget
request itself completed successfully. To determine the success or failure of
the individual documents, you need to check the found flag.

3.13. Cheaper in Bulk

In the same way that mget allows us to retrieve multiple documents at once,
the bulk API allows us to make multiple create, index, update, or
delete requests in a single step. This is particularly useful if you need
to index a data stream such as log events, which can be queued up and indexed
in batches of hundreds or thousands.
The bulk request body has the following, slightly unusual, format:
{ action: { metadata }}\n
{ request body }\n
{ action: { metadata }}\n
{ request body }\n
...
This format is like a stream of valid one-line JSON documents joined
together by newline (\n) characters. Two important points to note:
	
Every line must end with a newline character (\n), including the last
 line. These are used as markers to allow for efficient line separation.

	
The lines cannot contain unescaped newline characters, as they would
 interfere with parsing. This means that the JSON must not be
 pretty-printed.

Tip
In Section 4.6.1, “Why the Funny Format?”, we explain why the bulk API uses this format.

The action/metadata line specifies what action to do to which document.
The action must be one of the following:
	
create

	
 Create a document only if the document does not already exist. See Section 3.7, “Creating a New Document”.

	
index

	
 Create a new document or replace an existing document. See Section 3.3, “Indexing a Document” and Section 3.6, “Updating a Whole Document”.

	
update

	
 Do a partial update on a document. See Section 3.11, “Partial Updates to Documents”.

	
delete

	
 Delete a document. See Section 3.8, “Deleting a Document”.

The metadata should
specify the _index, _type, and _id of the document
to be indexed, created, updated, or deleted.
For instance, a delete request could look like this:
{ "delete": { "_index": "website", "_type": "blog", "_id": "123" }}
The request body line consists of the document _source itself—the fields
and values that the document contains. It is required for index and
create operations, which makes sense: you must supply the document to index.
It is also required for update operations and should consist of the same
request body that you would pass to the update API: doc, upsert,
script, and so forth. No request body line is required for a delete.
{ "create": { "_index": "website", "_type": "blog", "_id": "123" }}
{ "title": "My first blog post" }
If no _id is specified, an ID will be autogenerated:
{ "index": { "_index": "website", "_type": "blog" }}
{ "title": "My second blog post" }
To put it all together, a complete bulk request
has this form:
POST /_bulk
{ "delete": { "_index": "website", "_type": "blog", "_id": "123" }} (1)
{ "create": { "_index": "website", "_type": "blog", "_id": "123" }}
{ "title": "My first blog post" }
{ "index": { "_index": "website", "_type": "blog" }}
{ "title": "My second blog post" }
{ "update": { "_index": "website", "_type": "blog", "_id": "123", "_retry_on_conflict" : 3} }
{ "doc" : {"title" : "My updated blog post"} } (2)
	(1)
	
Notice how the delete action does not have a request body; it is
 followed immediately by another action.

	(2)
	
Remember the final newline character.

The Elasticsearch response contains the items array,
 which lists the result of
each request, in the same order as we requested them:
{
 "took": 4,
 "errors": false, (1)
 "items": [
 { "delete": {
 "_index": "website",
 "_type": "blog",
 "_id": "123",
 "_version": 2,
 "status": 200,
 "found": true
 }},
 { "create": {
 "_index": "website",
 "_type": "blog",
 "_id": "123",
 "_version": 3,
 "status": 201
 }},
 { "create": {
 "_index": "website",
 "_type": "blog",
 "_id": "EiwfApScQiiy7TIKFxRCTw",
 "_version": 1,
 "status": 201
 }},
 { "update": {
 "_index": "website",
 "_type": "blog",
 "_id": "123",
 "_version": 4,
 "status": 200
 }}
]
}
	(1)
	
All subrequests completed successfully.

Each subrequest is executed independently, so the failure of one subrequest
won’t affect the success of the others. If any of the requests fail, the
top-level error flag is set to true and the error details will be
reported under the relevant request:
POST /_bulk
{ "create": { "_index": "website", "_type": "blog", "_id": "123" }}
{ "title": "Cannot create - it already exists" }
{ "index": { "_index": "website", "_type": "blog", "_id": "123" }}
{ "title": "But we can update it" }
In the response, we can see that it failed to create document 123 because
it already exists, but the subsequent index request, also on document 123,
succeeded:
{
 "took": 3,
 "errors": true, (1)
 "items": [
 { "create": {
 "_index": "website",
 "_type": "blog",
 "_id": "123",
 "status": 409, (2)
 "error": "DocumentAlreadyExistsException (3)
 [[website][4] [blog][123]:
 document already exists]"
 }},
 { "index": {
 "_index": "website",
 "_type": "blog",
 "_id": "123",
 "_version": 5,
 "status": 200 (4)
 }}
]
}
	(1)
	
One or more requests has failed.

	(2)
	
The HTTP status code for this request reports 409 CONFLICT.

	(3)
	
The error message explaining why the request failed.

	(4)
	
The second request succeeded with an HTTP status code of 200 OK.

That also means
that bulk requests are not atomic: they cannot be used to
implement transactions. Each request is processed separately, so the success
or failure of one request will not interfere with the others.
3.13.1. Don’t Repeat Yourself

Perhaps you are batch-indexing logging data into the same index, and with the
same type. Having to

specify the same metadata for every document is a waste.
Instead, just as for the mget API, the bulk request accepts a default /_index or
/_index/_type in the URL:
POST /website/_bulk
{ "index": { "_type": "log" }}
{ "event": "User logged in" }
You can still override the _index and _type in the metadata line, but it
will use the values in the URL as defaults:
POST /website/log/_bulk
{ "index": {}}
{ "event": "User logged in" }
{ "index": { "_type": "blog" }}
{ "title": "Overriding the default type" }

3.13.2. How Big Is Too Big?

The entire bulk request needs to be loaded into memory by the node that
receives our request, so the bigger the request, the less memory available for
other requests.
 There is an optimal size of bulk request. Above that size,
performance no longer improves and may even drop off. The optimal size, however, is not a fixed number. It depends entirely on your
hardware, your document size and complexity, and your indexing and search
load.
Fortunately, it is easy to find this sweet spot: Try indexing typical documents in batches of increasing size. When performance
starts to drop off, your batch size is too big. A good place to start is with
batches of 1,000 to 5,000 documents or, if your documents are very
large, with even smaller batches.
It is often useful to keep an eye on the physical size of your bulk requests.
One thousand 1KB documents is very different from one thousand 1MB documents.
A good bulk size to start playing with is around 5-15MB in size.

Chapter 4. Distributed Document Store

In the preceding chapter, we looked at all the ways to put data into your index and
then retrieve it. But we glossed over many technical details surrounding how
the data is distributed and fetched from the cluster. This separation is done
on purpose; you don’t really need to know how data is distributed to work
with Elasticsearch. It just works.
In this chapter, we dive into those internal, technical details
to help you understand how your data is stored in a distributed system.
Content Warning

The information presented in this chapter is for your interest. You are not required to
understand and remember all the detail in order to use Elasticsearch. The
options that are discussed are for advanced users only.
Read the section to gain a taste for how things work, and to know where the
information is in case you need to refer to it in the future, but don’t be
overwhelmed by the details.

4.1. Routing a Document to a Shard

When you index a document, it is stored on a single primary shard.

 How does
Elasticsearch know which shard a document belongs to? When we create a new
document, how does it know whether it should store that document on shard 1 or
shard 2?
The process can’t be random, since we may need to retrieve the document in the
future. In fact, it is determined by a simple formula:
shard = hash(routing) % number_of_primary_shards
The routing value is an arbitrary string, which defaults to the document’s
_id but can also be set to a custom value. This routing string is passed
through a hashing function to generate a number, which is divided by the
number of primary shards in the index to return the remainder. The remainder
will always be in the range 0 to number_of_primary_shards - 1, and gives
us the number of the shard where a particular document lives.
This explains why the number of primary shards
 can be set only when an index
is created and never changed: if the number of primary shards ever changed in
the future, all previous routing values would be invalid and documents would
never be found.
Note
Users sometimes think that having a fixed number of primary shards makes it
difficult to scale out an index later. In reality, there are techniques
that make it easy to scale out as and when you need. We talk more about these
in Chapter 43, Designing for Scale.

All document APIs (get, index, delete, bulk, update, and mget)
accept a routing parameter that can be used to customize the document-to-
shard mapping. A custom routing value could be used to ensure that all related
documents—for instance, all the documents belonging to the same user—are
stored on the same shard. We discuss in detail why you may want to do this in
Chapter 43, Designing for Scale.

4.2. How Primary and Replica Shards Interact

For explanation purposes, let’s

 imagine that we have a cluster
consisting of three nodes. It contains one index called blogs that has
two primary shards. Each primary shard has two replicas. Copies of
the same shard are never allocated to the same node, so our cluster
looks something like Figure 4.1, “A cluster with three nodes and one index”.
Figure 4.1. A cluster with three nodes and one index
[image: A cluster with three nodes and one index]

We can send our requests to any node in the cluster.
 Every node is fully
capable of serving any request. Every node knows the location of every
document in the cluster and so can forward requests directly to the required
node. In the following examples, we will send all of our requests to Node 1,
which we will refer to as the coordinating node.
Tip
When sending requests, it is good practice to round-robin through all the
nodes in the cluster, in order to spread the load.

4.3. Creating, Indexing, and Deleting a Document

Create, index, and delete
 requests are write operations, which must be
successfully completed on the primary shard before they can be copied to any
associated replica shards, as shown in Figure 4.2, “Creating, indexing, or deleting a single document”.
Figure 4.2. Creating, indexing, or deleting a single document
[image: Creating, indexing or deleting a single document]

Here is the sequence

of steps necessary to successfully create, index, or
delete a document on both the primary and any replica shards:
	
The client sends a create, index, or delete request to Node 1.

	
The node uses the document’s _id to determine that the document
 belongs to shard 0. It forwards the request to Node 3,
 where the primary copy of shard 0 is currently allocated.

	
Node 3 executes the request on the primary shard. If it is successful,
 it forwards the request in parallel to the replica shards on Node 1 and
 Node 2. Once all of the replica shards report success, Node 3 reports
 success to the coordinating node, which reports success to the client.

By the time the client receives a successful response, the document change has
been executed on the primary shard and on all replica shards. Your change is
safe.
There are a number of optional request parameters that allow you to influence
this process, possibly increasing performance at the cost of data security.
These options are seldom used because Elasticsearch is already fast, but they
are explained here for the sake of completeness:
	
consistency

	By default, the primary shard requires a quorum, or majority, of shard copies
(where a shard copy can be a primary or a replica shard) to be available
before even attempting a write operation. This is to prevent writing data to the
“wrong side” of a network partition. A quorum is defined as follows:
int((primary + number_of_replicas) / 2) + 1
The allowed values for consistency are one (just the primary shard), all
(the primary and all replicas), or the default quorum, or majority, of shard
copies.
Note that the number_of_replicas is the number of replicas specified in
the index settings, not the number of replicas that are currently active. If
you have specified that an index should have three replicas, a quorum would
be as follows:
int((primary + 3 replicas) / 2) + 1 = 3
But if you start only two nodes, there will be insufficient active shard
copies to satisfy the quorum, and you will be unable to index or delete any
documents.

	
timeout

	
What happens if insufficient shard copies are available? Elasticsearch waits,
in the hope that more shards will appear. By default, it will wait up to 1
minute. If you need to, you can use the timeout parameter to make it abort
sooner: 100 is 100 milliseconds, and 30s is 30 seconds.

Note
A new index has 1 replica by default, which means that two active shard
copies should be required in order to satisfy the need for a quorum.
However, these default settings would prevent us from doing anything useful
with a single-node cluster. To avoid this problem, the requirement for
a quorum is enforced only when number_of_replicas is greater than 1.

4.4. Retrieving a Document

A document can be retrieved from a
primary shard or from any of its replicas, as shown in Figure 4.3, “Retrieving a single document”.
Figure 4.3. Retrieving a single document
[image: Retrieving a single document]

Here is the sequence of steps to retrieve a document from either a
primary or replica shard:
	
The client sends a get request to Node 1.

	
The node uses the document’s _id to determine that the document
 belongs to shard 0. Copies of shard 0 exist on all three nodes.
 On this occasion, it forwards the request to Node 2.

	
Node 2 returns the document to Node 1, which returns the document
 to the client.

For read requests, the coordinating node will choose a different shard copy on
every request in order to balance the load; it round-robins through all
shard copies.
It is possible that, while a document is being indexed, the document will
already be present on the primary shard but not yet copied to the replica
shards. In this case, a replica might report that the document doesn’t exist,
while the primary would have returned the document successfully. Once the
indexing request has returned success to the user, the document will be
available on the primary and all replica shards.

4.5. Partial Updates to a Document

The update API , as shown in Figure 4.4, “Partial updates to a document”, combines the read and

 write patterns explained previously.
Figure 4.4. Partial updates to a document
[image: Partial updates to a document]

Here is the sequence of steps used to perform a partial update on a
document:
	
The client sends an update request to Node 1.

	
It forwards the request to Node 3, where the primary shard is allocated.

	
Node 3 retrieves the document from the primary shard, changes the JSON
 in the _source field, and tries to reindex the document on the primary
 shard. If the document has already been changed by another process, it
 retries step 3 up to retry_on_conflict times, before giving up.

	
If Node 3 has managed to update the document successfully, it forwards
 the new version of the document in parallel to the replica shards on Node 1
 and Node 2 to be reindexed. Once all replica shards report success,
 Node 3 reports success to the coordinating node, which reports success to
 the client.

The update API also accepts the routing, replication, consistency, and
timeout parameters that are explained in Section 4.3, “Creating, Indexing, and Deleting a Document”.
Document-Based Replication

When a primary shard forwards changes to its replica shards,
 it doesn’t
forward the update request. Instead it forwards the new version of the full
document. Remember that these changes are forwarded to the replica shards
asynchronously, and there is no guarantee that they will arrive in the same
order that they were sent. If Elasticsearch forwarded just the change, it is
possible that changes would be applied in the wrong order, resulting in a
corrupt document.

4.6. Multidocument Patterns

The patterns for the mget and bulk APIs

 are similar to those for
individual documents. The difference is that the coordinating node knows in
which shard each document lives. It breaks up the multidocument request into
a multidocument request per shard, and forwards these in parallel to each
participating node.
Once it receives answers from each node, it collates their responses
into a single response, which it returns to the client, as shown in Figure 4.5, “Retrieving multiple documents with mget”.
Figure 4.5. Retrieving multiple documents with mget
[image: Retrieving multiple documents with mget]

Here is the sequence of steps necessary to retrieve multiple documents
with a single mget request:
	
The client sends an mget request to Node 1.

	
Node 1 builds a multi-get request per shard, and forwards these
 requests in parallel to the nodes hosting each required primary or replica
 shard. Once all replies have been received, Node 1 builds the response
 and returns it to the client.

A routing parameter can be set for each document in the docs array.
The bulk API, as depicted in Figure 4.6, “Multiple document changes with bulk”, allows the execution of multiple create, index, delete, and update requests within a single bulk request.
Figure 4.6. Multiple document changes with bulk
[image: Multiple document changes with bulk]

The sequence of steps

 followed by the
bulk API are as follows:
	
The client sends a bulk request to Node 1.

	
Node 1 builds a bulk request per shard, and forwards these requests in
 parallel to the nodes hosting each involved primary shard.

	
The primary shard executes each action serially, one after another. As each
 action succeeds, the primary forwards the new document (or deletion) to its
 replica shards in parallel, and then moves on to the next action. Once all
 replica shards report success for all actions, the node reports success to
 the coordinating node, which collates the responses and returns them to the
 client.

The bulk API also accepts
 the consistency parameter
at the top level for the whole bulk request, and the routing parameter
in the metadata for each request.
4.6.1. Why the Funny Format?

When we learned about bulk requests
earlier in Section 3.13, “Cheaper in Bulk”, you may have asked
yourself, “Why does the bulk API require the funny format with the newline
characters, instead of just sending the requests wrapped in a JSON array, like
the mget API?”
To answer this, we need to explain a little background: Each document referenced in a bulk request may belong to a different primary
shard, each of which may be allocated to any of the nodes in the cluster. This
means that every action inside a bulk request needs to be forwarded to the
correct shard on the correct node.
If the individual requests were wrapped up in a JSON array, that would mean
that we would need to do the following:
	
Parse the JSON into an array (including the document data, which
 can be very large)

	
Look at each request to determine which shard it should go to

	
Create an array of requests for each shard

	
Serialize these arrays into the internal transport format

	
Send the requests to each shard

It would work, but would need a lot of RAM to hold copies of essentially
the same data, and would create many more data structures that the Java Virtual Machine (JVM) would have to spend time garbage collecting.
Instead, Elasticsearch reaches up into the networking buffer, where the raw
request has been received, and reads the data directly. It uses the newline
characters to identify and parse just the small action/metadata lines in
order to decide which shard should handle each request.
These raw requests are forwarded directly to the correct shard. There
is no redundant copying of data, no wasted data structures. The entire
request process is handled in the smallest amount of memory possible.

Chapter 5. Searching—The Basic Tools

So far, we have learned how to use Elasticsearch as a simple NoSQL-style
distributed document store. We can throw JSON documents at Elasticsearch and
retrieve each one by ID. But the real power of Elasticsearch lies in its
ability to make sense out of chaos — to turn Big Data into Big Information.
This is the reason that we use structured JSON documents, rather than
amorphous blobs of data. Elasticsearch not only stores the document, but
also indexes the content of the document in order to make it searchable.
Every field in a document is indexed and can be queried. And it’s not just
that. During a single query, Elasticsearch can use all of these indices, to
return results at breath-taking speed. That’s something that you could never
consider doing with a traditional database.
A search can be any of the following:
	
A structured query on concrete fields

 like gender or age, sorted by
 a field like join_date, similar to the type of query that you could construct
 in SQL

	
A full-text query, which finds all documents matching the search keywords,
 and returns them sorted by relevance

	
A combination of the two

While many searches will just work out of the box, to use Elasticsearch to
its full potential, you need to understand three subjects:
	
Mapping

	
 How the data in each field is interpreted

	
Analysis

	
 How full text is processed to make it searchable

	
Query DSL

	
 The flexible, powerful query language used by Elasticsearch

Each of these is a big subject in its own right, and we explain them in
detail in Part II, “Search in Depth”. The chapters in this section introduce the
basic concepts of all three—just enough to help you to get an overall
understanding of how search works.
We will start by explaining the search API in its simplest form.
Test Data

The documents that we will use for test purposes in this chapter can be found
in this gist: https://gist.github.com/clintongormley/8579281.
You can copy the commands and paste them into your shell in order to follow
along with this chapter.
Alternatively, if you’re in the online version of this book, you can click here to open in Sense.

5.1. The Empty Search

The most basic form of the
 search API is the empty search, which doesn’t
specify any query but simply returns all documents in all indices in the
cluster:
GET /_search
The response (edited for brevity) looks something like this:
{
 "hits" : {
 "total" : 14,
 "hits" : [
 {
 "_index": "us",
 "_type": "tweet",
 "_id": "7",
 "_score": 1,
 "_source": {
 "date": "2014-09-17",
 "name": "John Smith",
 "tweet": "The Query DSL is really powerful and flexible",
 "user_id": 2
 }
 },
 ... 9 RESULTS REMOVED ...
],
 "max_score" : 1
 },
 "took" : 4,
 "_shards" : {
 "failed" : 0,
 "successful" : 10,
 "total" : 10
 },
 "timed_out" : false
}
5.1.1. hits

The most important section of the response is hits, which

 contains the
total number of documents that matched our query, and a hits array
containing the first 10 of those matching documents—the results.
Each result in the hits array contains the _index, _type, and _id of
the document, plus the _source field. This means that the whole document is
immediately available to us directly from the search results. This is unlike
other search engines, which return just the document ID, requiring you to fetch
the document itself in a separate step.
Each element also
has a _score. This is the relevance score, which is a
measure of how well the document matches the query. By default, results are
returned with the most relevant documents first; that is, in descending order
of _score. In this case, we didn’t specify any query, so all documents are
equally relevant, hence the neutral _score of 1 for all results.
The max_score value is the highest _score of any document that matches our
query.

5.1.2. took

The took value tells us how many milliseconds the entire search request took
to execute.

5.1.3. shards

The _shards element
 tells us the total number of shards that were involved
in the query and, of them, how many were successful and how many failed.
We wouldn’t normally expect shards to fail, but it can happen. If we were to
suffer a major disaster in which we lost both the primary and the replica copy
of the same shard, there would be no copies of that shard available to respond
to search requests. In this case, Elasticsearch would report the shard as
failed, but continue to return results from the remaining shards.

5.1.4. timeout

The timed_out value tells us whether the query timed out. By
default, search requests do not time out.
 If low response times are more
important to you than complete results, you can specify a timeout as 10
or 10ms (10 milliseconds), or 1s (1 second):
GET /_search?timeout=10ms
Elasticsearch will return any results that it has managed to gather from
each shard before the requests timed out.
Warning
It should be noted that this timeout does not
 halt the execution of the
query; it merely tells the coordinating node to return the results collected
so far and to close the connection. In the background, other shards may
still be processing the query even though results have been sent.
Use the time-out because it is important to your SLA, not because you want
to abort the execution of long-running queries.

5.2. Multi-index, Multitype

Did you notice that the results from the preceding empty search
contained documents
of different types—user and tweet—from two
different indices—us and gb?
By not limiting our search to a particular index or type, we have searched
across all documents in the cluster. Elasticsearch forwarded the search
request in parallel to a primary or replica of every shard in the cluster,
gathered the results to select the overall top 10, and returned them to us.
Usually, however, you will

 want to search within one or more specific indices,
and probably one or more specific types. We can do this by specifying the
index and type in the URL, as follows:
	
/_search

	
 Search all types in all indices

	
/gb/_search

	
 Search all types in the gb index

	
/gb,us/_search

	
 Search all types in the gb and us indices

	
/g*,u*/_search

	
 Search all types in any indices beginning with g or beginning with u

	
/gb/user/_search

	
 Search type user in the gb index

	
/gb,us/user,tweet/_search

	
 Search types user and tweet in the gb and us indices

	
/_all/user,tweet/_search

	
 Search types user and tweet in all indices

When you search within a single index, Elasticsearch forwards the search
request to a primary or replica of every shard in that index, and then gathers the
results from each shard. Searching within multiple indices works in exactly
the same way—there are just more shards involved.
Tip
Searching one index that has five primary shards is exactly equivalent to
searching five indices that have one primary shard each.

Later, you will see how this simple fact makes it easy to scale flexibly
as your requirements change.

5.3. Pagination

Our preceding empty search told us that 14 documents in the
cluster match our (empty) query. But there were only 10 documents in
the hits array. How can we see the other documents?
In the same way as SQL uses the LIMIT keyword to return a single “page” of
results, Elasticsearch accepts the from and size parameters:
	
size

	
 Indicates the number of results that should be returned, defaults to 10

	
from

	
 Indicates the number of initial results that should be skipped, defaults to 0

If you wanted to show five results per page, then pages 1 to 3
could be requested as follows:
GET /_search?size=5
GET /_search?size=5&from=5
GET /_search?size=5&from=10
Beware of paging too deep or requesting too many results at once. Results are
sorted before being returned. But remember that a search request usually spans
multiple shards. Each shard generates its own sorted results, which then need
to be sorted centrally to ensure that the overall order is correct.
Deep Paging in Distributed Systems

To understand why deep paging is problematic, let’s imagine that we are
searching within a single index with five primary shards. When we request the
first page of results (results 1 to 10), each shard produces its own top 10
results and returns them to the coordinating node, which then sorts all 50
results in order to select the overall top 10.
Now imagine that we ask for page 1,000—results 10,001 to 10,010. Everything
works in the same way except that each shard has to produce its top 10,010
results. The coordinating node then sorts through all 50,050 results and
discards 50,040 of them!
You can see that, in a distributed system, the cost of sorting results
grows exponentially the deeper we page. There is a good reason
that web search engines don’t return more than 1,000 results for any query.

Tip
In Section 10.11, “Reindexing Your Data” we explain how you can retrieve large numbers of
documents efficiently.

5.4. Search Lite

There are two forms of the search API: a “lite” query-string version
that expects all its

 parameters to be passed in the query string, and the full
request body version that expects a JSON request body and uses a
rich search language called the query DSL.
The query-string search is useful for running ad hoc queries from the
command line. For instance, this query finds all documents of type tweet that
contain the word elasticsearch in the tweet field:
GET /_all/tweet/_search?q=tweet:elasticsearch
The next query looks for john in the name field and mary in the
tweet field. The actual query is just
+name:john +tweet:mary
but the percent encoding needed for query-string parameters makes it appear
more cryptic than it really is:
GET /_search?q=%2Bname%3Ajohn+%2Btweet%3Amary
The + prefix indicates conditions that must be satisfied for our query to
match. Similarly a - prefix would indicate conditions that must not
match. All conditions without a + or - are optional—the more that match,
the more relevant the document.
5.4.1. The _all Field

This simple search returns all documents that contain the word mary:
GET /_search?q=mary
In the previous examples, we searched for words in the tweet or
name fields. However, the results from this query mention mary in
three fields:
	
A user whose name is Mary

	
Six tweets by Mary

	
One tweet directed at @mary

How has Elasticsearch managed to find results in three different fields?
When you index a document, Elasticsearch takes the string values of all of
its fields and concatenates them into one big string, which it indexes as
the special _all field. For example, when we index this document:
{
 "tweet": "However did I manage before Elasticsearch?",
 "date": "2014-09-14",
 "name": "Mary Jones",
 "user_id": 1
}
it’s as if we had added an extra field called _all with this value:
"However did I manage before Elasticsearch? 2014-09-14 Mary Jones 1"
The query-string search uses the _all field unless another
field name has been specified.
Tip
The _all field is a useful feature while you are getting started with
a new application. Later, you will find that you have more control over
your search results if you query specific fields instead of the _all
field. When the _all field is no longer useful to you, you can
disable it, as explained in Section 10.7.3, “Metadata: _all Field”.

5.4.2. More Complicated Queries

The next query searches for tweets, using the following criteria:
	
The name field contains mary or john

	
The date is greater than 2014-09-10

	
The _all field contains either of the words aggregations or geo

+name:(mary john) +date:>2014-09-10 +(aggregations geo)
As a properly encoded query string, this looks like the slightly less
readable result:
?q=%2Bname%3A(mary+john)+%2Bdate%3A%3E2014-09-10+%2B(aggregations+geo)
As you can see from the preceding examples, this lite query-string search is
surprisingly powerful.
 Its query syntax, which is explained in detail in the
Query String Syntax
reference docs, allows us to express quite complex queries succinctly. This
makes it great for throwaway queries from the command line or during
development.
However, you can also see that its terseness can make it cryptic and
difficult to debug. And it’s fragile—a slight syntax error in the query
string, such as a misplaced -, :, /, or ", and it will return an error
instead of results.
Finally, the query-string search allows any user to run potentially slow, heavy
queries on any field in your index, possibly exposing private information or
even bringing your cluster to its knees!
Tip
For these reasons, we don’t recommend exposing query-string searches directly to
your users, unless they are power users who can be trusted with your data and
with your cluster.

Instead, in production we usually rely on the full-featured request body
search API, which does all of this, plus a lot more. Before we get there,
though, we first need to take a look at how our data is indexed in
Elasticsearch.

Chapter 6. Mapping and Analysis

While playing around with the data in our index, we notice something odd.
Something seems to be broken: we have 12 tweets in our indices, and only one
of them contains the date 2014-09-15, but have a look at the total hits
for the following queries:
GET /_search?q=2014 # 12 results
GET /_search?q=2014-09-15 # 12 results !
GET /_search?q=date:2014-09-15 # 1 result
GET /_search?q=date:2014 # 0 results !
Why does querying the _all field for the full date
return all tweets, and querying the date field for just the year return no
results? Why do our results differ when searching within the _all field or
the date field?
Presumably, it is because the way our data has been indexed in the _all
field is different from how it has been indexed in the date field.
So let’s take a look at how Elasticsearch has interpreted our document
structure, by requesting the mapping (or schema definition)
for the tweet type in the gb index:
GET /gb/_mapping/tweet
This gives us the following:
{
 "gb": {
 "mappings": {
 "tweet": {
 "properties": {
 "date": {
 "type": "date",
 "format": "strict_date_optional_time||epoch_millis"
 },
 "name": {
 "type": "string"
 },
 "tweet": {
 "type": "string"
 },
 "user_id": {
 "type": "long"
 }
 }
 }
 }
 }
}
Elasticsearch has dynamically generated a mapping for us, based on what it
could guess about our field types. The response shows us that the date field
has been recognized as a field of type date. The _all field isn’t
mentioned because it is a default field, but we know that the _all field is
of type string.
So fields of type date and fields of type string are
 indexed differently,
and can thus be searched differently. That’s not entirely surprising.
You might expect that each of the
core data types—strings, numbers, Booleans,
and dates—might be indexed slightly differently. And this is true:
there are slight differences.
But by far the biggest difference is between fields

 that represent
exact values (which can include string fields) and fields that
represent full text. This distinction is really important—it’s the thing
that separates a search engine from all other databases.
6.1. Exact Values Versus Full Text

Data in Elasticsearch can be broadly divided into two types:
exact values and full text.
Exact values are exactly what they sound like. Examples are a date or a
user ID, but can also include exact strings such as a username or an email
address. The exact value Foo is not the same as the exact value foo.
The exact value 2014 is not the same as the exact value 2014-09-15.
Full text, on the other hand, refers to textual data—usually written in
some human language — like the text of a tweet or the body of an email.
Note
Full text is often referred to as unstructured data, which is a misnomer—natural language is highly structured. The problem is that the rules of
natural languages are complex, which makes them difficult for computers to
parse correctly. For instance, consider this sentence:
May is fun but June bores me.
Does it refer to months or to people?

Exact values are easy to query. The decision is binary; a value either
matches the query, or it doesn’t. This kind of query is easy to express with
SQL:
WHERE name = "John Smith"
 AND user_id = 2
 AND date > "2014-09-15"
Querying full-text data is much more subtle. We are not just asking, “Does
this document match the query” but “How well does this document match the
query?” In other words, how relevant is this document to the given query?
We seldom want to match the whole full-text field exactly. Instead, we want
to search within text fields. Not only that, but we expect search to
understand our intent:
	
A search for UK should also return documents mentioning the United Kingdom.

	
A search for jump should also match jumped, jumps, jumping,
 and perhaps even leap.

	
johnny walker should match Johnnie Walker, and johnnie depp
 should match Johnny Depp.

	
fox news hunting should return stories about hunting on Fox News,
 while fox hunting news should return news stories about fox hunting.

To facilitate these types of queries on full-text fields,
Elasticsearch first analyzes the text, and then uses the results to build
an inverted index. We will discuss the inverted index and the
analysis process in the next two sections.

6.2. Inverted Index

Elasticsearch uses a structure called an inverted index, which is designed
to allow very fast full-text searches. An inverted index consists of a list
of all the unique words that appear in any document, and for each word, a list
of the documents in which it appears.
For example, let’s say we have two documents, each with a content field
containing the following:
	
The quick brown fox jumped over the lazy dog

	
Quick brown foxes leap over lazy dogs in summer

To create an inverted index, we first split the content field of each
document into separate words (which we call terms, or tokens), create a
sorted list of all the unique terms, and then list in which document each term
appears. The result looks something like this:
Term Doc_1 Doc_2

Quick | | X
The | X |
brown | X | X
dog | X |
dogs | | X
fox | X |
foxes | | X
in | | X
jumped | X |
lazy | X | X
leap | | X
over | X | X
quick | X |
summer | | X
the | X |

Now, if we want to search for quick brown, we just need to find the
documents in which each term appears:
Term Doc_1 Doc_2

brown | X | X
quick | X |

Total | 2 | 1
Both documents match, but the first document has more matches than the second.
If we apply a naive similarity algorithm that just counts the number of
matching terms, then we can say that the first document is a better match—is more relevant to our query—than the second document.
But there are a few problems with our current inverted index:
	
Quick and quick appear as separate terms, while the user probably
 thinks of them as the same word.

	
fox and foxes are pretty similar, as are dog and dogs;
 They share the same root word.

	
jumped and leap, while not from the same root word, are similar
 in meaning. They are synonyms.

With the preceding index, a search for +Quick +fox wouldn’t match any
documents. (Remember, a preceding + means that the word must be present.)
Both the term Quick and the term fox have to be in the same document
in order to satisfy the query, but the first doc contains quick fox and
the second doc contains Quick foxes.
Our user could reasonably expect both documents to match the query. We can do
better.
If we normalize the terms into a standard format, then we can find documents
that contain terms that are not exactly the same as the user requested, but
are similar enough to still be relevant. For instance:
	
Quick can be lowercased to become quick.

	
foxes can be stemmed--reduced to its root form—to
 become fox. Similarly, dogs could be stemmed to dog.

	
jumped and leap are synonyms and can be indexed as just the
 single term jump.

Now the index looks like this:
Term Doc_1 Doc_2

brown | X | X
dog | X | X
fox | X | X
in | | X
jump | X | X
lazy | X | X
over | X | X
quick | X | X
summer | | X
the | X | X

But we’re not there yet. Our search for +Quick +fox would still fail,
because we no longer have the exact term Quick in our index. However, if
we apply the same normalization rules that we used on the content field to
our query string, it would become a query for +quick +fox, which would
match both documents!
Note
This is very important. You can find only terms that exist in your
index, so both the indexed text and the query string must be normalized
into the same form.

This process of tokenization and normalization is called analysis, which we
discuss in the next section.

6.3. Analysis and Analyzers

Analysis is a
process that consists of the following:
	
First, tokenizing a block of text into
 individual terms suitable for use in an inverted index,

	
Then normalizing these terms into a standard form to improve their
 “searchability,” or recall

This job is performed by analyzers. An analyzer is really just a wrapper
that combines three functions into a single package:
	
Character filters

	
 First, the string is passed through any character filters in turn. Their
 job is to tidy up the string before tokenization. A character filter could
 be used to strip out HTML, or to convert & characters to the word
 and.

	
Tokenizer

	
 Next, the string is tokenized into individual terms by a tokenizer. A
 simple tokenizer might split the text into terms whenever it encounters
 whitespace or punctuation.

	
Token filters

	
 Last, each term is passed through any token filters in turn, which can
 change terms (for example, lowercasing Quick), remove terms (for example, stopwords such as
 a, and, the) or add terms (for example, synonyms like jump and
 leap).

Elasticsearch provides many character filters, tokenizers, and token filters
out of the box. These can be combined to create custom analyzers suitable
for different purposes. We discuss these in detail in Section 10.5, “Custom Analyzers”.
6.3.1. Built-in Analyzers

However, Elasticsearch also ships with prepackaged analyzers that
you can use directly.
 We list the most important ones next and, to demonstrate
the difference in behavior, we show what terms each would produce
from this string:
"Set the shape to semi-transparent by calling set_trans(5)"
	
Standard analyzer

	
The standard analyzer is the default analyzer that Elasticsearch uses. It is
the best general choice for analyzing text that may be in any language. It
splits the text on word boundaries, as defined by the
Unicode Consortium, and removes most
punctuation. Finally, it lowercases all terms. It would produce

set, the, shape, to, semi, transparent, by, calling, set_trans, 5

	
Simple analyzer

	
The simple analyzer splits the text on anything that isn’t a letter,
and lowercases the terms. It would produce

set, the, shape, to, semi, transparent, by, calling, set, trans

	
Whitespace analyzer

	
The whitespace analyzer splits the text on whitespace. It doesn’t
lowercase. It would produce

Set, the, shape, to, semi-transparent, by, calling, set_trans(5)

	
Language analyzers

	
Language-specific analyzers are available for many languages. They are able to
take the peculiarities of the specified language into account. For instance,
the english analyzer comes with a set of English stopwords (common words
like and or the that don’t have much impact on relevance), which it
removes. This analyzer also is able to stem English words because it understands the
rules of English grammar.

The english analyzer would produce the following:
set, shape, semi, transpar, call, set_tran, 5
Note how transparent, calling, and set_trans have been stemmed to
their root form.

6.3.2. When Analyzers Are Used

When we index a document, its full-text fields are analyzed into terms that
are used to create the inverted index.
 However, when we search on a full-text field, we need to pass the query string through the same analysis
process, to ensure that we are searching for terms in the same form as those
that exist in the index.
Full-text queries, which we discuss later, understand how each field is
defined, and so they can do
 the right thing:
	
When you query a full-text field, the query will apply the same analyzer
 to the query string to produce the correct list of terms to search for.

	
When you query an exact-value field, the query will not analyze the
 query string,
but instead search for the exact value that you have
 specified.

Now you can understand why the queries that we demonstrated at the
start of this chapter return what they do:
	
The date field contains an exact value: the single term 2014-09-15.

	
The _all field is a full-text field, so the analysis process has
 converted the date into the three terms: 2014, 09, and 15.

When we query the _all field for 2014, it matches all 12 tweets, because
all of them contain the term 2014:
GET /_search?q=2014 # 12 results
When we query the _all field for 2014-09-15, it first analyzes the query
string to produce a query that matches any of the terms 2014, 09, or
15. This also matches all 12 tweets, because all of them contain the term
2014:
GET /_search?q=2014-09-15 # 12 results !
When we query the date field for 2014-09-15, it looks for that exact
date, and finds one tweet only:
GET /_search?q=date:2014-09-15 # 1 result
When we query the date field for 2014, it finds no documents
because none contain that exact date:
GET /_search?q=date:2014 # 0 results !

6.3.3. Testing Analyzers

Especially when you are new
to Elasticsearch, it is sometimes difficult to
understand what is actually being tokenized and stored into your index. To
better understand what is going on, you can use the analyze API to see how
text is analyzed. Specify which analyzer to use in the query-string
parameters, and the text to analyze in the body:
GET /_analyze
{
 "analyzer": "standard",
 "text": "Text to analyze"
}
Each element in the result represents a single term:
{
 "tokens": [
 {
 "token": "text",
 "start_offset": 0,
 "end_offset": 4,
 "type": "<ALPHANUM>",
 "position": 1
 },
 {
 "token": "to",
 "start_offset": 5,
 "end_offset": 7,
 "type": "<ALPHANUM>",
 "position": 2
 },
 {
 "token": "analyze",
 "start_offset": 8,
 "end_offset": 15,
 "type": "<ALPHANUM>",
 "position": 3
 }
]
}
The token is the actual term that will be stored in the index. The
position indicates the order in which the terms appeared in the original
text. The start_offset and end_offset indicate the character positions
that the original word occupied in the original string.
Tip
The type values like <ALPHANUM> vary
per analyzer and can be ignored.
The only place that they are used in Elasticsearch is in the
keep_types token filter.

The analyze API is a useful tool for understanding what is happening
inside Elasticsearch indices, and we will talk more about it as we progress.

6.3.4. Specifying Analyzers

When Elasticsearch detects a new string field
 in your documents, it
automatically configures it as a full-text string field and analyzes it with
the standard analyzer.
You don’t always want this. Perhaps you want to apply a different analyzer
that suits the language your data is in. And sometimes you want a
string field to be just a string field—to index the exact value that
you pass in, without any analysis, such as a string user ID or an
internal status field or tag.
To achieve this, we have to configure these fields manually
by specifying the mapping.

6.4. Mapping

In order to be able to treat date fields as dates, numeric fields as numbers,
and string fields as full-text or exact-value strings, Elasticsearch needs to
know what type of data each field contains. This information is contained in
the mapping.
As explained in Chapter 3, Data In, Data Out, each document in an index
has a type.
Every type has its own mapping, or schema definition. A mapping
defines the fields within a type, the datatype for each field,
and how the field should be handled by Elasticsearch. A mapping is also used
to configure metadata associated with the type.
We discuss mappings in detail in Section 10.6, “Types and Mappings”. In this section, we’re going
to look at just enough to get you started.
6.4.1. Core Simple Field Types

Elasticsearch supports the

following simple field types:
	
String: string

	
Whole number: byte, short, integer, long

	
Floating-point: float, double

	
Boolean: boolean

	
Date: date

When you index a document that contains a new field—one previously not
seen—Elasticsearch

will use dynamic mapping to try
to guess the field type from the basic datatypes available in JSON,
using the following rules:
	

JSON type

	

Field type

	

Boolean: true or false

	

boolean

	

Whole number: 123

	

long

	

Floating point: 123.45

	

double

	

String, valid date: 2014-09-15

	

date

	

String: foo bar

	

string

Note
This means that if you index a number in quotes ("123"), it will be
mapped as type string, not type long. However, if the field is
already mapped as type long, then Elasticsearch will try to convert
the string into a long, and throw an exception if it can’t.

6.4.2. Viewing the Mapping

We can view the mapping that Elasticsearch has
 for one or more types in one or
more indices by using the /_mapping endpoint. At the start of this chapter, we already retrieved the mapping for type tweet in index
gb:
GET /gb/_mapping/tweet
This shows us the mapping for the fields (called properties) that
Elasticsearch generated dynamically from the documents that we indexed:
{
 "gb": {
 "mappings": {
 "tweet": {
 "properties": {
 "date": {
 "type": "date",
 "format": "strict_date_optional_time||epoch_millis"
 },
 "name": {
 "type": "string"
 },
 "tweet": {
 "type": "string"
 },
 "user_id": {
 "type": "long"
 }
 }
 }
 }
 }
}
Tip
Incorrect mappings, such as
having an age field mapped as type string
instead of integer, can produce confusing results to your queries.
Instead of assuming that your mapping is correct, check it!

6.4.3. Customizing Field Mappings

While the basic field datatypes are

sufficient for many cases, you will often
need to customize the mapping
for individual fields, especially string fields.
Custom mappings allow you to do the following:
	
Distinguish between full-text string fields and exact value string fields

	
Use language-specific analyzers

	
Optimize a field for partial matching

	
Specify custom date formats

	
And much more

The most important attribute of a field is the type. For fields
other than string fields, you will seldom need to map anything other
than type:
{
 "number_of_clicks": {
 "type": "integer"
 }
}
Fields of type string are, by default, considered to contain full text.
That is, their value will be passed through
 an analyzer before being indexed,
and a full-text query on the field will pass the query string through an
analyzer before searching.
The two most important mapping
 attributes for string fields are
index and analyzer.
index

The index attribute controls how the string will be indexed. It
can contain one of three values:
	
analyzed

	
 First analyze the string and then index it. In other words, index this field as full text.

	
not_analyzed

	
 Index this field, so it is searchable, but index the value exactly as specified. Do not analyze it.

	
no

	
 Don’t index this field at all. This field will not be searchable.

The default value of index for a string field is analyzed. If we
want to map the field as an exact value, we need to set it to
not_analyzed:
{
 "tag": {
 "type": "string",
 "index": "not_analyzed"
 }
}
Note
The other simple types (such as long, double, date etc) also accept the
index parameter, but the only relevant values are no and not_analyzed,
as their values are never analyzed.

analyzer

For analyzed string fields, use the analyzer attribute to
specify which analyzer to apply both at search time and at index time. By
default, Elasticsearch uses the standard analyzer,
 but you can change this
by specifying one of the built-in analyzers, such as
whitespace, simple, or english:
{
 "tweet": {
 "type": "string",
 "analyzer": "english"
 }
}
In Section 10.5, “Custom Analyzers”, we show you how to define and use custom analyzers
as well.

6.4.4. Updating a Mapping

You can specify the mapping for a type when you first

create an index.
Alternatively, you can add the mapping for a new type (or update the mapping
for an existing type) later, using the /_mapping endpoint.
Note
Although you can add to an existing mapping, you can’t change existing
field mappings. If a mapping already exists for a field, data from that
field has probably been indexed. If you were to change the field mapping,
the indexed data would be wrong and would not be properly searchable.

We can update a mapping to add a new field, but we can’t change an existing
field from analyzed to not_analyzed.
To demonstrate both ways of specifying mappings, let’s first delete the gb
index:
DELETE /gb
Then create a new index, specifying that the tweet field should use
the english analyzer:
PUT /gb (1)
{
 "mappings": {
 "tweet" : {
 "properties" : {
 "tweet" : {
 "type" : "string",
 "analyzer": "english"
 },
 "date" : {
 "type" : "date"
 },
 "name" : {
 "type" : "string"
 },
 "user_id" : {
 "type" : "long"
 }
 }
 }
 }
}
	(1)
	
This creates the index with the mappings specified in the body.

Later on, we decide to add a new not_analyzed text field called tag to the
tweet mapping, using the _mapping endpoint:
PUT /gb/_mapping/tweet
{
 "properties" : {
 "tag" : {
 "type" : "string",
 "index": "not_analyzed"
 }
 }
}
Note that we didn’t need to list all of the existing fields again, as we can’t
change them anyway. Our new field has been merged into the existing mapping.

6.4.5. Testing the Mapping

You can use the analyze API to
 test the mapping for string fields by
name. Compare the output of these two requests:
GET /gb/_analyze
{
 "field": "tweet"
 "text": "Black-cats" (1)
}

GET /gb/_analyze
{
 "field": "tag",
 "text": "Black-cats" (2)
}
	(1) (2)
	
The text we want to analyze is passed in the body.

The tweet field produces the two terms black and cat, while the
tag field produces the single term Black-cats. In other words, our
mapping is working correctly.

6.5. Complex Core Field Types

Besides the simple scalar datatypes that we have mentioned,

 JSON also
has null values, arrays, and objects, all of which are supported by
Elasticsearch.
6.5.1. Multivalue Fields

It is quite possible that we want our tag field
to contain more
than one tag. Instead of a single string, we could index an array of tags:
{ "tag": ["search", "nosql"]}
There is no special mapping required for arrays. Any field can contain zero,
one, or more values, in the same way as a full-text field is analyzed to
produce multiple terms.
By implication, this means that all the values of an array must be
of the same datatype. You can’t mix dates with strings. If you create
a new field by indexing an array, Elasticsearch will use the
datatype of the first value in the array to determine the type of the
new field.
Note
When you get a document back from Elasticsearch, any arrays will be in the
same order as when you indexed the document. The _source field that you get
back contains exactly the same JSON document that you indexed.
However, arrays are indexed—made searchable—as multivalue fields,
which are unordered.

 At search time, you can’t refer to “the first element”
or “the last element.” Rather, think of an array as a bag of values.

6.5.2. Empty Fields

Arrays can, of course, be empty.
This is the equivalent of having zero
values. In fact, there is no way of storing a null value in Lucene, so
a field with a null value is also considered to be an empty
field.

These three fields would all be considered to be empty, and would not be
indexed:
"null_value": null,
"empty_array": [],
"array_with_null_value": [null]

6.5.3. Multilevel Objects

The last native JSON datatype that we need to discuss is the object — known in other languages as a hash, hashmap, dictionary or
associative array.
Inner objects are often used
 to embed one entity or object inside
another. For instance, instead of having fields called user_name
and user_id inside our tweet document, we could write it as follows:
{
 "tweet": "Elasticsearch is very flexible",
 "user": {
 "id": "@johnsmith",
 "gender": "male",
 "age": 26,
 "name": {
 "full": "John Smith",
 "first": "John",
 "last": "Smith"
 }
 }
}

6.5.4. Mapping for Inner Objects

Elasticsearch will detect new object fields

 dynamically and map them as
type object, with each inner field listed under properties:
{
 "gb": {
 "tweet": { (1)
 "properties": {
 "tweet": { "type": "string" },
 "user": { (2)
 "type": "object",
 "properties": {
 "id": { "type": "string" },
 "gender": { "type": "string" },
 "age": { "type": "long" },
 "name": { (3)
 "type": "object",
 "properties": {
 "full": { "type": "string" },
 "first": { "type": "string" },
 "last": { "type": "string" }
 }
 }
 }
 }
 }
 }
 }
}
	(1)
	
Root object

	(2) (3)
	
Inner objects

The mapping for the user and name fields has a similar structure
to the mapping for the tweet type itself. In fact, the type mapping
is just a special type of object mapping, which we refer to as the
root object. It is just the same as any other object, except that it has
some special top-level fields for document metadata, such as _source,
and the _all field.

6.5.5. How Inner Objects are Indexed

Lucene doesn’t understand inner objects.

 A Lucene document consists of a flat
list of key-value pairs. In order for Elasticsearch to index inner objects
usefully, it converts our document into something like this:
{
 "tweet": [elasticsearch, flexible, very],
 "user.id": [@johnsmith],
 "user.gender": [male],
 "user.age": [26],
 "user.name.full": [john, smith],
 "user.name.first": [john],
 "user.name.last": [smith]
}
Inner fields can be referred to by name (for example, first). To distinguish
between two fields that have the same name, we can use the full path (for example, user.name.first) or even the type name plus
the path (tweet.user.name.first).
Note
In the preceding simple flattened document, there is no field called user
and no field called user.name. Lucene indexes only scalar or simple values,
not complex data structures.

6.5.6. Arrays of Inner Objects

Finally, consider how an array containing

 inner objects would be indexed.
Let’s say we have a followers array that looks like this:
{
 "followers": [
 { "age": 35, "name": "Mary White"},
 { "age": 26, "name": "Alex Jones"},
 { "age": 19, "name": "Lisa Smith"}
]
}
This document will be flattened as we described previously, but the result will
look like this:
{
 "followers.age": [19, 26, 35],
 "followers.name": [alex, jones, lisa, smith, mary, white]
}
The correlation between {age: 35} and {name: Mary White} has been lost as
each multivalue field is just a bag of values, not an ordered array. This is
sufficient for us to ask, "Is there a follower who is 26 years old?"
But we can’t get an accurate answer to this: "Is there a follower who is 26 years old and who is called Alex Jones?"
Correlated inner objects, which are able to answer queries like these,
are called nested objects, and we cover them later, in
Chapter 41, Nested Objects.

Chapter 7. Full-Body Search

Search lite—a query-string search—is useful for ad
hoc queries from the command line.
To harness the full power of search,
however, you should use the request body search API, so called because
most parameters are passed in the HTTP request body instead of in the query
string.
Request body search—henceforth known as search—not only handles
the query itself, but also allows you to return highlighted snippets from your
results, aggregate analytics across all results or subsets of results, and
return did-you-mean suggestions, which will help guide your users to the
best results quickly.
7.1. Empty Search

Let’s start with the simplest form of
the search API, the empty search,
which returns all documents in all indices:
GET /_search
{} (1)
	(1)
	
This is an empty request body.

Just as with a query-string search, you can search on one, many, or _all
indices, and one, many, or all types:
GET /index_2014*/type1,type2/_search
{}
And you can use the from and size parameters for pagination:
GET /_search
{
 "from": 30,
 "size": 10
}
A GET Request with a Body?

The HTTP libraries of certain languages (notably JavaScript) don’t allow GET
requests to have a request body.

 In fact, some users are suprised that GET
requests are ever allowed to have a body.
The truth is that RFC 7231—the
RFC that deals with HTTP semantics and content—does not define what should
happen to a GET request with a body! As a result, some HTTP servers allow
it, and some—especially caching proxies—don’t.
The authors of Elasticsearch prefer using GET for a search request because
they feel that it describes the action—retrieving information—better
than the POST verb. However, because GET with a request body is not
universally supported, the search API also
 accepts POST requests:
POST /_search
{
 "from": 30,
 "size": 10
}
The same rule applies to any other GET API that requires a request body.

We present aggregations in depth in Part IV, “Aggregations”, but for now,
we’re going to focus just on the query.
Instead of the cryptic query-string approach, a request body search allows us
to write queries by using the query domain-specific language, or query DSL.

7.2. Query DSL

The query DSL is a flexible, expressive search language that Elasticsearch
uses to expose most of the power of Lucene through a simple JSON interface. It
is what you should be using to write your queries in production. It makes your
queries more flexible, more precise, easier to read, and easier to debug.
To use the Query DSL, pass a query in the query parameter:
GET /_search
{
 "query": YOUR_QUERY_HERE
}
The empty search—{}—is
functionally equivalent to using the
match_all query clause, which, as the name suggests, matches all documents:
GET /_search
{
 "query": {
 "match_all": {}
 }
}
7.2.1. Structure of a Query Clause

A query clause typically
 has this structure:
{
 QUERY_NAME: {
 ARGUMENT: VALUE,
 ARGUMENT: VALUE,...
 }
}
If it references one particular field, it has this structure:
{
 QUERY_NAME: {
 FIELD_NAME: {
 ARGUMENT: VALUE,
 ARGUMENT: VALUE,...
 }
 }
}
For instance, you can use a match query clause to find tweets that
mention elasticsearch in the tweet field:
{
 "match": {
 "tweet": "elasticsearch"
 }
}
The full search request would look like this:
GET /_search
{
 "query": {
 "match": {
 "tweet": "elasticsearch"
 }
 }
}

7.2.2. Combining Multiple Clauses

Query clauses are simple building blocks
 that can be combined with each
other to create complex queries. Clauses can be as follows:
	
Leaf clauses (like the match clause) that are used to
 compare a field (or fields) to a query string.

	
Compound clauses that are used to combine other query clauses.
 For instance, a bool clause allows you to combine other clauses that
 either must match, must_not match, or should match if possible. They can also include non-scoring,
 filters for structured search:

{
 "bool": {
 "must": { "match": { "tweet": "elasticsearch" }},
 "must_not": { "match": { "name": "mary" }},
 "should": { "match": { "tweet": "full text" }},
 "filter": { "range": { "age" : { "gt" : 30 }} }
 }
}
It is important to note that a compound clause can combine any other
query clauses, including other compound clauses. This means that compound
clauses can be nested within each other, allowing the expression
of very complex logic.
As an example, the following query looks for emails that contain
business opportunity and should either be starred, or be both in the Inbox
and not marked as spam:
{
 "bool": {
 "must": { "match": { "email": "business opportunity" }},
 "should": [
 { "match": { "starred": true }},
 { "bool": {
 "must": { "match": { "folder": "inbox" }},
 "must_not": { "match": { "spam": true }}
 }}
],
 "minimum_should_match": 1
 }
}
Don’t worry about the details of this example yet; we will explain in
full later. The important thing to take away is that a compound query
clause can combine multiple clauses—both leaf clauses and other
compound clauses—into a single query.

7.3. Queries and Filters

The DSL
 used by
Elasticsearch has a single set of components called queries, which can be mixed
and matched in endless combinations. This single set of components can be used
in two contexts: filtering context and query context.
When used in filtering context, the query is said to be a "non-scoring" or "filtering"
query. That is, the query simply asks the question: "Does this document match?".
The answer is always a simple, binary yes|no.
	
Is the created date in the range 2013 - 2014?

	
Does the status field contain the term published?

	
Is the lat_lon field within 10km of a specified point?

When used in a querying context, the query becomes a "scoring" query. Similar to
its non-scoring sibling, this determines if a document matches. But it also determines
how well does the document matches.
A typical use for a query is to find documents:
	
Best matching the words full text search

	
Containing the word run, but maybe also matching runs, running,
 jog, or sprint

	
Containing the words quick, brown, and fox—the closer together they
 are, the more relevant the document

	
Tagged with lucene, search, or java—the more tags, the more
 relevant the document

A scoring query calculates how relevant each document
 is to the
query, and assigns it a relevance _score, which is later used to
sort matching documents by relevance. This concept of relevance is
well suited to full-text search, where there is seldom a completely
“correct” answer.
Note
Historically, queries and filters were separate components in Elasticsearch. Starting
in Elasticsearch 2.0, filters were technically eliminated, and all queries gained
the ability to become non-scoring.
However, for clarity and simplicity, we will use the term "filter" to mean a query which
is used in a non-scoring, filtering context. You can think of the terms "filter",
"filtering query" and "non-scoring query" as being identical.
Similarly, if the term "query" is used in isolation without a qualifier, we are
referring to a "scoring query".

7.3.1. Performance Differences

Filtering queries are simple checks for set inclusion/exclusion, which make them
very fast to compute. There are various optimizations that can be leveraged
when at least one of your filtering query is "sparse" (few matching documents),
and frequently used non-scoring queries can be cached in memory for faster access.
In contrast, scoring queries have to not only find

matching documents, but also calculate how relevant each document is, which typically makes
them heavier than their non-scoring counterparts. Also, query results are not cacheable.
Thanks to the inverted index, a simple scoring query that matches just a few documents
may perform as well or better than a filter that spans millions
of documents. In general, however, a filter will outperform a
scoring query. And it will do so consistently.
The goal of filtering is to reduce the number of documents that have to
be examined by the scoring queries.

7.3.2. When to Use Which

As a general rule, use

query clauses for full-text search or for any condition that should affect the
relevance score, and use filters for everything else.

7.4. Most Important Queries

While Elasticsearch comes with many queries, you will use
just a few frequently. We discuss them in much greater
detail in Part II, “Search in Depth” but next we give you a quick introduction to
the most important queries.
7.4.1. match_all Query

The match_all query simply
 matches all documents. It is the default
query that is used if no query has been specified:
{ "match_all": {}}
This query is frequently used in combination with a filter—for instance, to
retrieve all emails in the inbox folder. All documents are considered to be
equally relevant, so they all receive a neutral _score of 1.

7.4.2. match Query

The match query should be the standard query that you reach for whenever
you want to query for a full-text or exact value in almost any field.
If you run a match query against a full-text field, it will analyze
the query string by using the correct analyzer for that field before executing
the search:
{ "match": { "tweet": "About Search" }}
If you use it on a field containing an exact value,
such as a number, a date,
a Boolean, or a not_analyzed string field, then it will search for that
exact value:
{ "match": { "age": 26 }}
{ "match": { "date": "2014-09-01" }}
{ "match": { "public": true }}
{ "match": { "tag": "full_text" }}
Tip
For exact-value searches, you probably want to use a filter clause instead of a
query, as a filter will be cached. We’ll see some filtering examples soon.

Unlike the query-string search that we showed in Section 5.4, “Search Lite”, the match
query does not use a query syntax like +user_id:2 +tweet:search. It just
looks for the words that are specified. This means that it is safe to expose
to your users via a search field; you control what fields they can query, and
it is not prone to throwing syntax errors.

7.4.3. multi_match Query

The multi_match query allows to run the same match query on multiple
fields:
{
 "multi_match": {
 "query": "full text search",
 "fields": ["title", "body"]
 }
}

7.4.4. range Query

The range query allows you to find numbers or dates that fall into
a specified range:
{
 "range": {
 "age": {
 "gte": 20,
 "lt": 30
 }
 }
}
The operators that it accepts are as follows:
	
gt

	
 Greater than

	
gte

	
 Greater than or equal to

	
lt

	
 Less than

	
lte

	
 Less than or equal to

7.4.5. term Query

The term query is used to search by
 exact values, be they numbers, dates,
Booleans, or not_analyzed exact-value string fields:
{ "term": { "age": 26 }}
{ "term": { "date": "2014-09-01" }}
{ "term": { "public": true }}
{ "term": { "tag": "full_text" }}
The term query performs no analysis on the input text, so it will look for exactly
the value that is supplied.

7.4.6. terms Query

The terms query is the same as the term query, but allows you
to specify multiple values to match. If the field contains any of
the specified values, the document matches:
{ "terms": { "tag": ["search", "full_text", "nosql"] }}
Like the term query, no analysis is performed on the input text. It is looking
for exact matches (including differences in case, accents, spaces, etc).

7.4.7. exists and missing Queries

The exists and missing queries are used to find documents in which the
specified field either has one or more values (exists) or doesn’t have any
values (missing). It is similar in nature to IS_NULL (missing) and NOT
IS_NULL (exists)in SQL:
{
 "exists": {
 "field": "title"
 }
}
These queries are frequently used to apply a condition only if a field is
present, and to apply a different condition if it is missing.

7.5. Combining queries together

Real world search requests are never simple; they search multiple fields with
various input text, and filter based on an array of criteria. To build
sophisticated search, you will need a way to combine multiple queries together
into a single search request.
To do that, you can use the bool query. This query combines multiple queries
together in user-defined boolean combinations. This query accepts the following parameters:
	
must

	
 Clauses that must match for the document to be included.

	
must_not

	
 Clauses that must not match for the document to be included.

	
should

	
 If these clauses match, they increase the _score;
 otherwise, they have no effect. They are simply used to refine
 the relevance score for each document.

	
filter

	
 Clauses that must match, but are run in non-scoring, filtering mode. These
 clauses do not contribute to the score, instead they simply include/exclude
 documents based on their criteria.

Because this is the first query we’ve seen that contains other queries, we need
to talk about how scores are combined. Each sub-query clause will individually
calculate a relevance score for the document. Once these scores are calculated,
the bool query will merge the scores together and return a single score representing
the total score of the boolean operation.
The following query finds documents whose title field matches
the query string how to make millions and that are not marked
as spam. If any documents are starred or are from 2014 onward,
they will rank higher than they would have otherwise. Documents that
match both conditions will rank even higher:
{
 "bool": {
 "must": { "match": { "title": "how to make millions" }},
 "must_not": { "match": { "tag": "spam" }},
 "should": [
 { "match": { "tag": "starred" }},
 { "range": { "date": { "gte": "2014-01-01" }}}
]
 }
}
Tip
If there are no must clauses, at least one should clause has to
match. However, if there is at least one must clause, no should clauses
are required to match.

7.5.1. Adding a filtering query

If we don’t want the date of the document to affect scoring at all, we can re-arrange
the previous example to use a filter clause:
{
 "bool": {
 "must": { "match": { "title": "how to make millions" }},
 "must_not": { "match": { "tag": "spam" }},
 "should": [
 { "match": { "tag": "starred" }}
],
 "filter": {
 "range": { "date": { "gte": "2014-01-01" }} (1)
 }
 }
}
	(1)
	
The range query was moved out of the should clause and into a filter clause

By moving the range query into the filter clause, we have converted it into a
non-scoring query. It will no longer contribute a score to the document’s relevance
ranking. And because it is now a non-scoring query, it can use the variety of optimizations
available to filters which should increase performance.
Any query can be used in this manner. Simply move a query into the
filter clause of a bool query and it automatically converts to a non-scoring
filter.
If you need to filter on many different criteria, the bool query itself can be
used as a non-scoring query. Simply place it inside the filter clause and
continue building your boolean logic:
{
 "bool": {
 "must": { "match": { "title": "how to make millions" }},
 "must_not": { "match": { "tag": "spam" }},
 "should": [
 { "match": { "tag": "starred" }}
],
 "filter": {
 "bool": { (1)
 "must": [
 { "range": { "date": { "gte": "2014-01-01" }}},
 { "range": { "price": { "lte": 29.99 }}}
],
 "must_not": [
 { "term": { "category": "ebooks" }}
]
 }
 }
 }
}
	(1)
	
By embedding a bool query in the filter clause, we can add boolean logic
to our filtering criteria

By mixing and matching where Boolean queries are placed, we can flexibly encode
both scoring and filtering logic in our search request.

7.5.2. constant_score Query

Although not used nearly as often as the bool query, the constant_score query is
still useful to have in your toolbox. The query applies a static, constant score to
all matching documents. It is predominantly used when you want to execute a filter
and nothing else (e.g. no scoring queries).
You can use this instead of a bool that only has filter clauses. Performance
will be identical, but it may aid in query simplicity/clarity.
{
 "constant_score": {
 "filter": {
 "term": { "category": "ebooks" } (1)
 }
 }
}
	(1)
	
A term query is placed inside the constant_score, converting it to a
non-scoring filter. This method can be used in place of a bool query which only
has a single filter

7.6. Validating Queries

Queries can become quite complex and, especially
 when combined with
different analyzers and field mappings, can become a bit difficult to follow.
The validate-query API can be used to check whether a query is valid.
GET /gb/tweet/_validate/query
{
 "query": {
 "tweet" : {
 "match" : "really powerful"
 }
 }
}
The response to the preceding validate request tells us that the query is
invalid:
{
 "valid" : false,
 "_shards" : {
 "total" : 1,
 "successful" : 1,
 "failed" : 0
 }
}
7.6.1. Understanding Errors

To find out
why it is invalid, add the explain parameter to the query
string:
GET /gb/tweet/_validate/query?explain (1)
{
 "query": {
 "tweet" : {
 "match" : "really powerful"
 }
 }
}
	(1)
	
The explain flag provides more information about why a query is
 invalid.

Apparently, we’ve mixed up the type of query (match) with the name
of the field (tweet):
{
 "valid" : false,
 "_shards" : { ... },
 "explanations" : [{
 "index" : "gb",
 "valid" : false,
 "error" : "org.elasticsearch.index.query.QueryParsingException:
 [gb] No query registered for [tweet]"
 }]
}

7.6.2. Understanding Queries

Using the explain parameter has the added advantage of returning
a human-readable description of the (valid) query, which can be useful for
understanding exactly how your query has been interpreted by Elasticsearch:
GET /_validate/query?explain
{
 "query": {
 "match" : {
 "tweet" : "really powerful"
 }
 }
}
An explanation is returned for each index
that we query, because each
index can have different mappings and analyzers:
{
 "valid" : true,
 "_shards" : { ... },
 "explanations" : [{
 "index" : "us",
 "valid" : true,
 "explanation" : "tweet:really tweet:powerful"
 }, {
 "index" : "gb",
 "valid" : true,
 "explanation" : "tweet:realli tweet:power"
 }]
}
From the explanation, you can see how the match query for the query string
really powerful has been rewritten as two single-term queries against
the tweet field, one for each term.
Also, for the us index, the two terms are really and powerful, while
for the gb index, the terms are realli and power. The reason
for this is that we changed the tweet field in the gb index to use the
english analyzer.

Chapter 8. Sorting and Relevance

By default, results are returned sorted by relevance—with the most
relevant docs first.

 Later in this chapter, we explain what we mean by
relevance and how it is calculated, but let’s start by looking at the sort
parameter and how to use it.
8.1. Sorting

In order to sort by relevance, we need to represent relevance as a value. In
Elasticsearch, the relevance score is represented by the floating-point
number returned in the search results as the _score,

so the default sort
order is _score descending.
Sometimes, though, you don’t have a meaningful relevance score. For instance,
the following query just returns all tweets whose user_id field has the
value 1:
GET /_search
{
 "query" : {
 "bool" : {
 "filter" : {
 "term" : {
 "user_id" : 1
 }
 }
 }
 }
}
There isn’t a meaningful score here: because we are using a filter, we are indicating
that we just want the documents that match user_id: 1 with no attempt to determine
relevance. Documents will be returned in effectively random order, and each document
will have a score of zero.
Note
If a score of zero makes your life difficult for logistical reasons, you can use
a constant_score query instead:
GET /_search
{
 "query" : {
 "constant_score" : {
 "filter" : {
 "term" : {
 "user_id" : 1
 }
 }
 }
 }
}
This will apply a constant score (default of 1) to all documents. It will
perform the same as the above query, and all documents will be returned randomly
like before, they’ll just have a score of one instead of zero.

8.1.1. Sorting by Field Values

In this case, it probably makes sense to sort tweets by recency, with the most
recent tweets first.

 We can do this with the sort parameter:
GET /_search
{
 "query" : {
 "bool" : {
 "filter" : { "term" : { "user_id" : 1 }}
 }
 },
 "sort": { "date": { "order": "desc" }}
}
You will notice two differences in the results:
"hits" : {
 "total" : 6,
 "max_score" : null, (1)
 "hits" : [{
 "_index" : "us",
 "_type" : "tweet",
 "_id" : "14",
 "_score" : null, (2)
 "_source" : {
 "date": "2014-09-24",
 ...
 },
 "sort" : [1411516800000] (3)
 },
 ...
}
	(1) (2)
	
The _score is not calculated, because it is not being used for sorting.

	(3)
	
The value of the date field, expressed as milliseconds since the epoch,
 is returned in the sort values.

The first is that we have a new element in each result called sort, which
contains the value(s) that was used for sorting. In this case, we sorted on
date, which internally is indexed as milliseconds since the epoch. The long
number 1411516800000 is equivalent to the date string 2014-09-24 00:00:00
UTC.
The second is that the _score and max_score are both null.
 Calculating
the _score can be quite expensive, and usually its only purpose is for
sorting; we’re not sorting by relevance, so it doesn’t make sense to keep
track of the _score. If you want the _score to be calculated regardless,
you can set the track_scores parameter to true.
Tip
As a shortcut, you can
specify just the name of the field to sort on:
 "sort": "number_of_children"
Fields will be sorted in
ascending order by default, and
the _score value in descending order.

8.1.2. Multilevel Sorting

Perhaps we want to combine the _score from a
 query with the date, and
show all matching results sorted first by date, then by relevance:
GET /_search
{
 "query" : {
 "bool" : {
 "must": { "match": { "tweet": "manage text search" }},
 "filter" : { "term" : { "user_id" : 2 }}
 }
 },
 "sort": [
 { "date": { "order": "desc" }},
 { "_score": { "order": "desc" }}
]
}
Order is important. Results are sorted by the first criterion first. Only
results whose first sort value is identical will then be sorted by the
second criterion, and so on.
Multilevel sorting doesn’t have to involve the _score. You could sort
by using several different fields,
 on geo-distance or on a custom value
calculated in a script.
Note
Query-string search

 also supports custom sorting, using the sort parameter
in the query string:
GET /_search?sort=date:desc&sort=_score&q=search

8.1.3. Sorting on Multivalue Fields

When sorting on fields with more than one value,

 remember that the values do
not have any intrinsic order; a multivalue field is just a bag of values.
Which one do you choose to sort on?
For numbers and dates, you can reduce a multivalue field to a single value
by using the min, max, avg, or sum sort modes. For instance, you
could sort on the earliest date in each dates field by using the following:
"sort": {
 "dates": {
 "order": "asc",
 "mode": "min"
 }
}

8.2. String Sorting and Multifields

Analyzed string fields are also multivalue fields,

 but sorting on them seldom
gives you the results you want. If you analyze a string like fine old art,
it results in three terms. We probably want to sort alphabetically on the
first term, then the second term, and so forth, but Elasticsearch doesn’t have this
information at its disposal at sort time.
You could use the min and max sort modes (it uses min by default), but
that will result in sorting on either art or old, neither of which was the
intent.
In order to sort on a string field, that field should contain one term only:
the whole not_analyzed string.
 But of course we still need the field to be
analyzed in order to be able to query it as full text.
The naive approach to indexing the same string in two ways would be to include
two separate fields in the document: one that is analyzed for searching,
and one that is not_analyzed for sorting.
But storing the same string twice in the _source field is waste of space.
What we really want to do is to pass in a single field but to index it in two different ways. All of the core field types (strings, numbers,
Booleans, dates) accept a fields parameter

that allows you to transform a
simple mapping like:
"tweet": {
 "type": "string",
 "analyzer": "english"
}
into a multifield mapping like this:
"tweet": { (1)
 "type": "string",
 "analyzer": "english",
 "fields": {
 "raw": { (2)
 "type": "string",
 "index": "not_analyzed"
 }
 }
}
	(1)
	
The main tweet field is just the same as before: an analyzed full-text
 field.

	(2)
	
The new tweet.raw subfield is not_analyzed.

Now, or at least as soon as we have reindexed our data, we can use the tweet
field for search and the tweet.raw field for sorting:
GET /_search
{
 "query": {
 "match": {
 "tweet": "elasticsearch"
 }
 },
 "sort": "tweet.raw"
}
Warning
Sorting on a full-text analyzed field can use a lot of memory. See
Section 34.3, “Aggregations and Analysis” for more information.

8.3. What Is Relevance?

We’ve mentioned that, by default, results are returned in descending order of
relevance.
 But what is relevance? How is it calculated?
The relevance score of each document is represented by a positive floating-point number called the _score.
 The higher the _score, the more relevant
the document.
A query clause generates a _score for each document. How that score is
calculated depends on the type of query clause.
 Different query clauses are
used for different purposes: a fuzzy query might determine the _score by
calculating how similar the spelling of the found word is to the original
search term; a terms query would incorporate the percentage of terms that
were found. However, what we usually mean by relevance is the algorithm that we
use to calculate how similar the contents of a full-text field are to a full-text query string.
The standard similarity algorithm used in Elasticsearch is
 known as term
frequency/inverse document frequency, or TF/IDF, which takes the following
factors into account:
	
Term frequency

	
 How often does the term appear in the field? The more often, the more
 relevant. A field containing five mentions of the same term is more likely
 to be relevant than a field containing just one mention.

	
Inverse document frequency

	
 How often does each term appear in the index? The more often, the less
 relevant. Terms that appear in many documents have a lower weight than
 more-uncommon terms.

	
Field-length norm

	
 How long is the field? The longer it is, the less likely it is that words in
 the field will be relevant. A term appearing in a short title field
 carries more weight than the same term appearing in a long content field.

Individual queries may combine the TF/IDF score with other factors
such as the term proximity in phrase queries, or term similarity in
fuzzy queries.
Relevance is not just about full-text search, though. It can equally be applied
to yes/no clauses, where the more clauses that match, the higher the
_score.
When multiple query clauses are combined using a compound query
 like the
bool query, the _score from each of these query clauses is combined to
calculate the overall _score for the document.
Tip
We have a whole chapter dedicated to relevance calculations and how to
bend them to your will: Chapter 17, Controlling Relevance.

8.3.1. Understanding the Score

When debugging a complex query,

 it can be difficult to understand
exactly how a _score has been calculated. Elasticsearch
has the option of producing an explanation with every search result,
by setting the explain parameter to true.
GET /_search?explain (1)
{
 "query" : { "match" : { "tweet" : "honeymoon" }}
}
	(1)
	
The explain parameter adds an explanation of how the _score was
 calculated to every result.

Note
Adding explain produces a lot
 of output for every hit, which can look
overwhelming, but it is worth taking the time to understand what it all means.
Don’t worry if it doesn’t all make sense now; you can refer to this section
when you need it. We’ll work through the output for one hit bit by bit.

First, we have the metadata that is returned on normal search requests:
{
 "_index" : "us",
 "_type" : "tweet",
 "_id" : "12",
 "_score" : 0.076713204,
 "_source" : { ... trimmed ... },
It adds information about the shard and the node that the document came from,
which is useful to know because term and document frequencies are calculated
per shard, rather than per index:
 "_shard" : 1,
 "_node" : "mzIVYCsqSWCG_M_ZffSs9Q",
Then it provides the _explanation. Each
entry contains a description
that tells you what type of calculation is being performed, a value
that gives you the result of the calculation, and the details of any
subcalculations that were required:
"_explanation": { (1)
 "description": "weight(tweet:honeymoon in 0)
 [PerFieldSimilarity], result of:",
 "value": 0.076713204,
 "details": [
 {
 "description": "fieldWeight in 0, product of:",
 "value": 0.076713204,
 "details": [
 { (2)
 "description": "tf(freq=1.0), with freq of:",
 "value": 1,
 "details": [
 {
 "description": "termFreq=1.0",
 "value": 1
 }
]
 },
 { (3)
 "description": "idf(docFreq=1, maxDocs=1)",
 "value": 0.30685282
 },
 { (4)
 "description": "fieldNorm(doc=0)",
 "value": 0.25,
 }
]
 }
]
}
	(1)
	
Summary of the score calculation for honeymoon

	(2)
	
Term frequency

	(3)
	
Inverse document frequency

	(4)
	
Field-length norm

Warning
Producing the explain output is expensive.
 It is a debugging tool
only. Don’t leave it turned on in production.

The first part is the summary of the calculation. It tells us that it has
calculated the weight—the

TF/IDF—of the term honeymoon in the field tweet, for document 0. (This is
an internal document ID and, for our purposes, can be ignored.)
It then provides details of how the weight was calculated:
	
Term frequency

	
 How many times did the term honeymoon appear in the tweet field in
 this document?

	
Inverse document frequency

	
 How many times did the term honeymoon appear in the tweet field
 of all documents in the index?

	
Field-length norm

	
 How long is the tweet field in this document? The longer the field,
 the smaller this number.

Explanations for more-complicated queries can appear to be very complex, but
really they just contain more of the same calculations that appear in the
preceding example. This information can be invaluable for debugging why search
results appear in the order that they do.
Tip
The output from explain can be difficult to read in JSON, but it is easier
when it is formatted as YAML.
 Just add format=yaml to the query string.

8.3.2. Understanding Why a Document Matched

While the explain option adds an explanation for every result, you can use
the explain API to understand why one particular document matched or, more
important, why it didn’t match.

The path for the request is /index/type/id/_explain, as in the following:
GET /us/tweet/12/_explain
{
 "query" : {
 "bool" : {
 "filter" : { "term" : { "user_id" : 2 }},
 "must" : { "match" : { "tweet" : "honeymoon" }}
 }
 }
}
Along with the full explanation
 that we saw previously, we also now have a
description element, which tells us this:
"failure to match filter: cache(user_id:[2 TO 2])"
In other words, our user_id filter clause is preventing the document from
matching.

8.4. Doc Values Intro

Our final topic in this chapter is about an internal aspect of Elasticsearch.
While we don’t demonstrate any new techniques here, doc values are an
important topic that we will refer to repeatedly, and is something that you
should be aware of.
When you sort on a field, Elasticsearch needs access to the value of that
field for every document that matches the query.
 The inverted index, which
performs very well when searching, is not the ideal structure for sorting on
field values:
	
When searching, we need to be able to map a term to a list of documents.

	
When sorting, we need to map a document to its terms. In other words, we
 need to “uninvert” the inverted index.

This “uninverted” structure is often called a “column-store” in other systems.
Essentially, it stores all the values for a single field together in a single
column of data, which makes it very efficient for operations like sorting.
In Elasticsearch, this column-store is known as doc values, and is enabled
by default. Doc values are created at index-time: when a field is indexed, Elasticsearch
adds the tokens to the inverted index for search. But it also extracts the terms
and adds them to the columnar doc values.
Doc values are used in several places in Elasticsearch:
	
Sorting on a field

	
Aggregations on a field

	
Certain filters (for example, geolocation filters)

	
Scripts that refer to fields

Because doc values are serialized to disk, we can leverage the OS to help keep
access fast. When the "working set" is smaller than the available memory on a node,
the OS will naturally keep all the doc values hot in memory, leading to very fast
access. When the "working set" is much larger than available memory, the OS will
naturally start to page doc-values on/off disk without running into the dreaded
OutOfMemory exception.
We’ll talk about doc values in much greater depth later. For now, all you need
to know is that sorting (and some other operations) happen on a parallel data
structure which is built at index-time.

Chapter 9. Distributed Search Execution

Before moving on, we are going to take a detour and talk about how search is
executed in a distributed environment. It is a bit more complicated than the
basic create-read-update-delete (CRUD) requests that we discussed in
Chapter 4, Distributed Document Store.
Content Warning

The information presented in this chapter is for your interest. You are not required to
understand and remember all the detail in order to use Elasticsearch.
Read this chapter to gain a taste for how things work, and to know where the
information is in case you need to refer to it in the future, but don’t be
overwhelmed by the detail.

A CRUD operation deals with a single document that has a unique combination of
_index, _type, and routing values (which defaults to the
document’s _id). This means that we know exactly which shard in the cluster
holds that document.
Search requires a more complicated execution model because we don’t know which
documents will match the query: they could be on any shard in the cluster. A
search request has to consult a copy of every shard in the index or indices
we’re interested in to see if they have any matching documents.
But finding all matching documents is only half the story. Results from
multiple shards must be combined into a single sorted list before the search
API can return a “page” of results. For this reason, search is executed in a
two-phase process called query then fetch.
9.1. Query Phase

During the initial query phase, the
 query is broadcast to a shard copy (a
primary or replica shard) of every shard in the index. Each shard executes
the search locally and builds a priority queue of matching documents.
Priority Queue

A priority queue is just a sorted list that holds the top-n matching
documents. The size of the priority queue depends on the pagination
parameters from and size. For example, the following search request
would require a priority queue big enough to hold 100 documents:
GET /_search
{
 "from": 90,
 "size": 10
}

The query phase process is depicted in Figure 9.1, “Query phase of distributed search”.
Figure 9.1. Query phase of distributed search
[image: Query phase of distributed search]

The query phase consists of the following three steps:
	
The client sends a search request to Node 3, which creates an empty
 priority queue of size from + size.

	
Node 3 forwards the search request to a primary or replica copy of every
 shard in the index. Each shard executes the query locally and adds the
 results into a local sorted priority queue of size from + size.

	
Each shard returns the doc IDs and sort values of all the docs in its
 priority queue to the coordinating node, Node 3, which merges these
 values into its own priority queue to produce a globally sorted list of
 results.

When a search request is sent to a node, that node becomes the coordinating
node.
 It is the job of this node to broadcast the search request to all
involved shards, and to gather their responses into a globally sorted result
set that it can return to the client.
The first step is to broadcast the request to a shard copy of every node in
the index. Just like document GET requests, search requests
can be handled by a primary shard or by any of its replicas.
 This is how more
replicas (when combined with more hardware) can increase search throughput.
A coordinating node will round-robin through all shard copies on subsequent
requests in order to spread the load.
Each shard executes the query locally and builds a sorted priority queue of
length from + size—in other words, enough results to satisfy the global
search request all by itself. It returns a lightweight list of results to the
coordinating node, which contains just the doc IDs and any values required for
sorting, such as the _score.
The coordinating node merges these shard-level results into its own sorted
priority queue, which represents the globally sorted result set. Here the query
phase ends.
Note
An index can consist of one or more primary shards,
 so a search request
against a single index needs to be able to combine the results from multiple
shards. A search against multiple or all indices works in exactly the same
way—there are just more shards involved.

9.2. Fetch Phase

The query phase identifies which documents satisfy
 the search request, but we
still need to retrieve the documents themselves. This is the job of the fetch
phase, shown in Figure 9.2, “Fetch phase of distributed search”.
Figure 9.2. Fetch phase of distributed search
[image: Fetch Phase of distributed search]

The distributed phase consists of the following steps:
	
The coordinating node identifies which documents need to be fetched and
 issues a multi GET request to the relevant shards.

	
Each shard loads the documents and enriches them, if required, and then
 returns the documents to the coordinating node.

	
Once all documents have been fetched, the coordinating node returns the
 results to the client.

The coordinating node first decides which documents actually need to be
fetched. For instance, if our query specified { "from": 90, "size": 10 },
the first 90 results would be discarded and only the next 10 results would
need to be retrieved. These documents may come from one, some, or all of the
shards involved in the original search request.
The coordinating node builds a multi-get request for
each shard that holds a pertinent document and sends the request to the same
shard copy that handled the query phase.
The shard loads the document bodies—the _source field—and, if
requested, enriches the results with metadata and
search snippet highlighting.
Once the coordinating node receives all results, it assembles them into a
single response that it returns to the client.
Deep Pagination

The query-then-fetch process supports pagination with the from and size
parameters, but within limits.
 Remember that each shard must build a priority
queue of length from + size, all of which need to be passed back to
the coordinating node. And the coordinating node needs to sort through
number_of_shards * (from + size) documents in order to find the correct
size documents.
Depending on the size of your documents, the number of shards, and the
hardware you are using, paging 10,000 to 50,000 results (1,000 to 5,000 pages)
deep should be perfectly doable. But with big-enough from values, the
sorting process can become very heavy indeed, using vast amounts of CPU,
memory, and bandwidth. For this reason, we strongly advise against deep paging.
In practice, “deep pagers” are seldom human anyway. A human will stop
paging after two or three pages and will change the search criteria. The
culprits are usually bots or web spiders that tirelessly keep fetching page
after page until your servers crumble at the knees.
If you do need to fetch large numbers of docs from your cluster, you can
do so efficiently by disabling sorting with the scroll query,
which we discuss later in this chapter.

9.3. Search Options

A few optional query-string parameters can influence the search process.
9.3.1. preference

The preference parameter allows
 you to control which shards or nodes are
used to handle the search request. It accepts values such as _primary,
_primary_first, _local, _only_node:xyz, _prefer_node:xyz, and
_shards:2,3, which are explained in detail on the
search preference
documentation page.
However, the most generally useful value is some arbitrary string, to avoid
the bouncing results problem.
Bouncing Results

Imagine that you are sorting your results by a timestamp field, and
two documents have the same timestamp. Because search requests are
round-robined between all available shard copies, these two documents may be
returned in one order when the request is served by the primary, and in
another order when served by the replica.
This is known as the bouncing results problem: every time the user refreshes
the page, the results appear in a different order. The problem can be avoided by always using the same shards for the same user,
which can be done by setting the preference parameter to an arbitrary string
like the user’s session ID.

9.3.2. timeout

By default, the coordinating node waits
 to receive a response from all shards.
If one node is having trouble, it could slow down the response to all search
requests.
The timeout parameter tells the coordinating node how long it should wait
before giving up and just returning the results that it already has. It can be
better to return some results than none at all.
The response to a search request will indicate whether the search timed out and
how many shards responded successfully:
 ...
 "timed_out": true, (1)
 "_shards": {
 "total": 5,
 "successful": 4,
 "failed": 1 (2)
 },
 ...
	(1)
	
The search request timed out.

	(2)
	
One shard out of five failed to respond in time.

If all copies of a shard fail for other reasons—perhaps because of a
hardware failure—this will also be reflected in the _shards section of
the response.

9.3.3. routing

In Section 4.1, “Routing a Document to a Shard”, we explained how a custom routing parameter
 could be
provided at index time to ensure that all related documents, such as the
documents belonging to a single user, are stored on a single shard. At search
time, instead of searching on all the shards of an index, you can specify
one or more routing values to limit the search to just those shards:
GET /_search?routing=user_1,user2
This technique comes in handy when designing very large search systems, and we
discuss it in detail in Chapter 43, Designing for Scale.

9.3.4. search_type

The default search type is query_then_fetch
. In some cases, you might want to explicitly set the search_type
to dfs_query_then_fetch to improve the accuracy of relevance scoring:
GET /_search?search_type=dfs_query_then_fetch
The dfs_query_then_fetch search type has a prequery phase that fetches the term
frequencies from all involved shards to calculate global term
frequencies. We discuss this further in Section 13.8, “Relevance Is Broken!”.

9.4. Scroll

A scroll query is used to retrieve
large numbers of documents from Elasticsearch efficiently, without paying the
penalty of deep pagination.
Scrolling allows us to do an initial search and to keep pulling
batches of results from Elasticsearch until there are no more results left.
It’s a bit like a cursor in a traditional database.
A scrolled search takes a snapshot in time. It doesn’t see any changes that
are made to the index after the initial search request has been made. It does
this by keeping the old data files around, so that it can preserve its “view”
on what the index looked like at the time it started.
The costly part of deep pagination is the global sorting of results, but if we
disable sorting, then we can return all documents quite cheaply. To do this, we
sort by _doc. This instructs Elasticsearch just return the next batch of
results from every shard that still has results to return.
To scroll through results, we execute a search request and set the scroll value to
the length of time we want to keep the scroll window open. The scroll expiry
time is refreshed every time we run a scroll request, so it only needs to be long enough
to process the current batch of results, not all of the documents that match
the query. The timeout is important because keeping the scroll window open
consumes resources and we want to free them as soon as they are no longer needed.
Setting the timeout enables Elasticsearch to automatically free the resources
after a small period of inactivity.
GET /old_index/_search?scroll=1m (1)
{
 "query": { "match_all": {}},
 "sort" : ["_doc"], (2)
 "size": 1000
}
	(1)
	
Keep the scroll window open for 1 minute.

	(2)
	
_doc is the most efficient sort order.

The response to this request includes a
_scroll_id, which is a long Base-64 encoded string. Now we can pass the
_scroll_id to the _search/scroll endpoint to retrieve the next batch of
results:
GET /_search/scroll
{
 "scroll": "1m", (1)
 "scroll_id" : "cXVlcnlUaGVuRmV0Y2g7NTsxMDk5NDpkUmpiR2FjOFNhNnlCM1ZDMWpWYnRROzEwOTk1OmRSamJHYWM4U2E2eUIzVkMxalZidFE7MTA5OTM6ZFJqYkdhYzhTYTZ5QjNWQzFqVmJ0UTsxMTE5MDpBVUtwN2lxc1FLZV8yRGVjWlI2QUVBOzEwOTk2OmRSamJHYWM4U2E2eUIzVkMxalZidFE7MDs="
}
	(1)
	
Note that we again set the scroll expiration to 1m.

The response to this scroll request includes the next batch of results.
Although we specified a size of 1,000, we get back many more
documents.
 When scanning, the size is applied to each shard, so you will
get back a maximum of size * number_of_primary_shards documents in each
batch.
Note
The scroll request also returns a new _scroll_id. Every time
we make the next scroll request, we must pass the _scroll_id returned by the
previous scroll request.

When no more hits are returned, we have processed all matching documents.
Tip
Some of the official Elasticsearch clients such as
Python client and
Perl client provide scroll helpers that
provide easy-to-use wrappers around this funtionality.

Chapter 10. Index Management

We have seen how Elasticsearch makes it easy to start developing a new
application without requiring any advance planning or setup. However, it
doesn’t take long before you start wanting to fine-tune the indexing and
search process to better suit your particular use case. Almost all of these customizations relate to the index, and the types
that it contains. In this chapter, we introduce the APIs
for managing indices and type mappings, and the most important settings.
10.1. Creating an Index

Until now, we have created a new index
 by simply indexing a document into it. The index is created with the default settings, and new fields are added to the type mapping by using dynamic mapping. Now we need more control over the process: we want to ensure that the index has been created with the appropriate number of primary shards, and that analyzers and mappings are set up before we index any data.
To do this, we have to create the index manually, passing in any settings or
type mappings in the request body, as follows:
PUT /my_index
{
 "settings": { ... any settings ... },
 "mappings": {
 "type_one": { ... any mappings ... },
 "type_two": { ... any mappings ... },
 ...
 }
}
In fact, if you want to, you
can prevent the automatic creation of indices by
adding the following setting to the config/elasticsearch.yml file on each
node:
action.auto_create_index: false
Note
Later, we discuss how you can use Section 43.8, “Index Templates” to preconfigure
automatically created indices. This is particularly useful when indexing log
data: you log into an index whose name includes the date and, as midnight
rolls over, a new properly configured index automatically springs into
existence.

10.2. Deleting an Index

To delete an index, use

the following request:
DELETE /my_index
You can delete multiple indices with this:
DELETE /index_one,index_two
DELETE /index_*
You can even delete all indices with this:
DELETE /_all
DELETE /*
Note
For some, the ability to delete all your data with a single command is a very
scary prospect. If you want to eliminate the possibility of an accidental
mass-deletion, you can set the following to true in your elasticsearch.yml:
action.destructive_requires_name: true
This restricts deletions to specific names, instead of allowing the special _all
or wildcard options. You can also update this setting dynamically through the
Cluster State API

10.3. Index Settings

There are many many knobs that you can twiddle to
customize index behavior, which you can read about in the
Index Modules reference documentation,
but…
Tip
Elasticsearch comes with good defaults. Don’t twiddle these knobs until
you understand what they do and why you should change them.

Two of the most important

 settings are as follows:
	
number_of_shards

	
 The number of primary shards that an index should have,
 which defaults to 5. This setting cannot be changed
 after index creation.

	
number_of_replicas

	
 The number of replica shards (copies) that each primary shard
 should have, which defaults to 1. This setting can be changed
 at any time on a live index.

For instance, we could create a small index—just

 one primary shard—and no replica shards with the following request:
PUT /my_temp_index
{
 "settings": {
 "number_of_shards" : 1,
 "number_of_replicas" : 0
 }
}
Later, we can change the number of replica shards dynamically using the
update-index-settings API as follows:
PUT /my_temp_index/_settings
{
 "number_of_replicas": 1
}

10.4. Configuring Analyzers

The third important index setting is the analysis section,
 which is used
to configure existing analyzers or to create new custom analyzers
specific to your index.
In Section 6.3, “Analysis and Analyzers”, we introduced some of the built-in
analyzers,
which are used to convert full-text strings into an inverted index,
suitable for searching.
The standard analyzer, which is the default analyzer
used for full-text fields,
 is a good choice for most Western languages.

It consists of the following:
	
The standard tokenizer, which splits the input text on word boundaries

	
The standard token filter, which is intended to tidy up the tokens
 emitted by the tokenizer (but currently does nothing)

	
The lowercase token filter, which converts all tokens into lowercase

	
The stop token filter, which removes stopwords—common words
 that have little impact on search relevance, such as a, the, and,
 is.

By default, the stopwords filter is disabled. You can enable it by creating a
custom analyzer based on the standard analyzer and setting the stopwords
parameter. Either provide a list of stopwords or tell it to use a predefined
stopwords list from a particular language.
In the following example, we create a new analyzer called the es_std
analyzer, which uses the predefined list of
Spanish stopwords:
PUT /spanish_docs
{
 "settings": {
 "analysis": {
 "analyzer": {
 "es_std": {
 "type": "standard",
 "stopwords": "_spanish_"
 }
 }
 }
 }
}
The es_std analyzer is not global—it exists only in the spanish_docs
index where we have defined it. To test it with the analyze API, we must
specify the index name:
GET /spanish_docs/_analyze?analyzer=es_std
El veloz zorro marrón
The abbreviated results show that the Spanish stopword El has been
removed correctly:
{
 "tokens" : [
 { "token" : "veloz", "position" : 2 },
 { "token" : "zorro", "position" : 3 },
 { "token" : "marrón", "position" : 4 }
]
}

10.5. Custom Analyzers

While Elasticsearch comes with a number of analyzers available out of the box,
the real power comes from the ability to create your own custom analyzers
by combining character filters, tokenizers, and token filters in a
configuration that suits your particular data.
In Section 6.3, “Analysis and Analyzers”, we said that an analyzer is a wrapper that combines
three functions into a single package,
 which are executed in sequence:
	
Character filters

	Character filters are used to “tidy up” a string before it is tokenized.
For instance, if our text is in HTML format, it will contain HTML tags like
<p> or <div> that we don’t want to be indexed. We can use the
html_strip character filter
to remove all HTML tags and to convert HTML entities like Á into the
corresponding Unicode character Á.
An analyzer may have zero or more character filters.

	
Tokenizers

	An analyzer must have a single tokenizer.
 The tokenizer breaks up the
string into individual terms or tokens. The
standard tokenizer,
which is used in the standard analyzer, breaks up a string into
individual terms on word boundaries, and removes most punctuation, but
other tokenizers exist that have different behavior.
For instance, the
keyword tokenizer
outputs exactly the same string as it received, without any tokenization. The
whitespace tokenizer
splits text on whitespace only. The
pattern tokenizer can
be used to split text on a matching regular expression.

	
Token filters

	After tokenization, the resulting token stream is passed through any
specified token filters, in the order in which they are specified.
Token filters may change, add, or remove tokens. We have already mentioned the
lowercase and
stop token filters,
but there are many more available in Elasticsearch.
Stemming token filters
“stem” words to their root form. The
ascii_folding filter
removes diacritics, converting a term like "très" into "tres". The
ngram and
edge_ngram token filters can produce
tokens suitable for partial matching or autocomplete.

In Part II, “Search in Depth”, we discuss examples of where and how to use these
tokenizers and filters. But first, we need to explain how to create a custom
analyzer.
10.5.1. Creating a Custom Analyzer

In the same way as

 we configured the es_std analyzer previously, we can configure
character filters, tokenizers, and token filters in their respective sections
under analysis:
PUT /my_index
{
 "settings": {
 "analysis": {
 "char_filter": { ... custom character filters ... },
 "tokenizer": { ... custom tokenizers ... },
 "filter": { ... custom token filters ... },
 "analyzer": { ... custom analyzers ... }
 }
 }
}
As an example, let’s set up a custom analyzer that will do the following:
	
Strip out HTML by using the html_strip character filter.

	
Replace & characters with " and ", using a custom mapping
 character filter:

"char_filter": {
 "&_to_and": {
 "type": "mapping",
 "mappings": ["&=> and "]
 }
}

	
Tokenize words, using the standard tokenizer.

	
Lowercase terms, using the lowercase token filter.

	
Remove a custom list of stopwords, using a custom stop token filter:

"filter": {
 "my_stopwords": {
 "type": "stop",
 "stopwords": ["the", "a"]
 }
}

Our analyzer definition combines the predefined tokenizer and filters with the
custom filters that we have configured previously:
"analyzer": {
 "my_analyzer": {
 "type": "custom",
 "char_filter": ["html_strip", "&_to_and"],
 "tokenizer": "standard",
 "filter": ["lowercase", "my_stopwords"]
 }
}
To put it all together, the whole create-index request looks like this:
PUT /my_index
{
 "settings": {
 "analysis": {
 "char_filter": {
 "&_to_and": {
 "type": "mapping",
 "mappings": ["&=> and "]
 }},
 "filter": {
 "my_stopwords": {
 "type": "stop",
 "stopwords": ["the", "a"]
 }},
 "analyzer": {
 "my_analyzer": {
 "type": "custom",
 "char_filter": ["html_strip", "&_to_and"],
 "tokenizer": "standard",
 "filter": ["lowercase", "my_stopwords"]
 }}
}}}
After creating the index, use the analyze API to
 test the new analyzer:
GET /my_index/_analyze?analyzer=my_analyzer
The quick & brown fox
The following abbreviated results show that our analyzer is working correctly:
{
 "tokens" : [
 { "token" : "quick", "position" : 2 },
 { "token" : "and", "position" : 3 },
 { "token" : "brown", "position" : 4 },
 { "token" : "fox", "position" : 5 }
]
}
The analyzer is not much use unless we tell

Elasticsearch where to use it. We
can apply it to a string field with a mapping such as the following:
PUT /my_index/_mapping/my_type
{
 "properties": {
 "title": {
 "type": "string",
 "analyzer": "my_analyzer"
 }
 }
}

10.6. Types and Mappings

A type in Elasticsearch represents a class of similar documents.
 A type
consists of a name—such as user or blogpost—and a mapping. The
mapping, like a database schema, describes the fields or properties that
documents of that type may have,
the datatype of each field—such as string,
integer, or date—and how those fields should be indexed and stored by
Lucene.
Types can be useful abstractions for partitioning similar-but-not-identical data.
But due to how Lucene operates they come with some restrictions.
10.6.1. How Lucene Sees Documents

A document in Lucene consists of a simple list of field-value pairs.
 A field
must have at least one value, but any field can contain multiple values.
Similarly, a single string value may be converted into multiple values by the
analysis process. Lucene doesn’t care if the values are strings or numbers or
dates—all values are just treated as opaque bytes.
When we index a document in Lucene, the values for each field are added to the
inverted index for the associated field. Optionally, the original values may
also be stored unchanged so that they can be retrieved later.

10.6.2. How Types Are Implemented

Elasticsearch types are
implemented on top of this simple foundation. An index
may have several types, and documents of any of these types may be stored in the same index.
Because Lucene has no concept of document types, the type name of each
document is stored with the document in a metadata field called _type. When
we search for documents of a particular type, Elasticsearch simply uses a
filter on the _type field to restrict results to documents of that type.
Lucene also has no concept of mappings. Mappings are the layer
that Elasticsearch uses to map complex JSON documents into the
simple flat documents that Lucene expects to receive.
For instance, the mapping for the name field in the user type may declare
that the field is a string field, and that its value should be analyzed
by the whitespace analyzer before being indexed into the inverted
index called name:
"name": {
 "type": "string",
 "analyzer": "whitespace"
}

10.6.3. Avoiding Type Gotchas

This leads to an interesting thought experiment: what happens if you have two
different types, each with an identically named field but mapped differently
(e.g. one is a string, the other is a number)?
Well, the short answer is that bad things happen and Elasticsearch won’t allow you
to define this mapping at all. You’d receive an exception when attempting to
configure the mapping.
The longer answer is that each Lucene index contains a single, flat schema
for all fields. A particular field is either mapped as a string, or a number, but
not both. And because types are a mechanism added by Elasticsearch on top
of Lucene (in the form of a metadata _type field), all types in Elasticsearch
ultimately share the same mapping.
Take for example this mapping of two types in the data index:
{
 "data": {
 "mappings": {
 "people": {
 "properties": {
 "name": {
 "type": "string",
 },
 "address": {
 "type": "string"
 }
 }
 },
 "transactions": {
 "properties": {
 "timestamp": {
 "type": "date",
 "format": "strict_date_optional_time"
 },
 "message": {
 "type": "string"
 }
 }
 }
 }
 }
}
Each type defines two fields ("name"/"address" and "timestamp"/"message"
respectively). It may look like they are independent, but under the covers Lucene
will create a single mapping which would look something like this:
{
 "data": {
 "mappings": {
 "_type": {
 "type": "string",
 "index": "not_analyzed"
 },
 "name": {
 "type": "string"
 }
 "address": {
 "type": "string"
 }
 "timestamp": {
 "type": "long"
 }
 "message": {
 "type": "string"
 }
 }
 }
}
Note: This is not actually valid mapping syntax, just used for demonstration
The mappings are essentially flattened into a single, global schema for the
entire index. And that’s why two types cannot define conflicting fields:
Lucene wouldn’t know what to do when the mappings are flattened together.

10.6.4. Type Takeaways

So what’s the takeaway from this discussion? Technically, multiple types
may live in the same index as long as their fields do not conflict (either because
the fields are mutually exclusive, or because they share identical fields).
Practically though, the important lesson is this: types are useful when you need
to discriminate between different segments of a single collection. The overall "shape" of the
data is identical (or nearly so) between the different segments.
Types are not as well suited for entirely different types of data. If your two
types have mutually exclusive sets of fields, that means half your index is going to
contain "empty" values (the fields will be sparse), which will eventually cause performance
problems. In these cases, it’s much better to utilize two independent indices.
In summary:
	
Good: kitchen and lawn-care types inside the products index, because
the two types are essentially the same schema

	
Bad: products and logs types inside the data index, because the two types are
mutually exclusive. Separate these into their own indices.

10.7. The Root Object

The uppermost level of a mapping is known
as the root object. It may
contain the following:
	
A properties section, which lists the mapping for each field that a
 document may contain

	
Various metadata fields, all of which start with an underscore, such
 as _type, _id, and _source

	
Settings, which control how the dynamic detection of new fields
 is handled, such as analyzer, dynamic_date_formats, and
 dynamic_templates

	
Other settings, which can be applied both to the root object and to fields
 of type object, such as enabled, dynamic, and include_in_all

10.7.1. Properties

We have already discussed the three most important settings for document
fields or

properties in Section 6.4.1, “Core Simple Field Types” and Section 6.5, “Complex Core Field Types”:
	
type

	
 The datatype that the field contains, such as string or date

	
index

	
 Whether a field should be searchable as full text (analyzed), searchable as an exact value (not_analyzed), or not searchable at all (no)

	
analyzer

	
 Which analyzer to use for a full-text field, both at index time and at search time

We will discuss other field types such as ip, geo_point, and geo_shape in
the appropriate sections later in the book.

10.7.2. Metadata: _source Field

By default, Elasticsearch
stores the JSON string representing the
document body in the _source field. Like all stored fields, the _source
field is compressed before being written to disk.
This is almost always desired functionality because it means the following:
	
The full document is available directly from the search results—no need
 for a separate round-trip to fetch the document from another data store.

	
Partial update requests will not function without the _source field.

	
When your mapping changes and you need to reindex your data, you can
 do so directly from Elasticsearch instead of having to retrieve all of your
 documents from another (usually slower) data store.

	
Individual fields can be extracted from the _source field and returned
 in get or search requests when you don’t need to see the whole document.

	
It is easier to debug queries, because you can see exactly what each document
 contains, rather than having to guess their contents from a list of IDs.

That said, storing the _source field does use disk space. If none of the
preceding reasons is important to you, you can disable the _source field with
the following mapping:
PUT /my_index
{
 "mappings": {
 "my_type": {
 "_source": {
 "enabled": false
 }
 }
 }
}
In a search request, you can ask for only certain fields by specifying the
_source parameter in the request body:
GET /_search
{
 "query": { "match_all": {}},
 "_source": ["title", "created"]
}
Values for these fields will be extracted from the _source field and
returned instead of the full _source.
Stored Fields

Besides indexing the values of a field, you
can also choose to store the
original field value for later retrieval. Users with a Lucene background use
stored fields to choose which fields they would like to be able to return in
their search results. In fact, the _source field is a stored field.
In Elasticsearch, setting individual document fields to be stored is usually a
false optimization. The whole document is already stored as the _source
field. It is almost always better to just extract the fields that you need
by using the _source parameter.

10.7.3. Metadata: _all Field

In Section 5.4, “Search Lite”, we introduced the _all field: a special field that
indexes the
values from all other fields as one big string. The query_string
query clause (and searches performed as ?q=john) defaults to searching in
the _all field if no other field is specified.
The _all field is useful during the exploratory phase of a new application,
while you are still unsure about the final structure that your documents will
have. You can throw any query string at it and you have a good chance of
finding the document you’re after:
GET /_search
{
 "match": {
 "_all": "john smith marketing"
 }
}
As your application evolves and your search requirements become more exacting,
you will find yourself using the _all field less and less. The _all field
is a shotgun approach to search. By querying individual fields, you have more
flexbility, power, and fine-grained control over which results are considered
to be most relevant.
Note
One of the important factors taken into account by the
relevance algorithm
is the length of the field: the shorter the field, the more important. A term
that appears in a short title field is likely to be more important than the
same term that appears somewhere in a long content field. This distinction
between field lengths disappears in the _all field.

If you decide that you no longer need the _all field, you can disable it
with this mapping:
PUT /my_index/_mapping/my_type
{
 "my_type": {
 "_all": { "enabled": false }
 }
}
Inclusion in the _all field can be controlled on a field-by-field basis
by using the include_in_all setting, which defaults to true. Setting
include_in_all on an object (or on the root object) changes the
default for all fields within that object.
You may find that you want to keep the _all field around to use
as a catchall full-text field just for specific fields, such as
title, overview, summary, and tags. Instead of disabling the _all
field completely, disable include_in_all for all fields by default,
and enable it only on the fields you choose:
PUT /my_index/my_type/_mapping
{
 "my_type": {
 "include_in_all": false,
 "properties": {
 "title": {
 "type": "string",
 "include_in_all": true
 },
 ...
 }
 }
}
Remember that the _all field is just
 an analyzed string field. It
uses the default analyzer to analyze its values, regardless of which
analyzer has been set on the fields where the values originate. And
like any string field, you can configure which analyzer the _all
field should use:
PUT /my_index/my_type/_mapping
{
 "my_type": {
 "_all": { "analyzer": "whitespace" }
 }
}

10.7.4. Metadata: Document Identity

There are four metadata fields
associated with document identity:
	
_id

	
 The string ID of the document

	
_type

	
 The type name of the document

	
_index

	
 The index where the document lives

	
_uid

	
 The _type and _id concatenated together as type#id

By default, the _uid field is stored (can be retrieved) and
indexed (searchable). The _type field is indexed but not stored,
and the _id and _index fields are neither indexed nor stored, meaning
they don’t really exist.
In spite of this, you can query the _id field as though it were a real
field. Elasticsearch uses the _uid field to derive the _id. Although you
can change the index and store settings for these fields, you almost
never need to do so.

10.8. Dynamic Mapping

When Elasticsearch encounters a previously
unknown field in a document, it
uses dynamic mapping to determine the datatype for the
field and automatically adds the new field to the type mapping.
Sometimes this is the desired behavior and sometimes it isn’t. Perhaps
you don’t know what fields will be added to your documents later,
but you want them to be indexed automatically. Perhaps you just want
to ignore them. Or—especially if you are using Elasticsearch as a
primary data store—perhaps you want unknown fields to throw an exception
to alert you to the problem.
Fortunately, you can control this behavior with the dynamic setting,
which accepts the following options:
	
true

	
 Add new fields dynamically—the default

	
false

	
 Ignore new fields

	
strict

	
 Throw an exception if an unknown field is encountered

The dynamic setting may be applied to the root object or to any field
of type object. You could set dynamic to strict by default,
but enable it just for a specific inner object:
PUT /my_index
{
 "mappings": {
 "my_type": {
 "dynamic": "strict", (1)
 "properties": {
 "title": { "type": "string"},
 "stash": {
 "type": "object",
 "dynamic": true (2)
 }
 }
 }
 }
}
	(1)
	
The my_type object will throw an exception if an unknown field
 is encountered.

	(2)
	
The stash object will create new fields dynamically.

With this mapping, you can add new searchable fields into the stash object:
PUT /my_index/my_type/1
{
 "title": "This doc adds a new field",
 "stash": { "new_field": "Success!" }
}
But trying to do the same at the top level will fail:
PUT /my_index/my_type/1
{
 "title": "This throws a StrictDynamicMappingException",
 "new_field": "Fail!"
}
Note
Setting dynamic to false doesn’t alter the contents of the _source
field at all. The _source will still contain the whole JSON document that
you indexed. However, any unknown fields will not be added to the mapping and
will not be searchable.

10.9. Customizing Dynamic Mapping

If you know that you are going to be adding new fields on the fly,
you probably want to leave dynamic mapping enabled.

 At times, though,
the dynamic mapping “rules” can be a bit blunt. Fortunately, there
are settings that you can use to customize these rules to better
suit your data.
10.9.1. date_detection

When Elasticsearch encounters a new string field, it checks to see if the
string contains a recognizable date, like 2014-01-01.

 If it looks
like a date, the field is added as type date. Otherwise, it is
added as type string.
Sometimes this behavior can lead to problems. Imagine that you index
a document like this:
{ "note": "2014-01-01" }
Assuming that this is the first time that the note field has been seen,
it will be added as a date field. But what if the next document looks
like this:
{ "note": "Logged out" }
This clearly isn’t a date, but it is too late. The field is already
a date field and so this “malformed date” will cause an exception to be
thrown.
Date detection can be turned off by setting date_detection to false
on the
root object:
PUT /my_index
{
 "mappings": {
 "my_type": {
 "date_detection": false
 }
 }
}
With this mapping in place, a string will always be a string. If you need
a date field, you have to add it manually.
Note
Elasticsearch’s idea of which strings look like dates can be altered
with the dynamic_date_formats setting.

10.9.2. dynamic_templates

With dynamic_templates, you can take complete control

over the
mapping that is generated for newly detected fields. You
can even apply a different mapping depending on the field name
or datatype.
Each template has a name, which
you can use to describe what the template
does, a mapping to specify the mapping that should be applied, and
at least one parameter (such as match) to define which fields the template
should apply to.
Templates are checked in order; the first template that matches is
applied. For instance, we could specify two templates for string fields:
	
es: Field names ending in _es should use the spanish analyzer.

	
en: All others should use the english analyzer.

We put the es template first, because it is more specific than the
catchall en template, which matches all string fields:
PUT /my_index
{
 "mappings": {
 "my_type": {
 "dynamic_templates": [
 { "es": {
 "match": "*_es", (1)
 "match_mapping_type": "string",
 "mapping": {
 "type": "string",
 "analyzer": "spanish"
 }
 }},
 { "en": {
 "match": "*", (2)
 "match_mapping_type": "string",
 "mapping": {
 "type": "string",
 "analyzer": "english"
 }
 }}
]
}}}
	(1)
	
Match string fields whose name ends in _es.

	(2)
	
Match all other string fields.

The match_mapping_type allows you to apply the template only
to fields of the specified type, as detected by the standard dynamic
mapping rules, (for example string or long).
The match parameter matches just the field name, and the path_match
parameter matches the full path to a field in an object, so
the pattern address.*.name would match a field like this:
{
 "address": {
 "city": {
 "name": "New York"
 }
 }
}
The unmatch and path_unmatch patterns can be used to exclude fields
that would otherwise match.
More configuration options can be found in the
dynamic mapping documentation.

10.10. Default Mapping

Often, all types in an index share similar fields and settings.
 It can be
more convenient to specify these common settings in the _default_ mapping,
instead of having to repeat yourself every time you create a new type. The
default mapping acts as a template for new types. All types created
after the _default_ mapping will include all of these default settings,
unless explicitly overridden in the type mapping itself.
For instance, we can disable the _all field for all types, using the
default mapping, but enable it just for the blog type, as follows:
PUT /my_index
{
 "mappings": {
 "_default_": {
 "_all": { "enabled": false }
 },
 "blog": {
 "_all": { "enabled": true }
 }
 }
}
The _default_ mapping can also be a good place to specify index-wide
dynamic templates.

10.11. Reindexing Your Data

Although you can add new types to an index, or add new fields to a type, you
can’t add new analyzers or make changes to existing fields.
 If you were to do
so, the data that had already been indexed would be incorrect and your
searches would no longer work as expected.
The simplest way to apply these changes to your existing data is to
reindex: create a new index with the new settings and copy all of your
documents from the old index to the new index.
One of the advantages of the _source field is that you already have the
whole document available to you in Elasticsearch itself. You don’t have to
rebuild your index from the database, which is usually much slower.
To reindex all of the documents from the old index efficiently, use
scroll to retrieve batches of documents from the old index,
and the bulk API to push them into the new index.
Beginning with Elasticsearch v2.3.0, a Reindex API has been introduced. It enables you
to reindex your documents without requiring any plugin nor external tool.
Reindexing in Batches

You can run multiple reindexing jobs at the same time, but you obviously don’t
want their results to overlap. Instead, break a big reindex down into smaller
jobs by filtering on a date or timestamp field:
GET /old_index/_search?scroll=1m
{
 "query": {
 "range": {
 "date": {
 "gte": "2014-01-01",
 "lt": "2014-02-01"
 }
 }
 },
 "sort": ["_doc"],
 "size": 1000
}
If you continue making changes to the old index, you will want to make
sure that you include the newly added documents in your new index as well.
This can be done by rerunning the reindex process, but again filtering
on a date field to match only documents that have been added since the
last reindex process started.

10.12. Index Aliases and Zero Downtime

The problem with the reindexing process described previously is that you need
to update your application to use the new index name. Index aliases
to the rescue!
An index alias is like a shortcut or symbolic link, which can point to
one or more indices, and can be used in any API that expects an index name.
Aliases give us an enormous amount of flexibility. They allow us to do the following:
	
Switch transparently between one index and another on a running cluster

	
Group multiple indices (for example, last_three_months)

	
Create “views” on a subset of the documents in an index

We will talk more about the other uses for aliases later in the book. For now
we will explain how to use them to switch from an old index to a new index
with zero downtime.
There are two endpoints for managing aliases: _alias for single
operations, and _aliases to perform multiple operations atomically.
In this scenario, we will assume that your application is talking to an
index called my_index. In reality, my_index will be an alias that
points to the current real index. We will include a version number in the
name of the real index: my_index_v1, my_index_v2, and so forth.
To start off, create the index my_index_v1, and set up the alias
my_index to point to it:
PUT /my_index_v1 (1)
PUT /my_index_v1/_alias/my_index (2)
	(1)
	
Create the index my_index_v1.

	(2)
	
Set the my_index alias to point to my_index_v1.

You can check which index the alias points to:
GET /*/_alias/my_index
Or which aliases point to the index:
GET /my_index_v1/_alias/*
Both of these return the following:
{
 "my_index_v1" : {
 "aliases" : {
 "my_index" : { }
 }
 }
}
Later, we decide that we want to change the mappings for a field in our index.
Of course, we can’t change the existing mapping, so we have to reindex
our data.
 To start, we create my_index_v2 with the new mappings:
PUT /my_index_v2
{
 "mappings": {
 "my_type": {
 "properties": {
 "tags": {
 "type": "string",
 "index": "not_analyzed"
 }
 }
 }
 }
}
Then we reindex our data from my_index_v1 to my_index_v2, following
the process described in Section 10.11, “Reindexing Your Data”. Once we are satisfied that our
documents have been reindexed correctly, we switch our alias
to point to the new index.
An alias can point to multiple indices, so we need to remove the alias
from the old index at the same time as we add it to the new index. The
change needs to be atomic, which means that we must use the _aliases
endpoint:
POST /_aliases
{
 "actions": [
 { "remove": { "index": "my_index_v1", "alias": "my_index" }},
 { "add": { "index": "my_index_v2", "alias": "my_index" }}
]
}
Your application has switched from using the old index to the new
index transparently, with zero downtime.
Tip
Even when you think that your current index design is perfect, it is likely
that you will need to make some change later, when your index
is already being used in production.
Be prepared: use aliases instead of indices in your application. Then you
will be able to reindex whenever you need to. Aliases are cheap and should
be used liberally.

Chapter 11. Inside a Shard

In Chapter 2, Life Inside a Cluster, we introduced the shard, and described it as a
low-level worker unit. But what exactly is a shard and how does it work?
In this chapter, we answer these questions:
	
Why is search near real-time?

	
Why are document CRUD (create-read-update-delete) operations real-time?

	
How does Elasticsearch ensure that the changes you make are durable, that
 they won’t be lost if there is a power failure?

	
Why does deleting documents not free up space immediately?

	
What do the refresh, flush, and optimize APIs do, and when should
 you use them?

The easiest way to understand how a shard functions today is to start with a
history lesson. We will look at the problems that needed to be solved in order
to provide a distributed durable data store with near real-time search and
analytics.
Content Warning

The information presented in this chapter is for your interest. You are not required to
understand and remember all the detail in order to use Elasticsearch. Read
this chapter to gain a taste for how things work, and to know where the
information is in case you need to refer to it in the future, but don’t be
overwhelmed by the detail.

11.1. Making Text Searchable

The first challenge that had to be solved was how to
 make text searchable.
Traditional databases store a single value per field, but this is insufficient
for full-text search. Every word in a text field needs to be searchable,
which means that the database needs to be able to index multiple values—words, in this case—in a single field.
The data structure that best supports the multiple-values-per-field
requirement is the inverted index, which we introduced in
Section 6.2, “Inverted Index”. The inverted index contains a sorted list of all of the
unique values, or terms, that occur in any document and, for each term, a list
of all the documents that contain it.
Term | Doc 1 | Doc 2 | Doc 3 | ...

brown | X | | X | ...
fox | X | X | X | ...
quick | X | X | | ...
the | X | | X | ...
Note
When discussing inverted indices, we talk about indexing documents because,
historically, an inverted index was used to index whole unstructured text
documents. A document in Elasticsearch is a structured JSON document with
fields and values. In reality, every indexed field in a JSON document has its
own inverted index.

The inverted index may hold a lot more information than the list
of documents that contain a particular term. It may store a count of the number of
documents that contain each term, the number of times a term appears in a particular
document, the order of terms in each document, the length of each document,
the average length of all documents, and more. These statistics allow
Elasticsearch to determine which terms are more important than others, and
which documents are more important than others, as described in
Section 8.3, “What Is Relevance?”.
The important thing to realize is that the inverted index needs to know about
all documents in the collection in order for it to function as intended.
In the early days of full-text search, one big inverted index was built for
the entire document collection and written to disk. As soon as the new index
was ready, it replaced the old index, and recent changes became searchable.
11.1.1. Immutability

The inverted index that is written to disk is immutable: it doesn’t
change.
 Ever. This immutability has important benefits:
	
There is no need for locking. If you never have to update the index, you
 never have to worry about multiple processes trying to make changes at
 the same time.

	
Once the index has been read into the kernel’s filesystem cache, it stays
 there, because it never changes. As long as there is enough space in the
 filesystem cache, most reads will come from memory instead of having to
 hit disk. This provides a big performance boost.

	
Any other caches (like the filter cache) remain valid for the life of the
 index. They don’t need to be rebuilt every time the data changes,
 because the data doesn’t change.

	
Writing a single large inverted index allows the data to be compressed,
 reducing costly disk I/O and the amount of RAM needed to cache the index.

Of course, an immutable index has its downsides too, primarily the fact that
it is immutable! You can’t change it. If you want to make new documents
searchable, you have to rebuild the entire index. This places a significant limitation either on the amount of data that an index can contain, or the frequency with which the index can be updated.

11.2. Dynamically Updatable Indices

The next problem that needed to be
solved was how to make an inverted index
updatable without losing the benefits of immutability? The answer turned out
to be: use more than one index.
Instead of rewriting the whole inverted index, add new supplementary indices
to reflect more-recent changes. Each inverted index can be queried in turn—starting with the oldest—and the results combined.
Lucene, the Java libraries on which Elasticsearch is based, introduced the
concept of per-segment search.
 A segment is an inverted index in its own
right, but now the word index in Lucene came to mean a collection of
segments plus a commit point—a file that lists all known segments, as depicted in Figure 11.1, “A Lucene index with a commit point and three segments”. New documents are first added to an in-memory indexing buffer, as shown in Figure 11.2, “A Lucene index with new documents in the in-memory buffer, ready to commit”, before being written to an on-disk segment, as in Figure 11.3, “After a commit, a new segment is added to the commit point and the buffer is cleared”
Figure 11.1. A Lucene index with a commit point and three segments
[image: A Lucene index with a commit point and three segments]

Index Versus Shard

To add to the confusion, a Lucene index is what we call a shard in
Elasticsearch, while an index in Elasticsearch

 is a collection of shards.
When Elasticsearch searches an index, it sends the query out to a copy of
every shard (Lucene index) that belongs to the index, and then reduces the
per-shards results to a global result set, as described in
Chapter 9, Distributed Search Execution.

A per-segment search works as follows:
	
New documents are collected in an in-memory indexing buffer.
 See Figure 11.2, “A Lucene index with new documents in the in-memory buffer, ready to commit”.

	
Every so often, the buffer is commited:

	
A new segment—a supplementary inverted index—is written to disk.

	
A new commit point is written to disk, which includes the name of the new
 segment.

	
The disk is fsync’ed—all writes waiting in the filesystem cache are
 flushed to disk, to ensure that they have been physically written.

	
The new segment is opened, making the documents it contains visible to search.

	
The in-memory buffer is cleared, and is ready to accept new documents.

Figure 11.2. A Lucene index with new documents in the in-memory buffer, ready to commit
[image: A Lucene index with new documents in the in-memory buffer, ready to commit]

Figure 11.3. After a commit, a new segment is added to the commit point and the buffer is cleared
[image: After a commit, a new segment is added to the index and the buffer is cleared]

When a query is issued, all known segments are queried in turn. Term
statistics are aggregated across all segments to ensure that the relevance of
each term and each document is calculated accurately. In this way, new
documents can be added to the index relatively cheaply.
11.2.1. Deletes and Updates

Segments are immutable, so documents cannot be removed from older segments,
nor can older segments be updated to reflect a newer version of a document.
Instead, every commit point includes a .del file that lists which documents
in which segments have been deleted.
When a document is “deleted,” it is actually just marked as deleted in the
.del file. A document that has been marked as deleted can still match a
query, but it is removed from the results list before the final query results
are returned.
Document updates work in a similar way: when a document is updated, the old
version of the document is marked as deleted, and the new version of the
document is indexed in a new segment. Perhaps both versions of the document
will match a query, but the older deleted version is removed before the query
results are returned.
In Section 11.5, “Segment Merging”, we show how deleted documents are purged from
the filesystem.

11.3. Near Real-Time Search

With the development of per-segment search, the
delay between indexing a
document and making it visible to search dropped dramatically. New documents
could be made searchable within minutes, but that still isn’t fast enough.
The bottleneck is the disk.
 Commiting a new segment to disk requires an
fsync to ensure that the segment is
physically written to disk and that data will not be lost if there is a power
failure. But an fsync is costly; it cannot be performed every time a
document is indexed without a big performance hit.
What was needed was a more lightweight way to make new documents visible to
search, which meant removing fsync from the equation.
Sitting between Elasticsearch and the disk is the filesystem cache. As before, documents in the in-memory indexing buffer (Figure 11.4, “A Lucene index with new documents in the in-memory buffer”) are written to a new segment (Figure 11.5, “The buffer contents have been written to a segment, which is searchable, but is not yet commited”). But the new
segment is written to the filesystem cache first—which is cheap—and
only later is it flushed to disk—which is expensive. But once a file is in
the cache, it can be opened and read, just like any other file.
Figure 11.4. A Lucene index with new documents in the in-memory buffer
[image: A Lucene index with new documents in the in-memory buffer]

Lucene allows new segments to be written and opened—making the documents
they contain visible to search—without performing a full commit. This is a
much lighter process than a commit, and can be done frequently without ruining
performance.
Figure 11.5. The buffer contents have been written to a segment, which is searchable, but is not yet commited
[image: The buffer contents have been written to a segment, which is searchable, but is not yet commited]

11.3.1. refresh API

In Elasticsearch, this lightweight process of writing and opening a new
segment is called a refresh.
 By default, every shard is refreshed
automatically once every second. This is why we say that Elasticsearch has
near real-time search: document changes are not visible to search
immediately, but will become visible within 1 second.
This can be confusing for new users: they index a document and try to search
for it, and it just isn’t there. The way around this is to perform a manual
refresh, with the refresh API:
POST /_refresh (1)
POST /blogs/_refresh (2)
	(1)
	
Refresh all indices.

	(2)
	
Refresh just the blogs index.

Tip
While a refresh is much lighter than a commit, it still has a performance
cost.
 A manual refresh can be useful when writing tests, but don’t do a
manual refresh every time you index a document in production; it will hurt
your performance. Instead, your application needs to be aware of the near
real-time nature of Elasticsearch and make allowances for it.

Not all use cases require a refresh every second. Perhaps you are using
Elasticsearch to index millions of log files, and you would prefer to optimize
for index speed rather than near real-time search. You can reduce the
frequency of refreshes on a per-index basis by setting the refresh_interval:
PUT /my_logs
{
 "settings": {
 "refresh_interval": "30s" (1)
 }
}
	(1)
	
Refresh the my_logs index every 30 seconds.

The refresh_interval can be updated dynamically on an existing index. You
can turn off automatic refreshes while you are building a big new index, and then turn them back on when you start using the index in production:
PUT /my_logs/_settings
{ "refresh_interval": -1 } (1)

PUT /my_logs/_settings
{ "refresh_interval": "1s" } (2)
	(1)
	
Disable automatic refreshes.

	(2)
	
Refresh automatically every second.

Caution
The refresh_interval expects a duration such as 1s (1
second) or 2m (2 minutes). An absolute number like 1 means
1 millisecond--a sure way to bring your cluster to its knees.

11.4. Making Changes Persistent

Without an fsync to flush data in the filesystem cache to disk, we cannot
be sure that the data will still be there after a power failure, or even after
exiting the application normally. For Elasticsearch to be reliable, it needs
to ensure that changes are persisted to disk.
In Section 11.2, “Dynamically Updatable Indices”, we said that a full commit flushes segments to disk and
writes a commit point, which lists all known segments. Elasticsearch uses
this commit point during startup or when reopening an index to decide which
segments belong to the current shard.
While we refresh once every second to achieve near real-time search, we still
need to do full commits regularly to make sure that we can recover from
failure. But what about the document changes that happen between commits? We
don’t want to lose those either.
Elasticsearch added a translog, or transaction log, which records every
operation in Elasticsearch as it happens. With the translog, the process now
looks like this:
	
When a document is indexed, it is added to the in-memory buffer and
 appended to the translog, as shown in Figure 11.6, “New documents are added to the in-memory buffer and appended to the transaction log”.

Figure 11.6. New documents are added to the in-memory buffer and appended to the transaction log
[image: New documents are added to the in-memory buffer and appended to the transaction log]

	
The refresh leaves the shard in the state depicted in Figure 11.7, “After a refresh, the buffer is cleared but the transaction log is not”. Once every second, the shard is refreshed:

	
The docs in the in-memory buffer are written to a new segment,
 without an fsync.

	
The segment is opened to make it visible to search.

	
The in-memory buffer is cleared.

Figure 11.7. After a refresh, the buffer is cleared but the transaction log is not
[image: After a refresh, the buffer is cleared but the transaction log is not]

	
This process continues with more documents being added to the in-memory
 buffer and appended to the transaction log (see Figure 11.8, “The transaction log keeps accumulating documents”).

Figure 11.8. The transaction log keeps accumulating documents
[image: The transaction log keeps accumulating documents]

	
Every so often—such as when the translog is getting too big—the index
 is flushed; a new translog is created, and a full commit is performed (see Figure 11.9, “After a flush, the segments are fully commited and the transaction log is cleared”):

	
Any docs in the in-memory buffer are written to a new segment.

	
The buffer is cleared.

	
A commit point is written to disk.

	
The filesystem cache is flushed with an fsync.

	
The old translog is deleted.

The translog provides a persistent record of all operations that have not yet
been flushed to disk. When starting up, Elasticsearch will use the last commit
point to recover known segments from disk, and will then replay all operations
in the translog to add the changes that happened after the last commit.
The translog is also used to provide real-time CRUD. When you try to
retrieve, update, or delete a document by ID, it first checks the translog for
any recent changes before trying to retrieve the document from the relevant
segment. This means that it always has access to the latest known version of
the document, in real-time.
Figure 11.9. After a flush, the segments are fully commited and the transaction log is cleared
[image: After a flush, the segments are fully commited and the transaction log is cleared]

11.4.1. flush API

The action of performing a commit and truncating the translog is known in
Elasticsearch as a flush. Shards are flushed automatically every 30
minutes, or when the translog becomes too big. See the
translog documentation for settings
that can be used
 to control these thresholds:
The flush API can
be used to perform a manual flush:
POST /blogs/_flush (1)

POST /_flush?wait_for_ongoing (2)
	(1)
	
Flush the blogs index.

	(2)
	
Flush all indices and wait until all flushes have completed before
 returning.

You seldom need to issue a manual flush yourself; usually, automatic
flushing is all that is required.
That said, it is beneficial to flush your indices before restarting a node or closing an index. When Elasticsearch tries to recover or reopen an index, it has to replay all of the operations in the translog, so the shorter the log, the faster the recovery.
How Safe Is the Translog?

The purpose of the translog is to ensure that operations are not lost. This
begs the question: how safe
 is the translog?
Writes to a file will not survive a reboot until the file has been
fsync'ed to disk. By default, the translog is fsync'ed every 5
seconds and after a write request completes (e.g. index, delete, update, bulk).
This process occurs on both the primary and replica shards. Ultimately, that means
your client won’t receive a 200 OK response until the entire request has been
fsync'ed in the translog of the primary and all replicas.
Executing an fsync after every request does come with some performance cost,
although in practice it is relatively small (especially for bulk ingestion, which
amortizes the cost over many documents in the single request).
But for some high-volume clusters where losing a few seconds of data is not
critical, it can be advantageous to fsync asynchronously. E.g. writes are
buffered in memory and fsync'ed together every 5s.
This behavior can be enabled by setting the durability parameter to async:
PUT /my_index/_settings
{
 "index.translog.durability": "async",
 "index.translog.sync_interval": "5s"
}
This setting can be configured per-index and is dynamically updatable. If
you decide to enable async translog behavior, you are guaranteed to lose
sync_interval's worth of data if a crash happens. Please be aware of this
characteristic before deciding!
If you are unsure the ramifications of this action, it is best to use the default
("index.translog.durability": "request") to avoid data-loss.

11.5. Segment Merging

With the automatic refresh process creating a new segment
 every second, it
doesn’t take long for the number of segments to explode. Having too many
segments is a problem. Each segment consumes file handles, memory, and CPU
cycles. More important, every search request has to check every segment in
turn; the more segments there are, the slower the search will be.
Elasticsearch solves this problem by merging segments in the background. Small
segments are merged into bigger segments, which, in turn, are merged into even
bigger segments.
This is the moment when those old deleted documents
 are purged from the filesystem. Deleted documents (or old versions of updated documents) are not
copied over to the new bigger segment.
There is nothing you need to do to enable merging. It happens automatically
while you are indexing and searching. The process works like as depicted in Figure 11.10, “Two commited segments and one uncommited segment in the process of being merged into a bigger segment”:
	
While indexing, the refresh process creates new segments and opens them for
 search.

	
The merge process selects a few segments of similar size and merges them
 into a new bigger segment in the background. This does not interrupt
 indexing and searching.

Figure 11.10. Two commited segments and one uncommited segment in the process of being merged into a bigger segment
[image: Two commited segments and one uncommited segment in the process of being merged into a bigger segment]

	
Figure 11.11, “Once merging has finished, the old segments are deleted” illustrates activity as the merge completes:

	
The new segment is flushed to disk.

	
A new commit point is written that includes the new segment and
 excludes the old, smaller segments.

	
The new segment is opened for search.

	
The old segments are deleted.

Figure 11.11. Once merging has finished, the old segments are deleted
[image: Once merging has finished, the old segments are deleted]

The merging of big segments can use a lot of I/O and CPU, which can hurt
search performance if left unchecked. By default, Elasticsearch throttles the
merge process so that search still has enough resources available to perform
well.
Tip
See Section 46.3.4, “Segments and Merging” for advice about tuning merging for your use
case.

11.5.1. optimize API

The optimize API is best

described as the forced merge API. It forces a
shard to be merged down to the number of segments specified in the
max_num_segments parameter. The intention is to reduce the number of
segments (usually to one) in order to speed up search performance.
Warning
The optimize API should not be used on a dynamic index—an
index that is being actively updated. The background merge process does a
very good job, and optimizing will hinder the process. Don’t interfere!

In certain specific circumstances, the optimize API can be beneficial.
The typical use case is for logging, where logs are stored in an index per
day, week, or month. Older indices are essentially read-only; they are
unlikely to change.
In this case, it can be useful to optimize the shards of an old index down to
a single segment each; it will use fewer resources and searches will be
quicker:
POST /logstash-2014-10/_optimize?max_num_segments=1 (1)
	(1)
	
Merges each shard in the index down to a single segment

Warning
Be aware that merges triggered by the optimize API are not
throttled at all. They can consume all of the I/O on your nodes, leaving
nothing for search and potentially making your cluster unresponsive. If you
plan on optimizing an index, you should use shard allocation (see
Section 43.9.1, “Migrate Old Indices”) to first move the index to a node where it is safe to
run.

Part II. Search in Depth

In Part I, “Getting Started” we covered the basic tools in just enough detail to
allow you to start searching your data with Elasticsearch.
 It won’t take
long, though, before you find that you want more: more flexibility when matching
user queries, more-accurate ranking of results, more-specific searches to
cover different problem domains.
To move to the next level, it is not enough to just use the match query. You
need to understand your data and how you want to be able to search it. The
chapters in this part explain how to index and query your data to allow
you to take advantage of word proximity, partial matching, fuzzy matching, and
language awareness.
Understanding how each query contributes to the relevance _score will help
you to tune your queries: to ensure that the documents you consider to be the
best results appear on the first page, and to trim the “long tail” of barely
relevant results.
Search is not just about full-text search: a large portion of your data will
be structured values like dates and numbers. We will start by explaining how
to combine structured search

 with full-text search in the most efficient way.

Chapter 12. Structured Search

Structured search is about interrogating data that has inherent structure.
Dates, times, and numbers are all structured: they have a precise format
that you can perform logical operations on. Common operations include
comparing ranges of numbers or dates, or determining which of two values is
larger.
Text can be structured too. A box of crayons has a discrete set of colors:
red, green, blue. A blog post may be tagged with keywords
distributed and search. Products in an ecommerce store have Universal
Product Codes (UPCs) or some other identifier that requires strict and
structured formatting.
With structured search, the answer to your question is always a yes or no;
something either belongs in the set or it does not. Structured search does
not worry about document relevance or scoring; it simply includes or
excludes documents.
This should make sense logically. A number can’t be more in a range than
any other number that falls in the same range. It is either in the range—or it isn’t. Similarly, for structured text, a value is either equal or it
isn’t. There is no concept of more similar.
12.1. Finding Exact Values

When working with exact values,

you will be working with non-scoring, filtering queries. Filters are
important because they are very fast. They do not calculate
relevance (avoiding the entire scoring phase) and are easily cached. We’ll
talk about the performance benefits of filters later in Section 12.6, “All About Caching”,
but for now, just keep in mind that you should use filtering queries as often as you
can.
12.1.1. term Query with Numbers

We are going to explore the term query

first because you will use it often. This query is capable of handling numbers,
booleans, dates, and text.
We’ll start by indexing some documents representing products, each having a
 price and productID:
POST /my_store/products/_bulk
{ "index": { "_id": 1 }}
{ "price" : 10, "productID" : "XHDK-A-1293-#fJ3" }
{ "index": { "_id": 2 }}
{ "price" : 20, "productID" : "KDKE-B-9947-#kL5" }
{ "index": { "_id": 3 }}
{ "price" : 30, "productID" : "JODL-X-1937-#pV7" }
{ "index": { "_id": 4 }}
{ "price" : 30, "productID" : "QQPX-R-3956-#aD8" }
Our goal is to find all products with a certain price. You may be familiar
with SQL if you are coming from a relational database background. If we
expressed this query as an SQL query, it would look like this:
SELECT document
FROM products
WHERE price = 20
In the Elasticsearch query DSL, we use a term query to accomplish the same
thing. The term query will look for the exact value that we specify. By
itself, a term query is simple. It accepts a field name and the value
that we wish to find:
{
 "term" : {
 "price" : 20
 }
}
Usually, when looking for an exact value, we don’t want to score the query. We just
want to include/exclude documents, so we will use a constant_score query to execute
the term query in a non-scoring mode and apply a uniform score of one.
The final combination will be a constant_score query which contains a term query:
GET /my_store/products/_search
{
 "query" : {
 "constant_score" : { (1)
 "filter" : {
 "term" : { (2)
 "price" : 20
 }
 }
 }
 }
}
	(1)
	
We use a constant_score to convert the term query into a filter

	(2)
	
The term query that we saw previously.

Once executed, the search results from this query are exactly what you would
expect: only document 2 is returned as a hit (because only 2 had a price
of 20):
"hits" : [
 {
 "_index" : "my_store",
 "_type" : "products",
 "_id" : "2",
 "_score" : 1.0, (1)
 "_source" : {
 "price" : 20,
 "productID" : "KDKE-B-9947-#kL5"
 }
 }
]
	(1)
	
Queries placed inside the filter clause do not perform scoring or relevance,
so all results receive a neutral score of 1.

12.1.2. term Query with Text

As mentioned at the top of

this section, the term query can match strings
just as easily as numbers. Instead of price, let’s try to find products that
have a certain UPC identification code. To do this with SQL, we might use a
query like this:
SELECT product
FROM products
WHERE productID = "XHDK-A-1293-#fJ3"
Translated into the query DSL, we can try a similar query with the term
filter, like so:
GET /my_store/products/_search
{
 "query" : {
 "constant_score" : {
 "filter" : {
 "term" : {
 "productID" : "XHDK-A-1293-#fJ3"
 }
 }
 }
 }
}
Except there is a little hiccup: we don’t get any results back! Why is
that? The problem isn’t with the term query; it is with the way
the data has been indexed. If we use the analyze API (Section 6.3.3, “Testing Analyzers”), we
can see that our UPC has been tokenized into smaller tokens:
GET /my_store/_analyze
{
 "field": "productID",
 "text": "XHDK-A-1293-#fJ3"
}
{
 "tokens" : [{
 "token" : "xhdk",
 "start_offset" : 0,
 "end_offset" : 4,
 "type" : "<ALPHANUM>",
 "position" : 1
 }, {
 "token" : "a",
 "start_offset" : 5,
 "end_offset" : 6,
 "type" : "<ALPHANUM>",
 "position" : 2
 }, {
 "token" : "1293",
 "start_offset" : 7,
 "end_offset" : 11,
 "type" : "<NUM>",
 "position" : 3
 }, {
 "token" : "fj3",
 "start_offset" : 13,
 "end_offset" : 16,
 "type" : "<ALPHANUM>",
 "position" : 4
 }]
}
There are a few important points here:
	
We have four distinct tokens instead of a single token representing the UPC.

	
All letters have been lowercased.

	
We lost the hyphen and the hash (#) sign.

So when our term query looks for the exact value XHDK-A-1293-#fJ3, it
doesn’t find anything, because that token does not exist in our inverted index.
Instead, there are the four tokens listed previously.
Obviously, this is not what we want to happen when dealing with identification
codes, or any kind of precise enumeration.
To prevent this from happening, we need to tell Elasticsearch that this field
contains an exact value by setting it to be not_analyzed. We saw this
originally in Section 6.4.3, “Customizing Field Mappings”. To do this, we need to first delete
our old index (because it has the incorrect mapping) and create a new one with
the correct mappings:
DELETE /my_store (1)

PUT /my_store (2)
{
 "mappings" : {
 "products" : {
 "properties" : {
 "productID" : {
 "type" : "string",
 "index" : "not_analyzed" (3)
 }
 }
 }
 }

}
	(1)
	
Deleting the index first is required, since we cannot change mappings that
 already exist.

	(2)
	
With the index deleted, we can re-create it with our custom mapping.

	(3)
	
Here we explicitly say that we don’t want productID to be analyzed.

Now we can go ahead and reindex our documents:
POST /my_store/products/_bulk
{ "index": { "_id": 1 }}
{ "price" : 10, "productID" : "XHDK-A-1293-#fJ3" }
{ "index": { "_id": 2 }}
{ "price" : 20, "productID" : "KDKE-B-9947-#kL5" }
{ "index": { "_id": 3 }}
{ "price" : 30, "productID" : "JODL-X-1937-#pV7" }
{ "index": { "_id": 4 }}
{ "price" : 30, "productID" : "QQPX-R-3956-#aD8" }
Only now will our term query work as expected. Let’s try it again on the
newly indexed data (notice, the query and filter have not changed at all, just
how the data is mapped):
GET /my_store/products/_search
{
 "query" : {
 "constant_score" : {
 "filter" : {
 "term" : {
 "productID" : "XHDK-A-1293-#fJ3"
 }
 }
 }
 }
}
Since the productID field is not analyzed, and the term query performs no
analysis, the query finds the exact match and returns document 1 as a hit.
Success!

12.1.3. Internal Filter Operation

Internally, Elasticsearch is

 performing several operations when executing a
non-scoring query:
	
Find matching docs.

The term query looks up the term XHDK-A-1293-#fJ3 in the inverted index
and retrieves the list of documents that contain that term. In this case,
only document 1 has the term we are looking for.

	
Build a bitset.

The filter then builds a bitset--an array of 1s and 0s—that
describes which documents contain the term. Matching documents receive a 1
bit. In our example, the bitset would be [1,0,0,0]. Internally, this is represented
as a "roaring bitmap",
which can efficiently encode both sparse and dense sets.

	
Iterate over the bitset(s)

Once the bitsets are generated for each query, Elasticsearch iterates over the
bitsets to find the set of matching documents that satisfy all filtering criteria.
The order of execution is decided heuristically, but generally the most sparse
bitset is iterated on first (since it excludes the largest number of documents).

	
Increment the usage counter.

Elasticsearch can cache non-scoring queries for faster access, but its silly to
cache something that is used only rarely. Non-scoring queries are already quite fast
due to the inverted index, so we only want to cache queries we know will be used
again in the future to prevent resource wastage.
To do this, Elasticsearch tracks the history of query usage on a per-index basis.
If a query is used more than a few times in the last 256 queries, it is cached
in memory. And when the bitset is cached, caching is omitted on segments that have
fewer than 10,000 documents (or less than 3% of the total index size). These
small segments tend to disappear quickly anyway and it is a waste to associate a
cache with them.

Although not quite true in reality (execution is a bit more complicated based on
how the query planner re-arranges things, and some heuristics based on query cost),
you can conceptually think of non-scoring queries as executing before the scoring
queries. The job of non-scoring queries is to reduce the number of documents that
the more costly scoring queries need to evaluate, resulting in a faster search request.
By conceptually thinking of non-scoring queries as executing first, you’ll be
equipped to write efficient and fast search requests.

12.2. Combining Filters

The previous two examples showed a single filter in use.

In practice, you will probably need to filter on multiple values or fields.
For example, how would you express this SQL in Elasticsearch?
SELECT product
FROM products
WHERE (price = 20 OR productID = "XHDK-A-1293-#fJ3")
 AND (price != 30)
In these situations, you will need to use a bool query

inside the constant_score query. This allows us to build
filters that can have multiple components in boolean combinations.
12.2.1. Bool Filter

Recall that the bool query is composed of four sections:
{
 "bool" : {
 "must" : [],
 "should" : [],
 "must_not" : [],
 "filter": []
 }
}
	
must

	
 All of these clauses must match. The equivalent of AND.

	
must_not

	
 All of these clauses must not match. The equivalent of NOT.

	
should

	
 At least one of these clauses must match. The equivalent of OR.

	
filter

	
 Clauses that must match, but are run in non-scoring, filtering mode.

In this secondary boolean query, we can ignore the filter clause: the queries
are already running in non-scoring mode, so the extra filter clause is useless.
Note
Each section of the bool filter is optional (for example, you can have a must
clause and nothing else), and each section can contain a single query or an
array of queries.

To replicate the preceding SQL example, we will take the two term queries that
we used

 previously and
place them inside the should clause of a bool query, and add another clause
to deal with the NOT condition:
GET /my_store/products/_search
{
 "query" : {
 "constant_score" : { (1)
 "filter" : {
 "bool" : {
 "should" : [
 { "term" : {"price" : 20}}, (2)
 { "term" : {"productID" : "XHDK-A-1293-#fJ3"}} (3)
],
 "must_not" : {
 "term" : {"price" : 30} (4)
 }
 }
 }
 }
 }
}
	(1)
	
Note that we still need to use a constant_score query to wrap everything with its
filter clause. This is what enables non-scoring mode

	(2) (3)
	
These two term queries are children of the bool query, and since they
 are placed inside the should clause, at least one of them needs to match.

	(4)
	
If a product has a price of 30, it is automatically excluded because it
 matches a must_not clause.

Notice how boolean is placed inside the constant_score, but the individual term
queries are just placed in the should and must_not. Because everything is wrapped
with the constant_score, the rest of the queries are executing in filtering mode.
Our search results return two hits, each document satisfying a different clause
in the bool query:
"hits" : [
 {
 "_id" : "1",
 "_score" : 1.0,
 "_source" : {
 "price" : 10,
 "productID" : "XHDK-A-1293-#fJ3" (1)
 }
 },
 {
 "_id" : "2",
 "_score" : 1.0,
 "_source" : {
 "price" : 20, (2)
 "productID" : "KDKE-B-9947-#kL5"
 }
 }
]
	(1)
	
Matches the term query for productID = "XHDK-A-1293-#fJ3"

	(2)
	
Matches the term query for price = 20

12.2.2. Nesting Boolean Queries

You can already see how nesting boolean queries together can give rise to more
sophisticated boolean logic. If you need to perform more complex operations, you
can continue nesting boolean queries in any combination, giving rise to
arbitrarily complex boolean logic.
For example, if we have this SQL statement:
SELECT document
FROM products
WHERE productID = "KDKE-B-9947-#kL5"
 OR (productID = "JODL-X-1937-#pV7"
 AND price = 30)
We can translate it into a pair of nested bool filters:
GET /my_store/products/_search
{
 "query" : {
 "constant_score" : {
 "filter" : {
 "bool" : {
 "should" : [
 { "term" : {"productID" : "KDKE-B-9947-#kL5"}}, (1)
 { "bool" : { (2)
 "must" : [
 { "term" : {"productID" : "JODL-X-1937-#pV7"}}, (3)
 { "term" : {"price" : 30}} (4)
]
 }}
]
 }
 }
 }
 }
}
	(1) (2)
	
Because the term and the bool are sibling clauses inside the
 Boolean should, at least one of these queries must match for a document
 to be a hit.

	(3) (4)
	
These two term clauses are siblings in a must clause, so they both
 have to match for a document to be returned as a hit.

The results show us two documents, one matching each of the should clauses:
"hits" : [
 {
 "_id" : "2",
 "_score" : 1.0,
 "_source" : {
 "price" : 20,
 "productID" : "KDKE-B-9947-#kL5" (1)
 }
 },
 {
 "_id" : "3",
 "_score" : 1.0,
 "_source" : {
 "price" : 30, (2)
 "productID" : "JODL-X-1937-#pV7" (3)
 }
 }
]
	(1)
	
This productID matches the term in the first bool.

	(2) (3)
	
These two fields match the term filters in the nested bool.

This was a simple example, but it demonstrates how Boolean queries can be
used as building blocks to construct complex logical conditions.

12.3. Finding Multiple Exact Values

The term query is useful for finding a single value, but often you’ll want
to search for multiple values.

 What if you want to
find documents that have a price of $20 or $30?
Rather than using multiple term queries, you can instead use a single terms
query (note the s at the end). The terms query is simply the plural
version of the singular term query cousin.
It looks nearly identical to a vanilla term too. Instead of
specifying a single price, we are now specifying an array of values:
{
 "terms" : {
 "price" : [20, 30]
 }
}
And like the term query, we will place it inside the filter clause of a
constant score query to use it:
GET /my_store/products/_search
{
 "query" : {
 "constant_score" : {
 "filter" : {
 "terms" : { (1)
 "price" : [20, 30]
 }
 }
 }
 }
}
	(1)
	
The terms query as seen previously, but placed inside the constant_score query

The query will return the second, third, and fourth documents:
"hits" : [
 {
 "_id" : "2",
 "_score" : 1.0,
 "_source" : {
 "price" : 20,
 "productID" : "KDKE-B-9947-#kL5"
 }
 },
 {
 "_id" : "3",
 "_score" : 1.0,
 "_source" : {
 "price" : 30,
 "productID" : "JODL-X-1937-#pV7"
 }
 },
 {
 "_id": "4",
 "_score": 1.0,
 "_source": {
 "price": 30,
 "productID": "QQPX-R-3956-#aD8"
 }
 }
]
12.3.1. Contains, but Does Not Equal

It is important to understand that term and terms are contains operations,
not equals.

What does that mean?
If you have a term query for { "term" : { "tags" : "search" } }, it will match
both of the following documents:
{ "tags" : ["search"] }
{ "tags" : ["search", "open_source"] } (1)
	(1)
	
This document is returned, even though it has terms other than search.

Recall how the term query works: it checks the inverted index for all
documents that contain a term, and then constructs a bitset. In our simple
example, we have the following inverted index:
	Token
	DocIDs

	open_source
	2

	search
	1,2

When a term query is executed for the token search, it goes straight to the
corresponding entry in the inverted index and extracts the associated doc IDs.
As you can see, both document 1 and document 2 contain the token in the inverted index.
Therefore, they are both returned as a result.
Note
The nature of an inverted index also means that entire field equality is rather
difficult to calculate. How would you determine whether a particular document
contains only your request term? You would have to find the term in
the inverted index, extract the document IDs, and then scan every row in the
inverted index, looking for those IDs to see whether a doc has any other terms.
As you might imagine, that would be tremendously inefficient and expensive.
For that reason, term and terms are must contain operations, not
must equal exactly.

12.3.2. Equals Exactly

If you do want that behavior—entire field equality—the best way to
accomplish it involves indexing a secondary field.

In this field, you index the number of values that your field contains. Using
our two previous documents, we now include a field that maintains the number of tags:
{ "tags" : ["search"], "tag_count" : 1 }
{ "tags" : ["search", "open_source"], "tag_count" : 2 }
Once you have the count information indexed, you can construct a constant_score
that enforces the appropriate number of terms:
GET /my_index/my_type/_search
{
 "query": {
 "constant_score" : {
 "filter" : {
 "bool" : {
 "must" : [
 { "term" : { "tags" : "search" } }, (1)
 { "term" : { "tag_count" : 1 } } (2)
]
 }
 }
 }
 }
}
	(1)
	
Find all documents that have the term search.

	(2)
	
But make sure the document has only one tag.

This query will now match only the document that has a single tag that is
search, rather than any document that contains search.

12.4. Ranges

When dealing with numbers in this chapter, we have so far searched for only
exact numbers.
 In practice, filtering on ranges is often more useful. For
example, you might want to find all products with a price greater than $20 and less than $40.
In SQL terms, a range can be expressed as follows:
SELECT document
FROM products
WHERE price BETWEEN 20 AND 40
Elasticsearch has a range query,
which, unsurprisingly,
can be used to find documents falling inside a range:
"range" : {
 "price" : {
 "gte" : 20,
 "lte" : 40
 }
}
The range query supports both inclusive and exclusive ranges, through
combinations of the following options:
	
gt: > greater than

	
lt: < less than

	
gte: >= greater than or equal to

	
lte: <= less than or equal to

Here is an example range query:

GET /my_store/products/_search
{
 "query" : {
 "constant_score" : {
 "filter" : {
 "range" : {
 "price" : {
 "gte" : 20,
 "lt" : 40
 }
 }
 }
 }
 }
}

If you need an unbounded range (for example, just >20), omit one of the
boundaries:
"range" : {
 "price" : {
 "gt" : 20
 }
}
12.4.1. Ranges on Dates

The range query can be used on date
fields too:
"range" : {
 "timestamp" : {
 "gt" : "2014-01-01 00:00:00",
 "lt" : "2014-01-07 00:00:00"
 }
}
When used on date fields, the range query supports date math operations.
For example, if we want to find all documents that have a timestamp sometime
in the last hour:
"range" : {
 "timestamp" : {
 "gt" : "now-1h"
 }
}
This filter will now constantly find all documents with a timestamp greater
than the current time minus 1 hour, making the filter a sliding window
across your documents.
Date math can also be applied to actual dates, rather than a placeholder like
now. Just add a double pipe (||) after the date and follow it with a date
math expression:
"range" : {
 "timestamp" : {
 "gt" : "2014-01-01 00:00:00",
 "lt" : "2014-01-01 00:00:00||+1M" (1)
 }
}
	(1)
	
Less than January 1, 2014 plus one month

Date math is calendar aware, so it knows the number of days in each month,
days in a year, and so forth. More details about working with dates can be found in
the date format reference documentation.

12.4.2. Ranges on Strings

The range query can also operate on string fields.

 String ranges are
calculated lexicographically or alphabetically. For example, these values
are sorted in lexicographic order:
	
5, 50, 6, B, C, a, ab, abb, abc, b

Note
Terms in the inverted index are sorted in lexicographical order, which is why
string ranges use this order.

If we want a range from a up to but not including b, we can use the same
range query syntax:
"range" : {
 "title" : {
 "gte" : "a",
 "lt" : "b"
 }
}
Be Careful of Cardinality

Numeric and date fields are indexed in such a way that ranges are efficient
to calculate.
 This is not the case for string fields, however. To perform
a range on a string field, Elasticsearch is effectively performing a term
filter for every term that falls in the range. This is much slower than
a date or numeric range.
String ranges are fine on a field with low cardinality—a small number of
unique terms. But the more unique terms you have, the slower the string range
will be.

12.5. Dealing with Null Values

Think back to our earlier example, where documents have a field named tags.
This is a multivalue field.

A document may have one tag, many tags, or potentially no tags at all. If a field has
no values, how is it stored in an inverted index?
That’s a trick question, because the answer is: it isn’t stored at all. Let’s
look at that inverted index from the previous section:
	Token
	DocIDs

	open_source
	2

	search
	1,2

How would you store a field that doesn’t exist in that data structure? You
can’t! An inverted index is simply a list of tokens and the documents that
contain them. If a field doesn’t exist, it doesn’t hold any tokens, which
means it won’t be represented in an inverted index data structure.
Ultimately, this

 means that a null, [] (an empty
array), and [null] are all equivalent. They simply don’t exist in the
inverted index!
Obviously, the world is not simple, and data is often missing fields, or contains
explicit nulls or empty arrays. To deal with these situations, Elasticsearch has
a few tools to work with null or missing values.
12.5.1. exists Query

The first tool in your arsenal is the exists query.

 This query will return documents that have any value in
the specified field. Let’s use the tagging example and index some example documents:
POST /my_index/posts/_bulk
{ "index": { "_id": "1" }}
{ "tags" : ["search"] } (1)
{ "index": { "_id": "2" }}
{ "tags" : ["search", "open_source"] } (2)
{ "index": { "_id": "3" }}
{ "other_field" : "some data" } (3)
{ "index": { "_id": "4" }}
{ "tags" : null } (4)
{ "index": { "_id": "5" }}
{ "tags" : ["search", null] } (5)
	(1)
	
The tags field has one value.

	(2)
	
The tags field has two values.

	(3)
	
The tags field is missing altogether.

	(4)
	
The tags field is set to null.

	(5)
	
The tags field has one value and a null.

The resulting inverted index for our tags field will look like this:
	Token
	DocIDs

	open_source
	2

	search
	1,2,5

Our objective is to find all documents where a tag is set. We don’t care what
the tag is, so long as it exists within the document. In SQL parlance,
we would use an IS NOT NULL query:
SELECT tags
FROM posts
WHERE tags IS NOT NULL
In Elasticsearch, we use the exists query:
GET /my_index/posts/_search
{
 "query" : {
 "constant_score" : {
 "filter" : {
 "exists" : { "field" : "tags" }
 }
 }
 }
}
Our query returns three documents:
"hits" : [
 {
 "_id" : "1",
 "_score" : 1.0,
 "_source" : { "tags" : ["search"] }
 },
 {
 "_id" : "5",
 "_score" : 1.0,
 "_source" : { "tags" : ["search", null] } (1)
 },
 {
 "_id" : "2",
 "_score" : 1.0,
 "_source" : { "tags" : ["search", "open source"] }
 }
]
	(1)
	
Document 5 is returned even though it contains a null value. The field
 exists because a real-value tag was indexed, so the null had no impact
 on the filter.

The results are easy to understand. Any document that has terms in the
tags field was returned as a hit. The only two documents that were excluded
were documents 3 and 4.

12.5.2. missing Query

The missing query is essentially

 the inverse of exists: it returns
documents where there is no value for a particular field, much like this
SQL:
SELECT tags
FROM posts
WHERE tags IS NULL
Let’s swap the exists query for a missing query from our previous example:
GET /my_index/posts/_search
{
 "query" : {
 "constant_score" : {
 "filter": {
 "missing" : { "field" : "tags" }
 }
 }
 }
}
And, as you would expect, we get back the two docs that have no real values
in the tags field—documents 3 and 4:
"hits" : [
 {
 "_id" : "3",
 "_score" : 1.0,
 "_source" : { "other_field" : "some data" }
 },
 {
 "_id" : "4",
 "_score" : 1.0,
 "_source" : { "tags" : null }
 }
]
When null Means null

Sometimes you need to be able to distinguish between a field that doesn’t have
a value, and a field that has been explicitly set to null. With the default
behavior that we saw previously, this is impossible; the data is lost. Luckily,
there is an option that we can set that replaces explicit null values with
a placeholder value of our choosing.
When specifying the mapping for a string, numeric, Boolean, or date field, you
can also set a null_value that will be used whenever an explicit null
value is encountered. A field without a value will still be excluded from the
inverted index.
When choosing a suitable null_value, ensure the following:
	
It matches the field’s type. You can’t use a string null_value in a
 field of type date.

	
It is different from the normal values that the field may contain, to
 avoid confusing real values with null values.

12.5.3. exists/missing on Objects

The exists and missing queries

also
work on inner objects, not just core types. With the following document
{
 "name" : {
 "first" : "John",
 "last" : "Smith"
 }
}
you can check for the existence of name.first and name.last but also just
name. However, in Section 10.6, “Types and Mappings”, we said that an object like the preceding one is
flattened internally into a simple field-value structure, much like this:
{
 "name.first" : "John",
 "name.last" : "Smith"
}
So how can we use an exists or missing query on the name field, which
doesn’t really exist in the inverted index?
The reason that it works is that a filter like
{
 "exists" : { "field" : "name" }
}
is really executed as
{
 "bool": {
 "should": [
 { "exists": { "field": "name.first" }},
 { "exists": { "field": "name.last" }}
]
 }
}
That also means that if first and last were both empty, the name
namespace would not exist.

12.6. All About Caching

Earlier in this chapter (Section 12.1.3, “Internal Filter Operation”), we briefly discussed
how non-scoring queries are calculated.

 At their
heart is a bitset representing which documents match the filter. When Elasticsearch
determines a bitset is likely to be reused in the future, it will be cached directly
in memory for later use. Once cached, these bitsets can be reused wherever
the same query is used, without having to reevaluate the entire query again.
These cached bitsets are “smart”: they are updated incrementally. As you
index new documents, only those new documents need to be added to the existing
bitsets, rather than having to recompute the entire cached filter over and
over. Filters are real-time like the rest of the system; you don’t need to
worry about cache expiry.
12.6.1. Independent Query Caching

The bitsets belonging to a query component are independent from the rest of the
search request. This means that, once cached, a query can be reused in multiple
search requests. It is not dependent on the "context" of the surrounding query.
This allows caching to accelerate the most frequently used portions of your queries,
without wasting overhead on the less frequent / more volatile portions.
Similarly, if a single search request reuses the same non-scoring query, it’s
cached bitset can be reused for all instances inside the single search request.
Let’s look at this example query, which looks for emails that are either of the following:
	
In the inbox and have not been read

	
Not in the inbox but have been marked as important

GET /inbox/emails/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "bool": {
 "should": [
 { "bool": {
 "must": [
 { "term": { "folder": "inbox" }}, (1)
 { "term": { "read": false }}
]
 }},
 { "bool": {
 "must_not": {
 "term": { "folder": "inbox" } (2)
 },
 "must": {
 "term": { "important": true }
 }
 }}
]
 }
 }
 }
 }
}
	(1) (2)
	
These two queries are identical and will use the same bitset.

Even though one of the inbox clauses is a must clause and the other is a
must_not clause, the two clauses themselves are identical. If this particular
term query was previously cached, both instances would benefit from the cached
representation despite being used in different styles of boolean logic.
This ties in nicely with the composability of the query DSL. It is easy to
move filtering queries around, or reuse the same query in multiple places within the
search request. This isn’t just convenient to the developer—it has direct
performance benefits.

12.6.2. Autocaching Behavior

In older versions of Elasticsearch, the default behavior was to cache everything
that was cacheable. This often meant the system cached bitsets too aggressively
and performance suffered due to thrashing the cache. In addition, many filters
are very fast to evaluate, but substantially slower to cache (and reuse from cache).
These filters don’t make sense to cache, since you’d be better off just re-executing
the filter again.
Inspecting the inverted index is very fast and most query components are rare.
Consider a term filter on a "user_id" field: if you have millions of users,
any particular user ID will only occur rarely. It isn’t profitable to cache
the bitsets for this filter, as the cached result will likely be evicted
from the cache before it is used again.
This type of cache churn can have serious effects on performance. What’s worse,
it is difficult for developers to identify which components exhibit good cache
behavior and which are useless.
To address this, Elasticsearch caches queries automatically based on usage frequency.
If a non-scoring query has been used a few times (dependent on the query type) in the last 256 queries,
the query is a candidate for caching. However, not all segments are guaranteed
to cache the bitset. Only segments that hold more than 10,000 documents (or 3%
of the total documents, whichever is larger) will cache the bitset. Because
small segments are fast to search and merged out quickly, it doesn’t make sense
to cache bitsets here.
Once cached, a non-scoring bitset will remain in the cache until it is evicted.
Eviction is done on an LRU basis: the least-recently used filter will be evicted
once the cache is full.

Chapter 13. Full-Text Search

Now that we have covered the simple case of searching for structured data,
it is time to explore full-text search: how to search within full-text fields in order to find the most relevant documents.
The two most important aspects of full-text search are as follows:
	
Relevance

	
 The ability to rank results by how relevant they are to
 the given query, whether relevance is calculated using
 TF/IDF (see Section 8.3, “What Is Relevance?”), proximity to a geolocation,
 fuzzy similarity, or some other algorithm.

	
Analysis

	
 The process of converting a block of text into distinct, normalized tokens
 (see Section 6.3, “Analysis and Analyzers”) in order to (a) create an inverted index and
 (b) query the inverted index.

As soon as we talk about either relevance or analysis, we are in the territory
of queries, rather than filters.
13.1. Term-Based Versus Full-Text

While all queries perform some sort of relevance calculation, not all queries
have an analysis phase.
 Besides specialized queries like the bool or
function_score queries, which don’t operate on text at all, textual queries can
be broken down into two families:
	
Term-based queries

	Queries like the term or fuzzy queries are low-level queries that have no
analysis phase. They operate on a single term. A term query for the term
Foo looks for that exact term in the inverted index and calculates the
TF/IDF relevance _score for each document that contains the term.
It is important to remember that the term query looks in the inverted index
for the exact term only; it won’t match any variants like foo or
FOO. It doesn’t matter how the term came to be in the index, just that it
is. If you were to index ["Foo","Bar"] into an exact value not_analyzed
field, or Foo Bar into an analyzed field with the whitespace analyzer,
both would result in having the two terms Foo and Bar in the inverted
index.

	
Full-text queries

	Queries like the match or query_string queries are high-level queries
that understand the mapping of a field:
	
If you use them to query a date or integer field, they will treat the
 query string as a date or integer, respectively.

	
If you query an exact value (not_analyzed) string field,
 they will treat
 the whole query string as a single term.

	
But if you query a full-text (analyzed) field,
 they will first pass the
 query string through the appropriate analyzer to produce the list of terms
 to be queried.

Once the query has assembled a list of terms, it executes the appropriate
low-level query for each of these terms, and then combines their results to
produce the final relevance score for each document.
We will discuss this process in more detail in the following chapters.

You seldom need to use the term-based queries directly. Usually you want to
query full text, not individual terms, and this is easier to do with the
high-level full-text queries (which end up using term-based queries
internally).
Note
If you do find yourself wanting to use a query on an exact value
not_analyzed field,
think
about whether you really want a scoring query, or if a non-scoring query might be better.
Single-term queries usually represent binary yes/no questions and are
almost always better expressed as a

filter, so that they can benefit from caching:
GET /_search
{
 "query": {
 "constant_score": {
 "filter": {
 "term": { "gender": "female" }
 }
 }
 }
}

13.2. The match Query

The match query is the go-to query—the first query that you should
reach for whenever you need to query any field.
 It is a high-level full-text
query, meaning that it knows how to deal with both full-text fields and exact-value fields.
That said, the main use case for the match query is for full-text search. So
let’s take a look at how full-text search works with a simple example.
13.2.1. Index Some Data

First, we’ll create a new index and index some

 documents using the
bulk API:
DELETE /my_index (1)

PUT /my_index
{ "settings": { "number_of_shards": 1 }} (2)

POST /my_index/my_type/_bulk
{ "index": { "_id": 1 }}
{ "title": "The quick brown fox" }
{ "index": { "_id": 2 }}
{ "title": "The quick brown fox jumps over the lazy dog" }
{ "index": { "_id": 3 }}
{ "title": "The quick brown fox jumps over the quick dog" }
{ "index": { "_id": 4 }}
{ "title": "Brown fox brown dog" }
	(1)
	
Delete the index in case it already exists.

	(2)
	
Later, in Section 13.8, “Relevance Is Broken!”, we explain why
 we created this index with only one primary shard.

13.2.2. A Single-Word Query

Our first example explains what

 happens when we use the match query to
search within a full-text field for a single word:
GET /my_index/my_type/_search
{
 "query": {
 "match": {
 "title": "QUICK!"
 }
 }
}
Elasticsearch executes the preceding match query
 as follows:
	
Check the field type.

The title field is a full-text (analyzed) string field, which means that
the query string should be analyzed too.

	
Analyze the query string.

The query string QUICK! is passed through the standard analyzer, which
results in the single term quick. Because we have just a single term,
the match query can be executed as a single low-level term query.

	
Find matching docs.

The term query looks up quick in the inverted index and retrieves the
list of documents that contain that term—in this case, documents 1, 2, and
3.

	
Score each doc.

The term query calculates the relevance _score for each matching document,
by combining the
 term frequency (how often quick appears in the title
field of each document), with the inverse document frequency (how often
quick appears in the title field in all documents in the index), and the
length of each field (shorter fields are considered more relevant).
See Section 8.3, “What Is Relevance?”.

This process gives us the following (abbreviated) results:
"hits": [
 {
 "_id": "1",
 "_score": 0.5, (1)
 "_source": {
 "title": "The quick brown fox"
 }
 },
 {
 "_id": "3",
 "_score": 0.44194174, (2)
 "_source": {
 "title": "The quick brown fox jumps over the quick dog"
 }
 },
 {
 "_id": "2",
 "_score": 0.3125, (3)
 "_source": {
 "title": "The quick brown fox jumps over the lazy dog"
 }
 }
]
	(1)
	
Document 1 is most relevant because its title field is short, which means
 that quick represents a large portion of its content.

	(2) (3)
	
Document 3 is more relevant than document 2 because quick appears twice.

13.3. Multiword Queries

If we could search for only one word at a time, full-text search would be
pretty inflexible. Fortunately, the match query

 makes multiword queries
just as simple:
GET /my_index/my_type/_search
{
 "query": {
 "match": {
 "title": "BROWN DOG!"
 }
 }
}
The preceding query returns all four documents in the results list:
{
 "hits": [
 {
 "_id": "4",
 "_score": 0.73185337, (1)
 "_source": {
 "title": "Brown fox brown dog"
 }
 },
 {
 "_id": "2",
 "_score": 0.47486103, (2)
 "_source": {
 "title": "The quick brown fox jumps over the lazy dog"
 }
 },
 {
 "_id": "3",
 "_score": 0.47486103, (3)
 "_source": {
 "title": "The quick brown fox jumps over the quick dog"
 }
 },
 {
 "_id": "1",
 "_score": 0.11914785, (4)
 "_source": {
 "title": "The quick brown fox"
 }
 }
]
}
	(1)
	
Document 4 is the most relevant because it contains "brown" twice and "dog"
 once.

	(2) (3)
	
Documents 2 and 3 both contain brown and dog once each, and the title
 field is the same length in both docs, so they have the same score.

	(4)
	
Document 1 matches even though it contains only brown, not dog.

Because the match query has to look for two terms—["brown","dog"]—internally it has to execute two term queries and combine their individual
results into the overall result. To do this, it wraps the two term queries
in a bool query, which we examine in detail in Section 13.4, “Combining Queries”.
The important thing to take away from this is that any document whose
title field contains at least one of the specified terms will match the
query. The more terms that match, the more relevant the document.
13.3.1. Improving Precision

Matching any document that contains any of the query terms may result in a
long tail of seemingly irrelevant results.

 It’s a shotgun approach to search.
Perhaps we want to show only documents that contain all of the query terms.
In other words, instead of brown OR dog, we want to return only documents
that match brown AND dog.
The match query accepts an operator parameter

 that defaults to or.
You can change it to and to require that all specified terms must match:
GET /my_index/my_type/_search
{
 "query": {
 "match": {
 "title": { (1)
 "query": "BROWN DOG!",
 "operator": "and"
 }
 }
 }
}
	(1)
	
The structure of the match query has to change slightly in order to
 accommodate the operator parameter.

This query would exclude document 1, which contains only one of the two terms.

13.3.2. Controlling Precision

The choice between all and any is a bit

 too black-or-white. What if the
user specified five query terms, and a document contains only four of them?
Setting operator to and would exclude this document.
Sometimes that is exactly what you want, but for most full-text search use
cases, you want to include documents that may be relevant but exclude those
that are unlikely to be relevant. In other words, we need something
in-between.
The match query supports
 the minimum_should_match parameter, which allows
you to specify the number of terms that must match for a document to be considered
relevant. While you can specify an absolute number of terms, it usually makes
sense to specify a percentage instead, as you have no control over the number of words the user may enter:
GET /my_index/my_type/_search
{
 "query": {
 "match": {
 "title": {
 "query": "quick brown dog",
 "minimum_should_match": "75%"
 }
 }
 }
}
When specified as a percentage, minimum_should_match does the right thing:
in the preceding example with three terms, 75% would be rounded down to 66.6%,
or two out of the three terms. No matter what you set it to, at least one term
must match for a document to be considered a match.
Note
The minimum_should_match parameter is flexible, and different rules can
be applied depending on the number of terms the user enters. For the full
documentation see the
https://www.elastic.co/guide/en/elasticsearch/reference/master/query-dsl-minimum-should-match.html#query-dsl-minimum-should-match

To fully understand how the match query handles multiword queries, we need
to look at how to combine multiple queries with the bool query.

13.4. Combining Queries

In Section 12.2, “Combining Filters” we discussed how to
 use the bool filter to combine
multiple filter clauses with and, or, and not logic. In query land, the
bool query does a similar job but with one important difference.
Filters make a binary decision: should this document be included in the
results list or not? Queries, however, are more subtle. They decide not only
whether to include a document, but also how relevant that document is.
Like the filter equivalent, the bool query accepts multiple query clauses
under the must, must_not, and should parameters. For instance:
GET /my_index/my_type/_search
{
 "query": {
 "bool": {
 "must": { "match": { "title": "quick" }},
 "must_not": { "match": { "title": "lazy" }},
 "should": [
 { "match": { "title": "brown" }},
 { "match": { "title": "dog" }}
]
 }
 }
}
The results from the preceding query include any document whose title field
contains the term quick, except for those that also contain lazy. So
far, this is pretty similar to how the bool filter works.
The difference comes in with the two should clauses, which say that: a document
is not required to contain
either brown or dog, but if it does, then
it should be considered more relevant:
{
 "hits": [
 {
 "_id": "3",
 "_score": 0.70134366, (1)
 "_source": {
 "title": "The quick brown fox jumps over the quick dog"
 }
 },
 {
 "_id": "1",
 "_score": 0.3312608,
 "_source": {
 "title": "The quick brown fox"
 }
 }
]
}
	(1)
	
Document 3 scores higher because it contains both brown and dog.

13.4.1. Score Calculation

The bool query calculates

 the relevance _score for each document by adding
together the _score from all of the matching must and should clauses,
and then dividing by the total number of must and should clauses.
The must_not clauses do not affect
the score; their only purpose is to
exclude documents that might otherwise have been included.

13.4.2. Controlling Precision

All the must clauses must match, and all the must_not clauses must not
match, but how many should clauses

 should match? By default, none of the should clauses are required to match, with one
exception: if there are no must clauses, then at least one should clause
must match.
Just as we can control the precision of the match query,
we can control how many should clauses need to match by using the
minimum_should_match parameter,
 either as an absolute number or as a
percentage:
GET /my_index/my_type/_search
{
 "query": {
 "bool": {
 "should": [
 { "match": { "title": "brown" }},
 { "match": { "title": "fox" }},
 { "match": { "title": "dog" }}
],
 "minimum_should_match": 2 (1)
 }
 }
}
	(1)
	
This could also be expressed as a percentage.

The results would include only documents whose title field contains "brown"
AND "fox", "brown" AND "dog", or "fox" AND "dog". If a document contains
all three, it would be considered more relevant than those that contain
just two of the three.

13.5. How match Uses bool

By now, you have probably realized that multiword match queries simply wrap

 the generated term queries in a bool query. With the
default or operator, each term query is added as a should clause, so
at least one clause must match. These two queries are equivalent:
{
 "match": { "title": "brown fox"}
}
{
 "bool": {
 "should": [
 { "term": { "title": "brown" }},
 { "term": { "title": "fox" }}
]
 }
}
With the and operator, all the term queries are added as must clauses,
so all clauses must match. These two queries are equivalent:
{
 "match": {
 "title": {
 "query": "brown fox",
 "operator": "and"
 }
 }
}
{
 "bool": {
 "must": [
 { "term": { "title": "brown" }},
 { "term": { "title": "fox" }}
]
 }
}
And if the minimum_should_match parameter is
 specified, it is passed
directly through to the bool query, making these two queries equivalent:
{
 "match": {
 "title": {
 "query": "quick brown fox",
 "minimum_should_match": "75%"
 }
 }
}
{
 "bool": {
 "should": [
 { "term": { "title": "brown" }},
 { "term": { "title": "fox" }},
 { "term": { "title": "quick" }}
],
 "minimum_should_match": 2 (1)
 }
}
	(1)
	
Because there are only three clauses, the minimum_should_match
 value of 75% in the match query is rounded down to 2.
 At least two out of the three should clauses must match.

Of course, we would normally write these types of queries by using the match
query, but understanding how the match query works internally lets you take
control of the process when you need to. Some things can’t be
done with a single match query, such as give more weight to some query terms
than to others. We will look at an example of this in the next section.

13.6. Boosting Query Clauses

Of course, the bool query isn’t restricted
to combining simple one-word
match queries. It can combine any other query, including other bool
queries.
 It is commonly used to fine-tune the relevance _score for each
document by combining the scores from several distinct queries.
Imagine that we want to search for documents

 about "full-text search," but we
want to give more weight to documents that also mention "Elasticsearch" or
"Lucene." By more weight, we mean that documents mentioning
"Elasticsearch" or "Lucene" will receive a higher relevance _score than
those that don’t, which means that they will appear higher in the list of
results.
A simple bool query allows us to write this fairly complex logic as follows:
GET /_search
{
 "query": {
 "bool": {
 "must": {
 "match": {
 "content": { (1)
 "query": "full text search",
 "operator": "and"
 }
 }
 },
 "should": [(2)
 { "match": { "content": "Elasticsearch" }},
 { "match": { "content": "Lucene" }}
]
 }
 }
}
	(1)
	
The content field must contain all of the words full, text, and search.

	(2)
	
If the content field also contains Elasticsearch or Lucene,
 the document will receive a higher _score.

The more should clauses that match, the more relevant the document. So far,
so good.
But what if we want to give more weight to the docs that contain Lucene and
even more weight to the docs containing Elasticsearch?
We can control the relative weight of any query clause by specifying a boost
value, which defaults to 1. A boost value greater than 1 increases the
relative weight of that clause. So we could rewrite the preceding query as
follows:
GET /_search
{
 "query": {
 "bool": {
 "must": {
 "match": { (1)
 "content": {
 "query": "full text search",
 "operator": "and"
 }
 }
 },
 "should": [
 { "match": {
 "content": {
 "query": "Elasticsearch",
 "boost": 3 (2)
 }
 }},
 { "match": {
 "content": {
 "query": "Lucene",
 "boost": 2 (3)
 }
 }}
]
 }
 }
}
	(1)
	
These clauses use the default boost of 1.

	(2)
	
This clause is the most important, as it has the highest boost.

	(3)
	
This clause is more important than the default, but not as important
 as the Elasticsearch clause.

Note
The boost parameter is used to increase
 the relative weight of a clause
(with a boost greater than 1) or decrease the relative weight (with a
boost between 0 and 1), but the increase or decrease is not linear. In
other words, a boost of 2 does not result in double the _score.
Instead, the new _score is normalized after
 the boost is applied. Each
type of query has its own normalization algorithm, and the details are beyond
the scope of this book. Suffice to say that a higher boost value results in
a higher _score.
If you are implementing your own scoring model not based on TF/IDF and you
need more control over the boosting process, you can use the
function_score query to manipulate a document’s
boost without the normalization step.

We present other ways of combining queries in the next chapter,
Chapter 14, Multifield Search. But first, let’s take a look at the other important
feature of queries: text analysis.

13.7. Controlling Analysis

Queries can find only terms that actually

exist in the inverted index, so it
is important to ensure that the same analysis process is applied both to the
document at index time, and to the query string at search time so that the
terms in the query match the terms in the inverted index.
Although we say document, analyzers are determined per field.
 Each
field can have a different analyzer, either by configuring a specific analyzer
for that field or by falling back on the type, index, or node defaults. At
index time, a field’s value is analyzed by using the configured or default
analyzer for that field.
For instance, let’s add a new field to my_index:
PUT /my_index/_mapping/my_type
{
 "my_type": {
 "properties": {
 "english_title": {
 "type": "string",
 "analyzer": "english"
 }
 }
 }
}
Now we can compare how values in the english_title field and the title field are
analyzed at index time by using the analyze API to analyze the word Foxes:
GET /my_index/_analyze
{
 "field": "my_type.title", (1)
 "text": "Foxes"
}

GET /my_index/_analyze
{
 "field": "my_type.english_title", (2)
 "text": "Foxes"
}
	(1)
	
Field title, which uses the default standard analyzer, will return the
 term foxes.

	(2)
	
Field english_title, which uses the english analyzer, will return the term
 fox.

This means that, were we to run a low-level term query for the exact term
fox, the english_title field would match but the title field would
not.
High-level queries like the match query understand field mappings and can
apply the correct analyzer for each field being queried.
 We can see this
in action with the validate-query API:
GET /my_index/my_type/_validate/query?explain
{
 "query": {
 "bool": {
 "should": [
 { "match": { "title": "Foxes"}},
 { "match": { "english_title": "Foxes"}}
]
 }
 }
}
which returns this explanation:
(title:foxes english_title:fox)
The match query uses the appropriate analyzer for each field to ensure
that it looks for each term in the correct format for that field.
13.7.1. Default Analyzers

While we can specify an analyzer at the field level,

 how do we determine which
analyzer is used for a field if none is specified at the field level?
Analyzers can be specified at three levels: per-field, per-index or the global default.
Elasticsearch works through each level until it finds an analyzer that it can use.
At index time, the order
is as follows:
	
The analyzer defined in the field mapping, else

	
The analyzer named default in the index settings, which defaults to

	
The standard analyzer

At search time, the
sequence is slightly different:
	
The analyzer defined in the query itself, else

	
The analyzer defined in the field mapping, else

	
The analyzer named default in the index settings, which defaults to

	
The standard analyzer

Occasionally, it makes sense to use a different analyzer at index and search
time.
 For instance, at index time we may want to index synonyms (for example, for every
occurrence of quick, we also index fast, rapid, and speedy). But at
search time, we don’t need to search for all of these synonyms. Instead we
can just look up the single word that the user has entered, be it quick,
fast, rapid, or speedy.
To enable this distinction, Elasticsearch also supports an
optional search_analyzer mapping which will only be used at search-time (analyzer
is still used for indexing). There is also an equivalent default_search mapping
for configuring the default at the index-level.
Taking these extra parameters into account, the full sequence at search time:
	
The analyzer defined in the query itself, else

	
The search_analyzer defined in the field mapping, else

	
The analyzer defined in the field mapping, else

	
The analyzer named default_search in the index settings, which defaults to

	
The analyzer named default in the index settings, which defaults to

	
The standard analyzer

13.7.2. Configuring Analyzers in Practice

The sheer number of places where you can specify an analyzer is quite
overwhelming.

 In practice, though, it is pretty simple.
Keep it simple

Most of the time, you will know what fields your documents will contain ahead
of time. The simplest approach is to set the analyzer for each full-text
field when you create your index or add type mappings. While this approach is
slightly more verbose, it enables you to easily see which analyzer is being applied
to each field.
Typically, most of your string fields will be exact-value not_analyzed
fields such as tags or enums, plus a handful of full-text fields that will
use some default analyzer like standard or english or some other language.
Then you may have one or two fields that need custom analysis: perhaps the
title field needs to be indexed in a way that supports find-as-you-type.
You can set the default analyzer in the index to the analyzer you want to
use for almost all full-text fields, and just configure the specialized
analyzer on the one or two fields that need it.
Note
A common work flow for time based data like logging is to create a new index
per day on the fly by just indexing into it. While this work flow prevents
you from creating your index up front, you can still use
index templates
to specify the settings and mappings that a new index should have.

13.8. Relevance Is Broken!

Before we move on to discussing more-complex queries in
Chapter 14, Multifield Search, let’s make a quick detour to explain why we
created our test index with just one primary shard.
Every now and again a new user opens an issue claiming that sorting by
relevance
 is broken and offering a short reproduction: the user indexes a few
documents, runs a simple query, and finds apparently less-relevant results
appearing above more-relevant results.
To understand why this happens, let’s imagine that we create an index with two
primary shards and we index ten documents, six of which contain the word foo.
It may happen that shard 1 contains three of the foo documents and shard
2 contains the other three. In other words, our documents are well distributed.
In Section 8.3, “What Is Relevance?”, we described the default similarity algorithm used in
Elasticsearch, called term frequency / inverse document frequency or TF/IDF.
Term frequency counts the number of times a term appears within the field we are
querying in the current document. The more times it appears, the more
relevant is this document. The inverse document frequency takes into account
how often a term appears as a percentage of all the documents in the index.
The more frequently the term appears, the less weight it has.
However, for performance reasons, Elasticsearch doesn’t calculate the IDF
across all documents in the index.
 Instead, each shard calculates a local IDF
for the documents contained in that shard.
Because our documents are well distributed, the IDF for both shards will be
the same. Now imagine instead that five of the foo documents are on shard 1,
and the sixth document is on shard 2. In this scenario, the term foo is
very common on one shard (and so of little importance), but rare on the other
shard (and so much more important). These differences in IDF can produce
incorrect results.
In practice, this is not a problem. The differences between local and global
IDF diminish the more documents that you add to the index. With real-world
volumes of data, the local IDFs soon even out. The problem is not that
relevance is broken but that there is too little data.
For testing purposes, there are two ways we can work around this issue. The
first is to create an index with one primary shard, as we did in the section
introducing the match query. If you have only one shard, then
the local IDF is the global IDF.
The second workaround is to add ?search_type=dfs_query_then_fetch to your
search requests. The dfs stands
 for Distributed Frequency Search, and it
tells Elasticsearch to first retrieve the local IDF from each shard in order
to calculate the global IDF across the whole index.
Tip
Don’t use dfs_query_then_fetch in production. It really isn’t
required. Just having enough data will ensure that your term frequencies are
well distributed. There is no reason to add this extra DFS step to every query
that you run.

Chapter 14. Multifield Search

Queries are seldom simple one-clause match queries. We frequently need to
search for the same or different query strings in one or more fields, which
means that we need to be able to combine multiple query clauses and their
relevance scores in a way that makes sense.
Perhaps we’re looking for a book called War and Peace by an author called
Leo Tolstoy. Perhaps we’re searching the Elasticsearch documentation
for “minimum should match,” which might be in the title or the body of a
page. Or perhaps we’re searching for users with first name John and last
name Smith.
In this chapter, we present the available tools for constructing multiclause
searches and how to figure out which solution you should apply to your
particular use case.
14.1. Multiple Query Strings

The simplest multifield query to deal with is the
one where we can map
search terms to specific fields. If we know that War and Peace is the
title, and Leo Tolstoy is the author, it is easy to write each of these
conditions as a match clause
and to combine them with a bool query:
GET /_search
{
 "query": {
 "bool": {
 "should": [
 { "match": { "title": "War and Peace" }},
 { "match": { "author": "Leo Tolstoy" }}
]
 }
 }
}
The bool query takes a more-matches-is-better approach, so the score from
each match clause will be added together to provide the final _score for
each document. Documents that match both clauses will score higher than
documents that match just one clause.
Of course, you’re not restricted to using just match clauses: the bool
query can wrap any other query type,
including other bool queries. We could
add a clause to specify that we prefer to see versions of the book that have
been translated by specific translators:
GET /_search
{
 "query": {
 "bool": {
 "should": [
 { "match": { "title": "War and Peace" }},
 { "match": { "author": "Leo Tolstoy" }},
 { "bool": {
 "should": [
 { "match": { "translator": "Constance Garnett" }},
 { "match": { "translator": "Louise Maude" }}
]
 }}
]
 }
 }
}
Why did we put the translator clauses inside a separate bool query? All four
match queries are should clauses, so why didn’t we just put the translator
clauses at the same level as the title and author clauses?
The answer lies in how the score is calculated.
 The bool query runs each
match query, adds their scores together, then multiplies by the number of
matching clauses, and divides by the total number of clauses. Each clause at
the same level has the same weight. In the preceding query, the bool query
containing the translator clauses counts for one-third of the total score. If we had
put the translator clauses at the same level as title and author, they
would have reduced the contribution of the title and author clauses to one-quarter each.
14.1.1. Prioritizing Clauses

It is likely that an even one-third split between clauses is not what we need for
the preceding query.

 Probably we’re more interested in the title and author
clauses than we are in the translator clauses. We need to tune the query to
make the title and author clauses relatively more important.
The simplest weapon in our tuning arsenal is the boost parameter. To
increase the weight of the title and author fields, give

them a boost
value higher than 1:
GET /_search
{
 "query": {
 "bool": {
 "should": [
 { "match": { (1)
 "title": {
 "query": "War and Peace",
 "boost": 2
 }}},
 { "match": { (2)
 "author": {
 "query": "Leo Tolstoy",
 "boost": 2
 }}},
 { "bool": { (3)
 "should": [
 { "match": { "translator": "Constance Garnett" }},
 { "match": { "translator": "Louise Maude" }}
]
 }}
]
 }
 }
}
	(1) (2)
	
The title and author clauses have a boost value of 2.

	(3)
	
The nested bool clause has the default boost of 1.

The “best” value for the boost parameter is most easily determined by
trial and error: set a boost value, run test queries, repeat. A reasonable
range for boost lies between 1 and 10, maybe 15. Boosts higher than
that have little more impact because scores are
normalized.

14.2. Single Query String

The bool query is the mainstay of multiclause queries.
 It works well
for many cases, especially when you are able to map different query strings to
individual fields.
The problem is that, these days, users expect to be able to type all of their
search terms into a single field, and expect that the application will figure out how
to give them the right results. It is ironic that the multifield search form
is known as Advanced Search—it may appear advanced to the user, but it is
much simpler to implement.
There is no simple one-size-fits-all approach to multiword, multifield
queries. To get the best results, you have to know your data and know how
to use the appropriate tools.
14.2.1. Know Your Data

When your only user input is a single query string, you will encounter three scenarios frequently:
	
Best fields

	
When searching for words that represent a concept, such as “brown fox,” the
words mean more together than they do individually. Fields like the title
and body, while related, can be considered to be in competition with each
other. Documents should have as many words as possible in the same field,
and the score should come from the best-matching field.

	
Most fields

	A common technique for fine-tuning relevance is to index the same data into
multiple fields, each with its own analysis chain.
The main field may contain words in their stemmed form, synonyms, and words
stripped of their diacritics, or accents. It is used to match as many
documents as possible.
The same text could then be indexed in other fields to provide more-precise
matching. One field may contain the unstemmed version, another the original
word with accents, and a third might use shingles to provide information
about word proximity.
These other fields act as signals to increase the relevance score of each
matching document. The more fields that match, the better.

	
Cross fields

	For some entities, the identifying information is spread across multiple
fields, each of which contains just a part of the whole:
	
Person: first_name and last_name

	
Book: title, author, and description

	
Address: street, city, country, and postcode

In this case, we want to find as many words as possible in any of the listed
fields. We need to search across multiple fields as if they were one big
field.

All of these are multiword, multifield queries, but each requires a
different strategy. We will examine each strategy in turn in the rest of this
chapter.

14.3. Best Fields

Imagine that we have a website that allows
users to search blog posts, such
as these two documents:
PUT /my_index/my_type/1
{
 "title": "Quick brown rabbits",
 "body": "Brown rabbits are commonly seen."
}

PUT /my_index/my_type/2
{
 "title": "Keeping pets healthy",
 "body": "My quick brown fox eats rabbits on a regular basis."
}
The user types in the words “Brown fox” and clicks Search. We don’t
know ahead of time if the user’s search terms will be found in the title or
the body field of the post, but it is likely that the user is searching for
related words. To our eyes, document 2 appears to be the better match, as it
contains both words that we are looking for.
Now we run the following bool query:
{
 "query": {
 "bool": {
 "should": [
 { "match": { "title": "Brown fox" }},
 { "match": { "body": "Brown fox" }}
]
 }
 }
}
And we find that this query gives document 1 the higher score:
{
 "hits": [
 {
 "_id": "1",
 "_score": 0.14809652,
 "_source": {
 "title": "Quick brown rabbits",
 "body": "Brown rabbits are commonly seen."
 }
 },
 {
 "_id": "2",
 "_score": 0.09256032,
 "_source": {
 "title": "Keeping pets healthy",
 "body": "My quick brown fox eats rabbits on a regular basis."
 }
 }
]
}
To understand why, think about how the bool query

calculates its score:
	
It runs both of the queries in the should clause.

	
It adds their scores together.

	
It multiplies the total by the number of matching clauses.

	
It divides the result by the total number of clauses (two).

Document 1 contains the word brown in both fields, so both match clauses
are successful and have a score. Document 2 contains both brown and
fox in the body field but neither word in the title field. The high
score from the body query is added to the zero score from the title query,
and multiplied by one-half, resulting in a lower overall score than for document 1.
In this example, the title and body fields are competing with each other.
We want to find the single best-matching field.
What if, instead of combining the scores from each field, we used the score
from the best-matching field as the overall score for the query? This would
give preference to a single field that contains both of the words we are
looking for, rather than the same word repeated in different fields.
14.3.1. dis_max Query

Instead of the bool query, we can use the dis_max or Disjunction Max
Query. Disjunction means or (while conjunction means and) so the
Disjunction Max Query simply means return documents that match any of these
queries, and return the score of the best matching query:
{
 "query": {
 "dis_max": {
 "queries": [
 { "match": { "title": "Brown fox" }},
 { "match": { "body": "Brown fox" }}
]
 }
 }
}
This produces the results that we want:
{
 "hits": [
 {
 "_id": "2",
 "_score": 0.21509302,
 "_source": {
 "title": "Keeping pets healthy",
 "body": "My quick brown fox eats rabbits on a regular basis."
 }
 },
 {
 "_id": "1",
 "_score": 0.12713557,
 "_source": {
 "title": "Quick brown rabbits",
 "body": "Brown rabbits are commonly seen."
 }
 }
]
}

14.4. Tuning Best Fields Queries

What would happen if the user

 had searched instead for “quick pets”? Both
documents contain the word quick, but only document 2 contains the word
pets. Neither document contains both words in the same field.
A simple dis_max query like the following would
choose the single best
matching field, and ignore the other:
{
 "query": {
 "dis_max": {
 "queries": [
 { "match": { "title": "Quick pets" }},
 { "match": { "body": "Quick pets" }}
]
 }
 }
}
{
 "hits": [
 {
 "_id": "1",
 "_score": 0.12713557, (1)
 "_source": {
 "title": "Quick brown rabbits",
 "body": "Brown rabbits are commonly seen."
 }
 },
 {
 "_id": "2",
 "_score": 0.12713557, (2)
 "_source": {
 "title": "Keeping pets healthy",
 "body": "My quick brown fox eats rabbits on a regular basis."
 }
 }
]
}
	(1) (2)
	
Note that the scores are exactly the same.

We would probably expect documents that match on both the title field and
the body field to rank higher than documents that match on just one field,
but this isn’t the case. Remember: the dis_max query simply uses the
_score from the single best-matching clause.
14.4.1. tie_breaker

It is possible, however, to

 also take the _score from the other matching
clauses into account, by specifying the tie_breaker parameter:
{
 "query": {
 "dis_max": {
 "queries": [
 { "match": { "title": "Quick pets" }},
 { "match": { "body": "Quick pets" }}
],
 "tie_breaker": 0.3
 }
 }
}
This gives us the following results:
{
 "hits": [
 {
 "_id": "2",
 "_score": 0.14757764, (1)
 "_source": {
 "title": "Keeping pets healthy",
 "body": "My quick brown fox eats rabbits on a regular basis."
 }
 },
 {
 "_id": "1",
 "_score": 0.124275915, (2)
 "_source": {
 "title": "Quick brown rabbits",
 "body": "Brown rabbits are commonly seen."
 }
 }
]
}
	(1) (2)
	
Document 2 now has a small lead over document 1.

The tie_breaker parameter makes the dis_max query behave more like a
halfway house between dis_max and bool. It changes the score calculation
as follows:
	
Take the _score of the best-matching clause.

	
Multiply the score of each of the other matching clauses by the tie_breaker.

	
Add them all together and normalize.

With the tie_breaker, all matching clauses count, but the best-matching
clause counts most.
Note
The tie_breaker can be a floating-point value between 0 and 1, where 0
uses just the best-matching clause
 and 1 counts all matching clauses
equally. The exact value can be tuned based on your data and queries, but a
reasonable value should be close to zero, (for example, 0.1 - 0.4), in order not to
overwhelm the best-matching nature of dis_max.

14.5. multi_match Query

The multi_match query provides

 a convenient shorthand way of running
the same query against multiple fields.
Note
There are several types of multi_match query, three of which just
happen to coincide with the three scenarios that we listed in
Section 14.2.1, “Know Your Data”: best_fields, most_fields, and cross_fields.

By default, this query runs as type best_fields, which means

 that it generates a
match query for each field and wraps them in a dis_max query. This
dis_max query
{
 "dis_max": {
 "queries": [
 {
 "match": {
 "title": {
 "query": "Quick brown fox",
 "minimum_should_match": "30%"
 }
 }
 },
 {
 "match": {
 "body": {
 "query": "Quick brown fox",
 "minimum_should_match": "30%"
 }
 }
 },
],
 "tie_breaker": 0.3
 }
}
could be rewritten more concisely with multi_match as follows:
{
 "multi_match": {
 "query": "Quick brown fox",
 "type": "best_fields", (1)
 "fields": ["title", "body"],
 "tie_breaker": 0.3,
 "minimum_should_match": "30%" (2)
 }
}
	(1)
	
The best_fields type is the default and can be left out.

	(2)
	
Parameters like minimum_should_match or operator are passed through to
 the generated match queries.

14.5.1. Using Wildcards in Field Names

Field names can be specified with wildcards: any field that matches the
wildcard pattern

 will be included in the search. You could match on the
book_title, chapter_title, and section_title fields, with the following:
{
 "multi_match": {
 "query": "Quick brown fox",
 "fields": "*_title"
 }
}

14.5.2. Boosting Individual Fields

Individual fields can be boosted by using the caret (^) syntax: just add
^boost after the field

 name, where boost is a floating-point number:
{
 "multi_match": {
 "query": "Quick brown fox",
 "fields": ["*_title", "chapter_title^2"] (1)
 }
}
	(1)
	
The chapter_title field has a boost of 2, while the book_title and
 section_title fields have a default boost of 1.

14.6. Most Fields

Full-text search is a battle between recall—returning all the
documents that are
relevant—and precision—not returning irrelevant
documents. The goal is to present the user with the most relevant documents
on the first page of results.
To improve recall, we cast
 the net wide—we include not only
documents that match the user’s search terms exactly, but also
documents that we believe to be pertinent to the query. If a user searches
for “quick brown fox,” a document that contains fast foxes may well be
a reasonable result to return.
If the only pertinent document that we have is the one containing fast
foxes, it will appear at the top of the results list. But of course, if
we have 100 documents that contain the words quick brown fox, then the
fast foxes document may be considered less relevant, and we would want to
push it further down the list. After including many potential matches, we
need to ensure that the best ones rise to the top.
A common technique for fine-tuning full-text relevance
 is to index the same
text in multiple ways, each of which provides a different relevance signal. The main field would contain terms in their broadest-matching form to match as
many documents as possible. For instance, we could do the following:
	
Use a stemmer to index jumps, jumping, and jumped as their root
 form: jump. Then it doesn’t matter if the user searches for
 jumped; we could still match documents containing jumping.

	
Include synonyms like jump, leap, and hop.

	
Remove diacritics, or accents: for example, ésta, está, and esta would
 all be indexed without accents as esta.

However, if we have two documents, one of which contains jumped and the
other jumping, the user would probably expect the first document to rank
higher, as it contains exactly what was typed in.
We can achieve this by indexing the same text in other fields to provide more-precise matching. One field may contain the unstemmed version, another the
original word with diacritics, and a third might use shingles to provide
information about word proximity. These other fields
act as signals that increase the relevance score of each matching document.
The more fields that match, the better.
A document is included in the results list if it matches the broad-matching
main field. If it also matches the signal fields, it gets extra
points and is pushed up the results list.
We discuss synonyms, word proximity, partial-matching and other potential
signals later in the book, but we will use the simple example of stemmed and
unstemmed fields to illustrate this technique.
14.6.1. Multifield Mapping

The first thing to do is to set up our

field to be indexed twice: once in a
stemmed form and once in an unstemmed form. To do this, we will use
multifields, which we introduced in Section 8.2, “String Sorting and Multifields”:
DELETE /my_index

PUT /my_index
{
 "settings": { "number_of_shards": 1 }, (1)
 "mappings": {
 "my_type": {
 "properties": {
 "title": { (2)
 "type": "string",
 "analyzer": "english",
 "fields": {
 "std": { (3)
 "type": "string",
 "analyzer": "standard"
 }
 }
 }
 }
 }
 }
}
	(1)
	
See Section 13.8, “Relevance Is Broken!”.

	(2)
	
The title field is stemmed by the english analyzer.

	(3)
	
The title.std field uses the standard analyzer and so is not stemmed.

Next we index some documents:
PUT /my_index/my_type/1
{ "title": "My rabbit jumps" }

PUT /my_index/my_type/2
{ "title": "Jumping jack rabbits" }
Here is a simple match query on the title field for jumping rabbits:
GET /my_index/_search
{
 "query": {
 "match": {
 "title": "jumping rabbits"
 }
 }
}
This becomes a query for the two stemmed terms jump and rabbit, thanks to the
english analyzer. The title field of both documents contains both of those
terms, so both documents receive the same score:
{
 "hits": [
 {
 "_id": "1",
 "_score": 0.42039964,
 "_source": {
 "title": "My rabbit jumps"
 }
 },
 {
 "_id": "2",
 "_score": 0.42039964,
 "_source": {
 "title": "Jumping jack rabbits"
 }
 }
]
}
If we were to query just the title.std field, then only document 2 would
match. However, if we were to query both fields and to combine their scores
by using the bool query, then both documents would match (thanks to the title
field) and document 2 would score higher (thanks to the title.std field):
GET /my_index/_search
{
 "query": {
 "multi_match": {
 "query": "jumping rabbits",
 "type": "most_fields", (1)
 "fields": ["title", "title.std"]
 }
 }
}
	(1)
	
We want to combine the scores from all matching fields, so we use the
 most_fields type. This causes the multi_match query to wrap the two
 field-clauses in a bool query instead of a dis_max query.

{
 "hits": [
 {
 "_id": "2",
 "_score": 0.8226396, (1)
 "_source": {
 "title": "Jumping jack rabbits"
 }
 },
 {
 "_id": "1",
 "_score": 0.10741998, (2)
 "_source": {
 "title": "My rabbit jumps"
 }
 }
]
}
	(1) (2)
	
Document 2 now scores much higher than document 1.

We are using the broad-matching title field to include as many documents as
possible—to increase recall—but we use the title.std field as a
signal to push the most relevant results to the top.
The contribution of each field to the final score can be controlled by
specifying custom boost values. For instance, we could boost the title
field to make it the most important field, thus reducing the effect of any
other signal fields:
GET /my_index/_search
{
 "query": {
 "multi_match": {
 "query": "jumping rabbits",
 "type": "most_fields",
 "fields": ["title^10", "title.std"] (1)
 }
 }
}
	(1)
	
The boost value of 10 on the title field makes that field relatively
 much more important than the title.std field.

14.7. Cross-fields Entity Search

Now we come to a common pattern: cross-fields entity search.
 With entities
like person, product, or address, the identifying information is spread
across several fields. We may have a person indexed as follows:
{
 "firstname": "Peter",
 "lastname": "Smith"
}
Or an address like this:
{
 "street": "5 Poland Street",
 "city": "London",
 "country": "United Kingdom",
 "postcode": "W1V 3DG"
}
This sounds a lot like the example we described in Section 14.1, “Multiple Query Strings”,
but there is a big difference between these two scenarios. In
Section 14.1, “Multiple Query Strings”, we used a separate query string for each field. In
this scenario, we want to search across multiple fields with a single query
string.
Our user might search for the person “Peter Smith” or for the address
“Poland Street W1V.” Each of those words appears in a different field, so
using a dis_max / best_fields query to find the single best-matching
field is clearly the wrong approach.
14.7.1. A Naive Approach

Really, we want to query each field in turn and add up the scores of every
field that matches, which sounds like a job for the bool query:
{
 "query": {
 "bool": {
 "should": [
 { "match": { "street": "Poland Street W1V" }},
 { "match": { "city": "Poland Street W1V" }},
 { "match": { "country": "Poland Street W1V" }},
 { "match": { "postcode": "Poland Street W1V" }}
]
 }
 }
}
Repeating the query string for every field soon becomes tedious. We can use
the multi_match query instead,

and set the type to most_fields to tell it to
combine the scores of all matching fields:
{
 "query": {
 "multi_match": {
 "query": "Poland Street W1V",
 "type": "most_fields",
 "fields": ["street", "city", "country", "postcode"]
 }
 }
}

14.7.2. Problems with the most_fields Approach

The most_fields approach to entity search has some problems that are not
immediately obvious:
	
It is designed to find the most fields matching any words, rather than to
 find the most matching words across all fields.

	
It can’t use the operator or minimum_should_match parameters
 to reduce the long tail of less-relevant results.

	
Term frequencies are different in each field and could interfere with each
 other to produce badly ordered results.

14.8. Field-Centric Queries

All three of the preceding problems stem from

most_fields being
field-centric rather than term-centric: it looks for the most matching
fields, when really what we’re interested is the most matching terms.
Note
The best_fields type is also field-centric
 and suffers from similar problems.

First we’ll look at why these problems exist, and then how we can combat them.
14.8.1. Problem 1: Matching the Same Word in Multiple Fields

Think about how the most_fields query is executed: Elasticsearch generates a
separate match query for each field and then wraps these match queries in an outer bool query.
We can see this by passing our query through the validate-query API:
GET /_validate/query?explain
{
 "query": {
 "multi_match": {
 "query": "Poland Street W1V",
 "type": "most_fields",
 "fields": ["street", "city", "country", "postcode"]
 }
 }
}
which yields this explanation:
(street:poland street:street street:w1v)
(city:poland city:street city:w1v)
(country:poland country:street country:w1v)
(postcode:poland postcode:street postcode:w1v)
You can see that a document matching just the word poland in two fields
could score higher than a document matching poland and street in one
field.

14.8.2. Problem 2: Trimming the Long Tail

In Section 13.3.2, “Controlling Precision”, we talked about

 using the and operator or the
minimum_should_match parameter to trim the long tail of almost irrelevant
results. Perhaps we could try this:
{
 "query": {
 "multi_match": {
 "query": "Poland Street W1V",
 "type": "most_fields",
 "operator": "and", (1)
 "fields": ["street", "city", "country", "postcode"]
 }
 }
}
	(1)
	
All terms must be present.

However, with best_fields or most_fields, these parameters are passed down
to the generated match queries. The explanation for this query shows the
following:
(+street:poland +street:street +street:w1v)
(+city:poland +city:street +city:w1v)
(+country:poland +country:street +country:w1v)
(+postcode:poland +postcode:street +postcode:w1v)
In other words, using the and operator means that all words must exist in
the same field, which is clearly wrong! It is unlikely that any documents
would match this query.

14.8.3. Problem 3: Term Frequencies

In Section 8.3, “What Is Relevance?”, we explained that the default similarity algorithm
used to calculate the relevance score
for each term is TF/IDF:
	
Term frequency

	
 The more often a term appears in a field in a single document, the more
 relevant the document.

	
Inverse document frequency

	
 The more often a term appears in a field in all documents in the index,
 the less relevant is that term.

When searching against multiple fields, TF/IDF can
 introduce some surprising
results.
Consider our example of searching for “Peter Smith” using the first_name
and last_name fields.
 Peter is a common first name and Smith is a common
last name—both will have low IDFs. But what if we have another person in
the index whose name is Smith Williams? Smith as a first name is very
uncommon and so will have a high IDF!
A simple query like the following may well return Smith Williams above
Peter Smith in spite of the fact that the second person is a better match
than the first.
{
 "query": {
 "multi_match": {
 "query": "Peter Smith",
 "type": "most_fields",
 "fields": ["*_name"]
 }
 }
}
The high IDF of smith in the first name field can overwhelm the two low IDFs
of peter as a first name and smith as a last name.

14.8.4. Solution

These problems only exist because we are dealing with multiple fields. If we
were to combine all of these fields into a single field, the problems would
vanish. We could achieve this by adding a full_name field to our person
document:
{
 "first_name": "Peter",
 "last_name": "Smith",
 "full_name": "Peter Smith"
}
When querying just the full_name field:
	
Documents with more matching words would trump documents with the same word
 repeated.

	
The minimum_should_match and operator parameters would function as
 expected.

	
The inverse document frequencies for first and last names would be combined
 so it wouldn’t matter whether Smith were a first or last name anymore.

While this would work, we don’t like having to store redundant data. Instead,
Elasticsearch offers us two solutions—one at index time and one at search
time—which we discuss next.

14.9. Custom _all Fields

In Section 10.7.3, “Metadata: _all Field”, we explained that the special _all field indexes the values
from all other fields as one big string.
 Having all fields indexed into one
field is not terribly flexible, though. It would be nice to have one custom
_all field for the person’s name, and another custom _all field for the
address.
Elasticsearch provides us with this functionality via the copy_to parameter
in a field
mapping:
PUT /my_index
{
 "mappings": {
 "person": {
 "properties": {
 "first_name": {
 "type": "string",
 "copy_to": "full_name" (1)
 },
 "last_name": {
 "type": "string",
 "copy_to": "full_name" (2)
 },
 "full_name": {
 "type": "string"
 }
 }
 }
 }
}
	(1) (2)
	
The values in the first_name and last_name fields
 are also copied to the full_name field.

With this mapping in place, we can query the first_name field for first
names, the last_name field for last name, or the full_name field for first
and last names.
Mappings of the first_name and last_name fields have no bearing
on how the full_name field is indexed. The full_name field copies the
string values from the other two fields, then indexes them according to the
mapping of the full_name field only.
Warning
The copy_to setting will not work on a multi-field. If you attempt
to configure your mapping this way, Elasticsearch will throw an exception.
Why? Multi-fields are simply indexing the "main" field a different way; they don’t
have their own source. Which means there is no source to copy_to a different
field.
You can easily copy_to the "main" field to achieve the same effect:
PUT /my_index
{
 "mappings": {
 "person": {
 "properties": {
 "first_name": {
 "type": "string",
 "copy_to": "full_name", (1)
 "fields": {
 "raw": {
 "type": "string",
 "index": "not_analyzed"
 }
 }
 },
 "full_name": {
 "type": "string"
 }
 }
 }
 }
}
	(1)
	
copy_to is placed on the "main" field rather than the multi-field

14.10. cross-fields Queries

The custom _all approach is a good solution, as long as you thought
about setting it up before you indexed your
 documents. However, Elasticsearch
also provides a search-time solution to the problem: the multi_match query
with type cross_fields.

The cross_fields type takes a term-centric approach, quite different from the
field-centric approach taken by best_fields and most_fields. It treats all
of the fields as one big field, and looks for each term in any field.
To illustrate the difference between field-centric and term-centric queries,
look at

the explanation for this field-centric most_fields query:
GET /_validate/query?explain
{
 "query": {
 "multi_match": {
 "query": "peter smith",
 "type": "most_fields",
 "operator": "and", (1)
 "fields": ["first_name", "last_name"]
 }
 }
}
	(1)
	
All terms are required.

For a document to match, both peter and smith must appear in the same
field, either the first_name field or the last_name field:
(+first_name:peter +first_name:smith)
(+last_name:peter +last_name:smith)
A term-centric approach would use this logic instead:
+(first_name:peter last_name:peter)
+(first_name:smith last_name:smith)
In other words, the term peter must appear in either field, and the term
smith must appear in either field.
The cross_fields type first analyzes the query string to produce a list of
terms, and then it searches for each term in any field. That difference alone
solves two of the three problems that we listed in Section 14.8, “Field-Centric Queries”, leaving
us just with the issue of differing inverse document frequencies.
Fortunately, the cross_fields type solves this too, as can be seen from this
validate-query request:
GET /_validate/query?explain
{
 "query": {
 "multi_match": {
 "query": "peter smith",
 "type": "cross_fields", (1)
 "operator": "and",
 "fields": ["first_name", "last_name"]
 }
 }
}
	(1)
	
Use cross_fields term-centric matching.

It solves the term-frequency problem by blending inverse document
frequencies across fields:

+blended("peter", fields: [first_name, last_name])
+blended("smith", fields: [first_name, last_name])
In other words, it looks up the IDF of smith in both the first_name and
the last_name fields and uses the minimum of the two as the IDF for both
fields. The fact that smith is a common last name means that it will be
treated as a common first name too.
Note
For the cross_fields query type to work optimally, all fields should have
the same analyzer.

 Fields that share an analyzer are grouped together as
blended fields.
If you include fields with a different analysis chain, they will be added to
the query in the same way as for best_fields. For instance, if we added the
title field to the preceding query (assuming it uses a different analyzer), the
explanation would be as follows:
(+title:peter +title:smith)
(
 +blended("peter", fields: [first_name, last_name])
 +blended("smith", fields: [first_name, last_name])
)
This is particularly important when using the minimum_should_match and
operator parameters.

14.10.1. Per-Field Boosting

One of the advantages of using the cross_fields query over
custom _all fields is that you

can boost individual
fields at query time.
For fields of equal value like first_name and last_name, this generally
isn’t required, but if you were searching for books using the title and
description fields, you might want to give more weight to the title field.
This can be done as described before with the caret (^) syntax:
GET /books/_search
{
 "query": {
 "multi_match": {
 "query": "peter smith",
 "type": "cross_fields",
 "fields": ["title^2", "description"] (1)
 }
 }
}
	(1)
	
The title field has a boost of 2, while the description field
 has the default boost of 1.

The advantage of being able to boost individual fields should be weighed
against the cost of querying multiple fields instead of querying a single
custom _all field. Use whichever of the two solutions that delivers the most
bang for your buck.

14.11. Exact-Value Fields

The final topic that we should touch on before leaving multifield queries is
that of exact-value not_analyzed fields.

 It is not useful to mix
not_analyzed fields with analyzed fields in multi_match queries.
The reason for this can be demonstrated easily by looking at a query
explanation. Imagine that we have set the title field to be not_analyzed:
GET /_validate/query?explain
{
 "query": {
 "multi_match": {
 "query": "peter smith",
 "type": "cross_fields",
 "fields": ["title", "first_name", "last_name"]
 }
 }
}
Because the title field is not analyzed, it searches that field for a single
term consisting of the whole query string!
title:peter smith
(
 blended("peter", fields: [first_name, last_name])
 blended("smith", fields: [first_name, last_name])
)
That term clearly does not exist in the inverted index of the title field,
and can never be found. Avoid using not_analyzed fields in multi_match
queries.

Chapter 15. Proximity Matching

Standard full-text search with TF/IDF treats documents, or at least each field
within a document, as a big bag of words. The match query can tell us whether
that bag contains our search terms, but that is only part of the story.
It can’t tell us anything about the relationship between words.
Consider the difference between these sentences:
	
Sue ate the alligator.

	
The alligator ate Sue.

	
Sue never goes anywhere without her alligator-skin purse.

A match query for sue alligator would match all three documents, but it
doesn’t tell us whether the two words form part of the same idea, or even the same
paragraph.
Understanding how words relate to each other is a complicated problem, and
we can’t solve it by just using another type of query,
but we can at least find words that appear to be related because they appear
near each other or even right next to each other.
Each document may be much longer than the examples we have presented: Sue
and alligator may be separated by paragraphs of other text. Perhaps we still
want to return these documents in which the words are widely separated, but we
want to give documents in which the words are close together a higher relevance
score.
This is the province of phrase matching, or proximity matching.
Tip
In this chapter, we are using the same example documents that we used for
the match query.

15.1. Phrase Matching

In the same way that the match query is the go-to query for standard
full-text search, the match_phrase query
 is the one you should reach for
when you want to find words that are near each other:
GET /my_index/my_type/_search
{
 "query": {
 "match_phrase": {
 "title": "quick brown fox"
 }
 }
}
Like the match query, the match_phrase query first analyzes the query
string to produce a list of terms. It then searches for all the terms, but
keeps only documents that contain all of the search terms, in the same
positions relative to each other. A query for the phrase quick fox
would not match any of our documents, because no document contains the word
quick immediately followed by fox.
Tip
The match_phrase query can also be written as a match query with type
phrase:
"match": {
 "title": {
 "query": "quick brown fox",
 "type": "phrase"
 }
}

15.1.1. Term Positions

When a string is analyzed, the analyzer returns not

 only a list of terms, but
also the position, or order, of each term in the original string:
GET /_analyze?analyzer=standard
Quick brown fox
This returns the following:
{
 "tokens": [
 {
 "token": "quick",
 "start_offset": 0,
 "end_offset": 5,
 "type": "<ALPHANUM>",
 "position": 1 (1)
 },
 {
 "token": "brown",
 "start_offset": 6,
 "end_offset": 11,
 "type": "<ALPHANUM>",
 "position": 2 (2)
 },
 {
 "token": "fox",
 "start_offset": 12,
 "end_offset": 15,
 "type": "<ALPHANUM>",
 "position": 3 (3)
 }
]
}
	(1) (2) (3)
	
The position of each term in the original string.

Positions can be stored in the inverted index, and position-aware queries like
the match_phrase query can use them to match only documents that contain
all the words in exactly the order specified, with no words in-between.

15.1.2. What Is a Phrase

For a document to be considered a

 match for the phrase “quick brown fox”, the following must be true:
	
quick, brown, and fox must all appear in the field.

	
The position of brown must be 1 greater than the position of quick.

	
The position of fox must be 2 greater than the position of quick.

If any of these conditions is not met, the document is not considered a match.
Tip
Internally, the match_phrase query uses the low-level span query family to
do position-aware matching.
Span queries are term-level queries, so they have
no analysis phase; they search for the exact term specified.
Thankfully, most people never need to use the span queries directly, as the
match_phrase query is usually good enough. However, certain specialized
fields, like patent searches, use these low-level queries to perform very
specific, carefully constructed positional searches.

15.2. Mixing It Up

Requiring exact-phrase matches
may be too strict a constraint. Perhaps we do
want documents that contain “quick brown fox” to be considered a match for
the query “quick fox,” even though the positions aren’t exactly equivalent.
We can introduce a degree of flexibility into phrase matching by using the
slop parameter:
GET /my_index/my_type/_search
{
 "query": {
 "match_phrase": {
 "title": {
 "query": "quick fox",
 "slop": 1
 }
 }
 }
}
The slop parameter tells the match_phrase query how
 far apart terms are
allowed to be while still considering the document a match. By how far
apart we mean how many times do you need to move a term in order to make
the query and document match?
We’ll start with a simple example. To make the query quick fox match
a document containing quick brown fox we need a slop of just 1:
 Pos 1 Pos 2 Pos 3

Doc: quick brown fox

Query: quick fox
Slop 1: quick ↳ fox
Although all words need to be present in phrase matching, even when using slop,
the words don’t necessarily need to be in the same sequence in order to
match. With a high enough slop value, words can be arranged in any order.
To make the query fox quick match our document, we need a slop of 3:
 Pos 1 Pos 2 Pos 3

Doc: quick brown fox

Query: fox quick
Slop 1: fox|quick ↵ (1)
Slop 2: quick ↳ fox
Slop 3: quick ↳ fox
	(1)
	
Note that fox and quick occupy the same position in this step.
 Switching word order from fox quick to quick fox thus requires two
 steps, or a slop of 2.

15.3. Multivalue Fields

A curious thing can happen when you try to use phrase matching on multivalue
fields.

 Imagine that you index this document:
PUT /my_index/groups/1
{
 "names": ["John Abraham", "Lincoln Smith"]
}
Then run a phrase query for Abraham Lincoln:
GET /my_index/groups/_search
{
 "query": {
 "match_phrase": {
 "names": "Abraham Lincoln"
 }
 }
}
Surprisingly, our document matches, even though Abraham and Lincoln
belong to two different people in the names array. The reason for this comes
down to the way arrays are indexed in Elasticsearch.
When John Abraham is analyzed, it produces this:
	
Position 1: john

	
Position 2: abraham

Then when Lincoln Smith is analyzed, it produces this:
	
Position 3: lincoln

	
Position 4: smith

In other words, Elasticsearch produces exactly the same list of tokens as it would have
for the single string John Abraham Lincoln Smith. Our example query
looks for abraham directly followed by lincoln, and these two terms do
indeed exist, and they are right next to each other, so the query matches.
Fortunately, there is a simple workaround for cases like these, called the
position_increment_gap, which
 we need to configure in the field mapping:
DELETE /my_index/groups/ (1)

PUT /my_index/_mapping/groups (2)
{
 "properties": {
 "names": {
 "type": "string",
 "position_increment_gap": 100
 }
 }
}
	(1)
	
First delete the groups mapping and all documents of that type.

	(2)
	
Then create a new groups mapping with the correct values.

The position_increment_gap setting tells Elasticsearch that it should increase
the current term position by the specified value for every new array
element. So now, when we index the array of names, the terms are emitted with
the following positions:
	
Position 1: john

	
Position 2: abraham

	
Position 103: lincoln

	
Position 104: smith

Our phrase query would no longer match a document like this because abraham
and lincoln are now 100 positions apart. You would have to add a slop
value of 100 in order for this document to match.

15.4. Closer Is Better

Whereas a phrase query simply excludes documents that don’t contain the exact
query phrase, a proximity query—a

phrase query where slop is greater
than 0—incorporates the proximity of the query terms into the final
relevance _score. By setting a high slop value like 50 or 100, you can
exclude documents in which the words are really too far apart, but give a higher
score to documents in which the words are closer together.
The following proximity query for quick dog matches both documents that
contain the words quick and dog, but gives a higher score to the
document
 in which the words are nearer to each other:
POST /my_index/my_type/_search
{
 "query": {
 "match_phrase": {
 "title": {
 "query": "quick dog",
 "slop": 50 (1)
 }
 }
 }
}
	(1)
	
Note the high slop value.

{
 "hits": [
 {
 "_id": "3",
 "_score": 0.75, (1)
 "_source": {
 "title": "The quick brown fox jumps over the quick dog"
 }
 },
 {
 "_id": "2",
 "_score": 0.28347334, (2)
 "_source": {
 "title": "The quick brown fox jumps over the lazy dog"
 }
 }
]
}
	(1)
	
Higher score because quick and dog are close together

	(2)
	
Lower score because quick and dog are further apart

15.5. Proximity for Relevance

Although proximity queries are useful, the fact that they require all terms to be
present can make them overly strict.

 It’s the same issue that we discussed in
Section 13.3.2, “Controlling Precision” in Chapter 13, Full-Text Search: if six out of seven terms match,
a document is probably relevant enough to be worth showing to the user, but
the match_phrase query would exclude it.
Instead of using proximity matching as an absolute requirement, we can
use it as a signal—as one of potentially many queries, each of which
contributes to the overall score for each document (see Section 14.6, “Most Fields”).
The fact that we want to add together the scores from multiple queries implies
that we should combine them by using the bool query.

We can use a simple match query as a must clause. This is the query that
will determine which documents are included in our result set. We can trim
the long tail with the minimum_should_match parameter. Then we can add other,
more specific queries as should clauses. Every one that matches will
increase the relevance of the matching docs.
GET /my_index/my_type/_search
{
 "query": {
 "bool": {
 "must": {
 "match": { (1)
 "title": {
 "query": "quick brown fox",
 "minimum_should_match": "30%"
 }
 }
 },
 "should": {
 "match_phrase": { (2)
 "title": {
 "query": "quick brown fox",
 "slop": 50
 }
 }
 }
 }
 }
}
	(1)
	
The must clause includes or excludes documents from the result set.

	(2)
	
The should clause increases the relevance score of those documents that
 match.

We could, of course, include other queries in the should clause, where each
query targets a specific aspect of relevance.

15.6. Improving Performance

Phrase and proximity queries are more

expensive than simple match queries.
Whereas a match query just has to look up terms in the inverted index, a
match_phrase query has to calculate and compare the positions of multiple
possibly repeated terms.
The Lucene nightly
benchmarks show that a simple term query is about 10 times as fast as a
phrase query, and about 20 times as fast as a proximity query (a phrase query
with slop). And of course, this cost is paid at search time instead of at index time.
Tip
Usually the extra cost of phrase queries is not as scary as these numbers
suggest. Really, the difference in performance is a testimony to just how fast
a simple term query is. Phrase queries on typical full-text data usually
complete within a few milliseconds, and are perfectly usable in practice, even
on a busy cluster.
In certain pathological cases, phrase queries can be costly, but this is
unusual. An example of a pathological case is DNA sequencing, where there are
many many identical terms repeated in many positions. Using higher slop
values in this case results in a huge growth in the number of position
calculations.

So what can we do to limit the performance cost of phrase and proximity
queries? One useful approach is to reduce the total number of documents that
need to be examined by the phrase query.
15.6.1. Rescoring Results

In the preceding section, we discussed using proximity
queries just for relevance purposes, not to include or exclude results from
the result set.
 A query may match millions of results, but chances are that
our users are interested in only the first few pages of results.
A simple match query will already have ranked documents that contain all
search terms near the top of the list. Really, we just want to rerank the top
results to give an extra relevance bump to those documents that also match the
phrase query.
The search API supports exactly this functionality via rescoring. The
rescore phase allows you to apply a more expensive scoring algorithm—like a
phrase query—to just the top K results from each shard. These top
results are then resorted according to their new scores.
The request looks like this:
GET /my_index/my_type/_search
{
 "query": {
 "match": { (1)
 "title": {
 "query": "quick brown fox",
 "minimum_should_match": "30%"
 }
 }
 },
 "rescore": {
 "window_size": 50, (2)
 "query": { (3)
 "rescore_query": {
 "match_phrase": {
 "title": {
 "query": "quick brown fox",
 "slop": 50
 }
 }
 }
 }
 }
}
	(1)
	
The match query decides which results will be included in the final
 result set and ranks results according to TF/IDF.

	(2)
	
The window_size is the number of top results to rescore, per shard.

	(3)
	
The only rescoring algorithm currently supported is another query, but
 there are plans to add more algorithms later.

15.7. Finding Associated Words

As useful as phrase and proximity queries can be, they still have a downside.
They are overly strict: all terms must be present for a phrase query to match,
even when using slop.

The flexibility in word ordering that you gain with slop also comes at a
price, because you lose the association between word pairs. While you can
identify documents in which sue, alligator, and ate occur close together,
you can’t tell whether Sue ate or the alligator ate.
When words are used in conjunction with each other, they express an idea that
is bigger or more meaningful than each word in isolation. The two clauses
I’m not happy I’m working and I’m happy I’m not working contain the sames words, in
close proximity, but have quite different meanings.
If, instead of indexing each word independently, we were to index pairs of
words, then we could retain more of the context in which the words were used.
For the sentence Sue ate the alligator, we would not only index each word
(or unigram) as a term
["sue", "ate", "the", "alligator"]
but also each word and its neighbor as single terms:
["sue ate", "ate the", "the alligator"]
These word pairs (or bigrams) are known as shingles.
Tip
Shingles are not restricted to being pairs of words; you could index word
triplets (trigrams) as well:
["sue ate the", "ate the alligator"]
Trigrams give you a higher degree of precision, but greatly increase the
number of unique terms in the index. Bigrams are sufficient for most use
cases.

Of course, shingles are useful only if the user enters the query in the same
order as in the original document; a query for sue alligator would match
the individual words but none of our shingles.
Fortunately, users tend to express themselves using constructs similar to
those that appear in the data they are searching. But this point is an
important one: it is not enough to index just bigrams; we still need unigrams,
but we can use matching bigrams as a signal to increase the relevance score.
15.7.1. Producing Shingles

Shingles need to be created at index time as part of the analysis process.
 We
could index both unigrams and bigrams into a single field, but it is cleaner
to keep unigrams and bigrams in separate fields that can be queried
independently. The unigram field would form the basis of our search, with the
bigram field being used to boost relevance.
First, we need to create an analyzer that uses the shingle token filter:
DELETE /my_index

PUT /my_index
{
 "settings": {
 "number_of_shards": 1, (1)
 "analysis": {
 "filter": {
 "my_shingle_filter": {
 "type": "shingle",
 "min_shingle_size": 2, (2)
 "max_shingle_size": 2, (3)
 "output_unigrams": false (4)
 }
 },
 "analyzer": {
 "my_shingle_analyzer": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": [
 "lowercase",
 "my_shingle_filter" (5)
]
 }
 }
 }
 }
}
	(1)
	
See Section 13.8, “Relevance Is Broken!”.

	(2) (3)
	
The default min/max shingle size is 2 so we don’t really need to set
 these.

	(4)
	
The shingle token filter outputs unigrams by default, but we want to
 keep unigrams and bigrams separate.

	(5)
	
The my_shingle_analyzer uses our custom my_shingles_filter token
 filter.

First, let’s test that our analyzer is working as expected with the analyze
API:
GET /my_index/_analyze?analyzer=my_shingle_analyzer
Sue ate the alligator
Sure enough, we get back three terms:
	
sue ate

	
ate the

	
the alligator

Now we can proceed to setting up a field to use the new analyzer.

15.7.2. Multifields

We said that it is cleaner to index unigrams and bigrams separately, so we
will create the title field as a multifield (see Section 8.2, “String Sorting and Multifields”):
PUT /my_index/_mapping/my_type
{
 "my_type": {
 "properties": {
 "title": {
 "type": "string",
 "fields": {
 "shingles": {
 "type": "string",
 "analyzer": "my_shingle_analyzer"
 }
 }
 }
 }
 }
}
With this mapping, values from our JSON document in the field title will be
indexed both as unigrams (title) and as bigrams (title.shingles), meaning
that we can query these fields independently.
And finally, we can index our example documents:
POST /my_index/my_type/_bulk
{ "index": { "_id": 1 }}
{ "title": "Sue ate the alligator" }
{ "index": { "_id": 2 }}
{ "title": "The alligator ate Sue" }
{ "index": { "_id": 3 }}
{ "title": "Sue never goes anywhere without her alligator skin purse" }

15.7.3. Searching for Shingles

To understand the benefit
that the shingles field adds, let’s first look at
the results from a simple match query for “The hungry alligator ate Sue”:
GET /my_index/my_type/_search
{
 "query": {
 "match": {
 "title": "the hungry alligator ate sue"
 }
 }
}
This query returns all three documents, but note that documents 1 and 2
have the same relevance score because they contain the same words:
{
 "hits": [
 {
 "_id": "1",
 "_score": 0.44273707, (1)
 "_source": {
 "title": "Sue ate the alligator"
 }
 },
 {
 "_id": "2",
 "_score": 0.44273707, (2)
 "_source": {
 "title": "The alligator ate Sue"
 }
 },
 {
 "_id": "3", (3)
 "_score": 0.046571054,
 "_source": {
 "title": "Sue never goes anywhere without her alligator skin purse"
 }
 }
]
}
	(1) (2)
	
Both documents contain the, alligator, and ate and so have the
 same score.

	(3)
	
We could have excluded document 3 by setting the minimum_should_match
 parameter. See Section 13.3.2, “Controlling Precision”.

Now let’s add the shingles field into the query. Remember that we want
matches on the shingles field to act as a signal—to increase the
relevance score—so we still need to include the query on the main title
field:
GET /my_index/my_type/_search
{
 "query": {
 "bool": {
 "must": {
 "match": {
 "title": "the hungry alligator ate sue"
 }
 },
 "should": {
 "match": {
 "title.shingles": "the hungry alligator ate sue"
 }
 }
 }
 }
}
We still match all three documents, but document 2 has now been bumped into
first place because it matched the shingled term ate sue.
{
 "hits": [
 {
 "_id": "2",
 "_score": 0.4883322,
 "_source": {
 "title": "The alligator ate Sue"
 }
 },
 {
 "_id": "1",
 "_score": 0.13422975,
 "_source": {
 "title": "Sue ate the alligator"
 }
 },
 {
 "_id": "3",
 "_score": 0.014119488,
 "_source": {
 "title": "Sue never goes anywhere without her alligator skin purse"
 }
 }
]
}
Even though our query included the word hungry, which doesn’t appear in
any of our documents, we still managed to use word proximity to return the
most relevant document first.

15.7.4. Performance

Not only are shingles more flexible than phrase queries,
 but they perform better
as well. Instead of paying the price of a phrase query every time you search,
queries for shingles are just as efficient as a simple match query. A small price is paid at index time, because more terms need to
be indexed, which also means that fields with shingles use more disk space.
However, most applications write once and read many times, so it makes sense
to optimize for fast queries.
This is a theme that you will encounter frequently in Elasticsearch: enables you to achieve a lot at search time, without requiring any up-front
setup. Once you understand your requirements more clearly, you can achieve better results with better performance by modeling your data correctly at index time.

Chapter 16. Partial Matching

A keen observer will notice that all the queries so far in this book have
operated on whole terms. To match something, the smallest unit had to be a
single term. You can find only terms that exist in the inverted index.
But what happens if you want to match parts of a term but not the whole thing?
Partial matching allows users to specify a portion of the term they are
looking for and find any words that contain that fragment.
The requirement to match on part of a term is less common in the full-text
search-engine world than you might think. If you have come from an SQL
background, you likely have, at some stage of your career,
implemented a poor man’s full-text search using SQL constructs like this:
 WHERE text LIKE "%quick%"
 AND text LIKE "%brown%"
 AND text LIKE "%fox%" (1)
	(1)
	
fox would match “fox” and “foxes.”

Of course, with Elasticsearch, we have the analysis process and the inverted
index that remove the need for such brute-force techniques. To handle the
case of matching both “fox” and “foxes,” we could simply use a stemmer to
index words in their root form. There is no need to match partial terms.
That said, on some occasions partial matching can be useful.
Common use
cases include the following:
	
Matching postal codes, product serial numbers, or other not_analyzed values
 that start with a particular prefix or match a wildcard pattern
 or even a regular expression

	
search-as-you-type—displaying the most likely results before the
 user has finished typing the search terms

	
Matching in languages like German or Dutch, which contain long compound
 words, like Weltgesundheitsorganisation (World Health Organization)

We will start by examining prefix matching on exact-value not_analyzed
fields.
16.1. Postcodes and Structured Data

We will use United Kingdom postcodes (postal codes in the United States) to illustrate how
 to use partial matching with
structured data. UK postcodes have a well-defined structure. For instance, the
postcode W1V 3DG can be broken down as follows:
	
W1V: This outer part identifies the postal area and district:

	
W indicates the area (one or two letters)

	
1V indicates the district (one or two numbers, possibly followed by a letter)

	
3DG: This inner part identifies a street or building:

	
3 indicates the sector (one number)

	
DG indicates the unit (two letters)

Let’s assume that we are indexing postcodes as exact-value not_analyzed
fields, so we could create our index as follows:
PUT /my_index
{
 "mappings": {
 "address": {
 "properties": {
 "postcode": {
 "type": "string",
 "index": "not_analyzed"
 }
 }
 }
 }
}
And index some
postcodes:
PUT /my_index/address/1
{ "postcode": "W1V 3DG" }

PUT /my_index/address/2
{ "postcode": "W2F 8HW" }

PUT /my_index/address/3
{ "postcode": "W1F 7HW" }

PUT /my_index/address/4
{ "postcode": "WC1N 1LZ" }

PUT /my_index/address/5
{ "postcode": "SW5 0BE" }
Now our data is ready to be queried.

16.2. prefix Query

To find all postcodes beginning with W1, we could use a
simple prefix
query:
GET /my_index/address/_search
{
 "query": {
 "prefix": {
 "postcode": "W1"
 }
 }
}
The prefix query is a low-level query that works at the term level. It
doesn’t analyze the query string before searching. It assumes that you have
passed it the exact prefix that you want to find.
Tip
By default, the prefix query does no relevance scoring. It just finds
matching documents and gives them all a score of 1. Really, it behaves more
like a filter than a query. The only practical difference between the
prefix query and the prefix filter is that the filter can be cached.

Previously, we said that “you can find only terms that exist in the inverted
index,” but we haven’t done anything special to index these postcodes; each
postcode is simply indexed as the exact value specified in each document. So
how does the prefix query work?
Remember that the inverted index consists
 of a sorted list of unique terms (in
this case, postcodes). For each term, it lists the IDs of the documents
containing that term in the postings list. The inverted index for our
example documents looks something like this:
Term: Doc IDs:

"SW5 0BE" | 5
"W1F 7HW" | 3
"W1V 3DG" | 1
"W2F 8HW" | 2
"WC1N 1LZ" | 4

To support prefix matching on the fly, the query does the following:
	
Skips through the terms list to find the first term beginning with W1.

	
Collects the associated document IDs.

	
Moves to the next term.

	
If that term also begins with W1, the query repeats from step 2; otherwise, we’re finished.

While this works fine for our small example, imagine that our inverted index
contains a million postcodes beginning with W1. The prefix query
would need to visit all one million terms in order to calculate the result!
And the shorter the prefix, the more terms need to be visited. If we were to
look for the prefix W instead of W1, perhaps we would match 10 million
terms instead of just one million.
Caution
The prefix query or filter are useful for ad hoc prefix matching, but
should be used with care.
 They can be used freely on fields with a small
number of terms, but they scale poorly and can put your cluster under a lot of
strain. Try to limit their impact on your cluster by using a long prefix;
this reduces the number of terms that need to be visited.

Later in this chapter, we present an alternative index-time solution that
makes prefix matching much more efficient. But first, we’ll take a look at
two related queries: the wildcard and regexp queries.

16.3. wildcard and regexp Queries

The wildcard query is a low-level, term-based query
similar in nature to the
prefix query, but it allows you to specify a pattern instead of just a prefix.
It uses the standard shell wildcards: ? matches any character, and *
matches zero or more characters.

This query would match the documents containing W1F 7HW and W2F 8HW:
GET /my_index/address/_search
{
 "query": {
 "wildcard": {
 "postcode": "W?F*HW" (1)
 }
 }
}
	(1)
	
The ? matches the 1 and the 2, while the * matches the space
 and the 7 and 8.

Imagine now that you want to match all postcodes just in the W area. A
prefix match would also include postcodes starting with WC, and you would
have a similar problem with a wildcard match. We want to match only postcodes
that begin with a W, followed by a number.
 The regexp query allows you to
write these more complicated patterns:
GET /my_index/address/_search
{
 "query": {
 "regexp": {
 "postcode": "W[0-9].+" (1)
 }
 }
}
	(1)
	
The regular expression says that the term must begin with a W, followed
 by any number from 0 to 9, followed by one or more other characters.

The wildcard and regexp queries work in exactly the same way as the
prefix query. They also have to scan the list of terms in the inverted
index to find all matching terms, and gather document IDs term by term. The
only difference between them and the prefix query is that they support more-complex patterns.
This means that the same caveats apply. Running these queries on a field with
many unique terms can be resource intensive indeed. Avoid using a
pattern that starts with a wildcard (for example, *foo or, as a regexp, .*foo).
Whereas prefix matching can be made more efficient by preparing your data at
index time, wildcard and regular expression matching can be done only
at query time. These queries have their place but should be used sparingly.
Caution
The prefix, wildcard, and regexp queries operate on terms. If you use
them to query an analyzed field, they will examine each term in the
field, not the field as a whole.

For instance, let’s say that our title field contains “Quick brown fox”
which produces the terms quick, brown, and fox.
This query would match:
{ "regexp": { "title": "br.*" }}
But neither of these queries would match:
{ "regexp": { "title": "Qu.*" }} (1)
{ "regexp": { "title": "quick br*" }} (2)
	(1)
	
The term in the index is quick, not Quick.

	(2)
	
quick and brown are separate terms.

16.4. Query-Time Search-as-You-Type

Leaving postcodes behind, let’s take a look at how prefix matching can help
with full-text queries.
 Users have become accustomed to seeing search results
before they have finished typing their query—so-called instant search, or
search-as-you-type. Not only do users receive their search results in less
time, but we can guide them toward results that actually exist in our index.
For instance, if a user types in johnnie walker bl, we would like to show results for Johnnie Walker Black Label and Johnnie Walker Blue
Label before they can finish typing their query.
As always, there are more ways than one to skin a cat! We will start by
looking at the way that is simplest to implement. You don’t need to prepare your
data in any way; you can implement search-as-you-type at query time on any
full-text field.
In Section 15.1, “Phrase Matching”, we introduced the match_phrase query, which matches
all the specified words in the same positions relative to each other. For-query time search-as-you-type, we can use a specialization of this query,
called
the match_phrase_prefix query:
{
 "match_phrase_prefix" : {
 "brand" : "johnnie walker bl"
 }
}
This query behaves in the same way as the match_phrase query, except that it
treats the last word in the query string as a prefix. In other words, the
preceding example would look for the following:
	
johnnie

	
Followed by walker

	
Followed by words beginning with bl

If you were to run this query through the validate-query API, it would
produce this explanation:
"johnnie walker bl*"
Like the match_phrase query, it accepts a slop parameter (see Section 15.2, “Mixing It Up”) to
make the word order and relative positions

somewhat less rigid:
{
 "match_phrase_prefix" : {
 "brand" : {
 "query": "walker johnnie bl", (1)
 "slop": 10
 }
 }
}
	(1)
	
Even though the words are in the wrong order, the query still matches
 because we have set a high enough slop value to allow some flexibility
 in word positions.

However, it is always only the last word in the query string that is treated
as a prefix.
Earlier, in Section 16.2, “prefix Query”, we warned about the perils of the prefix—how
prefix queries can be resource intensive. The same is true in this
case.
 A prefix of a could match hundreds of thousands of terms. Not only
would matching on this many terms be resource intensive, but it would also not be
useful to the user.
We can limit the impact
of the prefix expansion by setting max_expansions to
a reasonable number, such as 50:
{
 "match_phrase_prefix" : {
 "brand" : {
 "query": "johnnie walker bl",
 "max_expansions": 50
 }
 }
}
The max_expansions parameter controls how many terms the prefix is allowed
to match. It will find the first term starting with bl and keep collecting
terms (in alphabetical order) until it either runs out of terms with prefix
bl, or it has more terms than max_expansions.
Don’t forget that we have to run this query every time the user types another
character, so it needs to be fast. If the first set of results isn’t what users are after, they’ll keep typing until they get the results that they want.

16.5. Index-Time Optimizations

All of the solutions we’ve talked about so far are implemented at
query time.
They don’t require any special mappings or indexing patterns;
they simply work with the data that you’ve already indexed.
The flexibility of query-time operations comes at a cost: search performance.
Sometimes it may make sense to move the cost away from the query. In a real-
time web application, an additional 100ms may be too much latency to tolerate.
By preparing your data at index time, you can make your searches more flexible
and improve performance. You still pay a price: increased index size and
slightly slower indexing throughput, but it is a price you pay once at index
time, instead of paying it on every query.
Your users will thank you.

16.6. Ngrams for Partial Matching

As we have said before, “You can find only terms that exist in the inverted
index.” Although the prefix, wildcard, and regexp queries demonstrated that
that is not strictly true, it is true that doing a single-term lookup is
much faster than iterating through the terms list to find matching terms on
the fly.

 Preparing your data for partial matching ahead of time will increase
your search performance.
Preparing your data at index time means choosing the right analysis chain, and
the tool that we use for partial matching is the n-gram. An n-gram can be
best thought of as a moving window on a word. The n stands for a length.
If we were to n-gram the word quick, the results would depend on the length
we have chosen:
	
Length 1 (unigram): [q, u, i, c, k]

	
Length 2 (bigram): [qu, ui, ic, ck]

	
Length 3 (trigram): [qui, uic, ick]

	
Length 4 (four-gram): [quic, uick]

	
Length 5 (five-gram): [quick]

Plain n-grams are useful for matching somewhere within a word, a technique
that we will use in Section 16.8, “Ngrams for Compound Words”. However, for search-as-you-type,
we use a specialized form of n-grams called edge n-grams. Edge
n-grams are anchored to the beginning of the word. Edge n-gramming the word
quick would result in this:
	
q

	
qu

	
qui

	
quic

	
quick

You may notice that this conforms exactly to the letters that a user searching for “quick” would type. In other words, these are the
perfect terms to use for instant search!

16.7. Index-Time Search-as-You-Type

The first step to setting up index-time search-as-you-type is to

 define our
analysis chain, which we discussed in Section 10.4, “Configuring Analyzers”, but we will
go over the steps again here.
16.7.1. Preparing the Index

The first step is to configure a

custom edge_ngram token filter, which we
will call the autocomplete_filter:
{
 "filter": {
 "autocomplete_filter": {
 "type": "edge_ngram",
 "min_gram": 1,
 "max_gram": 20
 }
 }
}
This configuration says that, for any term that this token filter receives,
it should produce an n-gram anchored to the start of the word of minimum
length 1 and maximum length 20.
Then we need to use this token filter in a custom analyzer,
 which we will call
the autocomplete analyzer:
{
 "analyzer": {
 "autocomplete": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": [
 "lowercase",
 "autocomplete_filter" (1)
]
 }
 }
}
	(1)
	
Our custom edge-ngram token filter

This analyzer will tokenize a string into individual terms by using the
standard tokenizer, lowercase each term, and then produce edge n-grams of each
term, thanks to our autocomplete_filter.
The full request to create the index and instantiate the token filter and
analyzer looks like this:
PUT /my_index
{
 "settings": {
 "number_of_shards": 1, (1)
 "analysis": {
 "filter": {
 "autocomplete_filter": { (2)
 "type": "edge_ngram",
 "min_gram": 1,
 "max_gram": 20
 }
 },
 "analyzer": {
 "autocomplete": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": [
 "lowercase",
 "autocomplete_filter" (3)
]
 }
 }
 }
 }
}
	(1)
	
See Section 13.8, “Relevance Is Broken!”.

	(2)
	
First we define our custom token filter.

	(3)
	
Then we use it in an analyzer.

You can test this new analyzer to make sure it is behaving correctly by using
the analyze API:
GET /my_index/_analyze
{
 "analyzer": "autocomplete",
 "text": "quick brown"
}
The results show us that the analyzer is working correctly. It returns these
terms:
	
q

	
qu

	
qui

	
quic

	
quick

	
b

	
br

	
bro

	
brow

	
brown

To use the analyzer, we need to apply it to a field, which we can do
with the update-mapping API:
PUT /my_index/_mapping/my_type
{
 "my_type": {
 "properties": {
 "name": {
 "type": "string",
 "analyzer": "autocomplete"
 }
 }
 }
}
Now, we can index some test documents:
POST /my_index/my_type/_bulk
{ "index": { "_id": 1 }}
{ "name": "Brown foxes" }
{ "index": { "_id": 2 }}
{ "name": "Yellow furballs" }

16.7.2. Querying the Field

If you test out a query for “brown fo” by using

a simple match query
GET /my_index/my_type/_search
{
 "query": {
 "match": {
 "name": "brown fo"
 }
 }
}
you will see that both documents match, even though the Yellow furballs
doc contains neither brown nor fo:
{

 "hits": [
 {
 "_id": "1",
 "_score": 1.5753809,
 "_source": {
 "name": "Brown foxes"
 }
 },
 {
 "_id": "2",
 "_score": 0.012520773,
 "_source": {
 "name": "Yellow furballs"
 }
 }
]
}
As always, the validate-query API shines some light:
GET /my_index/my_type/_validate/query?explain
{
 "query": {
 "match": {
 "name": "brown fo"
 }
 }
}
The explanation shows us that the query is looking for edge n-grams of every
word in the query string:
name:b name:br name:bro name:brow name:brown name:f name:fo
The name:f condition is satisfied by the second document because
furballs has been indexed as f, fu, fur, and so forth. In retrospect, this
is not surprising. The same autocomplete analyzer is being applied both at
index time and at search time, which in most situations is the right thing to
do. This is one of the few occasions when it makes sense to break this rule.
We want to ensure that our inverted index contains edge n-grams of every word,
but we want to match only the full words that the user has entered (brown and fo).
 We can do this by using the autocomplete analyzer at
index time and the standard analyzer at search time. One way to change the
search analyzer is just to specify it in the query:
GET /my_index/my_type/_search
{
 "query": {
 "match": {
 "name": {
 "query": "brown fo",
 "analyzer": "standard" (1)
 }
 }
 }
}
	(1)
	
This overrides the analyzer setting on the name field.

Alternatively, we can specify the analyzer and search_analyzer in
the mapping for the name field itself. Because we want to change only the
search_analyzer, we can update the existing mapping without having to
reindex our data:
PUT /my_index/my_type/_mapping
{
 "my_type": {
 "properties": {
 "name": {
 "type": "string",
 "analyzer": "autocomplete", (1)
 "search_analyzer": "standard" (2)
 }
 }
 }
}
	(1)
	
Use the autocomplete analyzer at index time to produce edge n-grams of
 every term.

	(2)
	
Use the standard analyzer at search time to search only on the terms
 that the user has entered.

If we were to repeat the validate-query request, it would now give us this
explanation:
name:brown name:fo
Repeating our query correctly returns just the Brown foxes
document.
Because most of the work has been done at index time, all this query needs to
do is to look up the two terms brown and fo, which is much more efficient
than the match_phrase_prefix approach of having to find all terms beginning
with fo.
Completion Suggester

Using edge n-grams for search-as-you-type is easy to set up, flexible, and
fast. However, sometimes it is not fast enough. Latency matters, especially
when you are trying to provide instant feedback. Sometimes the fastest way of
searching is not to search at all.
The completion suggester in
Elasticsearch takes a completely different approach. You feed it a list
of all possible completions, and it builds them into a finite state
transducer, an optimized data structure that resembles a big graph. To
search for suggestions, Elasticsearch starts at the beginning of the graph and
moves character by character along the matching path. Once it has run out of
user input, it looks at all possible endings of the current path to produce a
list of suggestions.
This data structure lives in memory and makes prefix lookups extremely fast,
much faster than any term-based query could be. It is an excellent match for
autocompletion of names and brands, whose words are usually organized in a
common order: “Johnny Rotten” rather than “Rotten Johnny.”
When word order is less predictable, edge n-grams can be a better solution
than the completion suggester. This particular cat may be skinned in myriad
ways.

16.7.3. Edge n-grams and Postcodes

The edge n-gram approach can

 also be used for structured data, such as the
postcodes example from earlier in this chapter. Of course,
the postcode field would need to be analyzed instead of not_analyzed, but
you could use the keyword tokenizer

 to treat the postcodes as if they were
not_analyzed.
Tip
The keyword tokenizer is the no-operation tokenizer, the tokenizer that does
nothing. Whatever string it receives as input, it emits exactly the same
string as a single token. It can therefore be used for values that we would
normally treat as not_analyzed but that require some other analysis
transformation such as lowercasing.

This example uses the keyword tokenizer to convert the postcode string into a token stream, so that we can use the edge n-gram token filter:
{
 "analysis": {
 "filter": {
 "postcode_filter": {
 "type": "edge_ngram",
 "min_gram": 1,
 "max_gram": 8
 }
 },
 "analyzer": {
 "postcode_index": { (1)
 "tokenizer": "keyword",
 "filter": ["postcode_filter"]
 },
 "postcode_search": { (2)
 "tokenizer": "keyword"
 }
 }
 }
}
	(1)
	
The postcode_index analyzer would use the postcode_filter
 to turn postcodes into edge n-grams.

	(2)
	
The postcode_search analyzer would treat search terms as
 if they were not_analyzed.

16.8. Ngrams for Compound Words

Finally, let’s take a look at how n-grams can be used to search languages with
compound words.

 German is famous for combining several small words into one
massive compound word in order to capture precise or complex meanings. For
example:
	
Aussprachewörterbuch

	
 Pronunciation dictionary

	
Militärgeschichte

	
 Military history

	
Weißkopfseeadler

	
 White-headed sea eagle, or bald eagle

	
Weltgesundheitsorganisation

	
 World Health Organization

	
Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz

	
 The law concerning the delegation of duties for the supervision of cattle
 marking and the labeling of beef

Somebody searching for “Wörterbuch” (dictionary) would probably expect to
see “Aussprachewörtebuch” in the results list. Similarly, a search for
“Adler” (eagle) should include “Weißkopfseeadler.”
One approach to indexing languages like this is to break compound words into
their constituent parts using the compound word token filter.
However, the quality of the results depends on how good your compound-word
dictionary is.
Another approach is just to break all words into n-grams and to search for any
matching fragments—the more fragments that match, the more relevant the
document.
Given that an n-gram is a moving window on a word, an n-gram of any length
will cover all of the word. We want to choose a length that is long enough
to be meaningful, but not so long that we produce far too many unique terms.
A trigram (length 3) is probably a good starting point:
PUT /my_index
{
 "settings": {
 "analysis": {
 "filter": {
 "trigrams_filter": {
 "type": "ngram",
 "min_gram": 3,
 "max_gram": 3
 }
 },
 "analyzer": {
 "trigrams": {
 "type": "custom",
 "tokenizer": "standard",
 "filter": [
 "lowercase",
 "trigrams_filter"
]
 }
 }
 }
 },
 "mappings": {
 "my_type": {
 "properties": {
 "text": {
 "type": "string",
 "analyzer": "trigrams" (1)
 }
 }
 }
 }
}
	(1)
	
The text field uses the trigrams analyzer to index its contents as
 n-grams of length 3.

Testing the trigrams analyzer with the analyze API
GET /my_index/_analyze?analyzer=trigrams
Weißkopfseeadler
returns these terms:
wei, eiß, ißk, ßko, kop, opf, pfs, fse, see, eea,ead, adl, dle, ler
We can index our example compound words to test this approach:
POST /my_index/my_type/_bulk
{ "index": { "_id": 1 }}
{ "text": "Aussprachewörterbuch" }
{ "index": { "_id": 2 }}
{ "text": "Militärgeschichte" }
{ "index": { "_id": 3 }}
{ "text": "Weißkopfseeadler" }
{ "index": { "_id": 4 }}
{ "text": "Weltgesundheitsorganisation" }
{ "index": { "_id": 5 }}
{ "text": "Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz" }
A search for “Adler” (eagle) becomes a query for the three terms adl, dle,
and ler:
GET /my_index/my_type/_search
{
 "query": {
 "match": {
 "text": "Adler"
 }
 }
}
which correctly matches “Weißkopfsee-adler”:
{
 "hits": [
 {
 "_id": "3",
 "_score": 3.3191128,
 "_source": {
 "text": "Weißkopfseeadler"
 }
 }
]
}
A similar query for “Gesundheit” (health) correctly matches
“Welt-gesundheit-sorganisation,” but it also matches
“Militär-ges-chichte” and
“Rindfleischetikettierungsüberwachungsaufgabenübertragungs-ges-etz,”
both of which also contain the trigram ges.
Judicious use of the minimum_should_match parameter can remove these
spurious results by requiring that a minimum number of trigrams must be
present for a document to be considered a match:
GET /my_index/my_type/_search
{
 "query": {
 "match": {
 "text": {
 "query": "Gesundheit",
 "minimum_should_match": "80%"
 }
 }
 }
}
This is a bit of a shotgun approach to full-text search and can result in a
large inverted index, but it is an effective generic way of indexing languages
that use many compound words or that don’t use whitespace between words,
such as Thai.
This technique is used to increase recall—the number of relevant
documents that a search returns. It is usually used in combination with
other techniques, such as shingles (see Section 15.7, “Finding Associated Words”) to improve precision and
the relevance score of each document.

Chapter 17. Controlling Relevance

Databases that deal purely in structured data (such as dates, numbers, and
string enums) have it easy: they
 just have to check whether a document (or a
row, in a relational database) matches the query.
While Boolean yes/no matches are an essential part of full-text search, they
are not enough by themselves. Instead, we also need to know how relevant each
document is to the query. Full-text search engines have to not only find the
matching documents, but also sort them by relevance.
Full-text relevance formulae, or similarity algorithms, combine several
factors to produce a single relevance _score for each document. In this
chapter, we examine the various moving parts and discuss how they can be
controlled.
Of course, relevance is not just about full-text queries; it may need to
take structured data into account as well. Perhaps we are looking for a
vacation home with particular features (air-conditioning, sea view, free
WiFi). The more features that a property has, the more relevant it is. Or
perhaps we want to factor in sliding scales like recency, price, popularity, or
distance, while still taking the relevance of a full-text query into account.
All of this is possible thanks to the powerful scoring infrastructure
available in Elasticsearch.
We will start by looking at the theoretical side of how Lucene calculates
relevance, and then move on to practical examples of how you can control the
process.
17.1. Theory Behind Relevance Scoring

Lucene (and thus Elasticsearch) uses the
Boolean model
to find matching documents,
 and a formula called the
practical scoring function
to calculate relevance. This formula borrows concepts from
term frequency/inverse document frequency and the
vector space model
but adds more-modern features like a coordination factor, field length
normalization, and term or query clause boosting.
Note
Don’t be alarmed! These concepts are not as complicated as the names make
them appear. While this section mentions algorithms, formulae, and mathematical
models, it is intended for consumption by mere humans. Understanding the
algorithms themselves is not as important as understanding the factors that
influence the outcome.

17.1.1. Boolean Model

The Boolean model simply applies the AND, OR, and NOT conditions
expressed in the query to find all the documents that match. A query for
full AND text AND search AND (elasticsearch OR lucene)
will include only documents that contain all of the terms full, text, and
search, and either elasticsearch or lucene.
This process is simple and fast. It is used to exclude any documents that
cannot possibly match the query.

17.1.2. Term Frequency/Inverse Document Frequency (TF/IDF)

Once we have a list of matching documents, they need to be ranked by
relevance. Not all documents will contain all the terms, and some terms are
more important than others. The relevance score of the whole document
depends (in part) on the weight of each query term that appears in
that document.
The weight of a term is determined by three factors, which we already
introduced in Section 8.3, “What Is Relevance?”. The formulae are included for interest’s
sake, but you are not required to remember them.
Term frequency

How often does the term appear in this document?
 The more often, the
higher the weight. A field containing five mentions of the same term is
more likely to be relevant than a field containing just one mention.
The term frequency is calculated as follows:
tf(t in d) = √frequency (1)
	(1)
	
The term frequency (tf) for term t in document d is the square root
 of the number of times the term appears in the document.

If you don’t care about how often a term appears in a field, and all you care
about is that the term is present, then you can disable term frequencies in
the field mapping:
PUT /my_index
{
 "mappings": {
 "doc": {
 "properties": {
 "text": {
 "type": "string",
 "index_options": "docs" (1)
 }
 }
 }
 }
}
	(1)
	
Setting index_options to docs will disable term frequencies and term
 positions. A field with this mapping will not count how many times a term
 appears, and will not be usable for phrase or proximity queries.
 Exact-value not_analyzed string fields use this setting by default.

Inverse document frequency

How often does the term appear in all documents in the collection? The more
often, the lower the weight.
 Common terms like and or the contribute
little to relevance, as they appear in most documents, while uncommon terms
like elastic or hippopotamus help us zoom in on the most interesting
documents. The inverse document frequency is calculated as follows:
idf(t) = 1 + log (numDocs / (docFreq + 1)) (1)
	(1)
	
The inverse document frequency (idf) of term t is the
 logarithm of the number of documents in the index, divided by
 the number of documents that contain the term.

Field-length norm

How long is the field?
The shorter the field, the higher the weight. If a
term appears in a short field, such as a title field, it is more likely that
the content of that field is about the term than if the same term appears
in a much bigger body field. The field length norm is calculated as follows:
norm(d) = 1 / √numTerms (1)
	(1)
	
The field-length norm (norm) is the inverse square root of the number of terms
 in the field.

While the field-length
norm is important for full-text search, many other
fields don’t need norms. Norms consume approximately 1 byte per string field
per document in the index, whether or not a document contains the field. Exact-value not_analyzed string fields have norms disabled by default,
but you can use the field mapping to disable norms on analyzed fields as
well:
PUT /my_index
{
 "mappings": {
 "doc": {
 "properties": {
 "text": {
 "type": "string",
 "norms": { "enabled": false } (1)
 }
 }
 }
 }
}
	(1)
	
This field will not take the field-length norm into account. A long field
 and a short field will be scored as if they were the same length.

For use cases such as logging, norms are not useful. All you care about is
whether a field contains a particular error code or a particular browser
identifier. The length of the field does not affect the outcome. Disabling
norms can save a significant amount of memory.

Putting it together

These three factors—term frequency, inverse document frequency, and field-length norm—are calculated and stored at index time.
 Together, they are
used to calculate the weight of a single term in a particular document.
Tip
When we refer to documents in the preceding formulae, we are actually talking about
a field within a document. Each field has its own inverted index and thus,
for TF/IDF purposes, the value of the field is the value of the document.

When we run a simple term query with explain set to true (see
Section 8.3.1, “Understanding the Score”), you will see that the only factors involved in calculating the
score are the ones explained in the preceding sections:
PUT /my_index/doc/1
{ "text" : "quick brown fox" }

GET /my_index/doc/_search?explain
{
 "query": {
 "term": {
 "text": "fox"
 }
 }
}
The (abbreviated) explanation from the preceding request is as follows:
weight(text:fox in 0) [PerFieldSimilarity]: 0.15342641 (1)
result of:
 fieldWeight in 0 0.15342641
 product of:
 tf(freq=1.0), with freq of 1: 1.0 (2)
 idf(docFreq=1, maxDocs=1): 0.30685282 (3)
 fieldNorm(doc=0): 0.5 (4)
	(1)
	
The final score for term fox in field text in the document with internal
 Lucene doc ID 0.

	(2)
	
The term fox appears once in the text field in this document.

	(3)
	
The inverse document frequency of fox in the text field in all
 documents in this index.

	(4)
	
The field-length normalization factor for this field.

Of course, queries usually consist of more than one term, so we need a
way of combining the weights of multiple terms. For this, we turn to the
vector space model.

17.1.3. Vector Space Model

The vector space model provides a way of comparing a multiterm query
against a document. The output is a single score that represents how well the
document matches the query. In order to do this, the model represents both the document
and the query as vectors.
A vector is really just a one-dimensional array containing numbers, for example:
[1,2,5,22,3,8]
In the vector space
 model, each number in the vector is

 the weight of a term,
as calculated with term frequency/inverse document frequency.
Tip
While TF/IDF is the default way of calculating term weights for the vector
space model, it is not the only way. Other models like Okapi-BM25 exist and
are available in Elasticsearch. TF/IDF is the default because it is a
simple, efficient algorithm that produces high-quality search results and
has stood the test of time.

Imagine that we have a query for “happy hippopotamus.” A common word like
happy will have a low weight, while an uncommon term like hippopotamus
will have a high weight. Let’s assume that happy has a weight of 2 and
hippopotamus has a weight of 5. We can plot this simple two-dimensional
vector—[2,5]—as a line on a graph starting at point (0,0) and
ending at point (2,5), as shown in Figure 17.1, “A two-dimensional query vector for “happy hippopotamus” represented”.
Figure 17.1. A two-dimensional query vector for “happy hippopotamus” represented
[image: The query vector plotted on a graph]

Now, imagine we have three documents:
	
I am happy in summer.

	
After Christmas I’m a hippopotamus.

	
The happy hippopotamus helped Harry.

We can create a similar vector for each document, consisting of the weight of
each query term—happy and hippopotamus—that appears in the
document, and plot these vectors on the same graph, as shown in Figure 17.2, “Query and document vectors for “happy hippopotamus””:
	
Document 1: (happy,____________)—[2,0]

	
Document 2: (___ ,hippopotamus)—[0,5]

	
Document 3: (happy,hippopotamus)—[2,5]

Figure 17.2. Query and document vectors for “happy hippopotamus”
[image: The query and document vectors plotted on a graph]

The nice thing about vectors is that they can be compared. By measuring the
angle between the query vector and the document vector, it is possible to
assign a relevance score to each document. The angle between document 1 and
the query is large, so it is of low relevance. Document 2 is closer to the
query, meaning that it is reasonably relevant, and document 3 is a perfect
match.
Tip
In practice, only two-dimensional vectors (queries with two terms) can be
plotted easily on a graph. Fortunately, linear algebra—the branch of
mathematics that deals with vectors—provides tools to compare the
angle between multidimensional vectors, which means that we can apply the
same principles explained above to queries that consist of many terms.
You can read more about how to compare two vectors by using cosine similarity.

Now that we have talked about the theoretical basis of scoring, we can move on
to see how scoring is implemented in Lucene.

17.2. Lucene’s Practical Scoring Function

For multiterm queries, Lucene takes

 the Boolean model,
TF/IDF, and the vector space model and
combines them in a single efficient package that collects matching
documents and scores them as it goes.
A multiterm query like
GET /my_index/doc/_search
{
 "query": {
 "match": {
 "text": "quick fox"
 }
 }
}
is rewritten internally to look like this:
GET /my_index/doc/_search
{
 "query": {
 "bool": {
 "should": [
 {"term": { "text": "quick" }},
 {"term": { "text": "fox" }}
]
 }
 }
}
The bool query implements the Boolean model and, in this example, will
include only documents that contain either the term quick or the term fox or
both.
As soon as a document matches a query, Lucene calculates its score for that
query, combining the scores of each matching term. The formula used for
scoring is called the practical scoring function. It looks intimidating, but
don’t be put off—most of the components you already know. It introduces a
few new elements that we discuss next.
score(q,d) = (1)
 queryNorm(q) (2)
 · coord(q,d) (3)
 · ∑ ((4)
 tf(t in d) (5)
 · idf(t)² (6)
 · t.getBoost() (7)
 · norm(t,d) (8)
) (t in q) (9)
	(1)
	
score(q,d) is the relevance score of document d for query q.

	(2)
	
queryNorm(q) is the query normalization factor (new).

	(3)
	
coord(q,d) is the coordination factor (new).

	(4) (9)
	
The sum of the weights for each term t in the query q for document d.

	(5)
	
tf(t in d) is the term frequency for term t in document d.

	(6)
	
idf(t) is the inverse document frequency for term t.

	(7)
	
t.getBoost() is the boost that has been
 applied to the query (new).

	(8)
	
norm(t,d) is the field-length norm, combined with the
 index-time field-level boost, if any. (new).

You should recognize score, tf, and idf. The queryNorm, coord,
t.getBoost, and norm are new.
We will talk more about query-time boosting later in
this chapter, but first let’s get query normalization, coordination, and
index-time field-level boosting out of the way.
17.2.1. Query Normalization Factor

The query normalization factor (queryNorm) is

an attempt to normalize a
query so that the results from one query may be compared with the results of
another.
Tip
Even though the intent of the query norm is to make results from different
queries comparable, it doesn’t work very well. The only purpose of
the relevance _score is to sort the results of the current query in the
correct order. You should not try to compare the relevance scores from
different queries.

This factor is calculated at the beginning of the query. The actual
calculation depends on the queries involved, but a typical implementation is as follows:
queryNorm = 1 / √sumOfSquaredWeights (1)
	(1)
	
The sumOfSquaredWeights is calculated by adding together the IDF of each
 term in the query, squared.

Tip
The same query normalization factor is applied to every document, and you
have no way of changing it. For all intents and purposes, it can be ignored.

17.2.2. Query Coordination

The coordination factor (coord) is used to
 reward documents that contain a
higher percentage of the query terms. The more query terms that appear in
the document, the greater the chances that the document is a good match for
the query.
Imagine that we have a query for quick brown fox, and that the
weight for each term is 1.5. Without the coordination factor, the score would
just be the sum of the weights of the terms in a document. For instance:
	
Document with fox → score: 1.5

	
Document with quick fox → score: 3.0

	
Document with quick brown fox → score: 4.5

The coordination factor multiplies the score by the number of matching terms
in the document, and divides it by the total number of terms in the query.
With the coordination factor, the scores would be as follows:
	
Document with fox → score: 1.5 * 1 / 3 = 0.5

	
Document with quick fox → score: 3.0 * 2 / 3 = 2.0

	
Document with quick brown fox → score: 4.5 * 3 / 3 = 4.5

The coordination factor results in the document that contains all three terms
being much more relevant than the document that contains just two of them.
Remember that the query for quick brown fox is rewritten into a bool query
like this:
GET /_search
{
 "query": {
 "bool": {
 "should": [
 { "term": { "text": "quick" }},
 { "term": { "text": "brown" }},
 { "term": { "text": "fox" }}
]
 }
 }
}
The bool query uses query coordination by default for all should clauses,
but it does allow you to disable coordination. Why might you want to do this?
Well, usually the answer is, you don’t. Query coordination is usually a good
thing. When you use a bool query to wrap several high-level queries like
the match query, it also makes sense to leave coordination enabled. The more
clauses that match, the higher the degree of overlap between your search
request and the documents that are returned.
However, in some advanced use cases, it might make sense to disable
coordination. Imagine that you are looking for the synonyms jump, leap, and
hop. You don’t care how many of these synonyms are present, as they all
represent the same concept. In fact, only one of the synonyms is likely to be
present. This would be a good case for disabling the coordination factor:
GET /_search
{
 "query": {
 "bool": {
 "disable_coord": true,
 "should": [
 { "term": { "text": "jump" }},
 { "term": { "text": "hop" }},
 { "term": { "text": "leap" }}
]
 }
 }
}
When you use synonyms (see Chapter 23, Synonyms), this is exactly what
happens internally: the rewritten query disables coordination for the
synonyms.
 Most use cases for disabling coordination are handled
automatically; you don’t need to worry about it.

17.2.3. Index-Time Field-Level Boosting

We will talk about boosting a field—making it

more important than other
fields—at query time in Section 17.3, “Query-Time Boosting”. It is also possible
to apply a boost to a field at index time. Actually, this boost is applied to
every term in the field, rather than to the field itself.
To store this boost value in the index without using more space
than necessary, this field-level index-time boost is combined with the field-length norm (see the section called “Field-length norm”) and stored in the index as a single byte.
This is the value returned by norm(t,d) in the preceding formula.
Warning
We strongly recommend against using field-level index-time boosts for a few
reasons:
	
Combining the boost with the field-length norm and storing it in a single
 byte means that the field-length norm loses precision. The result is that
 Elasticsearch is unable to distinguish between a field containing three words
 and a field containing five words.

	
To change an index-time boost, you have to reindex all your documents.
 A query-time boost, on the other hand, can be changed with every query.

	
If a field with an index-time boost has multiple values, the boost is
 multiplied by itself for every value, dramatically increasing
 the weight for that field.

Query-time boosting is a much simpler, cleaner, more
flexible option.

With query normalization, coordination, and index-time boosting out of the way,
we can now move on to the most useful tool for influencing the relevance
calculation: query-time boosting.

17.3. Query-Time Boosting

In Prioritizing Clauses, we explained

how you could use the boost
parameter at search time to give one query clause more importance than
another. For instance:
GET /_search
{
 "query": {
 "bool": {
 "should": [
 {
 "match": {
 "title": {
 "query": "quick brown fox",
 "boost": 2 (1)
 }
 }
 },
 {
 "match": { (2)
 "content": "quick brown fox"
 }
 }
]
 }
 }
}
	(1)
	
The title query clause is twice as important as the content query
 clause, because it has been boosted by a factor of 2.

	(2)
	
A query clause without a boost value has a neutral boost of 1.

Query-time boosting is the main tool that you can use to tune relevance. Any
type of query accepts a boost parameter.
 Setting a boost of 2 doesn’t
simply double the final _score; the actual boost value that is applied
goes through normalization and some internal optimization. However, it does
imply that a clause with a boost of 2 is twice as important as a clause with
a boost of 1.
Practically, there is no simple formula for deciding on the “correct” boost
value for a particular query clause. It’s a matter of try-it-and-see.
Remember that boost is just one of the factors involved in the relevance
score; it has to compete with the other factors. For instance, in the preceding
example, the title field will probably already have a “natural” boost over
the content field thanks to the field-length norm (titles
are usually shorter than the related content), so don’t blindly boost fields
just because you think they should be boosted. Apply a boost and check the
results. Change the boost and check again.
17.3.1. Boosting an Index

When searching across multiple indices, you

 can boost an entire index over
the others with the indices_boost parameter. This could be used, as in the
next example, to give more weight to documents from a more recent index:
GET /docs_2014_*/_search (1)
{
 "indices_boost": { (2)
 "docs_2014_10": 3,
 "docs_2014_09": 2
 },
 "query": {
 "match": {
 "text": "quick brown fox"
 }
 }
}
	(1)
	
This multi-index search covers all indices beginning with
 docs_2014_.

	(2)
	
Documents in the docs_2014_10 index will be boosted by 3, those
 in docs_2014_09 by 2, and any other matching indices will have
 a neutral boost of 1.

17.3.2. t.getBoost()

These boost values are represented in the Section 17.2, “Lucene’s Practical Scoring Function” by
the t.getBoost() element.

 Boosts are not applied at the level that they
appear in the query DSL. Instead, any boost values are combined and passed
down to the individual terms. The t.getBoost() method returns any boost
value applied to the term itself or to any of the queries higher up the chain.
Tip
In fact, reading the explain output is a little more complex
than that. You won’t see the boost value or t.getBoost() mentioned in the
explanation at all. Instead, the boost is rolled into the
queryNorm that is applied to a particular term. Although we said that
the queryNorm is the same for every term, you will see that the queryNorm
for a boosted term is higher than the queryNorm for an unboosted term.

17.4. Manipulating Relevance with Query Structure

The Elasticsearch query DSL is immensely flexible.

 You can move individual
query clauses up and down the query hierarchy to make a clause more or less
important. For instance, imagine the following query:
quick OR brown OR red OR fox
We could write this as a bool query with
all terms at the same level:
GET /_search
{
 "query": {
 "bool": {
 "should": [
 { "term": { "text": "quick" }},
 { "term": { "text": "brown" }},
 { "term": { "text": "red" }},
 { "term": { "text": "fox" }}
]
 }
 }
}
But this query might score a document that contains quick, red, and
brown the same as another document that contains quick, red, and fox.
Red and brown are synonyms and we probably only need one of them to match.
Perhaps we really want to express the query as follows:
quick OR (brown OR red) OR fox
According to standard Boolean logic, this is exactly the same as the original
query, but as we have already seen in Combining Queries, a bool query does not concern itself only with whether a document matches, but also with how
well it matches.
A better way to write this query is as follows:
GET /_search
{
 "query": {
 "bool": {
 "should": [
 { "term": { "text": "quick" }},
 { "term": { "text": "fox" }},
 {
 "bool": {
 "should": [
 { "term": { "text": "brown" }},
 { "term": { "text": "red" }}
]
 }
 }
]
 }
 }
}
Now, red and brown compete with each other at their own level, and quick,
fox, and red OR brown are the top-level competitive terms.
We have already discussed how the match,
multi_match, term,
bool, and dis_max queries can be used
to manipulate scoring. In the rest of this chapter, we present
three other scoring-related queries: the boosting query, the
constant_score query, and the function_score query.

17.5. Not Quite Not

A search on the Internet for “Apple” is likely to return results about the
company, the fruit,

and various recipes. We could try to narrow it down to
just the company by excluding words like pie, tart, crumble, and tree,
using a must_not clause in a bool query:
GET /_search
{
 "query": {
 "bool": {
 "must": {
 "match": {
 "text": "apple"
 }
 },
 "must_not": {
 "match": {
 "text": "pie tart fruit crumble tree"
 }
 }
 }
 }
}
But who is to say that we wouldn’t miss a very relevant document about Apple
the company by excluding tree or crumble? Sometimes, must_not can be
too strict.
17.5.1. boosting Query

The boosting query solves

 this problem.
It allows us to still include results that appear to be about the fruit or
the pastries, but to downgrade them—to rank them lower than they would
otherwise be:
GET /_search
{
 "query": {
 "boosting": {
 "positive": {
 "match": {
 "text": "apple"
 }
 },
 "negative": {
 "match": {
 "text": "pie tart fruit crumble tree"
 }
 },
 "negative_boost": 0.5
 }
 }
}
It accepts a positive query and a negative query. Only documents that
match the positive query will be included in the results list, but documents
that also match the negative query will be downgraded by multiplying the
original _score of the document with the negative_boost.
For this to work, the negative_boost must be less than 1.0. In this
example, any documents that contain any of the negative terms will have their
_score cut in half.

17.6. Ignoring TF/IDF

Sometimes we just don’t care about TF/IDF.

 All we want to know is that a certain
word appears in a field. Perhaps we are searching for a vacation home and we
want to find houses that have as many of these features as possible:
	
WiFi

	
Garden

	
Pool

The vacation home documents look something like this:
{ "description": "A delightful four-bedroomed house with ... " }
We could use a simple match query:
GET /_search
{
 "query": {
 "match": {
 "description": "wifi garden pool"
 }
 }
}
However, this isn’t really full-text search. In this case, TF/IDF just gets
in the way. We don’t care whether wifi is a common term, or how often it
appears in the document. All we care about is that it does appear.
In fact, we just want to rank houses by the number of features they have—the more, the better. If a feature is present, it should score 1, and if it
isn’t, 0.
17.6.1. constant_score Query

Enter the constant_score query.
This query can wrap either a query or a filter, and assigns a score of
1 to any documents that match, regardless of TF/IDF:
GET /_search
{
 "query": {
 "bool": {
 "should": [
 { "constant_score": {
 "query": { "match": { "description": "wifi" }}
 }},
 { "constant_score": {
 "query": { "match": { "description": "garden" }}
 }},
 { "constant_score": {
 "query": { "match": { "description": "pool" }}
 }}
]
 }
 }
}
Perhaps not all features are equally important—some have more value to
the user than others. If the most important feature is the pool, we could
boost that clause to make it count for more:
GET /_search
{
 "query": {
 "bool": {
 "should": [
 { "constant_score": {
 "query": { "match": { "description": "wifi" }}
 }},
 { "constant_score": {
 "query": { "match": { "description": "garden" }}
 }},
 { "constant_score": {
 "boost": 2 (1)
 "query": { "match": { "description": "pool" }}
 }}
]
 }
 }
}
	(1)
	
A matching pool clause would add a score of 2, while
 the other clauses would add a score of only 1 each.

Note
The final score for each result is not simply the sum of the scores of
all matching clauses. The coordination factor and
query normalization factor are still taken into account.

We could improve our vacation home documents by adding a not_analyzed
features field to our vacation homes:
{ "features": ["wifi", "pool", "garden"] }
By default, a not_analyzed field has field-length norms
disabled
and has index_options set to docs, disabling
term frequencies, but the problem remains: the
inverse document frequency of each term is still taken into account.
We could use the same approach that we used previously, with the constant_score
query:
GET /_search
{
 "query": {
 "bool": {
 "should": [
 { "constant_score": {
 "query": { "match": { "features": "wifi" }}
 }},
 { "constant_score": {
 "query": { "match": { "features": "garden" }}
 }},
 { "constant_score": {
 "boost": 2
 "query": { "match": { "features": "pool" }}
 }}
]
 }
 }
}
Really, though, each of these features should be treated like a filter. A
vacation home either has the feature or it doesn’t—a filter seems like it
would be a natural fit. On top of that, if we use filters, we can
benefit from filter caching.
The problem is this: filters don’t score. What we need is a way of bridging
the gap between filters and queries. The function_score query does this
and a whole lot more.

17.7. function_score Query

The function_score query is the
ultimate tool for taking control of the scoring process.

 It allows you to
apply a function to each document that matches the main query in order to
alter or completely replace the original query _score.
In fact, you can apply different functions to subsets of the main result set by
using filters, which gives you the best of both worlds: efficient scoring with
cacheable filters.
It supports several predefined functions out of the box:
	
weight

	
 Apply a simple boost to each document without the boost being
 normalized: a weight of 2 results in 2 * _score.

	
field_value_factor

	
 Use the value of a field in the document to alter the _score, such as
 factoring in a popularity count or number of votes.

	
random_score

	
 Use consistently random scoring to sort results differently for every user,
 while maintaining the same sort order for a single user.

	
Decay functions—linear, exp, gauss

	
 Incorporate sliding-scale values like publish_date, geo_location, or
 price into the _score to prefer recently published documents, documents
 near a latitude/longitude (lat/lon) point, or documents near a specified price point.

	
script_score

	
 Use a custom script to take complete control of the scoring logic. If your
 needs extend beyond those of the functions in this list, write a custom
 script to implement the logic that you need.

Without the function_score query, we would not be able to combine the score
from a full-text query with a factor like recency. We would have to sort
either by _score or by date; the effect of one would obliterate the
effect of the other. This query allows you to blend the two together: to still
sort by full-text relevance, but giving extra weight to recently published
documents, or popular documents, or products that are near the user’s price
point. As you can imagine, a query that supports all of this can look fairly
complex. We’ll start with a simple use case and work our way up the
complexity ladder.

17.8. Boosting by Popularity

Imagine that we have a website that hosts blog posts and enables users to vote for the
blog posts that they like.

 We would like more-popular posts to appear higher in the
results list, but still have the full-text score as the main relevance driver.
We can do this easily by storing the number of votes with each blog post:
PUT /blogposts/post/1
{
 "title": "About popularity",
 "content": "In this post we will talk about...",
 "votes": 6
}
At search time, we can use the function_score query
with the
field_value_factor function to combine the number of votes with the full-text relevance score:
GET /blogposts/post/_search
{
 "query": {
 "function_score": { (1)
 "query": { (2)
 "multi_match": {
 "query": "popularity",
 "fields": ["title", "content"]
 }
 },
 "field_value_factor": { (3)
 "field": "votes" (4)
 }
 }
 }
}
	(1)
	
The function_score query wraps the main query and the function we would
 like to apply.

	(2)
	
The main query is executed first.

	(3)
	
The field_value_factor function is applied to every document matching
 the main query.

	(4)
	
Every document must have a number in the votes field for
 the function_score to work. If every document does not have a number in the votes field, then you must use the
 missing property to provide a default value for the score calculation.

In the preceding example, the final _score for each document has been altered as
follows:
new_score = old_score * number_of_votes
This will not give us great results. The full-text _score range
usually falls somewhere between 0 and 10. As can be seen in Figure 17.3, “Linear popularity based on an original _score of 2.0”, a blog post with 10 votes will
completely swamp the effect of the full-text score, and a blog post with 0
votes will reset the score to zero.
Figure 17.3. Linear popularity based on an original _score of 2.0
[image: Linear popularity based on an original `_score` of `2.0`]

17.8.1. modifier

A better way to incorporate popularity is to smooth out the votes value
with some modifier.
In other words, we want the first few votes to count a
lot, but for each subsequent vote to count less. The difference between 0
votes and 1 vote should be much bigger than the difference between 10 votes
and 11 votes.
A typical modifier for this use case is log1p, which changes the formula
to the following:
new_score = old_score * log(1 + number_of_votes)
The log function smooths out the effect of the votes field to provide a
curve like the one in Figure 17.4, “Logarithmic popularity based on an original _score of 2.0”.
Figure 17.4. Logarithmic popularity based on an original _score of 2.0
[image: Logarithmic popularity based on an original `_score` of `2.0`]

The request with the modifier parameter looks like the following:
GET /blogposts/post/_search
{
 "query": {
 "function_score": {
 "query": {
 "multi_match": {
 "query": "popularity",
 "fields": ["title", "content"]
 }
 },
 "field_value_factor": {
 "field": "votes",
 "modifier": "log1p" (1)
 }
 }
 }
}
	(1)
	
Set the modifier to log1p.

The available modifiers are none (the default), log, log1p, log2p,
ln, ln1p, ln2p, square, sqrt, and reciprocal. You can read more
about them in the
field_value_factor documentation.

17.8.2. factor

The strength of the popularity effect can be increased or decreased by
multiplying the value
 in the votes field by some number, called the
factor:
GET /blogposts/post/_search
{
 "query": {
 "function_score": {
 "query": {
 "multi_match": {
 "query": "popularity",
 "fields": ["title", "content"]
 }
 },
 "field_value_factor": {
 "field": "votes",
 "modifier": "log1p",
 "factor": 2 (1)
 }
 }
 }
}
	(1)
	
Doubles the popularity effect

Adding in a factor changes the formula to this:
new_score = old_score * log(1 + factor * number_of_votes)
A factor greater than 1 increases the effect, and a factor less than 1
decreases the effect, as shown in Figure 17.5, “Logarithmic popularity with different factors”.
Figure 17.5. Logarithmic popularity with different factors
[image: Logarithmic popularity with different factors]

17.8.3. boost_mode

Perhaps multiplying the full-text score by the result of the
field_value_factor function
still has too large an effect. We can control
how the result of a function is combined with the _score from the query by
using the boost_mode parameter, which accepts the following values:
	
multiply

	
 Multiply the _score with the function result (default)

	
sum

	
 Add the function result to the _score

	
min

	
 The lower of the _score and the function result

	
max

	
 The higher of the _score and the function result

	
replace

	
 Replace the _score with the function result

If, instead of multiplying, we add the function result to the _score, we can
achieve a much smaller effect, especially if we use a low factor:
GET /blogposts/post/_search
{
 "query": {
 "function_score": {
 "query": {
 "multi_match": {
 "query": "popularity",
 "fields": ["title", "content"]
 }
 },
 "field_value_factor": {
 "field": "votes",
 "modifier": "log1p",
 "factor": 0.1
 },
 "boost_mode": "sum" (1)
 }
 }
}
	(1)
	
Add the function result to the _score.

The formula for the preceding request now looks like this (see Figure 17.6, “Combining popularity with sum”):
new_score = old_score + log(1 + 0.1 * number_of_votes)
Figure 17.6. Combining popularity with sum
[image: Combining popularity with `sum`]

17.8.4. max_boost

Finally, we can cap the maximum effect
 that the function can have by using the
max_boost parameter:
GET /blogposts/post/_search
{
 "query": {
 "function_score": {
 "query": {
 "multi_match": {
 "query": "popularity",
 "fields": ["title", "content"]
 }
 },
 "field_value_factor": {
 "field": "votes",
 "modifier": "log1p",
 "factor": 0.1
 },
 "boost_mode": "sum",
 "max_boost": 1.5 (1)
 }
 }
}
	(1)
	
Whatever the result of the field_value_factor function, it will never be
 greater than 1.5.

Note
The max_boost applies a limit to the result of the function only, not
to the final _score.

17.9. Boosting Filtered Subsets

Let’s return to the problem that we were dealing with in Section 17.6, “Ignoring TF/IDF”,
where we wanted to score

 vacation homes by the number of features that each
home possesses. We ended that section by wishing for a way to use cached
filters to affect the score, and with the function_score query we can do
just that.

The examples we have shown thus far have used a single function for all
documents. Now we want to divide the results into subsets by using filters (one
filter per feature), and apply a different function to each subset.
The function that we will use in this example is the weight, which is
similar to the boost parameter accepted by any query. The difference is
that the weight is not normalized by Lucene into some obscure floating-point
number; it is used as is.
The structure of the query has to change somewhat to incorporate multiple
functions:
GET /_search
{
 "query": {
 "function_score": {
 "filter": { (1)
 "term": { "city": "Barcelona" }
 },
 "functions": [(2)
 {
 "filter": { "term": { "features": "wifi" }}, (3)
 "weight": 1
 },
 {
 "filter": { "term": { "features": "garden" }}, (4)
 "weight": 1
 },
 {
 "filter": { "term": { "features": "pool" }}, (5)
 "weight": 2 (6)
 }
],
 "score_mode": "sum", (7)
 }
 }
}
	(1)
	
This function_score query has a filter instead of a query.

	(2)
	
The functions key holds a list of functions that should be applied.

	(3) (4) (5)
	
The function is applied only if the document matches the (optional) filter.

	(6)
	
The pool feature is more important than the others so it has a higher weight.

	(7)
	
The score_mode specifies how the values from each function should be combined.

The new features to note in this example are explained in the following sections.
17.9.1. filter Versus query

The first thing to note is that we have specified a filter instead
of a
query. In this example, we do not need full-text search. We just want to
return all documents that have Barcelona in the city field, logic that is
better expressed as a filter instead of a query. All documents returned by
the filter will have a _score of 1. The function_score query accepts
either a query or a filter. If neither is specified, it will default to
using the match_all query.

17.9.2. functions

The functions key holds an array of functions to apply.
 Each entry in the
array may also optionally specify a filter, in which case the function will be applied only to documents that match that filter. In this example, we
apply a weight of 1 (or 2 in the case of pool) to any document
that matches the filter.

17.9.3. score_mode

Each function returns a result, and we need a way of reducing these multiple
results to a single value that can be combined with the original _score.
This is the role
of the score_mode parameter, which accepts the following
values:
	
multiply

	
 Function results are multiplied together (default).

	
sum

	
 Function results are added up.

	
avg

	
 The average of all the function results.

	
max

	
 The highest function result is used.

	
min

	
 The lowest function result is used.

	
first

	
 Uses only the result from the first function that either doesn’t have a filter or that has a filter matching the document.

In this case, we want to add the weight results from each matching
filter together to produce the final score, so we have used the sum score
mode.
Documents that don’t match any of the filters will keep their original
_score of 1.

17.10. Random Scoring

You may have been wondering what consistently random scoring is, or why
you would ever want to use it.

 The previous example provides a good use case.
All results from the previous example would receive a final _score of 1, 2,
3, 4, or 5. Maybe there are only a few homes that score 5, but presumably
there would be a lot of homes scoring 2 or 3.
As the owner of the website, you want to give your advertisers as much
exposure as possible. With the current query, results with the same _score
would be returned in the same order every time. It would be good to introduce
some randomness here, to ensure that all documents in a single score level
get a similar amount of exposure.
We want every user to see a different random order, but we want the same user
to see the same order when clicking on page 2, 3, and so forth. This is what is
meant by consistently random.
The random_score function, which
 outputs a number between 0 and 1, will
produce consistently random results when it is provided with the same seed
value, such as a user’s session ID:
GET /_search
{
 "query": {
 "function_score": {
 "filter": {
 "term": { "city": "Barcelona" }
 },
 "functions": [
 {
 "filter": { "term": { "features": "wifi" }},
 "weight": 1
 },
 {
 "filter": { "term": { "features": "garden" }},
 "weight": 1
 },
 {
 "filter": { "term": { "features": "pool" }},
 "weight": 2
 },
 {
 "random_score": { (1)
 "seed": "the users session id" (2)
 }
 }
],
 "score_mode": "sum"
 }
 }
}
	(1)
	
The random_score clause doesn’t have any filter, so it will
 be applied to all documents.

	(2)
	
Pass the user’s session ID as the seed, to make randomization
 consistent for that user. The same seed will result in the
 same randomization.

Of course, if you index new documents that match the query, the order of
results will change regardless of whether you use consistent randomization or
not.

17.11. The Closer, The Better

Many variables could influence the user’s choice of vacation
home.

 Maybe she would like to be close to the center of town, but perhaps
would be willing to settle for a place that is a bit farther from the
center if the price is low enough. Perhaps the reverse is true: she would be
willing to pay more for the best location.
If we were to add a filter that excluded any vacation homes farther than 1
kilometer from the center, or any vacation homes that cost more than £100 a
night, we might exclude results that the user would consider to be a good
compromise.
The function_score query gives
us the ability to trade off one sliding scale
(like location) against another sliding scale (like price), with a group of
functions known as the decay functions.
The three decay functions—called linear, exp, and gauss—operate on numeric fields, date fields, or lat/lon geo-points. All three take
the same parameters:
	
origin

	
 The central point, or the best possible value for the field.
 Documents that fall at the origin will get a full _score of 1.0.

	
scale

	
 The rate of decay—how quickly the _score should drop the further from
 the origin that a document lies (for example, every £10 or every 100 meters).

	
decay

	
 The _score that a document at scale distance from the origin should
 receive. Defaults to 0.5.

	
offset

	
 Setting a nonzero offset expands the central point to cover a range
 of values instead of just the single point specified by the origin. All
 values in the range -offset <= origin <= +offset will receive the full
 _score of 1.0.

The only difference between these three functions is the shape of the decay
curve. The difference is most easily illustrated with a graph (see Figure 17.7, “Decay function curves”).
Figure 17.7. Decay function curves
[image: The curves of the decay functions]

The curves shown in Figure 17.7, “Decay function curves” all have their origin—the
central point—set to 40. The offset is 5, meaning that all values in
the range 40 - 5 <= value <= 40 + 5 are treated as though they were at the
origin—they all get the full score of 1.0.
Outside this range, the score starts to decay. The rate of decay is
determined by the scale (which in this example is set to 5), and the
decay (which is set to the default of 0.5). The result is that all three
curves return a score of 0.5 at origin +/- (offset + scale), or at points
30 and 50.
The difference between linear, exp, and gauss is the shape of the curve at other points in the range:
	
The linear funtion is just a straight line. Once the line hits zero,
 all values outside the line will return a score of 0.0.

	
The exp (exponential) function decays rapidly, then slows down.

	
The gauss (Gaussian) function is bell-shaped—it decays slowly, then
 rapidly, then slows down again.

Which curve you choose depends entirely on how quickly you want the _score
to decay, the further a value is from the origin.
To return to our example: our user would prefer to rent a vacation home close
to the center of London ({ "lat": 51.50, "lon": 0.12}) and to pay no more
than £100 a night, but our user considers price to be more important than
distance.
 We could write this query as follows:
GET /_search
{
 "query": {
 "function_score": {
 "functions": [
 {
 "gauss": {
 "location": { (1)
 "origin": { "lat": 51.5, "lon": 0.12 },
 "offset": "2km",
 "scale": "3km"
 }
 }
 },
 {
 "gauss": {
 "price": { (2)
 "origin": "50", (3)
 "offset": "50",
 "scale": "20"
 }
 },
 "weight": 2 (4)
 }
]
 }
 }
}
	(1)
	
The location field is mapped as a geo_point.

	(2)
	
The price field is numeric.

	(3)
	
See Section 17.12, “Understanding the price Clause” for the reason that origin is 50 instead of 100.

	(4)
	
The price clause has twice the weight of the location clause.

The location clause is easy to understand:
	
We have specified an origin that corresponds to the center of London.

	
Any location within 2km of the origin receives the full score of 1.0.

	
Locations 5km (offset + scale) from the centre receive a score
of 0.5.

17.12. Understanding the price Clause

The price clause is a little trickier. The user’s preferred price is
anything up to £100, but this example sets the origin to £50. Prices can’t be
negative, but the lower they are, the better. Really, any price between £0 and
£100 should be considered optimal.
If we were to set the origin to £100, then prices below £100 would receive a
lower score. Instead, we set both the origin and the offset to £50. That
way, the score decays only for any prices above £100 (origin + offset).
Tip
The weight parameter can be used to increase or decrease the contribution of
individual clauses. The weight, which defaults to 1.0, is multiplied by
the score from each clause before the scores are combined with the specified
score_mode.

17.13. Scoring with Scripts

Finally, if none of the function_score's built-in functions suffice, you can
implement the logic that you need with a script, using the script_score
function.

For an example, let’s say that we want to factor our profit margin into the
relevance calculation. In our business, the profit margin depends on three
factors:
	
The price per night of the vacation home.

	
The user’s membership level—some levels get a percentage discount
 above a certain price per night threshold.

	
The negotiated margin as a percentage of the price-per-night, after user
 discounts.

The algorithm that we will use to calculate the profit for each home is as
follows:
if (price < threshold) {
 profit = price * margin
} else {
 profit = price * (1 - discount) * margin;
}
We probably don’t want to use the absolute profit as a score; it would
overwhelm the other factors like location, popularity and features. Instead,
we can express the profit as a percentage of our target profit. A profit
margin above our target will have a positive score (greater than 1.0), and a profit margin below our target will have a negative score (less than
1.0):
if (price < threshold) {
 profit = price * margin
} else {
 profit = price * (1 - discount) * margin
}
return profit / target
The default scripting language in Elasticsearch is
Groovy, which for the most part looks a lot like
JavaScript.
 The preceding algorithm as a Groovy script would look like this:
price = doc['price'].value (1)
margin = doc['margin'].value (2)

if (price < threshold) { (3)
 return price * margin / target
}
return price * (1 - discount) * margin / target (4)
	(1) (2)
	
The price and margin variables are extracted from the price and
 margin fields in the document.

	(3) (4)
	
The threshold, discount, and target variables we will pass in as
 params.

Finally, we can add our script_score function to the list of other functions
that we are already using:
GET /_search
{
 "function_score": {
 "functions": [
 { ...location clause... }, (1)
 { ...price clause... }, (2)
 {
 "script_score": {
 "params": { (3)
 "threshold": 80,
 "discount": 0.1,
 "target": 10
 },
 "script": "price = doc['price'].value; margin = doc['margin'].value;
 if (price < threshold) { return price * margin / target };
 return price * (1 - discount) * margin / target;" (4)
 }
 }
]
 }
}
	(1) (2)
	
The location and price clauses refer to the example explained in
 Section 17.11, “The Closer, The Better”.

	(3)
	
By passing in these variables as params, we can change their values
 every time we run this query without having to recompile the script.

	(4)
	
JSON cannot include embedded newline characters. Newline characters in
 the script should either be escaped as \n or replaced with semicolons.

This query would return the documents that best satisfy the user’s
requirements for location and price, while still factoring in our need to make
a profit.
Tip
The script_score function provides enormous flexibility.
 Within a script,
you have access to the fields of the document, to the current _score, and
even to the term frequencies, inverse document frequencies, and field length
norms (see Text scoring in scripts).
That said, scripts can have a performance impact. If you do find that your
scripts are not quite fast enough, you have three options:
	
Try to precalculate as much information as possible and include it in each
 document.

	
Groovy is fast, but not quite as fast as Java.
 You could reimplement your
 script as a native Java script. (See
 Native Java Scripts).

	
Use the rescore functionality described in Section 15.6.1, “Rescoring Results” to apply
 your script to only the best-scoring documents.

17.14. Pluggable Similarity Algorithms

Before we move on from relevance and scoring, we will finish this chapter with
a more advanced subject: pluggable similarity algorithms.

 While Elasticsearch
uses the Section 17.2, “Lucene’s Practical Scoring Function” as its default similarity algorithm,
it supports other algorithms out of the box, which are listed
in the Similarity Modules documentation.
17.14.1. Okapi BM25

The most interesting competitor to TF/IDF and the vector space model is called
Okapi BM25, which is considered to
be a state-of-the-art ranking function. BM25 originates from the
probabilistic relevance model,
rather than the vector space model, yet the algorithm has a lot in common with
Lucene’s practical scoring function.
Both use term frequency, inverse document frequency, and field-length
normalization, but the definition of each of these factors is a little
different. Rather than explaining the BM25 formula in detail, we will focus
on the practical advantages that BM25 offers.
Term-frequency saturation

Both TF/IDF and BM25 use inverse document frequency to distinguish
between common (low value) words and uncommon (high value) words.
 Both also
recognize (see the section called “Term frequency”) that the more often a word appears in a document, the
more likely is it that the document is relevant for that word.
However, common words occur commonly.
 The fact that a common word appears
many times in one document is offset by the fact that the word appears many
times in all documents.
However, TF/IDF was designed in an era when it was standard practice to
remove the most common words (or stopwords, see Chapter 22, Stopwords: Performance Versus Precision) from the
index altogether.
 The algorithm didn’t need to worry about an upper limit for
term frequency because the most frequent terms had already been removed.
In Elasticsearch, the standard analyzer—the default for string fields—doesn’t remove stopwords because, even though they are words of little
value, they do still have some value. The result is that, for very long
documents, the sheer number of occurrences of words like the and and can
artificially boost their weight.
BM25, on the other hand, does have an upper limit. Terms that appear 5 to 10
times in a document have a significantly larger impact on relevance than terms
that appear just once or twice. However, as can be seen in Figure 17.8, “Term frequency saturation for TF/IDF and BM25”, terms that appear 20 times in a
document have almost the same impact as terms that appear a thousand times or
more.
This is known as nonlinear term-frequency saturation.
Figure 17.8. Term frequency saturation for TF/IDF and BM25
[image: Term frequency saturation for TF/IDF and BM25]

Field-length normalization

In the section called “Field-length norm”, we said that Lucene considers shorter fields to have
more weight than longer fields: the frequency of a term in a field is offset
by the length of the field. However, the practical scoring function treats
all fields in the same way. It will treat all title fields (because they
are short) as more important than all body fields (because they are long).
BM25 also considers shorter fields to have more weight than longer fields, but
it considers each field separately by taking the average length of the field
into account. It can distinguish between a short title field and a long
title field.
Caution
In Section 17.3, “Query-Time Boosting”, we said that the title field has a
natural boost over the body field because of its length. This natural
boost disappears with BM25 as differences in field length apply only within a
single field.

Tuning BM25

One of the nice features of BM25 is that, unlike TF/IDF, it has two parameters
that allow it to be tuned:
	
k1

	
 This parameter controls how quickly an increase in term frequency results
 in term-frequency saturation. The default value is 1.2. Lower values
 result in quicker saturation, and higher values in slower saturation.

	
b

	
 This parameter controls how much effect field-length normalization should
 have. A value of 0.0 disables normalization completely, and a value of
 1.0 normalizes fully. The default is 0.75.

The practicalities of tuning BM25 are another matter. The default values for
k1 and b should be suitable for most document collections, but the
optimal values really depend on the collection. Finding good values for your
collection is a matter of adjusting, checking, and adjusting again.

17.15. Changing Similarities

The similarity algorithm can be set on a per-field basis.

 It’s just a matter
of specifying the chosen algorithm
in the field’s mapping:
PUT /my_index
{
 "mappings": {
 "doc": {
 "properties": {
 "title": {
 "type": "string",
 "similarity": "BM25" (1)
 },
 "body": {
 "type": "string",
 "similarity": "default" (2)
 }
 }
 }
}
	(1)
	
The title field uses BM25 similarity.

	(2)
	
The body field uses the default similarity (see Section 17.2, “Lucene’s Practical Scoring Function”).

Currently, it is not possible to change the similarity mapping for an
existing field. You would need to reindex your data in order to do that.
17.15.1. Configuring BM25

Configuring a similarity is much

like configuring an analyzer. Custom
similarities can be specified when creating an index. For instance:
PUT /my_index
{
 "settings": {
 "similarity": {
 "my_bm25": { (1)
 "type": "BM25",
 "b": 0 (2)
 }
 }
 },
 "mappings": {
 "doc": {
 "properties": {
 "title": {
 "type": "string",
 "similarity": "my_bm25" (3)
 },
 "body": {
 "type": "string",
 "similarity": "BM25" (4)
 }
 }
 }
 }
}
	(1)
	
Create a custom similarity called my_bm25, based on the built-in BM25 similarity.

	(2)
	
Disable field-length normalization. See the section called “Tuning BM25”.

	(3)
	
Field title uses the custom similarity my_bm25.

	(4)
	
Field body uses the built-in similarity BM25.

Tip
A custom similarity can be updated by closing the index, updating the index settings,
 and reopening the index. This allows you to experiment with different configurations
 without having to reindex your documents.

17.16. Relevance Tuning Is the Last 10%

In this chapter, we looked at a how Lucene generates scores based on TF/IDF.
Understanding the score-generation process

 is critical so you can
tune, modulate, attenuate, and manipulate the score for your particular
business domain.
In practice, simple combinations of queries will get you good search results.
But to get great search results, you’ll often have to start tinkering with
the previously mentioned tuning methods.
Often, applying a boost on a strategic field or rearranging a query to
emphasize a particular clause will be sufficient to make your results great.
Sometimes you’ll need more-invasive changes. This is usually the case if your
scoring requirements diverge heavily from Lucene’s word-based TF/IDF model (for example, you
want to score based on time or distance).
With that said, relevancy tuning is a rabbit hole that you can easily fall into
and never emerge. The concept of most relevant is a nebulous target to hit, and
different people often have different ideas about document ranking. It is easy
to get into a cycle of constant fiddling without any apparent progress.
We encourage you to avoid this (very tempting) behavior and instead properly
instrument your search results. Monitor how often your users click the top
result, the top 10, and the first page; how often they execute a secondary query
without selecting a result first; how often they click a result and immediately
go back to the search results, and so forth.
These are all indicators of how relevant your search results are to the user.
If your query is returning highly relevant results, users will select one of
the top-five results, find what they want, and leave. Irrelevant results cause
users to click around and try new search queries.
Once you have instrumentation in place, tuning your query is simple. Make a change,
monitor its effect on your users, and repeat as necessary. The tools outlined in this
chapter are just that: tools. You have to use them appropriately to propel
your search results into the great category, and the only way to do that is with
strong measurement of user behavior.

Part III. Dealing with Human Language

	 	“I know all those words, but that sentence makes no sense to me.”
	
	 	--
Matt Groening

Full-text search is a battle between precision—returning as few
irrelevant documents as possible—and recall—returning as many relevant
documents as possible.

 While matching only the exact words that the user has
queried would be precise, it is not enough. We would miss out on many
documents that the user would consider to be relevant. Instead, we need to
spread the net wider, to also search for words that are not exactly the same
as the original but are related.
Wouldn’t you expect a search for “quick brown fox” to match a document
containing “fast brown foxes,” “Johnny Walker” to match “Johnnie
Walker,” or “Arnolt Schwarzenneger” to match “Arnold Schwarzenegger”?
If documents exist that do contain exactly what the user has queried,
those documents should appear at the top of the result set, but weaker matches
can be included further down the list. If no documents match
exactly, at least we can show the user potential matches; they may even
be what the user originally intended!
There are several
 lines of attack:
	
Remove diacritics like ´, ^, and ¨ so that a search for rôle will
 also match role, and vice versa. See Chapter 20, Normalizing Tokens.

	
Remove the distinction between singular and plural—fox versus foxes—or between tenses—jumping versus jumped versus jumps—by stemming each word to its root form. See Chapter 21, Reducing Words to Their Root Form.

	
Remove commonly used words or stopwords like the, and, and or
 to improve search performance. See Chapter 22, Stopwords: Performance Versus Precision.

	
Including synonyms so that a query for quick could also match fast,
 or UK could match United Kingdom. See Chapter 23, Synonyms.

	
Check for misspellings or alternate spellings, or match on homophones—words that sound the same, like their versus there, meat versus
 meet versus mete. See Chapter 24, Typoes and Mispelings.

Before we can manipulate individual words, we need to divide text into
words,
which means that we need to know what constitutes a word. We will
tackle this in Chapter 19, Identifying Words.
But first, let’s take a look at how to get started quickly and easily.

Chapter 18. Getting Started with Languages

Elasticsearch ships with a collection of language analyzers that provide
good, basic, out-of-the-box
support for many of the world’s most common
languages:
Arabic, Armenian, Basque, Brazilian, Bulgarian, Catalan, Chinese,
Czech, Danish, Dutch, English, Finnish, French, Galician, German, Greek,
Hindi, Hungarian, Indonesian, Irish, Italian, Japanese, Korean, Kurdish,
Norwegian, Persian, Portuguese, Romanian, Russian, Spanish, Swedish,
Turkish, and Thai.
These analyzers typically
 perform four roles:
	
Tokenize text into individual words:

The quick brown foxes → [The, quick, brown, foxes]

	
Lowercase tokens:

The → the

	
Remove common stopwords:

[The, quick, brown, foxes] → [quick, brown, foxes]

	
Stem tokens to their root form:

foxes → fox

Each analyzer may also apply other transformations specific to its language in
order to make words from that
 language more searchable:
	
The english analyzer removes the possessive 's:

John's → john

	
The french analyzer removes elisions like l' and qu' and
 diacritics like ¨ or ^:

l'église → eglis

	
The german analyzer normalizes terms, replacing ä and ae with a, or
 ß with ss, among others:

äußerst → ausserst

18.1. Using Language Analyzers

The built-in language analyzers are available globally and don’t need to be
configured before being used.
 They can be specified directly in the field
mapping:
PUT /my_index
{
 "mappings": {
 "blog": {
 "properties": {
 "title": {
 "type": "string",
 "analyzer": "english" (1)
 }
 }
 }
 }
}
	(1)
	
The title field will use the english analyzer instead of the default
 standard analyzer.

Of course, by passing
text through the english analyzer, we lose
information:
GET /my_index/_analyze?field=title (1)
I'm not happy about the foxes
	(1)
	
Emits token: i'm, happi, about, fox

We can’t tell if the document mentions one fox or many foxes; the word
not is a stopword and is removed, so we can’t tell whether the document is
happy about foxes or not. By using the english analyzer, we have increased
recall as we can match more loosely, but we have reduced our ability to rank
documents accurately.
To get the best of both worlds, we can use multifields to
index the title field twice: once
 with the english analyzer and once with
the standard analyzer:
PUT /my_index
{
 "mappings": {
 "blog": {
 "properties": {
 "title": { (1)
 "type": "string",
 "fields": {
 "english": { (2)
 "type": "string",
 "analyzer": "english"
 }
 }
 }
 }
 }
 }
}
	(1)
	
The main title field uses the standard analyzer.

	(2)
	
The title.english subfield uses the english analyzer.

With this mapping in place, we can index some test documents to demonstrate
how to use both fields at query time:
PUT /my_index/blog/1
{ "title": "I'm happy for this fox" }

PUT /my_index/blog/2
{ "title": "I'm not happy about my fox problem" }

GET /_search
{
 "query": {
 "multi_match": {
 "type": "most_fields", (1)
 "query": "not happy foxes",
 "fields": ["title", "title.english"]
 }
 }
}
	(1)
	
Use the most_fields query type to match the
 same text in as many fields as possible.

Even though neither of our documents contain the word foxes, both documents
are returned as results thanks to the word stemming on the title.english
field. The second document is ranked as more relevant, because the word not
matches on the title field.

18.2. Configuring Language Analyzers

While the language analyzers can be used out of the box without any
configuration, most of them

do allow you to control aspects of their
behavior, specifically:
	
Stem-word exclusion

	Imagine, for instance, that users searching for

 the “World Health
Organization” are instead getting results for “organ health.” The reason
for this confusion is that both “organ” and “organization” are stemmed to
the same root word: organ. Often this isn’t a problem, but in this
particular collection of documents, this leads to confusing results. We would
like to prevent the words organization and organizations from being
stemmed.
	
Custom stopwords

	
The default list of stopwords
 used in English are as follows:

a, an, and, are, as, at, be, but, by, for, if, in, into, is, it,
no, not, of, on, or, such, that, the, their, then, there, these,
they, this, to, was, will, with
The unusual thing about no and not is that they invert the meaning of the
words that follow them. Perhaps we decide that these two words are important
and that we shouldn’t treat them as stopwords.

To customize the behavior of the english analyzer, we need to
create a custom analyzer that uses the english analyzer as its base but
adds some configuration:
PUT /my_index
{
 "settings": {
 "analysis": {
 "analyzer": {
 "my_english": {
 "type": "english",
 "stem_exclusion": ["organization", "organizations"], (1)
 "stopwords": [(2)
 "a", "an", "and", "are", "as", "at", "be", "but", "by", "for",
 "if", "in", "into", "is", "it", "of", "on", "or", "such", "that",
 "the", "their", "then", "there", "these", "they", "this", "to",
 "was", "will", "with"
]
 }
 }
 }
 }
}

GET /my_index/_analyze?analyzer=my_english (3)
The World Health Organization does not sell organs.
	(1)
	
Prevents organization and organizations from being stemmed

	(2)
	
Specifies a custom list of stopwords

	(3)
	
Emits tokens world, health, organization, does, not, sell, organ

We discuss stemming and stopwords in much more detail in Chapter 21, Reducing Words to Their Root Form and
Chapter 22, Stopwords: Performance Versus Precision, respectively.

18.3. Pitfalls of Mixing Languages

If you have to deal with only a single language,
 count yourself lucky.
Finding the right strategy for handling documents written in several languages
can be challenging.

18.3.1. At Index Time

Multilingual documents come in three main varieties:
	
One predominant language per document, which may contain snippets from
 other languages (See Section 18.4, “One Language per Document”.)

	
One predominant language per field, which may contain snippets from
 other languages (See Section 18.5, “One Language per Field”.)

	
A mixture of languages per field (See Section 18.6, “Mixed-Language Fields”.)

The goal, although not always achievable, should be to keep languages
separate. Mixing languages in the same inverted index can be problematic.
Incorrect stemming

The stemming rules for German are different from those for English, French,
Swedish, and so on.
 Applying the same stemming rules to different languages
will result in some words being stemmed correctly, some incorrectly, and some
not being stemmed at all. It may even result in words from different languages with different meanings
being stemmed to the same root word, conflating their meanings and producing
confusing search results for the user.
Applying multiple stemmers in turn to the same text is likely to result in
rubbish, as the next stemmer may try to stem an already stemmed word,
compounding the problem.
Stemmer per Script

The one exception to the only-one-stemmer rule occurs when each language
is written in a different script. For instance, in Israel it is quite
possible that a single document may contain Hebrew, Arabic, Russian (Cyrillic),
and English:
אזהרה - Предупреждение - تحذير - Warning
Each language uses a different script, so the stemmer for one language will not
interfere with another, allowing multiple stemmers to be applied to the same
text.

Incorrect inverse document frequencies

In Section 8.3, “What Is Relevance?”, we explained that the more frequently a term appears
in a collection of documents, the less weight that term has.
 For accurate
relevance calculations, you need accurate term-frequency statistics.
A short snippet of German appearing in predominantly English text would give
more weight to the German words, given that they are relatively uncommon. But
mix those with documents that are predominantly German, and the short German
snippets now have much less weight.

18.3.2. At Query Time

It is not sufficient just to think about your documents, though.
 You also need
to think about how your users will query those documents. Often you will be able
to identify the main language of the user either from the language of that user’s chosen
interface (for example, mysite.de versus mysite.fr) or from the
accept-language
HTTP header from the user’s browser.
User searches also come in three main varieties:
	
Users search for words in their main language.

	
Users search for words in a different language, but expect results in
 their main language.

	
Users search for words in a different language, and expect results in
 that language (for example, a bilingual person, or a foreign visitor in a web cafe).

Depending on the type of data that you are searching, it may be appropriate to
return results in a single language (for example, a user searching for products on
the Spanish version of the website) or to combine results in the identified
main language of the user with results from other languages.
Usually, it makes sense to give preference to the user’s language. An English-speaking
user searching the Web for “deja vu” would probably prefer to see
the English Wikipedia page rather than the French Wikipedia page.

18.3.3. Identifying Language

You may already know the language of your documents. Perhaps your documents
are created within your organization and translated into a list of predefined
languages. Human pre-identification is probably the most reliable method of
classifying language correctly.
Perhaps, though, your documents come from an external source without any
language classification, or possibly with incorrect classification. In these
cases, you need to use a heuristic to identify the predominant language.
Fortunately, libraries are available in several languages to help with this problem.
Of particular note is the
chromium-compact-language-detector
library from
Mike McCandless,
which uses the open source (Apache License 2.0)
Compact Language Detector (CLD) from Google. It is
small, fast, and accurate, and can detect 160+ languages from as little as two
sentences. It can even detect multiple languages within a single block of
text. Bindings exist for several languages including Python, Perl, JavaScript,
PHP, C#/.NET, and R.
Identifying the language of the user’s search request is not quite as simple.
The CLD is designed for text that is at least 200 characters in length.
Shorter amounts of text, such as search keywords, produce much less accurate
results. In these cases, it may be preferable to take simple heuristics into
account such as the country of origin, the user’s selected language, and the
HTTP accept-language headers.

18.4. One Language per Document

A single predominant language per document

requires a relatively simple setup.
Documents from different languages can be stored in separate indices—blogs-en,
blogs-fr, and so forth—that use the same type and the same fields for each index,
just with different analyzers:
PUT /blogs-en
{
 "mappings": {
 "post": {
 "properties": {
 "title": {
 "type": "string", (1)
 "fields": {
 "stemmed": {
 "type": "string",
 "analyzer": "english" (2)
 }
}}}}}}

PUT /blogs-fr
{
 "mappings": {
 "post": {
 "properties": {
 "title": {
 "type": "string", (3)
 "fields": {
 "stemmed": {
 "type": "string",
 "analyzer": "french" (4)
 }
}}}}}}
	(1) (3)
	
Both blogs-en and blogs-fr have a type called post that contains
 the field title.

	(2) (4)
	
The title.stemmed subfield uses a language-specific analyzer.

This approach is clean and flexible. New languages are easy to add—just
create a new index—and because each language is completely separate, we
don’t suffer from the term-frequency and stemming problems described in
Section 18.3, “Pitfalls of Mixing Languages”.
The documents of a single language can be queried independently, or queries
can target multiple languages by querying multiple indices. We can even
specify a preference
 for particular languages with the indices_boost parameter:
GET /blogs-*/post/_search (1)
{
 "query": {
 "multi_match": {
 "query": "deja vu",
 "fields": ["title", "title.stemmed"] (2)
 "type": "most_fields"
 }
 },
 "indices_boost": { (3)
 "blogs-en": 3,
 "blogs-fr": 2
 }
}
	(1)
	
This search is performed on any index beginning with blogs-.

	(2)
	
The title.stemmed fields are queried using the analyzer
 specified in each index.

	(3)
	
Perhaps the user’s accept-language headers showed a preference for
 English, and then French, so we boost results from each index accordingly.
 Any other languages will have a neutral boost of 1.

18.4.1. Foreign Words

Of course, these documents may contain words or sentences in other languages,
and these words are unlikely to be stemmed correctly. With
predominant-language documents, this is not usually a major problem. The user will
often search for the exact words—for instance, of a quotation from another
language—rather than for inflections of a word. Recall can be improved
by using techniques explained in Chapter 20, Normalizing Tokens.
Perhaps some words like place names should be queryable in the predominant
language and in the original language, such as Munich and München. These
words are effectively synonyms, which we discuss in Chapter 23, Synonyms.
Don’t Use Types for Languages

You may be tempted to use a separate type for each language,

 instead of a
separate index. For best results, you should avoid using types for this
purpose. As explained in Section 10.6, “Types and Mappings”, fields from different types but with
the same field name are indexed into the same inverted index. This means
that the term frequencies from each type (and thus each language) are mixed
together.
To ensure that the term frequencies of one language don’t pollute those of
another, either use a separate index for each language, or a separate field,
as explained in the next section.

18.5. One Language per Field

For documents that represent entities like products, movies, or legal notices, it is common

for the same text to be translated into several languages. Although each translation
could be represented in a single document in an index per language, another
reasonable approach is to keep all translations in the same document:
{
 "title": "Fight club",
 "title_br": "Clube de Luta",
 "title_cz": "Klub rváčů",
 "title_en": "Fight club",
 "title_es": "El club de la lucha",
 ...
}
Each translation is stored in a separate field, which is analyzed according
to the language it contains:
PUT /movies
{
 "mappings": {
 "movie": {
 "properties": {
 "title": { (1)
 "type": "string"
 },
 "title_br": { (2)
 "type": "string",
 "analyzer": "brazilian"
 },
 "title_cz": { (3)
 "type": "string",
 "analyzer": "czech"
 },
 "title_en": { (4)
 "type": "string",
 "analyzer": "english"
 },
 "title_es": { (5)
 "type": "string",
 "analyzer": "spanish"
 }
 }
 }
 }
}
	(1)
	
The title field contains the original title and uses the
 standard analyzer.

	(2) (3) (4) (5)
	
Each of the other fields uses the appropriate analyzer for
 that language.

Like the index-per-language approach, the field-per-language approach
maintains clean term frequencies. It is not quite as flexible as having
separate indices. Although it is easy to add a new field by using the update-mapping API, those new fields may require new
custom analyzers, which can only be set up at index creation time. As a
workaround, you can close the index, add the new
analyzers with the update-settings API,
then reopen the index, but closing the index means that it will require some
downtime.
The documents of a

 single language can be queried independently, or queries
can target multiple languages by querying multiple fields. We can even
specify a preference for particular languages by boosting that field:
GET /movies/movie/_search
{
 "query": {
 "multi_match": {
 "query": "club de la lucha",
 "fields": ["title*", "title_es^2"], (1)
 "type": "most_fields"
 }
 }
}
	(1)
	
This search queries any field beginning with title but
 boosts the title_es field by 2. All other fields have
 a neutral boost of 1.

18.6. Mixed-Language Fields

Usually, documents that mix multiple languages in a single field come from
sources beyond your control, such as

 pages scraped from the Web:
{ "body": "Page not found / Seite nicht gefunden / Page non trouvée" }
They are the most difficult type of multilingual document to handle correctly.
Although you can simply use the standard analyzer on all fields, your documents
will be less searchable than if you had used an appropriate stemmer. But of
course, you can’t choose just one stemmer—stemmers are language specific.
Or rather, stemmers are language and script specific. As discussed in
Stemmer per Script, if every language uses a different script, then
stemmers can be combined.
Assuming that your mix of languages uses the same script such as Latin, you have three choices available to you:
	
Split into separate fields

	
Analyze multiple times

	
Use n-grams

18.6.1. Split into Separate Fields

The Compact Language Detector

mentioned in Section 18.3.3, “Identifying Language” can tell
you which parts of the document are in which language. You can split up the
text based on language and use the same approach as was used in
Section 18.5, “One Language per Field”.

18.6.2. Analyze Multiple Times

If you primarily deal with a limited number of languages,

you could use
multi-fields to analyze the text once per language:
PUT /movies
{
 "mappings": {
 "title": {
 "properties": {
 "title": { (1)
 "type": "string",
 "fields": {
 "de": { (2)
 "type": "string",
 "analyzer": "german"
 },
 "en": { (3)
 "type": "string",
 "analyzer": "english"
 },
 "fr": { (4)
 "type": "string",
 "analyzer": "french"
 },
 "es": { (5)
 "type": "string",
 "analyzer": "spanish"
 }
 }
 }
 }
 }
 }
}
	(1)
	
The main title field uses the standard analyzer.

	(2) (3) (4) (5)
	
Each subfield applies a different language analyzer
 to the text in the title field.

18.6.3. Use n-grams

You could index all words as n-grams, using the

same approach as
described in Section 16.8, “Ngrams for Compound Words”. Most inflections involve adding a
suffix (or in some languages, a prefix) to a word, so by breaking each word into n-grams, you have a good chance of matching words that are similar
but not exactly the same. This can be combined with the analyze-multiple
times approach to provide a catchall field for unsupported languages:
PUT /movies
{
 "settings": {
 "analysis": {...} (1)
 },
 "mappings": {
 "title": {
 "properties": {
 "title": {
 "type": "string",
 "fields": {
 "de": {
 "type": "string",
 "analyzer": "german"
 },
 "en": {
 "type": "string",
 "analyzer": "english"
 },
 "fr": {
 "type": "string",
 "analyzer": "french"
 },
 "es": {
 "type": "string",
 "analyzer": "spanish"
 },
 "general": { (2)
 "type": "string",
 "analyzer": "trigrams"
 }
 }
 }
 }
 }
 }
}
	(1)
	
In the analysis section, we define the same trigrams
 analyzer as described in Section 16.8, “Ngrams for Compound Words”.

	(2)
	
The title.general field uses the trigrams analyzer
 to index any language.

When querying the catchall general field, you can use
minimum_should_match to reduce the number of low-quality matches. It may
also be necessary to boost the other fields slightly more than the general
field, so that matches on the main language fields are given more weight
than those on the general field:
GET /movies/movie/_search
{
 "query": {
 "multi_match": {
 "query": "club de la lucha",
 "fields": ["title*^1.5", "title.general"], (1)
 "type": "most_fields",
 "minimum_should_match": "75%" (2)
 }
 }
}
	(1)
	
All title or title.* fields are given a slight boost over the
 title.general field.

	(2)
	
The minimum_should_match parameter reduces the number of low-quality matches returned, especially important for the title.general field.

Chapter 19. Identifying Words

A word in English is relatively simple to spot: words are separated by
whitespace or (some) punctuation.

 Even in English, though, there can be
controversy: is you’re one word or two? What about o’clock,
cooperate, half-baked, or eyewitness?
Languages like German or Dutch combine individual words to create longer
compound words like Weißkopfseeadler (white-headed sea eagle), but in order
to be able to return Weißkopfseeadler as a result for the query Adler
(eagle), we need to understand how to break up compound words into their
constituent parts.
Asian languages are even more complex: some have no whitespace between words,
sentences, or even paragraphs.
 Some words can be represented by a single
character, but the same single character, when placed next to other
characters, can form just one part of a longer word with a quite different
meaning.
It should be obvious that there is no silver-bullet analyzer that will
miraculously deal with all human languages. Elasticsearch ships with dedicated
analyzers for many languages, and more language-specific analyzers are
available as plug-ins.
However, not all languages have dedicated analyzers, and sometimes you won’t
even be sure which language(s) you are dealing with. For these situations, we
need good standard tools that do a reasonable job regardless of language.
19.1. standard Analyzer

The standard analyzer is used by default for any full-text analyzed string
field. If we were to reimplement the standard analyzer as a
custom analyzer, it would be defined as follows:
{
 "type": "custom",
 "tokenizer": "standard",
 "filter": ["lowercase", "stop"]
}
In Chapter 20, Normalizing Tokens and Chapter 22, Stopwords: Performance Versus Precision, we talk about the
lowercase, and stop token filters, but for the moment, let’s focus on
the standard tokenizer.

19.2. standard Tokenizer

A tokenizer accepts a string as input, processes

 the string to break it
into individual words, or tokens (perhaps discarding some characters like
punctuation), and emits a token stream as output.
What is interesting is the algorithm that is used to identify words. The
whitespace tokenizer simply breaks on whitespace—spaces, tabs, line
feeds, and so forth—and assumes that contiguous nonwhitespace characters form a
single token. For instance:
GET /_analyze?tokenizer=whitespace
You're the 1st runner home!
This request would return the following terms:
You're, the, 1st, runner, home!
The letter tokenizer, on the other hand, breaks on any character that is
not a letter, and so would return the following terms: You, re, the,
st, runner, home.
The standard tokenizer uses the Unicode Text Segmentation algorithm (as
defined in Unicode Standard Annex #29) to
find the boundaries between words, and emits everything in-between. Its
knowledge of Unicode allows it to successfully tokenize text containing a
mixture of languages.
Punctuation may
 or may not be considered part of a word, depending on
where it appears:
GET /_analyze?tokenizer=standard
You're my 'favorite'.
In this example, the apostrophe in You're is treated as part of the
word, while the single quotes in 'favorite' are not, resulting in the
following terms: You're, my, favorite.
Tip
The uax_url_email tokenizer works in exactly the same way as the standard
tokenizer, except that it recognizes email addresses and URLs and emits them as
single tokens. The standard tokenizer, on the other hand, would try to
break them into individual words. For instance, the email address
joe-bloggs@foo-bar.com would result in the tokens joe, bloggs, foo,
bar.com.

The standard tokenizer is a reasonable starting point for tokenizing most
languages, especially Western languages. In fact, it forms the basis of most
of the language-specific analyzers like the english, french, and spanish
analyzers. Its support for Asian languages, however, is limited, and you should consider
using the icu_tokenizer instead, which is available in the ICU plug-in.

19.3. Installing the ICU Plug-in

The ICU analysis
plug-in for Elasticsearch uses the International Components for Unicode
(ICU) libraries (see site.project.org) to
provide a rich set of tools for dealing with Unicode.

 These include the
icu_tokenizer, which is particularly useful for Asian languages,
 and a number
of token filters that are essential for correct matching and sorting in all
languages other than English.
Note
The ICU plug-in is an essential tool for dealing with languages other than
English, and it is highly recommended that you install and use it.
Unfortunately, because it is based on the external ICU libraries, different
versions of the ICU plug-in may not be compatible with previous versions. When
upgrading, you may need to reindex your data.

To install the plug-in, first shut down your Elasticsearch node and then run the
following command from the Elasticsearch home directory:
./bin/plugin -install elasticsearch/elasticsearch-analysis-icu/$VERSION (1)
	(1)
	
The current $VERSION can be found at
 https://github.com/elasticsearch/elasticsearch-analysis-icu.

Once installed, restart Elasticsearch, and you should see a line similar to the
following in the startup logs:
[INFO][plugins] [Mysterio] loaded [marvel, analysis-icu], sites [marvel]
If you are running a cluster with multiple nodes, you will need to install the
plug-in on every node in the cluster.

19.4. icu_tokenizer

The icu_tokenizer uses the same Unicode Text Segmentation algorithm as the
standard tokenizer,

 but adds better support for some Asian languages by
using a dictionary-based approach to identify words in Thai, Lao, Chinese,
Japanese, and Korean, and using custom rules to break Myanmar and Khmer text
into syllables.
For instance, compare the tokens
produced by the standard and
icu_tokenizers, respectively, when tokenizing “Hello. I am from Bangkok.” in
Thai:
GET /_analyze?tokenizer=standard
สวัสดี ผมมาจากกรุงเทพฯ
The standard tokenizer produces two tokens, one for each sentence: สวัสดี,
ผมมาจากกรุงเทพฯ. That is useful only if you want to search for the whole
sentence “I am from Bangkok.”, but not if you want to search for just
“Bangkok.”
GET /_analyze?tokenizer=icu_tokenizer
สวัสดี ผมมาจากกรุงเทพฯ
The icu_tokenizer, on the other hand, is able to break up the text into the
individual words (สวัสดี, ผม, มา, จาก, กรุงเทพฯ), making them
easier to search.
In contrast, the standard tokenizer “over-tokenizes” Chinese and Japanese
text, often breaking up whole words into single characters. Because there
are no spaces between words, it can be difficult to tell whether consecutive
characters are separate words or form a single word. For instance:
	
向 means facing, 日 means sun, and 葵 means hollyhock. When
 written together, 向日葵 means sunflower.

	
五 means five or fifth, 月 means month, and 雨 means rain.
 The first two characters written together as 五月 mean the month
 of May, and adding the third character, 五月雨 means
 continuous rain. When combined with a fourth character, 式,
 meaning style, the word 五月雨式 becomes an adjective for anything
 consecutive or unrelenting.

Although each character may be a word in its own right, tokens are more
meaningful when they retain the bigger original concept instead of just the
component parts:
GET /_analyze?tokenizer=standard
向日葵

GET /_analyze?tokenizer=icu_tokenizer
向日葵
The standard tokenizer in the preceding example would emit each character
as a separate token: 向, 日, 葵. The icu_tokenizer would
emit the single token 向日葵 (sunflower).
Another difference between the standard tokenizer and the icu_tokenizer is
that the latter will break a word containing characters written in different
scripts (for example, βeta) into separate tokens—β, eta—while the
former will emit the word as a single token: βeta.

19.5. Tidying Up Input Text

Tokenizers produce the best results when the input text is clean, valid
text, where valid means that it follows the punctuation rules that the
Unicode algorithm expects.

 Quite often, though, the text we need to process
is anything but clean. Cleaning it up before tokenization improves the quality
of the output.
19.5.1. Tokenizing HTML

Passing HTML through the standard tokenizer or the icu_tokenizer produces
poor results. These tokenizers just don’t know what to do with the HTML tags.
For example:
GET /_analyze?tokenizer=standard
<p>Some déjà vu ">website
The standard tokenizer
 confuses HTML tags and entities, and emits the
following tokens: p, Some, d, eacute, j, agrave, vu, a,
href, http, somedomain.com, website, a. Clearly not what was
intended!
Character filters can be added to an analyzer to preprocess the text
before it is passed to the tokenizer. In this case, we can use the
html_strip character filter
 to remove HTML tags and to decode HTML entities
such as é into the corresponding Unicode characters.
Character filters can be tested out via the analyze API by specifying them
in the query string:
GET /_analyze?tokenizer=standard&char_filters=html_strip
<p>Some déjà vu ">website
To use them as part of the analyzer, they should be added to a custom
analyzer definition:
PUT /my_index
{
 "settings": {
 "analysis": {
 "analyzer": {
 "my_html_analyzer": {
 "tokenizer": "standard",
 "char_filter": ["html_strip"]
 }
 }
 }
 }
}
Once created, our new my_html_analyzer can be tested with the analyze API:
GET /my_index/_analyze?analyzer=my_html_analyzer
<p>Some déjà vu ">website
This emits the tokens that we expect: Some, déjà, vu, website.

19.5.2. Tidying Up Punctuation

The standard tokenizer and icu_tokenizer both understand that an
apostrophe within a word should be treated as part of the word, while single
quotes that surround a word should not.

 Tokenizing the text You're my 'favorite'. would correctly emit the tokens You're, my, favorite.
Unfortunately, Unicode lists a few characters that are sometimes used
as apostrophes:
	
U+0027

	
 Apostrophe (')—the original ASCII character

	
U+2018

	
 Left single-quotation mark (‘)—opening quote when single-quoting

	
U+2019

	
 Right single-quotation mark (’)—closing quote when single-quoting, but also the preferred character to use as an apostrophe

Both tokenizers treat these three characters as an apostrophe (and thus as
part of the word) when they appear within a word. Then there are another three
apostrophe-like characters:
	
U+201B

	
 Single high-reversed-9 quotation mark (‛)—same as U+2018 but differs in appearance

	
U+0091

	
 Left single-quotation mark in ISO-8859-1—should not be used in Unicode

	
U+0092

	
 Right single-quotation mark in ISO-8859-1—should not be used in Unicode

Both tokenizers treat these three characters as word boundaries—a place to
break text into tokens. Unfortunately, some publishers use U+201B as a
stylized way to write names like M‛coy, and the second two characters may well
be produced by your word processor, depending on its age.
Even when using the “acceptable” quotation marks, a word written with a
single right quotation mark—You’re—is not the same as the word written
with an apostrophe—You're—which means that a query for one variant
will not find the other.
Fortunately, it is possible to sort out this mess with the mapping character
filter,
 which allows us to replace all instances of one character with
another. In this case, we will replace all apostrophe variants with the
simple U+0027 apostrophe:
PUT /my_index
{
 "settings": {
 "analysis": {
 "char_filter": { (1)
 "quotes": {
 "type": "mapping",
 "mappings": [(2)
 "\\u0091=>\\u0027",
 "\\u0092=>\\u0027",
 "\\u2018=>\\u0027",
 "\\u2019=>\\u0027",
 "\\u201B=>\\u0027"
]
 }
 },
 "analyzer": {
 "quotes_analyzer": {
 "tokenizer": "standard",
 "char_filter": ["quotes"] (3)
 }
 }
 }
 }
}
	(1)
	
We define a custom char_filter called quotes that
 maps all apostrophe variants to a simple apostrophe.

	(2)
	
For clarity, we have used the JSON Unicode escape syntax
 for each character, but we could just have used the
 characters themselves: "‘=>'".

	(3)
	
We use our custom quotes character filter to create
 a new analyzer called quotes_analyzer.

As always, we test the analyzer after creating it:
GET /my_index/_analyze?analyzer=quotes_analyzer
You’re my ‘favorite’ M‛Coy
This example returns the following tokens, with all of the in-word
quotation marks replaced by apostrophes: You're, my, favorite, M'Coy.
The more effort that you put into ensuring that the tokenizer receives good-quality input, the better your search results will be.

Chapter 20. Normalizing Tokens

Breaking text into tokens is

only half the job. To make those
tokens more easily searchable, they need to go through a normalization
process to remove insignificant differences between otherwise identical words,
such as uppercase versus lowercase. Perhaps we also need to remove significant
differences, to make esta, ésta, and está all searchable as the same
word. Would you search for déjà vu, or just for deja vu?
This is the job of the token filters, which receive a stream of tokens from
the tokenizer. You can have multiple token filters, each doing its particular
job. Each receives the new token stream as output by the token filter before
it.
20.1. In That Case

The most frequently used token filter is the lowercase filter, which does
exactly what you would expect; it transforms

each token into its lowercase
form:
GET /_analyze?tokenizer=standard&filters=lowercase
The QUICK Brown FOX! (1)
	(1)
	
Emits tokens the, quick, brown, fox

It doesn’t matter whether users search for fox or FOX, as long as the same
analysis process is applied at query time and at search time. The lowercase
filter will transform a query for FOX into a query for fox, which is the
same token that we have stored in our inverted index.
To use token filters as part of the analysis process, we

can create a custom
analyzer:
PUT /my_index
{
 "settings": {
 "analysis": {
 "analyzer": {
 "my_lowercaser": {
 "tokenizer": "standard",
 "filter": ["lowercase"]
 }
 }
 }
 }
}
And we can test it out with the analyze API:
GET /my_index/_analyze?analyzer=my_lowercaser
The QUICK Brown FOX! (1)
	(1)
	
Emits tokens the, quick, brown, fox

20.2. You Have an Accent

English uses diacritics (like ´, ^, and ¨) only for imported words—like rôle, déjà, and däis—but usually they are optional.

 Other
languages require diacritics in order to be correct. Of course, just because
words are spelled correctly in your index doesn’t mean that the user will
search for the correct spelling.
It is often useful to strip diacritics from words, allowing rôle to match
role, and vice versa. With Western languages, this can be done with the
asciifolding character filter. Actually, it does more than just strip
diacritics. It tries to convert many Unicode characters into a simpler ASCII
representation:
	
ß ⇒ ss

	
æ ⇒ ae

	
ł ⇒ l

	
ɰ ⇒ m

	
⁇ ⇒ ??

	
❷ ⇒ 2

	
⁶ ⇒ 6

Like the lowercase filter, the asciifolding filter doesn’t require any
configuration but can be included directly in a custom analyzer:
PUT /my_index
{
 "settings": {
 "analysis": {
 "analyzer": {
 "folding": {
 "tokenizer": "standard",
 "filter": ["lowercase", "asciifolding"]
 }
 }
 }
 }
}

GET /my_index?analyzer=folding
My œsophagus caused a débâcle (1)
	(1)
	
Emits my, oesophagus, caused, a, debacle

20.2.1. Retaining Meaning

Of course, when you strip diacritical marks from a word, you lose meaning.
For instance, consider
 these three
Spanish words:
	
esta

	
 Feminine form of the adjective this, as in esta silla (this chair) or esta (this one).

	
ésta

	
 An archaic form of esta.

	
está

	
 The third-person form of the verb estar (to be), as in está feliz (he is happy).

While we would like to conflate the first two forms, they differ in meaning
from the third form, which we would like to keep separate. Similarly:
	
sé

	
 The first person form of the verb saber (to know) as in Yo sé (I know).

	
se

	
 The third-person reflexive pronoun used with many verbs, such as se sabe (it is known).

Unfortunately, there is no easy way to separate words that should have
their diacritics removed from words that shouldn’t. And it is quite likely
that your users won’t know either.
Instead, we index the text twice: once in the original form and once with
diacritics
removed:
PUT /my_index/_mapping/my_type
{
 "properties": {
 "title": { (1)
 "type": "string",
 "analyzer": "standard",
 "fields": {
 "folded": { (2)
 "type": "string",
 "analyzer": "folding"
 }
 }
 }
 }
}
	(1)
	
The title field uses the standard analyzer and will contain
 the original word with diacritics in place.

	(2)
	
The title.folded field uses the folding analyzer, which strips
 the diacritical marks.

You can test the field mappings by using the analyze API on the sentence
Esta está loca (This woman is crazy):
GET /my_index/_analyze?field=title (1)
Esta está loca

GET /my_index/_analyze?field=title.folded (2)
Esta está loca
	(1)
	
Emits esta, está, loca

	(2)
	
Emits esta, esta, loca

Let’s index some documents to test it out:
PUT /my_index/my_type/1
{ "title": "Esta loca!" }

PUT /my_index/my_type/2
{ "title": "Está loca!" }
Now we can search across both fields, using the multi_match query in
most_fields mode to combine the scores from each field:
GET /my_index/_search
{
 "query": {
 "multi_match": {
 "type": "most_fields",
 "query": "esta loca",
 "fields": ["title", "title.folded"]
 }
 }
}
Running this query through the validate-query API helps to explain how the
query is executed:
GET /my_index/_validate/query?explain
{
 "query": {
 "multi_match": {
 "type": "most_fields",
 "query": "está loca",
 "fields": ["title", "title.folded"]
 }
 }
}
The multi-match query searches for the original form of the word (está) in the title field,
and the form without diacritics esta in the title.folded field:
(title:está title:loca)
(title.folded:esta title.folded:loca)
It doesn’t matter whether the user searches for esta or está; both
documents will match because the form without diacritics exists in the the
title.folded field. However, only the original form exists in the title
field. This extra match will push the document containing the original form of
the word to the top of the results list.
We use the title.folded field to widen the net in order to match more
documents, and use the original title field to push the most relevant
document to the top. This same technique can be used wherever an analyzer is
used, to increase matches at the expense of meaning.
Tip
The asciifolding filter does have an option called preserve_original that
allows you to index the
 original token and the folded token in the same
position in the same field. With this option enabled, you would end up with
something like this:
Position 1 Position 2

(ésta,esta) loca

While this appears to be a nice way to save space, it does mean that you have
no way of saying, “Give me an exact match on the original word.” Mixing
tokens with and without diacritics can also end up interfering with term-frequency counts, resulting in less-reliable relevance calcuations.
As a rule, it is cleaner to index each field variant into a separate field,
as we have done in this section.

20.3. Living in a Unicode World

When Elasticsearch compares one token with another, it does so at the byte
level.

In other words, for two tokens to be considered the same, they need to
consist of exactly the same bytes. Unicode, however, allows you to write the
same letter in different ways.
For instance, what’s the difference between é and é? It
depends on who you ask. According to Elasticsearch, the first one consists of
the two bytes 0xC3 0xA9, and the second one consists of three bytes, 0x65
0xCC 0x81.
According to Unicode, the differences in how they are represented as bytes is
irrelevant, and they are the same letter. The first one is the single letter
é, while the second is a plain e combined with an acute accent ´.
If you get your data from more than one source, it may happen that you have
the same letters encoded in different ways, which may result in one form of
déjà not matching another!
Fortunately, a solution is at hand. There are four Unicode normalization
forms, all of which convert Unicode characters into a standard format, making
all characters
 comparable at a byte level: nfc, nfd, nfkc, nfkd.
Unicode Normalization Forms

The composed forms—nfc and nfkc—represent characters in the fewest
bytes possible. So é is represented as the single letter é. The
decomposed forms—nfd and nfkd—represent characters by their
constituent parts, that is e + ´.
The canonical forms—nfc and nfd—represent ligatures like ﬃ or
œ as a single character, while the compatibility forms—nfkc and
nfkd—break down these composed characters into a simpler multiletter
equivalent: f + f + i or o + e.

It doesn’t really matter which normalization form you choose, as long as all
your text is in the same form. That way, the same tokens consist of the
same bytes. That said, the compatibility forms allow you to compare
ligatures like ﬃ with their simpler representation, ffi.
You can use the icu_normalizer token filter to ensure that all of your
tokens are in the same form:
PUT /my_index
{
 "settings": {
 "analysis": {
 "filter": {
 "nfkc_normalizer": { (1)
 "type": "icu_normalizer",
 "name": "nfkc"
 }
 },
 "analyzer": {
 "my_normalizer": {
 "tokenizer": "icu_tokenizer",
 "filter": ["nfkc_normalizer"]
 }
 }
 }
 }
}
	(1)
	
Normalize all tokens into the nfkc normalization form.

Tip
Besides the icu_normalizer token filter mentioned previously, there is also an
icu_normalizer character filter, which does the same job as the token
filter, but does so before the text reaches the tokenizer. When using the
standard tokenizer or icu_tokenizer, this doesn’t really matter. These
tokenizers know how to deal with all forms of Unicode correctly.
However, if you plan on using a different tokenizer, such as the ngram,
edge_ngram, or pattern tokenizers, it would make sense to use the
icu_normalizer character filter in preference to the token filter.

Usually, though, you will want to not only normalize the byte order of tokens,
but also lowercase them. This can be done with icu_normalizer, using
the custom normalization form nfkc_cf, which we discuss in the next section.

20.4. Unicode Case Folding

Humans are nothing if not inventive,

 and human language reflects that.
Changing the case of a word seems like such a simple task, until you have to
deal with multiple languages.
Take, for example, the lowercase German letter ß. Converting that to upper
case gives you SS, which converted back to lowercase gives you ss. Or consider the
Greek letter ς (sigma, when used at the end of a word). Converting it to
uppercase results in Σ, which converted back to lowercase, gives you σ.
The whole point of lowercasing terms is to make them more likely to match,
not less! In Unicode, this job is done by case folding rather than by lowercasing. Case folding is the act of converting words into a (usually lowercase) form that does not necessarily result in the correct spelling, but does
allow case-insensitive comparisons.
For instance, the letter ß, which is already lowercase, is folded to
ss. Similarly, the lowercase ς is folded to σ, to make σ, ς, and Σ
comparable, no matter where the letter appears in a word.

The default normalization form that the icu_normalizer token filter uses
is nfkc_cf. Like the nfkc form, this does the following:
	
Composes characters into the shortest byte representation

	
Uses compatibility mode to convert characters like ﬃ into the simpler
 ffi

But it also does this:
	
Case-folds characters into a form suitable for case comparison

In other words, nfkc_cf is the equivalent of the lowercase token filter,
but suitable for use with all languages.
 The on-steroids equivalent of the
standard analyzer would be the following:
PUT /my_index
{
 "settings": {
 "analysis": {
 "analyzer": {
 "my_lowercaser": {
 "tokenizer": "icu_tokenizer",
 "filter": ["icu_normalizer"] (1)
 }
 }
 }
 }
}
	(1)
	
The icu_normalizer defaults to the nfkc_cf form.

We can compare the results of running Weißkopfseeadler and
WEISSKOPFSEEADLER (the uppercase equivalent) through the standard
analyzer and through our Unicode-aware analyzer:
GET /_analyze?analyzer=standard (1)
Weißkopfseeadler WEISSKOPFSEEADLER

GET /my_index/_analyze?analyzer=my_lowercaser (2)
Weißkopfseeadler WEISSKOPFSEEADLER
	(1)
	
Emits tokens weißkopfseeadler, weisskopfseeadler

	(2)
	
Emits tokens weisskopfseeadler, weisskopfseeadler

The standard analyzer emits two different, incomparable tokens, while our
custom analyzer produces tokens that are comparable, regardless of the
original case.

20.5. Unicode Character Folding

In the same way as the lowercase token filter is a good starting point for
many languages

 but falls short when exposed to the entire tower of Babel, so
the asciifolding token filter requires a more
effective Unicode character-folding counterpart for dealing with the many
languages of the world.
The icu_folding token filter (provided by the icu plug-in)
does the same job as the asciifolding filter, but extends the transformation
to scripts that are not ASCII-based, such as Greek, Hebrew, Han, conversion
of numbers in other scripts into their Latin equivalents, plus various other
numeric, symbolic, and punctuation transformations.
The icu_folding token filter applies Unicode normalization and case folding
from nfkc_cf automatically, so the icu_normalizer is not required:
PUT /my_index
{
 "settings": {
 "analysis": {
 "analyzer": {
 "my_folder": {
 "tokenizer": "icu_tokenizer",
 "filter": ["icu_folding"]
 }
 }
 }
 }
}

GET /my_index/_analyze?analyzer=my_folder
١٢٣٤٥ (1)
	(1)
	
The Arabic numerals ١٢٣٤٥ are folded to their Latin equivalent: 12345.

If there are particular characters that you would like to protect from
folding, you can use a
UnicodeSet
(much like a character class in regular expressions) to specify which Unicode
characters may be folded. For instance, to exclude the Swedish letters å,
ä, ö, Å, Ä, and Ö from folding, you would specify a character class
representing all Unicode characters, except for those letters: [^åäöÅÄÖ]
(^ means everything except).
PUT /my_index
{
 "settings": {
 "analysis": {
 "filter": {
 "swedish_folding": { (1)
 "type": "icu_folding",
 "unicodeSetFilter": "[^åäöÅÄÖ]"
 }
 },
 "analyzer": {
 "swedish_analyzer": { (2)
 "tokenizer": "icu_tokenizer",
 "filter": ["swedish_folding", "lowercase"]
 }
 }
 }
 }
}
	(1)
	
The swedish_folding token filter customizes the
 icu_folding token filter to exclude Swedish letters,
 both uppercase and lowercase.

	(2)
	
The swedish analyzer first tokenizes words, then folds
 each token by using the swedish_folding filter, and then
 lowercases each token in case it includes some of
 the uppercase excluded letters: Å, Ä, or Ö.

20.6. Sorting and Collations

So far in this chapter, we have looked at how to normalize tokens for the
purposes of search.

 The final use case to consider in this chapter
is that of string sorting.
In Section 8.2, “String Sorting and Multifields”, we explained that Elasticsearch cannot sort on an
analyzed string field, and demonstrated how to use multifields to index
the same field once as an analyzed field for search, and once as a
not_analyzed field for sorting.

The problem with sorting on an analyzed field is not that it uses
an analyzer, but that the analyzer tokenizes the string value into
multiple tokens, like a bag of words, and Elasticsearch doesn’t know which
token to use for sorting.
Relying on a not_analyzed field for sorting is inflexible: it allows
us to sort on only the exact value of the original string. However, we can use
analyzers to achieve other sort orders, as long as our chosen analyzer always emits only a single token for each string value.
20.6.1. Case-Insensitive Sorting

Imagine that we have three user documents whose name fields contain Boffey,

BROWN, and bailey, respectively. First we will apply the technique
described in Section 8.2, “String Sorting and Multifields” of using a not_analyzed field for sorting:
PUT /my_index
{
 "mappings": {
 "user": {
 "properties": {
 "name": { (1)
 "type": "string",
 "fields": {
 "raw": { (2)
 "type": "string",
 "index": "not_analyzed"
 }
 }
 }
 }
 }
 }
}
	(1)
	
The analyzed name field is used for search.

	(2)
	
The not_analyzed name.raw field is used for sorting.

We can index some documents and try sorting:
PUT /my_index/user/1
{ "name": "Boffey" }

PUT /my_index/user/2
{ "name": "BROWN" }

PUT /my_index/user/3
{ "name": "bailey" }

GET /my_index/user/_search?sort=name.raw
The preceding search request would return the documents in this order: BROWN,
Boffey, bailey. This is known as lexicographical order as opposed to
alphabetical order. Essentially, the bytes used to represent capital
letters have a lower value than the bytes used to represent lowercase letters,
and so the names are sorted with the lowest bytes first.
That may make sense to a computer, but doesn’t make much sense to human beings
who would reasonably expect these names to be sorted alphabetically,
regardless of case. To achieve this, we need to index each name in a way that
the byte ordering corresponds to the sort order that we want.
In other words, we need an analyzer that will emit a single lowercase token:
PUT /my_index
{
 "settings": {
 "analysis": {
 "analyzer": {
 "case_insensitive_sort": {
 "tokenizer": "keyword", (1)
 "filter": ["lowercase"] (2)
 }
 }
 }
 }
}
	(1)
	
The keyword tokenizer emits the original input string
 as a single unchanged token.

	(2)
	
The lowercase token filter lowercases the token.

With the case_insensitive_sort analyzer in place, we can now use it in our
multifield:
PUT /my_index/_mapping/user
{
 "properties": {
 "name": {
 "type": "string",
 "fields": {
 "lower_case_sort": { (1)
 "type": "string",
 "analyzer": "case_insensitive_sort"
 }
 }
 }
 }
}

PUT /my_index/user/1
{ "name": "Boffey" }

PUT /my_index/user/2
{ "name": "BROWN" }

PUT /my_index/user/3
{ "name": "bailey" }

GET /my_index/user/_search?sort=name.lower_case_sort
	(1)
	
The name.lower_case_sort field will provide us with
 case-insensitive sorting.

The preceding search request returns our documents in the order that we expect:
bailey, Boffey, BROWN.
But is this order correct? It appears to be correct as it matches our
expectations, but our expectations have probably been influenced by the fact
that this book is in English and all of the letters used in our example belong
to the English alphabet.
What if we were to add the German name Böhm?
Now our names would be returned in this order: bailey, Boffey, BROWN,
Böhm. The reason that Böhm comes after BROWN is that these words are
still being sorted by the values of the bytes used to represent them, and an
r is stored as the byte 0x72, while ö is stored as 0xF6 and so is
sorted last. The byte value of each character is an accident of history.
Clearly, the default sort order is meaningless for anything other than plain
English. In fact, there is no “right” sort order. It all depends on the
language you speak.

20.6.2. Differences Between Languages

Every language has its own sort order, and

 sometimes even multiple sort
orders.

 Here are a few examples of how our four names from the previous
section would be sorted in different contexts:
	
English: bailey, boffey, böhm, brown

	
German: bailey, boffey, böhm, brown

	
German phonebook: bailey, böhm, boffey, brown

	
Swedish: bailey, boffey, brown, böhm

Note
The reason that the German phonebook sort order places böhm before boffey
is that ö and oe are considered synonyms when dealing with names and
places, so böhm is sorted as if it had been written as boehm.

20.6.3. Unicode Collation Algorithm

Collation is the process of sorting text into a predefined order. The
Unicode Collation Algorithm, or UCA (see
www.unicode.org/reports/tr10) defines a
method of sorting strings into the order defined in a Collation Element
Table (usually referred to just as a collation).
The UCA also defines the Default Unicode Collation Element Table, or DUCET,
which defines the default sort order for all Unicode characters, regardless of
language. As you have already seen, there is no single correct sort order, so
DUCET is designed to annoy as few people as possible as seldom as possible,
but it is far from being a panacea for all sorting woes.
Instead, language-specific collations
 exist for pretty much every language
under the sun. Most use DUCET as their starting point and add a few custom
rules to deal with the peculiarities of each language.
The UCA takes a string and a collation as inputs and outputs a binary sort
key. Sorting a collection of strings according to the specified collation then
becomes a simple comparison of their binary sort keys.

20.6.4. Unicode Sorting

Tip
The approach described in this section will probably change in

a future version of
Elasticsearch. Check the icu plugin documentation for the
latest information.

The icu_collation token filter defaults to using the DUCET
collation for sorting. This is already an improvement over the default sort. To use it,
all we need to do is to create an analyzer that uses the default
icu_collation filter:
PUT /my_index
{
 "settings": {
 "analysis": {
 "analyzer": {
 "ducet_sort": {
 "tokenizer": "keyword",
 "filter": ["icu_collation"] (1)
 }
 }
 }
 }
}
	(1)
	
Use the default DUCET collation.

Typically, the field that we want to sort on is also a field that we want to
search on, so we use the same multifield approach as we used in
Section 20.6.1, “Case-Insensitive Sorting”:
PUT /my_index/_mapping/user
{
 "properties": {
 "name": {
 "type": "string",
 "fields": {
 "sort": {
 "type": "string",
 "analyzer": "ducet_sort"
 }
 }
 }
 }
}
With this mapping, the name.sort field will contain a sort key that will be
used only for sorting. We haven’t specified a language, so it defaults to
using the DUCET collation.
Now, we can reindex our example docs and test the sorting:
PUT /my_index/user/_bulk
{ "index": { "_id": 1 }}
{ "name": "Boffey" }
{ "index": { "_id": 2 }}
{ "name": "BROWN" }
{ "index": { "_id": 3 }}
{ "name": "bailey" }
{ "index": { "_id": 4 }}
{ "name": "Böhm" }

GET /my_index/user/_search?sort=name.sort
Note
Note that the sort key returned with each document, which in earlier
examples looked like brown and böhm, now looks like gobbledygook:
ᖔ乏昫တ倈⠀\u0001. The reason is that the icu_collation filter emits keys
intended only for efficient sorting, not for any other purposes.

The preceding search returns our docs in this order: bailey, Boffey, Böhm,
BROWN. This is already an improvement, as the sort order is now correct for
English and German, but it is still incorrect for German phonebooks and
Swedish. The next step is to customize our mapping for different languages.

20.6.5. Specifying a Language

The icu_collation filter can be

configured to use the collation table for a
specific language, a country-specific version of a language, or some other
subset such as German phonebooks. This can be done by creating a custom version
of the token filter by
using the language, country, and variant parameters
as follows:
	
English

	{ "language": "en" }

	
German

	{ "language": "de" }

	
Austrian German

	{ "language": "de", "country": "AT" }

	
German phonebooks

	{ "language": "de", "variant": "@collation=phonebook" }

Tip
You can read more about the locales supported by ICU at:
http://userguide.icu-project.org/locale.

This example shows how to set up the German phonebook sort order:
PUT /my_index
{
 "settings": {
 "number_of_shards": 1,
 "analysis": {
 "filter": {
 "german_phonebook": { (1)
 "type": "icu_collation",
 "language": "de",
 "country": "DE",
 "variant": "@collation=phonebook"
 }
 },
 "analyzer": {
 "german_phonebook": { (2)
 "tokenizer": "keyword",
 "filter": ["german_phonebook"]
 }
 }
 }
 },
 "mappings": {
 "user": {
 "properties": {
 "name": {
 "type": "string",
 "fields": {
 "sort": { (3)
 "type": "string",
 "analyzer": "german_phonebook"
 }
 }
 }
 }
 }
 }
}
	(1)
	
First we create a version of the icu_collation customized for the German phonebook collation.

	(2)
	
Then we wrap that up in a custom analyzer.

	(3)
	
And we apply it to our name.sort field.

Reindex the data and repeat the same search as we used previously:
PUT /my_index/user/_bulk
{ "index": { "_id": 1 }}
{ "name": "Boffey" }
{ "index": { "_id": 2 }}
{ "name": "BROWN" }
{ "index": { "_id": 3 }}
{ "name": "bailey" }
{ "index": { "_id": 4 }}
{ "name": "Böhm" }

GET /my_index/user/_search?sort=name.sort
This now returns our docs in this order: bailey, Böhm, Boffey, BROWN.
In the German phonebook collation, Böhm is the equivalent of Boehm, which
comes before Boffey.
Multiple sort orders

The same field can support multiple
sort orders by using a multifield for
each language:
PUT /my_index/_mapping/_user
{
 "properties": {
 "name": {
 "type": "string",
 "fields": {
 "default": {
 "type": "string",
 "analyzer": "ducet" (1)
 },
 "french": {
 "type": "string",
 "analyzer": "french" (2)
 },
 "german": {
 "type": "string",
 "analyzer": "german_phonebook" (3)
 },
 "swedish": {
 "type": "string",
 "analyzer": "swedish" (4)
 }
 }
 }
 }
}
	(1) (2) (3) (4)
	
We would need to create the corresponding analyzers for each of these collations.

With this mapping in place, results can be ordered correctly for French,
German, and Swedish users, just by sorting on the name.french, name.german,
or name.swedish fields. Unsupported languages can fall back to using the
name.default field, which uses the DUCET sort order.

20.6.6. Customizing Collations

The icu_collation token filter takes

 many more options than just language,
country, and variant, which can be used to tailor the sorting algorithm.
Options are available that will do the following:
	
Ignore diacritics

	
Order uppercase first or last, or ignore case

	
Take punctuation and whitespace into account or ignore it

	
Sort numbers as strings or by their numeric value

	
Customize existing collations or define your own custom collations

Details of these options are beyond the scope of this book, but more information
can be found in the ICU plug-in documentation
and in the ICU project collation documentation.

Chapter 21. Reducing Words to Their Root Form

Most languages of the world are inflected, meaning

that words can change
their form to express differences in the following:
	
Number: fox, foxes

	
Tense: pay, paid, paying

	
Gender: waiter, waitress

	
Person: hear, hears

	
Case: I, me, my

	
Aspect: ate, eaten

	
Mood: so be it, were it so

While inflection aids expressivity, it interferes with retrievability, as a
single root word sense (or meaning) may be represented by many different
sequences of letters.
 English is a weakly inflected language (you could
ignore inflections and still get reasonable search results), but some other
languages are highly inflected and need extra work in order to achieve
high-quality search results.
Stemming attempts to remove the differences between inflected forms of a
word, in order to reduce each word to its root form. For instance foxes may
be reduced to the root fox, to remove the difference between singular and
plural in the same way that we removed the difference between lowercase and
uppercase.
The root form of a word may not even be a real word. The words jumping and
jumpiness may both be stemmed to jumpi. It doesn’t matter—as long as
the same terms are produced at index time and at search time, search will just
work.
If stemming were easy, there would be only one implementation. Unfortunately,
stemming is an inexact science that
suffers from two issues: understemming
and overstemming.
Understemming is the failure to reduce words with the same meaning to the same
root. For example, jumped and jumps may be reduced to jump, while
jumping may be reduced to jumpi. Understemming reduces retrieval;
relevant documents are not returned.
Overstemming is the failure to keep two words with distinct meanings separate.
For instance, general and generate may both be stemmed to gener.
Overstemming reduces precision: irrelevant documents are returned when they
shouldn’t be.
Lemmatization

A lemma is the canonical, or dictionary, form of a set of related words—the
lemma of paying, paid, and pays is pay. Usually the lemma resembles
the words it is related to but sometimes it doesn’t — the lemma of is,
was, am, and being is be.
Lemmatization, like stemming, tries to group related words, but it goes one
step further than stemming in that it tries to group words by their word
sense, or meaning. The same word may represent two meanings—for example,wake can mean to wake up or a funeral. While lemmatization would
try to distinguish these two word senses, stemming would incorrectly conflate
them.
Lemmatization is a much more complicated and expensive process that needs to
understand the context in which words appear in order to make decisions
about what they mean. In practice, stemming appears to be just as effective
as lemmatization, but with a much lower cost.

First we will discuss the two classes of stemmers available in Elasticsearch—Section 21.1, “Algorithmic Stemmers” and Section 21.2, “Dictionary Stemmers”—and then look at how to
choose the right stemmer for your needs in Section 21.4, “Choosing a Stemmer”. Finally,
we will discuss options for tailoring stemming in Section 21.5, “Controlling Stemming” and
Section 21.6, “Stemming in situ”.
21.1. Algorithmic Stemmers

Most of the stemmers available in Elasticsearch are algorithmic
 in that they
apply a series of rules to a word in order to reduce it to its root form, such
as stripping the final s or es from plurals. They don’t have to know
anything about individual words in order to stem them.
These algorithmic stemmers have the advantage that they are available out of
the box, are fast, use little memory, and work well for regular words. The
downside is that they don’t cope well with irregular words like be, are,
and am, or mice and mouse.
One of the earliest stemming algorithms
 is the Porter stemmer for English,
which is still the recommended English stemmer today. Martin Porter
subsequently went on to create the
Snowball language for creating stemming
algorithms, and a number of the stemmers available in Elasticsearch are
written in Snowball.
Tip
The kstem token filter is a stemmer
for English which combines the algorithmic approach with a built-in
dictionary. The dictionary contains a list of root words and exceptions in
order to avoid conflating words incorrectly. kstem tends to stem less
aggressively than the Porter stemmer.

21.1.1. Using an Algorithmic Stemmer

While you

can use the
porter_stem or
kstem token filter directly, or
create a language-specific Snowball stemmer with the
snowball token filter, all of the
algorithmic stemmers are exposed via a single unified interface:
the stemmer token filter, which
accepts the language parameter.
For instance, perhaps you find the default stemmer used by the english
analyzer to be too aggressive and
you want to make it less aggressive.
The first step is to look up the configuration for the english analyzer
in the language analyzers
documentation, which shows the following:
{
 "settings": {
 "analysis": {
 "filter": {
 "english_stop": {
 "type": "stop",
 "stopwords": "_english_"
 },
 "english_keywords": {
 "type": "keyword_marker", (1)
 "keywords": []
 },
 "english_stemmer": {
 "type": "stemmer",
 "language": "english" (2)
 },
 "english_possessive_stemmer": {
 "type": "stemmer",
 "language": "possessive_english" (3)
 }
 },
 "analyzer": {
 "english": {
 "tokenizer": "standard",
 "filter": [
 "english_possessive_stemmer",
 "lowercase",
 "english_stop",
 "english_keywords",
 "english_stemmer"
]
 }
 }
 }
 }
}
	(1)
	
The keyword_marker token filter lists words that should not be
 stemmed. This defaults to the empty list.

	(2) (3)
	
The english analyzer uses two stemmers: the possessive_english
 and the english stemmer. The possessive stemmer removes 's
 from any words before passing them on to the english_stop,
 english_keywords, and english_stemmer.

Having reviewed the current configuration, we can use it as the basis for
a new analyzer, with
 the following changes:
	
Change the english_stemmer from english (which maps to the
 porter_stem token filter)
 to light_english (which maps to the less aggressive
 kstem token filter).

	
Add the asciifolding token filter to
 remove any diacritics from foreign words.

	
Remove the keyword_marker token filter, as we don’t need it.
 (We discuss this in more detail in Section 21.5, “Controlling Stemming”.)

Our new custom analyzer would look like this:
PUT /my_index
{
 "settings": {
 "analysis": {
 "filter": {
 "english_stop": {
 "type": "stop",
 "stopwords": "_english_"
 },
 "light_english_stemmer": {
 "type": "stemmer",
 "language": "light_english" (1)
 },
 "english_possessive_stemmer": {
 "type": "stemmer",
 "language": "possessive_english"
 }
 },
 "analyzer": {
 "english": {
 "tokenizer": "standard",
 "filter": [
 "english_possessive_stemmer",
 "lowercase",
 "english_stop",
 "light_english_stemmer", (2)
 "asciifolding" (3)
]
 }
 }
 }
 }
}
	(1) (2)
	
Replaced the english stemmer with the less aggressive
 light_english stemmer

	(3)
	
Added the asciifolding token filter

21.2. Dictionary Stemmers

Dictionary stemmers work quite differently from
algorithmic stemmers.
 Instead
of applying a standard set of rules to each word, they simply look up the
word in the dictionary. Theoretically, they could produce much better
results than an algorithmic stemmer. A dictionary stemmer should be able to do the following:
	
Return the correct root word for irregular forms such as feet and mice

	
Recognize the distinction between words that are similar but have
 different word senses—for example, organ and organization

In practice, a good algorithmic stemmer usually outperforms a dictionary
stemmer. There are a couple of reasons this should be so:
	
Dictionary quality

	A dictionary stemmer is only as good as its dictionary.
 The Oxford English
Dictionary website estimates that the English language contains approximately
750,000 words (when inflections are included). Most English dictionaries
available for computers contain about 10% of those.
The meaning of words changes with time. While stemming mobility to mobil
may have made sense previously, it now conflates the idea of mobility with a
mobile phone. Dictionaries need to be kept current, which is a time-consuming
task. Often, by the time a dictionary has been made available, some of its
entries are already out-of-date.
If a dictionary stemmer encounters a word not in its dictionary, it doesn’t
know how to deal with it. An algorithmic stemmer, on the other hand, will
apply the same rules as before, correctly or incorrectly.

	
Size and performance

	A dictionary stemmer needs to load all words,
 all prefixes, and all suffixes
into memory. This can use a significant amount of RAM. Finding the right stem
for a word is often considerably more complex than the equivalent process with
an algorithmic stemmer.
Depending on the quality of the dictionary, the process of removing prefixes
and suffixes may be more or less efficient. Less-efficient forms can slow
the stemming process significantly.
Algorithmic stemmers, on the other hand, are usually simple, small, and fast.

Tip
If a good algorithmic stemmer exists for your language, it is usually a
better choice than a dictionary-based stemmer. Languages with poor (or nonexistent) algorithmic stemmers can use the Hunspell dictionary stemmer, which
we discuss in the next section.

21.3. Hunspell Stemmer

Elasticsearch provides

dictionary-based stemming via the
hunspell token filter.
Hunspell hunspell.github.io is the
spell checker used by Open Office, LibreOffice, Chrome, Firefox, Thunderbird, and many
other open and closed source projects.
Hunspell dictionaries
 can be obtained from the following:
	
extensions.openoffice.org: Download and
 unzip the .oxt extension file.

	
addons.mozilla.org:
 Download and unzip the .xpi addon file.

	
OpenOffice archive: Download and unzip the .zip file.

A Hunspell dictionary consists of two files with the same base name—such as
en_US—but with one of two extensions:
	
.dic

	
 Contains all the root words, in alphabetical order, plus a code representing
 all possible suffixes and prefixes (which collectively are known as affixes)

	
.aff

	
 Contains the actual prefix or suffix transformation for each code listed
 in the .dic file

21.3.1. Installing a Dictionary

The Hunspell token
filter looks for dictionaries within a dedicated Hunspell
directory, which defaults to ./config/hunspell/. The .dic and .aff
files should be placed in a subdirectory whose name represents the language
or locale of the dictionaries. For instance, we could create a Hunspell
stemmer for American English with the following layout:
config/
 └ hunspell/ (1)
 └ en_US/ (2)
 ├ en_US.dic
 ├ en_US.aff
 └ settings.yml (3)
	(1)
	
The location of the Hunspell directory can be changed by setting
 indices.analysis.hunspell.dictionary.location in the
 config/elasticsearch.yml file.

	(2)
	
en_US will be the name of the locale or language that we pass to the
 hunspell token filter.

	(3)
	
Per-language settings file, described in the following section.

21.3.2. Per-Language Settings

The settings.yml file contains settings
 that apply to all of the
dictionaries within the language directory, such as these:

ignore_case: true
strict_affix_parsing: true
The meaning of these settings is as follows:
	
ignore_case

	Hunspell dictionaries are case sensitive by default: the surname Booker is a
different word from the noun booker, and so should be stemmed differently. It
may seem like a good idea to use the hunspell stemmer in case-sensitive
mode,
 but that can complicate things:
	
A word at the beginning of a sentence will be capitalized, and thus appear
 to be a proper noun.

	
The input text may be all uppercase, in which case almost no words will be
 found.

	
The user may search for names in all lowercase, in which case no capitalized
 words will be found.

As a general rule, it is a good idea to set ignore_case to true.

	
strict_affix_parsing

	
The quality of dictionaries varies greatly.
 Some dictionaries that are
available online have malformed rules in the .aff file. By default, Lucene
will throw an exception if it can’t parse an affix rule. If you need to deal
with a broken affix file, you can set strict_affix_parsing to false to tell
Lucene to ignore the broken rules.

Custom Dictionaries

If multiple dictionaries (.dic files) are placed in the same
directory,
they will be merged together at load time. This allows you to
tailor the downloaded dictionaries with your own custom word lists:
config/
 └ hunspell/
 └ en_US/ (1)
 ├ en_US.dic
 ├ en_US.aff (2)
 ├ custom.dic
 └ settings.yml
	(1)
	
The custom and en_US dictionaries will be merged.

	(2)
	
Multiple .aff files are not allowed, as they could use
 conflicting rules.

The format of the .dic and .aff files is discussed in
Section 21.3.4, “Hunspell Dictionary Format”.

21.3.3. Creating a Hunspell Token Filter

Once your dictionaries are installed on all nodes, you can define a hunspell
token filter
 that uses them:
PUT /my_index
{
 "settings": {
 "analysis": {
 "filter": {
 "en_US": {
 "type": "hunspell",
 "language": "en_US" (1)
 }
 },
 "analyzer": {
 "en_US": {
 "tokenizer": "standard",
 "filter": ["lowercase", "en_US"]
 }
 }
 }
 }
}
	(1)
	
The language has the same name as the directory where
 the dictionary lives.

You can test the new analyzer with the analyze API,
and compare its output to that of the english analyzer:
GET /my_index/_analyze?analyzer=en_US (1)
reorganizes

GET /_analyze?analyzer=english (2)
reorganizes
	(1)
	
Returns organize

	(2)
	
Returns reorgan

An interesting property of the hunspell stemmer, as can be seen in the
preceding example, is that it can remove prefixes as well as as suffixes. Most
algorithmic stemmers remove suffixes only.
Tip
Hunspell dictionaries can consume a few megabytes of RAM. Fortunately,
Elasticsearch creates only a single instance of a dictionary per node. All
shards that use the same Hunspell analyzer share the same instance.

21.3.4. Hunspell Dictionary Format

While it is not necessary to understand the
 format of a Hunspell dictionary in
order to use the hunspell tokenizer, understanding the format will help you
write your own custom dictionaries. It is quite simple.
For instance, in the US English dictionary, the en_US.dic file contains an entry for
the word analyze, which looks like this:
analyze/ADSG
The en_US.aff file contains the prefix or suffix rules for the A, G,
D, and S flags. Each flag consists of a number of rules, only one of
which should match. Each rule has the following format:
[type] [flag] [letters to remove] [letters to add] [condition]
For instance, the following is suffix (SFX) rule D. It says that, when a
word ends in a consonant (anything but a, e, i, o, or u) followed by
a y, it can have the y removed and ied added (for example, ready →
readied).
SFX D y ied [^aeiou]y
The rules for the A, G, D, and S flags mentioned previously are as follows:
SFX D Y 4
SFX D 0 d e (1)
SFX D y ied [^aeiou]y
SFX D 0 ed [^ey]
SFX D 0 ed [aeiou]y

SFX S Y 4
SFX S y ies [^aeiou]y
SFX S 0 s [aeiou]y
SFX S 0 es [sxzh]
SFX S 0 s [^sxzhy] (2)

SFX G Y 2
SFX G e ing e (3)
SFX G 0 ing [^e]

PFX A Y 1
PFX A 0 re . (4)
	(1)
	
analyze ends in an e, so it can become analyzed by adding a d.

	(2)
	
analyze does not end in s, x, z, h, or y, so it can become
 analyzes by adding an s.

	(3)
	
analyze ends in an e, so it can become analyzing by removing the e
 and adding ing.

	(4)
	
The prefix re can be added to form reanalyze. This rule can be
 combined with the suffix rules to form reanalyzes, reanalyzed,
 reanalyzing.

More information about the Hunspell syntax can be found on the Hunspell documentation site.

21.4. Choosing a Stemmer

The documentation for the
stemmer token filter
lists multiple stemmers for some languages.

 For English we have the following:
	
english

	
 The porter_stem token filter.

	
light_english

	
 The kstem token filter.

	
minimal_english

	
 The EnglishMinimalStemmer in Lucene, which removes plurals

	
lovins

	
 The Snowball based
 Lovins
 stemmer, the first stemmer ever produced.

	
porter

	
 The Snowball based
 Porter stemmer

	
porter2

	
 The Snowball based
 Porter2 stemmer

	
possessive_english

	
 The EnglishPossessiveFilter in Lucene which removes 's

Add to that list the Hunspell stemmer with the various English dictionaries
that are available.
One thing is for sure: whenever more than one solution exists for a problem,
it means that none of the solutions solves the problem adequately. This
certainly applies to stemming — each stemmer uses a different approach that
overstems and understems words to a different degree.
The stemmer documentation page
highlights the recommended stemmer for
each language in bold, usually because it offers a reasonable compromise
between performance and quality. That said, the recommended stemmer may not be
appropriate for all use cases. There is no single right answer to the question
of which is the best stemmer — it depends very much on your requirements.
There are three factors to take into account when making a choice:
performance, quality, and degree.
21.4.1. Stemmer Performance

Algorithmic stemmers are typically four or

five times faster than Hunspell
stemmers. “Handcrafted” algorithmic stemmers are usually, but not always,
faster than their Snowball equivalents. For instance, the porter_stem token
filter is significantly faster than the Snowball implementation of the Porter
stemmer.
Hunspell stemmers have to load all words, prefixes, and suffixes into memory,
which can consume a few megabytes of RAM. Algorithmic stemmers, on the other
hand, consist of a small amount of code and consume very little memory.

21.4.2. Stemmer Quality

All languages, except Esperanto, are irregular.

 While more-formal words tend
to follow a regular pattern, the most commonly used words often have irregular rules. Some stemming algorithms have been developed over years of
research and produce reasonably high-quality results. Others have been
assembled more quickly with less research and deal only with the most common
cases.
While Hunspell offers the promise of dealing precisely with irregular words,
it often falls short in practice. A dictionary stemmer is only as good as its
dictionary. If Hunspell comes across a word that isn’t in its dictionary, it
can do nothing with it. Hunspell requires an extensive, high-quality, up-to-date dictionary in order to produce good results; dictionaries of this
caliber are few and far between. An algorithmic stemmer, on the other hand,
will happily deal with new words that didn’t exist when the designer created
the algorithm.
If a good algorithmic stemmer is available for your language, it makes sense
to use it rather than Hunspell. It will be faster, will consume less memory, and
will generally be as good or better than the Hunspell equivalent.
If accuracy and customizability is important to you, and you need (and
have the resources) to maintain a custom dictionary, then Hunspell gives you
greater flexibility than the algorithmic stemmers. (See
Section 21.5, “Controlling Stemming” for customization techniques that can be used with
any stemmer.)

21.4.3. Stemmer Degree

Different stemmers overstem and understem

 to a different degree. The light_
stemmers stem less aggressively than the standard stemmers, and the minimal_
stemmers less aggressively still. Hunspell stems aggressively.
Whether you want aggressive or light stemming depends on your use case. If
your search results are being consumed by a clustering algorithm, you may
prefer to match more widely (and, thus, stem more aggressively). If your
search results are intended for human consumption, lighter stemming usually
produces better results. Stemming nouns and adjectives is more important for
search than stemming verbs, but this also depends on the language.
The other factor to take into account is the size of your document collection.
With a small collection such as a catalog of 10,000 products, you probably want to
stem more aggressively to ensure that you match at least some documents. If
your collection is large, you likely will get good matches with lighter
stemming.

21.4.4. Making a Choice

Start out with a recommended stemmer. If it works well enough, there is
no need to change it. If it doesn’t, you will need to spend some time
investigating and comparing the stemmers available for language in order to
find the one that best suits your purposes.

21.5. Controlling Stemming

Out-of-the-box stemming solutions are never perfect.
 Algorithmic stemmers,
especially, will blithely apply their rules to any words they encounter,
perhaps conflating words that you would prefer to keep separate. Maybe, for
your use case, it is important to keep skies and skiing as distinct words
rather than stemming them both down to ski (as would happen with the
english analyzer).
The keyword_marker and
stemmer_override token filters
allow us to customize the stemming process.
21.5.1. Preventing Stemming

The stem_exclusion parameter for language analyzers (see
Section 18.2, “Configuring Language Analyzers”) allowed

us to specify a list of words that
should not be stemmed. Internally, these language analyzers use the
keyword_marker token filter
to mark the listed words as keywords, which prevents subsequent stemming
token filters from touching those words.

For instance, we can create a simple custom analyzer that uses the
porter_stem token filter,
but prevents the word skies from being stemmed:
PUT /my_index
{
 "settings": {
 "analysis": {
 "filter": {
 "no_stem": {
 "type": "keyword_marker",
 "keywords": ["skies"] (1)
 }
 },
 "analyzer": {
 "my_english": {
 "tokenizer": "standard",
 "filter": [
 "lowercase",
 "no_stem",
 "porter_stem"
]
 }
 }
 }
 }
}
	(1)
	
They keywords parameter could accept multiple words.

Testing it with the analyze API shows that just the word skies has
been excluded from stemming:
GET /my_index/_analyze?analyzer=my_english
sky skies skiing skis (1)
	(1)
	
Returns: sky, skies, ski, ski

Tip
While the language analyzers allow
us only to specify an array of words in the
stem_exclusion parameter, the keyword_marker token filter also accepts a
keywords_path parameter that allows us to store all of our keywords in a
file.
The file should contain one word per line, and must be present on every
node in the cluster. See Section 22.2.5, “Updating Stopwords” for tips on how to update this
file.

21.5.2. Customizing Stemming

In the preceding example, we prevented skies from being stemmed, but perhaps we
would prefer it to be stemmed to sky instead.

 The
stemmer_override token
filter allows us to specify our own custom stemming rules. At the same time,
we can handle some irregular forms like stemming mice to mouse and feet
to foot:
PUT /my_index
{
 "settings": {
 "analysis": {
 "filter": {
 "custom_stem": {
 "type": "stemmer_override",
 "rules": [(1)
 "skies=>sky",
 "mice=>mouse",
 "feet=>foot"
]
 }
 },
 "analyzer": {
 "my_english": {
 "tokenizer": "standard",
 "filter": [
 "lowercase",
 "custom_stem", (2)
 "porter_stem"
]
 }
 }
 }
 }
}

GET /my_index/_analyze?analyzer=my_english
The mice came down from the skies and ran over my feet (3)
	(1)
	
Rules take the form original=>stem.

	(2)
	
The stemmer_override filter must be placed before the stemmer.

	(3)
	
Returns the, mouse, came, down, from, the, sky,
 and, ran, over, my, foot.

Tip
Just as for the keyword_marker token filter, rules can be stored
in a file whose location should be specified with the rules_path
parameter.

21.6. Stemming in situ

For the sake of completeness, we will
finish this chapter by explaining how to
index stemmed words into the same field as unstemmed words. As an example,
analyzing the sentence The quick foxes jumped would produce the following
terms:
Pos 1: (the)
Pos 2: (quick)
Pos 3: (foxes,fox) (1)
Pos 4: (jumped,jump) (2)
	(1) (2)
	
The stemmed and unstemmed forms occupy the same position.

Warning
Read Section 21.6.1, “Is Stemming in situ a Good Idea” before using this approach.

To achieve stemming in situ, we will use the
keyword_repeat
token filter, which, like the keyword_marker token filter (see
Section 21.5.1, “Preventing Stemming”), marks each term as a keyword to prevent the subsequent
stemmer from touching it. However, it also repeats the term in the same
position, and this repeated term is stemmed.
Using the keyword_repeat token filter alone would result in the following:
Pos 1: (the,the) (1)
Pos 2: (quick,quick) (2)
Pos 3: (foxes,fox)
Pos 4: (jumped,jump)
	(1) (2)
	
The stemmed and unstemmed forms are the same, and so are repeated
 needlessly.

To prevent the useless repetition of terms that are the same in their stemmed
and unstemmed forms, we add the
unique token filter into the mix:
PUT /my_index
{
 "settings": {
 "analysis": {
 "filter": {
 "unique_stem": {
 "type": "unique",
 "only_on_same_position": true (1)
 }
 },
 "analyzer": {
 "in_situ": {
 "tokenizer": "standard",
 "filter": [
 "lowercase",
 "keyword_repeat", (2)
 "porter_stem",
 "unique_stem" (3)
]
 }
 }
 }
 }
}
	(1)
	
The unique token filter is set to remove duplicate tokens
 only when they occur in the same position.

	(2)
	
The keyword_repeat token filter must appear before the
 stemmer.

	(3)
	
The unique_stem filter removes duplicate terms after the
 stemmer has done its work.

21.6.1. Is Stemming in situ a Good Idea

People like the

idea of stemming in situ: “Why use an unstemmed field
and a stemmed field if I can just use one combined field?” But is it a
good idea? The answer is almost always no. There are two problems.
The first is the inability to separate exact matches from inexact matches. In
this chapter, we have seen that words with different meanings are often
conflated to the same stem word: organs and organization both stem to
organ.
In Section 18.1, “Using Language Analyzers”, we demonstrated how to combine a query on a
stemmed field (to increase recall) with a query on an unstemmed field (to
improve relevance).
 When the stemmed and unstemmed fields are separate, the
contribution of each field can be tuned by boosting one field over another
(see Section 14.1.1, “Prioritizing Clauses”). If, instead, the stemmed and unstemmed forms
appear in the same field, there is no way to tune your search results.
The second issue has to do with how the
relevance score is calculated. In
Section 8.3, “What Is Relevance?”, we explained that part of the calculation depends on the
inverse document frequency — how often a word appears in all the documents
in our index.
 Using in situ stemming for a document that contains the text
jump jumped jumps would result in these terms:
Pos 1: (jump)
Pos 2: (jumped,jump)
Pos 3: (jumps,jump)
While jumped and jumps appear once each and so would have the correct IDF,
jump appears three times, greatly reducing its value as a search term in
comparison with the unstemmed forms.
For these reasons, we recommend against using stemming in situ.

Chapter 22. Stopwords: Performance Versus Precision

Back in the early days of information retrieval,
 disk space and memory were
limited to a tiny fraction of what we are accustomed to today. It was
essential to make your index as small as possible. Every kilobyte saved meant
a significant improvement in performance. Stemming (see Chapter 21, Reducing Words to Their Root Form) was
important, not just for making searches broader and increasing retrieval in
the same way that we use it today, but also as a tool for compressing index
size.
Another way to reduce index size is simply to index fewer words. For search
purposes, some words are more important than others. A significant reduction
in index size can be achieved by indexing only the more important terms.
So which terms can be left out?
 We can divide terms roughly into two groups:
	
Low-frequency terms

	
Words that appear in relatively few documents in the collection. Because of their
rarity,
 they have a high value, or weight.

	
High-frequency terms

	
Common words that appear in many documents in the index, such as the, and, and
is. These words have a low weight and contribute little to the relevance
score.

Tip
Of course, frequency is really a scale rather than just two points labeled
low and high. We just draw a line at some arbitrary point and say that any
terms below that line are low frequency and above the line are high frequency.

Which terms are low or high frequency depend on the documents themselves. The
word and may be a low-frequency term if all the documents are in Chinese.
In a collection of documents about databases, the word database may be a
high-frequency term with little value as a search term for that particular
collection.
That said, for any language there are words that occur very
commonly and that seldom add value to a search.
 The default English
stopwords used in Elasticsearch are as follows:
a, an, and, are, as, at, be, but, by, for, if, in, into, is, it,
no, not, of, on, or, such, that, the, their, then, there, these,
they, this, to, was, will, with
These stopwords can usually be filtered out before indexing with little
negative impact on retrieval. But is it a good idea to do so?
22.1. Pros and Cons of Stopwords

We have more disk space, more RAM, and
better compression algorithms than
existed back in the day. Excluding the preceding 33 common words from the index
will save only about 4MB per million documents. Using stopwords for the sake
of reducing index size is no longer a valid reason. (However, there is one
caveat to this statement, which we discuss in Section 22.5, “Stopwords and Phrase Queries”.)
On top of that, by removing words from the index, we are reducing our ability
to perform certain types of searches. Filtering out the words listed previously
prevents us from doing the following:
	
Distinguishing happy from not happy.

	
Searching for the band The The.

	
Finding Shakespeare’s quotation “To be, or not to be”

	
Using the country code for Norway: no

The primary advantage of removing stopwords is performance. Imagine that we
search an index with one million documents for the word fox. Perhaps fox
appears in only 20 of them, which means that Elastisearch has to calculate the
relevance _score for 20 documents in order to return the top 10. Now, we
change that to a search for the OR fox. The word the probably occurs in
almost all the documents, which means that Elasticsearch has to calculate
the _score for all one million documents. This second query simply cannot
perform as well as the first.
Fortunately, there are techniques that we can use to keep common words
searchable, while still maintaining good performance. First, we’ll start with
how to use stopwords.

22.2. Using Stopwords

The removal of stopwords is
handled by the
stop token filter which can be used
when creating a custom analyzer (see Section 22.2.4, “Using the stop Token Filter”).
However, some out-of-the-box analyzers

 come with the stop filter pre-integrated:
	
Language analyzers

	
 Each language analyzer defaults to using the appropriate stopwords list
 for that language. For instance, the english analyzer uses the
 english stopwords list.

	
standard analyzer

	
 Defaults to the empty stopwords list: _none_, essentially disabling
 stopwords.

	
pattern analyzer

	
 Defaults to _none_, like the standard analyzer.

22.2.1. Stopwords and the Standard Analyzer

To use custom stopwords in conjunction with

the standard analyzer, all we
need to do is to create a configured version of the analyzer and pass in the
list of stopwords that we require:
PUT /my_index
{
 "settings": {
 "analysis": {
 "analyzer": {
 "my_analyzer": { (1)
 "type": "standard", (2)
 "stopwords": ["and", "the"] (3)
 }
 }
 }
 }
}
	(1)
	
This is a custom analyzer called my_analyzer.

	(2)
	
This analyzer is the standard analyzer with some custom configuration.

	(3)
	
The stopwords to filter out are and and the.

Tip
This same technique can be used to configure custom stopword lists for
any of the language analyzers.

22.2.2. Maintaining Positions

The output from the analyze API
 is quite interesting:
GET /my_index/_analyze?analyzer=my_analyzer
The quick and the dead
{
 "tokens": [
 {
 "token": "quick",
 "start_offset": 4,
 "end_offset": 9,
 "type": "<ALPHANUM>",
 "position": 1 (1)
 },
 {
 "token": "dead",
 "start_offset": 18,
 "end_offset": 22,
 "type": "<ALPHANUM>",
 "position": 4 (2)
 }
]
}
	(1) (2)
	
Note the position of each token.

The stopwords have been filtered out, as expected, but the interesting part is
that the position of the

 two remaining terms is unchanged: quick is the
second word in the original sentence, and dead is the fifth. This is
important for phrase queries—if the positions of each term had been
adjusted, a phrase query for quick dead would have matched the preceding
example incorrectly.

22.2.3. Specifying Stopwords

Stopwords can be passed inline, as we did in
the previous example, by
specifying an array:
"stopwords": ["and", "the"]
The default stopword list for a particular language can be specified using the
lang notation:
"stopwords": "_english_"
Tip
The predefined language-specific stopword
 lists available in
Elasticsearch can be found in the
stop token filter documentation.

Stopwords can be disabled by
specifying the special list: _none_. For
instance, to use the english analyzer
 without stopwords, you can do the
following:
PUT /my_index
{
 "settings": {
 "analysis": {
 "analyzer": {
 "my_english": {
 "type": "english", (1)
 "stopwords": "_none_" (2)
 }
 }
 }
 }
}
	(1)
	
The my_english analyzer is based on the english analyzer.

	(2)
	
But stopwords are disabled.

Finally, stopwords can also be listed in a file with one word per line. The
file must be present on all nodes in the cluster, and the path can be
specified with the stopwords_path parameter:
PUT /my_index
{
 "settings": {
 "analysis": {
 "analyzer": {
 "my_english": {
 "type": "english",
 "stopwords_path": "stopwords/english.txt" (1)
 }
 }
 }
 }
}
	(1)
	
The path to the stopwords file, relative to the Elasticsearch config
 directory

22.2.4. Using the stop Token Filter

The stop token filter can be combined
with a tokenizer

 and other token filters when you need to create a custom
analyzer. For instance, let’s say that we wanted to
create a Spanish analyzer
with the following:
	
A custom stopwords list

	
The light_spanish stemmer

	
The asciifolding filter to remove diacritics

We could set that up as follows:
PUT /my_index
{
 "settings": {
 "analysis": {
 "filter": {
 "spanish_stop": {
 "type": "stop",
 "stopwords": ["si", "esta", "el", "la"] (1)
 },
 "light_spanish": { (2)
 "type": "stemmer",
 "language": "light_spanish"
 }
 },
 "analyzer": {
 "my_spanish": {
 "tokenizer": "spanish",
 "filter": [(3)
 "lowercase",
 "asciifolding",
 "spanish_stop",
 "light_spanish"
]
 }
 }
 }
 }
}
	(1)
	
The stop token filter takes the same stopwords and stopwords_path
 parameters as the standard analyzer.

	(2)
	
See Section 21.1, “Algorithmic Stemmers”.

	(3)
	
The order of token filters is important, as explained next.

We have placed the spanish_stop filter after the asciifolding filter.
 This
means that esta, ésta, and está will first have their diacritics
removed to become just esta, which will then be removed as a stopword. If,
instead, we wanted to remove esta and ésta, but not está, we
would have to put the spanish_stop filter before the asciifolding
filter, and specify both words in the stopwords list.

22.2.5. Updating Stopwords

A few techniques can be used to update the list of stopwords
used by an analyzer.

 Analyzers are instantiated at index creation time, when a
node is restarted, or when a closed index is reopened.
If you specify stopwords inline with the stopwords parameter, your
only option is to close the index and update the analyzer configuration with the
update index settings API, then reopen
the index.
Updating stopwords is easier if you specify them in a file with the
stopwords_path parameter. You can just update the file (on every node in
the cluster) and then force the analyzers to be re-created by either of these actions:
	
Closing and reopening the index
 (see open/close index), or

	
Restarting each node in the cluster, one by one

Of course, updating the stopwords list will not change any documents that have
already been indexed. It will apply only to searches and to new or updated
documents. To apply the changes to existing documents, you will need to
reindex your data. See Section 10.11, “Reindexing Your Data”.

22.3. Stopwords and Performance

The biggest disadvantage of keeping stopwords is that of performance. When
Elasticsearch performs a
full-text search, it has to calculate the relevance
_score on all matching documents in order to return the top 10 matches.
While most words typically occur in much fewer than 0.1% of all documents, a
few words such as the may occur in almost all of them. Imagine you have an
index of one million documents. A query for quick brown fox may match fewer
than 1,000 documents. But a query for the quick brown fox has to score and
sort almost all of the one million documents in your index, just in order to
return the top 10!
The problem is that the quick brown fox is really a query for the OR quick
OR brown OR fox—any document that contains nothing more than the almost
meaningless term the is included in the result set. What we need is a way of
reducing the number of documents that need to be scored.
22.3.1. and Operator

The easiest way to reduce the number of documents is simply to use the
and operator with the match query, in order
to make all

words required.
A match query like this:
{
 "match": {
 "text": {
 "query": "the quick brown fox",
 "operator": "and"
 }
 }
}
is rewritten as a bool query like this:
{
 "bool": {
 "must": [
 { "term": { "text": "the" }},
 { "term": { "text": "quick" }},
 { "term": { "text": "brown" }},
 { "term": { "text": "fox" }}
]
 }
}
The bool query is intelligent enough to execute each term query in the
optimal order—it starts with the least frequent term. Because all terms
are required, only documents that contain the least frequent term can possibly
match. Using the and operator greatly speeds up multiterm queries.

22.3.2. minimum_should_match

In Section 13.3.2, “Controlling Precision”, we discussed using the minimum_should_match operator
to trim the long tail of less-relevant results.

 It is useful for this purpose
alone but, as a nice side effect, it offers a similar performance benefit to
the and operator:
{
 "match": {
 "text": {
 "query": "the quick brown fox",
 "minimum_should_match": "75%"
 }
 }
}
In this example, at least three out of the four terms must match. This means
that the only docs that need to be considered are those that contain either the least or second least frequent terms.
This offers a huge performance gain over a simple query with the default or
operator! But we can do better yet…

22.4. Divide and Conquer

The terms in a query string can be divided into more-important (low-frequency)
and less-important (high-frequency) terms.
 Documents that match only the less
important terms are probably of very little interest. Really, we want
documents that match as many of the more important terms as possible.
The match query accepts
a cutoff_frequency parameter, which allows it to
divide the terms in the query string into a low-frequency and high-frequency
group.
 The low-frequency group (more-important terms) form the bulk of the
query, while the high-frequency group (less-important terms) is used only for
scoring, not for matching. By treating these two groups differently, we can
gain a real boost of speed on previously slow queries.
Domain-Specific Stopwords

One of the benefits of cutoff_frequency is that you get domain-specific
stopwords for free.
 For instance, a website about movies may use the words
movie, color, black, and white so often that they could be
considered almost meaningless. With the stop token filter, these domain-specific terms would have to be added to the stopwords list manually. However,
because the cutoff_frequency looks at the actual frequency of terms in the
index, these words would be classified as high frequency automatically.

Take this query as an example:
{
 "match": {
 "text": {
 "query": "Quick and the dead",
 "cutoff_frequency": 0.01 (1)
 }
}
	(1)
	
Any term that occurs in more than 1% of documents is considered to be high
 frequency. The cutoff_frequency can be specified as a fraction (0.01)
 or as an absolute number (5).

This query uses the cutoff_frequency to first divide the query terms into a
low-frequency group (quick, dead) and a high-frequency group (and,
the). Then, the query is rewritten to produce the following bool query:
{
 "bool": {
 "must": { (1)
 "bool": {
 "should": [
 { "term": { "text": "quick" }},
 { "term": { "text": "dead" }}
]
 }
 },
 "should": { (2)
 "bool": {
 "should": [
 { "term": { "text": "and" }},
 { "term": { "text": "the" }}
]
 }
 }
 }
}
	(1)
	
At least one low-frequency/high-importance term must match.

	(2)
	
High-frequency/low-importance terms are entirely optional.

The must clause means that at least one of the low-frequency terms—quick or dead—_must_ be present for a document to be considered a
match. All other documents are excluded. The should clause then looks for
the high-frequency terms and and the, but only in the documents collected
by the must clause. The sole job of the should clause is to score a
document like “Quick and the dead” higher than “_The_ quick but
dead”. This approach greatly reduces the number of documents that need to be
examined and scored.
Tip
Setting the operator parameter to and would make all low-frequency terms
required, and score documents that contain all high-frequency terms higher.
However, matching documents would not be required to contain all high-frequency terms. If you would prefer all low- and high-frequency terms to be
required, you should use a bool query instead. As we saw in
Section 22.3.1, “and Operator”, this is already an efficient query.

22.4.1. Controlling Precision

The minimum_should_match parameter can be combined with cutoff_frequency
but it applies to only the low-frequency terms.

 This query:
{
 "match": {
 "text": {
 "query": "Quick and the dead",
 "cutoff_frequency": 0.01,
 "minimum_should_match": "75%"
 }
}
would be rewritten as follows:
{
 "bool": {
 "must": {
 "bool": {
 "should": [
 { "term": { "text": "quick" }},
 { "term": { "text": "dead" }}
],
 "minimum_should_match": 1 (1)
 }
 },
 "should": { (2)
 "bool": {
 "should": [
 { "term": { "text": "and" }},
 { "term": { "text": "the" }}
]
 }
 }
 }
}
	(1)
	
Because there are only two terms, the original 75% is rounded down
 to 1, that is: one out of two low-terms must match.

	(2)
	
The high-frequency terms are still optional and used only for scoring.

22.4.2. Only High-Frequency Terms

An ‘or` query for high-frequency

 terms only—``To be, or not to be’'—is
the worst case for performance. It is pointless to score all the
documents that contain only one of these terms in order to return just the top
10 matches. We are really interested only in documents in which the terms all occur
together, so in the case where there are no low-frequency terms, the query is
rewritten to make all high-frequency terms required:
{
 "bool": {
 "must": [
 { "term": { "text": "to" }},
 { "term": { "text": "be" }},
 { "term": { "text": "or" }},
 { "term": { "text": "not" }},
 { "term": { "text": "to" }},
 { "term": { "text": "be" }}
]
 }
}

22.4.3. More Control with Common Terms

While the high/low frequency functionality in the match query is useful,
sometimes you want more control

 over how the high- and low-frequency groups
should be handled. The match query exposes a subset of the
functionality available in the common terms query.
For instance, we could make all low-frequency terms required, and score only
documents that have 75% of all high-frequency terms with a query like this:
{
 "common": {
 "text": {
 "query": "Quick and the dead",
 "cutoff_frequency": 0.01,
 "low_freq_operator": "and",
 "minimum_should_match": {
 "high_freq": "75%"
 }
 }
 }
}
See the common terms query reference page for more options.

22.5. Stopwords and Phrase Queries

About 5% of all queries are

phrase queries (see Section 15.1, “Phrase Matching”), but they
often account for the majority of slow queries. Phrase queries can perform
poorly, especially if the phrase includes very common words; a phrase like
“To be, or not to be” could be considered pathological. The reason for this
has to do with the amount of data that is necessary to support proximity
matching.
In Section 22.1, “Pros and Cons of Stopwords”, we said that removing stopwords saves only a small
amount of space in the inverted index.
 That was only partially true. A
typical index may contain, among other data, some or all of the following:
	
Terms dictionary

	
 A sorted list of all terms that appear in the documents in the index,
 and a count of the number of documents that contain each term.

	
Postings list

	
 A list of which documents contain each term.

	
Term frequency

	
 How often each term appears in each document.

	
Positions

	
 The position of each term within each document, for phrase and proximity
 queries.

	
Offsets

	
 The start and end character offsets of each term in each document, for
 snippet highlighting. Disabled by default.

	
Norms

	
 A factor used to normalize fields of different lengths, to give shorter
 fields more weight.

Removing stopwords from the index may save a small amount of space in the
terms dictionary and the postings list, but positions and offsets are
another matter. Positions and offsets data can easily double, triple, or
quadruple index size.
22.5.1. Positions Data

Positions are enabled on analyzed string fields by default,

 so that phrase
queries will work out of the box. The more often that a term appears, the more
space is needed to store its position data. Very common words, by
definition, appear very commonly, and their positions data can run to megabytes
or gigabytes on large collections.
Running a phrase query on a high-frequency word like the might result in
gigabytes of data being read from disk. That data will be stored in the kernel
filesystem cache to speed up later access, which seems like a good thing, but
it might cause other data to be evicted from the cache, which will slow
subsequent queries.
This is clearly a problem that needs solving.

22.5.2. Index Options

The first question you should

ask yourself is: Do you need phrase or
proximity queries?
Often, the answer is no. For many use cases, such as logging, you need to
know whether a term appears in a document — information that is provided
by the postings list—but not where it appears. Or perhaps you need to use
phrase queries on one or two fields, but you can disable positions data on all
of the other analyzed string fields.
The index_options parameter allows you to control what information is stored
in the index for each field.
 Valid values are as follows:
	
docs

	
 Only store which documents contain which terms. This is the default for
 not_analyzed string fields.

	
freqs

	
 Store docs information, plus how often each term appears in each
 document. Term frequencies are needed for complete TF/IDF
 relevance calculations, but they are not required if you just need to know
 whether a document contains a particular term.

	
positions

	
 Store docs and freqs, plus the position of each term in each document.
 This is the default for analyzed string fields, but can be disabled if
 phrase/proximity matching is not needed.

	
offsets

	
 Store docs, freqs, positions, and the start and end character offsets
 of each term in the original string. This information is used by the
 postings highlighter
 but is disabled by default.

You can set index_options on fields added at index creation time, or when
adding new fields by using the put-mapping API. This setting can’t be changed
on existing fields:
PUT /my_index
{
 "mappings": {
 "my_type": {
 "properties": {
 "title": { (1)
 "type": "string"
 },
 "content": { (2)
 "type": "string",
 "index_options": "freqs"
 }
 }
 }
}
	(1)
	
The title field uses the default setting of positions, so
 it is suitable for phrase/proximity queries.

	(2)
	
The content field has positions disabled and so cannot be used
 for phrase/proximity queries.

22.5.3. Stopwords

Removing stopwords is one way of reducing the size of the positions data quite
dramatically.

 An index with stopwords removed can still be used for phrase
queries because the original positions of the remaining terms are maintained,
as we saw in Section 22.2.2, “Maintaining Positions”. But of course, excluding terms from
the index reduces searchability. We wouldn’t be able to differentiate between
the two phrases Man in the moon and Man on the moon.
Fortunately, there is a way to have our cake and eat it: the
common_grams token filter.

22.6. common_grams Token Filter

The common_grams token filter is designed to make phrase queries with
stopwords more efficient.

It is similar to the shingles token
filter (see
Section 15.7, “Finding Associated Words”), which creates bigrams out of every pair of adjacent words. It
is most easily explained by example.
The common_grams token filter produces different output depending on whether
query_mode is set to false (for indexing) or to true (for searching), so
we have to create two separate analyzers:
PUT /my_index
{
 "settings": {
 "analysis": {
 "filter": {
 "index_filter": { (1)
 "type": "common_grams",
 "common_words": "_english_" (2)
 },
 "search_filter": { (3)
 "type": "common_grams",
 "common_words": "_english_", (4)
 "query_mode": true
 }
 },
 "analyzer": {
 "index_grams": { (5)
 "tokenizer": "standard",
 "filter": ["lowercase", "index_filter"]
 },
 "search_grams": { (6)
 "tokenizer": "standard",
 "filter": ["lowercase", "search_filter"]
 }
 }
 }
 }
}
	(1) (3)
	
First we create two token filters based on the common_grams token
 filter: index_filter for index time (with query_mode set to the
 default false), and search_filter for query time (with query_mode
 set to true).

	(2) (4)
	
The common_words parameter accepts the same options as the stopwords
 parameter (see Section 22.2.3, “Specifying Stopwords”). The filter also
 accepts a common_words_path parameter, which allows you to maintain the
 common words list in a file.

	(5) (6)
	
Then we use each filter to create an analyzer for index time and another
 for query time.

With our custom analyzers in place, we can create a field that will use the
index_grams analyzer at index time:
PUT /my_index/_mapping/my_type
{
 "properties": {
 "text": {
 "type": "string",
 "analyzer": "index_grams", (1)
 "search_analyzer": "standard" (2)
 }
 }
}
	(1) (2)
	
The text field uses the index_grams analyzer at index time, but
 defaults to using the standard analyzer at search time, for reasons we
 will explain next.

22.6.1. At Index Time

If we were to
analyze the phrase The quick and brown fox with shingles, it
would produce these terms:
Pos 1: the_quick
Pos 2: quick_and
Pos 3: and_brown
Pos 4: brown_fox
Our new index_grams analyzer produces the following terms instead:
Pos 1: the, the_quick
Pos 2: quick, quick_and
Pos 3: and, and_brown
Pos 4: brown
Pos 5: fox
All terms are output as unigrams—the, quick, and so forth—but if a word is a
common word or is followed by a common word, then it also outputs a bigram in
the same position as the unigram—the_quick, quick_and, and_brown.

22.6.2. Unigram Queries

Because the index contains unigrams,

 the field can be queried using the same
techniques that we have used for any other field, for example:
GET /my_index/_search
{
 "query": {
 "match": {
 "text": {
 "query": "the quick and brown fox",
 "cutoff_frequency": 0.01
 }
 }
 }
}
The preceding query string is analyzed by the search_analyzer configured for the
text field—the standard analyzer in this example—to produce the
terms the, quick, and, brown, fox.
Because the index for the text field contains the same unigrams as produced
by the standard analyzer, search functions as it would for any normal
field.

22.6.3. Bigram Phrase Queries

However, when we come to do phrase queries,

 we can use the specialized
search_grams analyzer to make the process much more efficient:
GET /my_index/_search
{
 "query": {
 "match_phrase": {
 "text": {
 "query": "The quick and brown fox",
 "analyzer": "search_grams" (1)
 }
 }
 }
}
	(1)
	
For phrase queries, we override the default search_analyzer and use the
 search_grams analyzer instead.

The search_grams analyzer would produce the following terms:
Pos 1: the_quick
Pos 2: quick_and
Pos 3: and_brown
Pos 4: brown
Pos 5: fox
The analyzer has stripped out all of the common word unigrams, leaving the common word
bigrams and the low-frequency unigrams. Bigrams like the_quick are much
less common than the single term the. This has two advantages:
	
The positions data for the_quick is much smaller than for the, so it is
 faster to read from disk and has less of an impact on the filesystem cache.

	
The term the_quick is much less common than the, so it drastically
 decreases the number of documents that have to be examined.

22.6.4. Two-Word Phrases

There is one further optimization.
 By far the majority of phrase queries
consist of only two words. If one of those words happens to be a common word,
such as
GET /my_index/_search
{
 "query": {
 "match_phrase": {
 "text": {
 "query": "The quick",
 "analyzer": "search_grams"
 }
 }
 }
}
then the search_grams analyzer outputs a single token: the_quick. This
transforms what originally could have been an expensive phrase query for the
and quick into a very efficient single-term lookup.

22.7. Stopwords and Relevance

The last topic to cover before moving on from stopwords

 is that of relevance.
Leaving stopwords in your index could make the relevance calculation
less accurate, especially if your documents are very long.
As we have already discussed in the section called “Term-frequency saturation”, the
 reason for this is
that term-frequency/inverse document frequency doesn’t impose an
upper limit on the impact of term frequency.
 Very common words may have a low
weight because of inverse document frequency but, in long documents, the sheer
number of occurrences of stopwords in a single document may lead to their
weight being artificially boosted.
You may want to consider using the Okapi BM25 similarity on long
fields that include stopwords instead of the default Lucene similarity.

Chapter 23. Synonyms

While stemming helps to broaden the scope of search by simplifying inflected
words to their root form, synonyms broaden the scope by relating concepts and
ideas. Perhaps no documents match a query for “English queen,” but documents
that contain “British monarch” would probably be considered a good match.
A user might search for “the US” and expect to find documents that contain
United States, USA, U.S.A., America, or the States.
However, they wouldn’t expect to see results about the states of matter or
state machines.
This example provides a valuable lesson. It demonstrates how simple it is for
a human to distinguish between separate concepts, and how tricky it can be for
mere machines. The natural tendency is to try to provide synonyms for every
word in the language, to ensure that any document is findable with even the
most remotely related terms.
This is a mistake. In the same way that we prefer light or minimal stemming
to aggressive stemming, synonyms should be used only where necessary. Users
understand why their results are limited to the words in their search query.
They are less understanding when their results seems almost random.
Synonyms can be used to conflate words that have pretty much the same meaning,
such as jump, leap, and hop, or pamphlet, leaflet, and brochure.
Alternatively, they can be used to make a word more generic. For instance,
bird could be used as a more general synonym for owl or pigeon, and adult
could be used for man or woman.
Synonyms appear to be a simple concept but they are quite tricky to get right.
In this chapter, we explain the mechanics of using synonyms and discuss
the limitations and gotchas.
Tip
Synonyms are used to broaden the scope of what is considered a
matching document. Just as with stemming or
partial matching, synonym fields should not be used
alone but should be combined with a query on a main field that contains
the original text in unadulterated form. See Section 14.6, “Most Fields” for an
explanation of how to maintain relevance when using synonyms.

23.1. Using Synonyms

Synonyms can replace existing tokens or
 be added to the token stream by using the
synonym token filter:
PUT /my_index
{
 "settings": {
 "analysis": {
 "filter": {
 "my_synonym_filter": {
 "type": "synonym", (1)
 "synonyms": [(2)
 "british,english",
 "queen,monarch"
]
 }
 },
 "analyzer": {
 "my_synonyms": {
 "tokenizer": "standard",
 "filter": [
 "lowercase",
 "my_synonym_filter" (3)
]
 }
 }
 }
 }
}
	(1)
	
First, we define a token filter of type synonym.

	(2)
	
We discuss synonym formats in Section 23.2, “Formatting Synonyms”.

	(3)
	
Then we create a custom analyzer that uses the my_synonym_filter.

Tip
Synonyms can be specified inline with the synonyms parameter, or in a
synonyms file that must
 be present on every node in the cluster. The path to
the synonyms file should be specified with the synonyms_path parameter, and
should be either absolute or relative to the Elasticsearch config directory.
See Section 22.2.5, “Updating Stopwords” for techniques that can be used to refresh the
synonyms list.

Testing our analyzer with the analyze API shows the following:
GET /my_index/_analyze?analyzer=my_synonyms
Elizabeth is the English queen
Pos 1: (elizabeth)
Pos 2: (is)
Pos 3: (the)
Pos 4: (british,english) (1)
Pos 5: (queen,monarch) (2)
	(1) (2)
	
All synonyms occupy the same position as the original term.

A document like this will match queries for any of the following: English queen,
British queen, English monarch, or British monarch.
Even a phrase query will work, because the position of
each term has been preserved.
Tip
Using the same synonym token filter at both index time and search time is
redundant.
 If, at index time, we replace English with the two terms
english and british, then at search time we need to search for only one of
those terms. Alternatively, if we don’t use synonyms at index time, then at
search time, we would need to convert a query for English into a query for
english OR british.
Whether to do synonym expansion at search or index time can be a difficult
choice. We will explore the options more in Section 23.3, “Expand or contract”.

23.2. Formatting Synonyms

In their simplest form, synonyms are
 listed as comma-separated values:
"jump,leap,hop"
If any of these terms is encountered, it is replaced by all of the listed
synonyms. For instance:
Original terms: Replaced by:
────────────────────────────────
jump → (jump,leap,hop)
leap → (jump,leap,hop)
hop → (jump,leap,hop)
Alternatively, with the => syntax, it is possible to specify a list of terms
to match (on the left side), and a list of one or more replacements (on
the right side):
"u s a,united states,united states of america => usa"
"g b,gb,great britain => britain,england,scotland,wales"
Original terms: Replaced by:
────────────────────────────────
u s a → (usa)
united states → (usa)
great britain → (britain,england,scotland,wales)
If multiple rules for the same synonyms are specified, they are merged
together. The order of rules is not respected. Instead, the longest matching
rule wins. Take the following rules as an example:
"united states => usa",
"united states of america => usa"
If these rules conflicted, Elasticsearch would turn United States of
America into the terms (usa),(of),(america). Instead, the longest
sequence wins, and we end up with just the term (usa).

23.3. Expand or contract

In Section 23.2, “Formatting Synonyms”, we have seen that it is
 possible to replace synonyms by
simple expansion, simple contraction, or generic expansion. We will look
at the trade-offs of each of these techniques in this section.
Tip
This section deals with single-word synonyms only. Multiword
synonyms add another layer of complexity and are discussed later in
Section 23.5, “Multiword Synonyms and Phrase Queries”.

23.3.1. Simple Expansion

With simple expansion,

 any of the listed synonyms is expanded into all of
the listed synonyms:
"jump,hop,leap"
Expansion can be applied either at index time or at query time. Each has advantages
(⬆)︎ and disadvantages (⬇)︎. When to use which comes down to performance versus
flexibility.
	 	 Index time 	 Query time
	Index size
	⬇︎ Bigger index because all synonyms must be indexed.
	⬆︎ Normal.

	Relevance
	⬇︎ All synonyms will have the same IDF (see Section 8.3, “What Is Relevance?”), meaning
 that more commonly used words will have the same weight as less commonly
 used words.
	⬆︎ The IDF for each synonym will be correct.

	Performance
	⬆︎ A query needs to find only the single term specified in the query string.
	⬇︎ A query for a single term is rewritten to look up all synonyms, which
 decreases performance.

	Flexibility
	⬇︎ The synonym rules can’t be changed for existing documents. For the new rules
 to have effect, existing documents have to be reindexed.
	⬆︎ Synonym rules can be updated without reindexing documents.

23.3.2. Simple Contraction

Simple contraction maps a group of

synonyms on the left side to a single
value on the right side:
"leap,hop => jump"
It must be applied both at index time and at query time, to ensure that query
terms are mapped to the same single value that exists in the index.
This approach has some advantages and some disadvantages compared to the simple expansion approach:
	
Index size

	
⬆︎ The index size is normal, as only a single term is indexed.

	
Relevance

	
⬇︎ The IDF for all terms is the same, so you can’t distinguish between more
commonly used words and less commonly used words.

	
Performance

	
⬆︎ A query needs to find only the single term that appears in the index.

	
Flexibility

	⬆︎ New synonyms can be added to the left side of the rule and applied at
query time. For instance, imagine that we wanted to add the word bound to
the rule specified previously. The following rule would work for queries that
contain bound or for newly added documents that contain bound:
"leap,hop,bound => jump"
But we could expand the effect to also take into account existing documents
that contain bound by writing the rule as follows:
"leap,hop,bound => jump,bound"
When you reindex your documents, you could revert to the previous rule to gain
the performance benefit of querying only a single term.

23.3.3. Genre Expansion

Genre expansion is quite different from simple

 contraction or expansion.
Instead of treating all synonyms as equal, genre expansion widens the meaning
of a term to be more generic. Take these rules, for example:
"cat => cat,pet",
"kitten => kitten,cat,pet",
"dog => dog,pet"
"puppy => puppy,dog,pet"
By applying genre expansion at index time:
	
A query for kitten would find just documents about kittens.

	
A query for cat would find documents abouts kittens and cats.

	
A query for pet would find documents about kittens, cats, puppies, dogs,
 or pets.

Alternatively, by applying genre expansion at query time, a query for kitten
would be expanded to return documents that mention kittens, cats, or pets
specifically.
You could also have the best of both worlds by applying expansion at index
time to ensure that the genres are present in the index. Then, at query time,
you can choose to not apply synonyms (so that a query for kitten
returns only documents about kittens) or to apply synonyms in order to match
kittens, cats and pets (including the canine variety).
With the preceding example rules above, the IDF for kitten will be correct, while the
IDF for cat and pet will be artificially deflated. However, this
works in your favor—a genre-expanded query for kitten OR cat OR pet will
rank documents with kitten highest, followed by documents with cat, and
documents with pet would be right at the bottom.

23.4. Synonyms and The Analysis Chain

The example we
showed in Section 23.2, “Formatting Synonyms”, used u s a as a synonym. Why
did we use that instead of U.S.A.? The reason is that the synonym token
filter sees only the terms that the previous token filter or tokenizer has
emitted.

Imagine that we have an analyzer that consists of the standard tokenizer,
with the lowercase token filter followed by a synonym token filter. The
analysis process for the text U.S.A. would look like this:
original string → "U.S.A."
standard tokenizer → (U),(S),(A)
lowercase token filter → (u),(s),(a)
synonym token filter → (usa)
If we had specified the synonym as U.S.A., it would never match anything
because, by the time my_synonym_filter sees the terms, the periods have been
removed and the letters have been lowercased.
This is an important point to consider. What if we want to combine synonyms
with stemming, so that jumps, jumped, jump, leaps, leaped, and
leap are all indexed as the single term jump? We
could place the synonyms
filter before the stemmer and list all inflections:
"jumps,jumped,leap,leaps,leaped => jump"
But the more concise way would be to place the synonyms filter after the
stemmer, and to list just the root words that would be emitted by the stemmer:
"leap => jump"
23.4.1. Case-Sensitive Synonyms

Normally, synonym filters are placed after the lowercase token filter and so
all synonyms are

written in lowercase, but sometimes that can lead to odd
conflations. For instance, a CAT scan and a cat are quite different, as
are PET (positron emission tomography) and a pet. For that matter, the
surname Little is distinct from the adjective little (although if a
sentence starts with the adjective, it will be uppercased anyway).
If you need use case to distinguish between word senses, you will need to
place your synonym filter before the lowercase filter. Of course, that means
that your synonym rules would need to list all of the case variations that you
want to match (for example, Little,LITTLE,little).
Instead of that, you could have two synonym filters: one to catch the case-sensitive
synonyms and one for all the case-insensitive synonyms. For instance, the
case-sensitive rules could look like this:
"CAT,CAT scan => cat_scan"
"PET,PET scan => pet_scan"
"Johnny Little,J Little => johnny_little"
"Johnny Small,J Small => johnny_small"
And the case-insensitive rules could look like this:
"cat => cat,pet"
"dog => dog,pet"
"cat scan,cat_scan scan => cat_scan"
"pet scan,pet_scan scan => pet_scan"
"little,small"
The case-sensitive rules would CAT scan but would match only the
CAT in CAT scan. For this reason, we have the odd-looking rule cat_scan
scan in the case-insensitive list to catch bad replacements.
Tip
You can see how quickly it can get complicated. As always, the analyze API
is your friend—use it to check that your analyzers are configured
correctly. See Section 6.3.3, “Testing Analyzers”.

23.5. Multiword Synonyms and Phrase Queries

So far, synonyms appear to be quite straightforward. Unfortunately, this is
where things start to go wrong.

 For phrase queries to
function correctly, Elasticsearch needs to know the position that each term
occupies in the original text. Multiword synonyms can play havoc with term
positions, especially when the injected synonyms are of differing lengths.
To demonstrate, we’ll create a synonym token filter that uses this rule:
"usa,united states,u s a,united states of america"
PUT /my_index
{
 "settings": {
 "analysis": {
 "filter": {
 "my_synonym_filter": {
 "type": "synonym",
 "synonyms": [
 "usa,united states,u s a,united states of america"
]
 }
 },
 "analyzer": {
 "my_synonyms": {
 "tokenizer": "standard",
 "filter": [
 "lowercase",
 "my_synonym_filter"
]
 }
 }
 }
 }
}

GET /my_index/_analyze?analyzer=my_synonyms&text=
The United States is wealthy
The tokens emitted by the analyze request look like this:
Pos 1: (the)
Pos 2: (usa,united,u,united)
Pos 3: (states,s,states)
Pos 4: (is,a,of)
Pos 5: (wealthy,america)
If we were to index a document analyzed with synonyms as above, and then run a
phrase query without synonyms, we’d have some surprising results. These
phrases would not match:
	
The usa is wealthy

	
The united states of america is wealthy

	
The U.S.A. is wealthy

However, these phrases would:
	
United states is wealthy

	
Usa states of wealthy

	
The U.S. of wealthy

	
U.S. is america

If we were to use synonyms at query time instead, we would see even more-bizarre matches. Look at the output of this validate-query request:
GET /my_index/_validate/query?explain
{
 "query": {
 "match_phrase": {
 "text": {
 "query": "usa is wealthy",
 "analyzer": "my_synonyms"
 }
 }
 }
}
The explanation is as follows:
"(usa united u united) (is states s states) (wealthy a of) america"
This would match documents containg u is of america but wouldn’t match any
document that didn’t contain the term america.
Tip
Multiword synonyms
affect highlighting in a similar way. A query for USA
could end up returning a highlighted snippet such as: “The United States
is wealthy”.

23.5.1. Use Simple Contraction for Phrase Queries

The way to avoid this mess is to use simple contraction
to inject a single

 term that represents all synonyms, and to use the same
synonym token filter at query time:
PUT /my_index
{
 "settings": {
 "analysis": {
 "filter": {
 "my_synonym_filter": {
 "type": "synonym",
 "synonyms": [
 "united states,u s a,united states of america=>usa"
]
 }
 },
 "analyzer": {
 "my_synonyms": {
 "tokenizer": "standard",
 "filter": [
 "lowercase",
 "my_synonym_filter"
]
 }
 }
 }
 }
}

GET /my_index/_analyze?analyzer=my_synonyms
The United States is wealthy
The result of the preceding analyze request looks much more sane:
Pos 1: (the)
Pos 2: (usa)
Pos 3: (is)
Pos 5: (wealthy)
And repeating the validate-query request that we made previously yields a simple,
sane explanation:
"usa is wealthy"
The downside of this approach is that, by reducing united states of america
down to the single term usa, you can’t use the same field to find just the
word united or states. You would need to use a separate field with a
different analysis chain for that purpose.

23.5.2. Synonyms and the query_string Query

We have tried to avoid discussing the query_string query

because we don’t
recommend using it. In "More-Complicated Queries", we said that, because the
query_string query supports a terse mini search-syntax, it could
frequently lead to surprising results or even syntax errors.
One of the gotchas of this query involves multiword synonyms. To
support its search-syntax, it has to parse the query string to recognize
special operators like AND, OR, +, -, field:, and so forth. (See the full
query_string syntax
for more information.)
As part of this parsing process, it breaks up the query string on whitespace,
and passes each word that it finds to the relevant analyzer separately. This
means that your synonym analyzer will never receive a multiword synonym.
Instead of seeing United States as a single string, the analyzer will
receive United and States separately.
Fortunately, the trustworthy match query supports no such syntax, and
multiword synonyms will be passed to the analyzer in their entirety.

23.6. Symbol Synonyms

The final part of this chapter is devoted to symbol synonyms, which are
unlike the synonyms
 we have discussed until now. Symbol synonyms are
string aliases used to represent symbols that would otherwise be removed
during tokenization.
While most punctuation is seldom important for full-text search, character
combinations like emoticons may be very signficant, even changing the meaning
of the text. Compare these:
	
I am thrilled to be at work on Sunday.

	
I am thrilled to be at work on Sunday :(

The standard tokenizer would simply strip out the emoticon in the second
sentence, conflating two sentences that have quite different intent.
We can use the
mapping character filter
to replace emoticons

 with symbol synonyms like emoticon_happy and
emoticon_sad before the text is passed to the tokenizer:
PUT /my_index
{
 "settings": {
 "analysis": {
 "char_filter": {
 "emoticons": {
 "type": "mapping",
 "mappings": [(1)
 ":)=>emoticon_happy",
 ":(=>emoticon_sad"
]
 }
 },
 "analyzer": {
 "my_emoticons": {
 "char_filter": "emoticons",
 "tokenizer": "standard",
 "filter": ["lowercase"]
]
 }
 }
 }
 }
}

GET /my_index/_analyze?analyzer=my_emoticons
I am :) not :((2)
	(1)
	
The mappings filter replaces the characters to the left of =>
 with those to the right.

	(2)
	
Emits tokens i, am, emoticon_happy, not, emoticon_sad.

It is unlikely that anybody would ever search for emoticon_happy, but
ensuring that important symbols like emoticons are included in the index can
be helpful when doing sentiment analysis. Of course, we could equally
have used real words, like happy and sad.
Tip
The mapping character filter is useful for simple replacements of exact
character sequences.
For more-flexible pattern matching, you can use regular
expressions with the
pattern_replace character filter.

Chapter 24. Typoes and Mispelings

We expect a query on structured data like dates and prices to return only
documents that match exactly.
 However, good full-text search shouldn’t have the
same restriction. Instead, we can widen the net to include words that may
match, but use the relevance score to push the better matches to the top
of the result set.
In fact, full-text search
that only matches exactly will probably frustrate
your users. Wouldn’t you expect a search for “quick brown fox” to match a
document containing “fast brown foxes,” “Johnny Walker” to match
“Johnnie Walker,” or “Arnold Shcwarzenneger” to match “Arnold
Schwarzenegger”?
If documents exist that do contain exactly what the user has queried,
they should appear at the top of the result set, but weaker matches can be
included further down the list. If no documents match exactly, at least we
can show the user potential matches; they may even be what the user
originally intended!
We have already looked at diacritic-free matching in Chapter 20, Normalizing Tokens,
word stemming in Chapter 21, Reducing Words to Their Root Form, and synonyms in Chapter 23, Synonyms, but all of those
approaches presuppose that words are spelled correctly, or that there is only
one way to spell each word.
Fuzzy matching allows for query-time matching of misspelled words, while
phonetic token filters at index time can be used for sounds-like matching.
24.1. Fuzziness

Fuzzy matching treats two words that are “fuzzily” similar as if they were
the same word.
 First, we need to define what we mean by fuzziness.
In 1965, Vladimir Levenshtein developed the
Levenshtein distance, which
measures the number of single-character edits required to transform
one word into the other. He proposed three types of one-character edits:
	
Substitution of one character for another: _f_ox → _b_ox

	
Insertion of a new character: sic → sic_k_

	
Deletion of a character:: b_l_ack → back

Frederick Damerau
later expanded these operations to include one more:
	
Transposition of two adjacent characters: _st_ar → _ts_ar

For example, to convert the word bieber into beaver requires the
following steps:
	
Substitute v for b: bie_b_er → bie_v_er

	
Substitute a for i: b_i_ever → b_a_ever

	
Transpose a and e: b_ae_ver → b_ea_ver

These three steps represent a
Damerau-Levenshtein edit distance
of 3.
Clearly, bieber is a long way from beaver—they are too far apart to be
considered a simple misspelling. Damerau observed that 80% of human
misspellings have an edit distance of 1. In other words, 80% of misspellings
could be corrected with a single edit to the original string.
Elasticsearch supports a maximum edit distance, specified with the fuzziness
parameter, of 2.
Of course, the impact that a single edit has on a string depends on the
length of the string. Two edits to the word hat can produce mad, so
allowing two edits on a string of length 3 is overkill. The fuzziness
parameter can be set to AUTO, which results in the following maximum edit distances:
	
0 for strings of one or two characters

	
1 for strings of three, four, or five characters

	
2 for strings of more than five characters

Of course, you may find that an edit distance of 2 is still overkill, and
returns results that don’t appear to be related. You may get better results,
and better performance, with a maximum fuzziness of 1.

24.2. Fuzzy Query

The fuzzy query is
the fuzzy equivalent of
the term query. You will seldom use it directly yourself, but understanding
how it works will help you to use fuzziness in the higher-level match query.
To understand how it works, we will first index some documents:
POST /my_index/my_type/_bulk
{ "index": { "_id": 1 }}
{ "text": "Surprise me!"}
{ "index": { "_id": 2 }}
{ "text": "That was surprising."}
{ "index": { "_id": 3 }}
{ "text": "I wasn't surprised."}
Now we can run a fuzzy query for the term surprize:
GET /my_index/my_type/_search
{
 "query": {
 "fuzzy": {
 "text": "surprize"
 }
 }
}
The fuzzy query is a term-level query, so it doesn’t do any analysis. It
takes a single term and finds all terms in the term dictionary that are
within the specified fuzziness. The default fuzziness is AUTO.
In our example, surprize is within an edit distance of 2 from both
surprise and surprised, so documents 1 and 3 match. We could reduce the
matches to just surprise with the following query:
GET /my_index/my_type/_search
{
 "query": {
 "fuzzy": {
 "text": {
 "value": "surprize",
 "fuzziness": 1
 }
 }
 }
}
24.2.1. Improving Performance

The fuzzy query works by taking the original term and building a
Levenshtein automaton—like a
 big graph representing all the strings
that are within the specified edit distance of the original string.
The fuzzy query then uses the automaton to step efficiently through all of the terms
in the term dictionary to see if they match. Once it has collected all of the
matching terms that exist in the term dictionary, it can compute the list of
matching documents.
Of course, depending on the type of data stored in the index, a fuzzy query
with an edit distance of 2 can match a very large number of terms and
perform very badly. Two parameters can be used to limit the
performance impact:
	
prefix_length

	
The number of initial characters that will not be “fuzzified.” Most
spelling errors occur toward the end of the word, not toward the beginning.
By using a prefix_length of 3, for example, you can signficantly reduce
the number of matching terms.

	
max_expansions

	
If a fuzzy query expands to three or four fuzzy options, the new options may be
meaningful. If it produces 1,000 options, they are essentially
meaningless. Use max_expansions to limit the total number of options that
will be produced. The fuzzy query will collect matching terms until it
runs out of terms or reaches the max_expansions limit.

24.3. Fuzzy match Query

The match query supports

fuzzy matching out of the box:
GET /my_index/my_type/_search
{
 "query": {
 "match": {
 "text": {
 "query": "SURPRIZE ME!",
 "fuzziness": "AUTO",
 "operator": "and"
 }
 }
 }
}
The query string is first analyzed, to produce the terms [surprize, me], and
then each term is fuzzified using the specified fuzziness.
Similarly, the multi_match query also
supports fuzziness, but only when
executing with type best_fields or most_fields:
GET /my_index/my_type/_search
{
 "query": {
 "multi_match": {
 "fields": ["text", "title"],
 "query": "SURPRIZE ME!",
 "fuzziness": "AUTO"
 }
 }
}
Both the match and multi_match queries also support the prefix_length
and max_expansions parameters.
Tip
Fuzziness works only with the basic match and multi_match queries. It
doesn’t work with phrase matching, common terms, or cross_fields matches.

24.4. Scoring Fuzziness

Users love fuzzy queries. They assume that these queries will somehow magically find
the right combination of proper spellings.

 Unfortunately, the truth is
somewhat more prosaic.
Imagine that we have 1,000 documents containing “Schwarzenegger,” and just
one document with the misspelling “Schwarzeneger.” According to the theory
of term frequency/inverse document frequency, the misspelling is
much more relevant than the correct spelling, because it appears in far fewer
documents!
In other words, if we were to treat fuzzy matches
 like any other match, we
would favor misspellings over correct spellings, which would make for grumpy
users.
Tip
Fuzzy matching should not be used for scoring purposes—only to widen
the net of matching terms in case there are misspellings.

By default, the match query gives all fuzzy matches the constant score of 1.
This is sufficient to add potential matches onto the end of the result list,
without interfering with the relevance scoring of nonfuzzy queries.
Tip
Fuzzy queries alone are much less useful than they initially appear. They are
better used as part of a “bigger” feature, such as the search-as-you-type
completion suggester or the
did-you-mean phrase suggester.

24.5. Phonetic Matching

In a last, desperate, attempt to match something, anything, we could resort to
searching for words that sound similar,
even if their spelling differs.
Several algorithms exist for converting words into a phonetic
representation. The Soundex algorithm is
the granddaddy of them all, and most other phonetic algorithms are
improvements or specializations of Soundex, such as
Metaphone and
Double Metaphone
(which expands phonetic matching to languages other than English),
Caverphone for matching names in New
Zealand, the
Beider-Morse algorithm, which adopts the Soundex algorithm
for better matching of German and Yiddish names, and the
Kölner Phonetik for better
handling of German words.
The thing to take away from this list is that phonetic algorithms are fairly
crude, and
very specific to the languages they were designed for, usually
either English or German. This limits their usefulness. Still, for certain
purposes, and in combination with other techniques, phonetic matching can be a
useful tool.
First, you will need to install the Phonetic Analysis plug-in from
https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis-phonetic.html on every node
in the cluster, and restart each node.
Then, you can create a custom analyzer that uses one of the
phonetic token filters
and try it out:
PUT /my_index
{
 "settings": {
 "analysis": {
 "filter": {
 "dbl_metaphone": { (1)
 "type": "phonetic",
 "encoder": "double_metaphone"
 }
 },
 "analyzer": {
 "dbl_metaphone": {
 "tokenizer": "standard",
 "filter": "dbl_metaphone" (2)
 }
 }
 }
 }
}
	(1)
	
First, configure a custom phonetic token filter that uses the
 double_metaphone encoder.

	(2)
	
Then use the custom token filter in a custom analyzer.

Now we can test it with the analyze API:
GET /my_index/_analyze?analyzer=dbl_metaphone
Smith Smythe
Each of Smith and Smythe produce two tokens in the same position: SM0
and XMT. Running John, Jon, and Johnnie through the analyzer will all
produce the two tokens JN and AN, while Jonathon results in the tokens
JN0N and ANTN.
The phonetic analyzer can be used just like any other analyzer. First map a
field to use it, and then index some data:
PUT /my_index/_mapping/my_type
{
 "properties": {
 "name": {
 "type": "string",
 "fields": {
 "phonetic": { (1)
 "type": "string",
 "analyzer": "dbl_metaphone"
 }
 }
 }
 }
}

PUT /my_index/my_type/1
{
 "name": "John Smith"
}

PUT /my_index/my_type/2
{
 "name": "Jonnie Smythe"
}
	(1)
	
The name.phonetic field uses the custom dbl_metaphone analyzer.

The match query can be used for searching:
GET /my_index/my_type/_search
{
 "query": {
 "match": {
 "name.phonetic": {
 "query": "Jahnnie Smeeth",
 "operator": "and"
 }
 }
 }
}
This query returns both documents, demonstrating just how coarse phonetic
matching is.
 Scoring with a phonetic algorithm is pretty much worthless. The
purpose of phonetic matching is not to increase precision, but to increase
recall—to spread the net wide enough to catch any documents that might
possibly match.

It usually makes more sense to use phonetic algorithms when retrieving results
which will be consumed and post-processed by another computer, rather than by
human users.

Part IV. Aggregations

Until this point, this book has been dedicated to search.
 With search,
we have a query and we want to find a subset of documents that
match the query. We are looking for the proverbial needle(s) in the
haystack.
With aggregations, we zoom out to get an overview of our data. Instead of
looking for individual documents, we want to analyze and summarize our complete
set of data:
	
How many needles are in the haystack?

	
What is the average length of the needles?

	
What is the median length of the needles, broken down by manufacturer?

	
How many needles were added to the haystack each month?

Aggregations can answer more subtle questions too:
	
What are your most popular needle manufacturers?

	
Are there any unusual or anomalous clumps of needles?

Aggregations allow us to ask sophisticated questions of our data. And yet, while
the functionality is completely different from search, it leverages the
same data-structures. This means aggregations execute quickly and are
near real-time, just like search.
This is extremely powerful for reporting and dashboards. Instead of performing
rollups of your data (that crusty Hadoop job that takes a week to run),
you can visualize your data in real time, allowing you to respond immediately.
Your report changes as your data changes, rather than being pre-calculated, out of
date and irrelevant.
Finally, aggregations operate alongside search requests.
 This means you can
both search/filter documents and perform analytics at the same time, on the
same data, in a single request. And because aggregations are calculated in the
context of a user’s search, you’re not just displaying a count of four-star hotels—you’re displaying a count of four-star hotels that match their search criteria.
Aggregations are so powerful that many companies have built large Elasticsearch
clusters solely for analytics.

Chapter 25. High-Level Concepts

Like the query DSL,
aggregations have a composable syntax: independent units
of functionality can be mixed and matched to provide the custom behavior that
you need. This means that there are only a few basic concepts to learn, but
nearly limitless combinations of those basic components.
To master aggregations, you need to understand only two main concepts:
	
Buckets

	
Collections of documents that meet a criterion

	
Metrics

	
Statistics calculated on the documents in a bucket

That’s it! Every aggregation is simply a combination of one or more buckets
and zero or more metrics. To translate into rough SQL terms:
SELECT COUNT(color) (1)
FROM table
GROUP BY color (2)
	(1)
	
COUNT(color) is equivalent to a metric.

	(2)
	
GROUP BY color is equivalent to a bucket.

Buckets are conceptually similar to grouping in SQL, while metrics are similar
to COUNT(), SUM(), MAX(), and so forth.
Let’s dig into both of these concepts

 and see what they entail.
25.1. Buckets

A bucket is simply a collection of documents that meet certain criteria:
	
An employee would land in either the male or female bucket.

	
The city of Albany would land in the New York state bucket.

	
The date 2014-10-28 would land within the October bucket.

As aggregations are executed, the values inside each document are evaluated to
determine whether they match a bucket’s criteria. If they match, the document is placed
inside the bucket and the aggregation continues.
Buckets can also be nested inside other buckets, giving you a hierarchy or
conditional partitioning scheme. For example, Cincinnati would be placed inside
the Ohio state bucket, and the entire Ohio bucket would be placed inside the
USA country bucket.
Elasticsearch has a variety of buckets, which allow you to
partition documents in many ways (by hour, by most-popular terms, by
age ranges, by geographical location, and more). But fundamentally they all operate
on the same principle: partitioning documents based on criteria.

25.2. Metrics

Buckets allow us to partition documents into useful subsets,

 but ultimately what
we want is some kind of metric calculated on those documents in each bucket.
Bucketing is the means to an end: it provides a way to group documents in a way
that you can calculate interesting metrics.
Most metrics are simple mathematical operations (for example, min, mean, max, and sum)
that are calculated using the document values. In practical terms, metrics allow
you to calculate quantities such as the average salary, or the maximum sale price,
or the 95th percentile for query latency.

25.3. Combining the Two

An aggregation is a combination of buckets and metrics.

 An aggregation may have
a single bucket, or a single metric, or one of each. It may even have multiple
buckets nested inside other buckets. For example, we can partition documents by which country they belong to (a bucket), and
then calculate the average salary per country (a metric).
Because buckets can be nested, we can derive a much more complex aggregation:
	
Partition documents by country (bucket).

	
Then partition each country bucket by gender (bucket).

	
Then partition each gender bucket by age ranges (bucket).

	
Finally, calculate the average salary for each age range (metric)

This will give you the average salary per <country, gender, age> combination. All in
one request and with one pass over the data!

Chapter 26. Aggregation Test-Drive

We could spend the next few pages defining the various aggregations
and their syntax,
 but aggregations are truly best learned by example.
Once you learn how to think about aggregations, and how to nest them appropriately,
the syntax is fairly trivial.
Note
A complete list of aggregation buckets and metrics can be found at the Elasticsearch Reference. We’ll cover many of them in this chapter, but glance
over it after finishing so you are familiar with the full range of capabilities.

So let’s just dive in and start with an example. We are going to build some
aggregations that might be useful to a car dealer. Our data will be about car
transactions: the car model, manufacturer, sale price, when it sold, and more.
First we will bulk-index some data to work with:
POST /cars/transactions/_bulk
{ "index": {}}
{ "price" : 10000, "color" : "red", "make" : "honda", "sold" : "2014-10-28" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 30000, "color" : "green", "make" : "ford", "sold" : "2014-05-18" }
{ "index": {}}
{ "price" : 15000, "color" : "blue", "make" : "toyota", "sold" : "2014-07-02" }
{ "index": {}}
{ "price" : 12000, "color" : "green", "make" : "toyota", "sold" : "2014-08-19" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 80000, "color" : "red", "make" : "bmw", "sold" : "2014-01-01" }
{ "index": {}}
{ "price" : 25000, "color" : "blue", "make" : "ford", "sold" : "2014-02-12" }
Now that we have some data, let’s construct our first aggregation. A car dealer
may want to know which color car sells the best. This is easily accomplished
using a simple aggregation. We will do this using a terms bucket:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs" : { (1)
 "popular_colors" : { (2)
 "terms" : { (3)
 "field" : "color"
 }
 }
 }
}
	(1)
	
Aggregations are placed under the
top-level aggs parameter (the longer aggregations
will also work if you prefer that).

	(2)
	
We then name the aggregation whatever we want: popular_colors, in this example

	(3)
	
Finally, we define a single bucket of type terms.

Aggregations are executed in the context of search results,
 which means it is
just another top-level parameter in a search request (for example, using the /_search
endpoint). Aggregations can be paired with queries, but we’ll tackle that later
in Chapter 29, Scoping Aggregations.
Note
You’ll notice that we set the size to zero. We
don’t care about the search results themselves and
returning zero hits speeds up the query. Setting
size: 0 is the equivalent of using the count
search type in Elasticsearch 1.x.

Next we define a name for our aggregation. Naming is up to you;
the response will be labeled with the name you provide so that your application
can parse the results later.
Next we define the aggregation itself. For this example, we are defining
a single terms bucket.

 The terms bucket will dynamically create a new
bucket for every unique term it encounters. Since we are telling it to use the
color field, the terms bucket will dynamically create a new bucket for each color.
Let’s execute that aggregation and take a look at the results:
{
...
 "hits": {
 "hits": [] (1)
 },
 "aggregations": {
 "popular_colors": { (2)
 "buckets": [
 {
 "key": "red", (3)
 "doc_count": 4 (4)
 },
 {
 "key": "blue",
 "doc_count": 2
 },
 {
 "key": "green",
 "doc_count": 2
 }
]
 }
 }
}
	(1)
	
No search hits are returned because we set the size parameter

	(2)
	
Our popular_colors aggregation is returned as part of the aggregations field.

	(3)
	
The key to each bucket corresponds to a unique term found in the color field.
It also always includes doc_count, which tells us the number of docs containing the term.

	(4)
	
The count of each bucket represents the number of documents with this color.

The response contains a list of buckets, each corresponding to a unique color
(for example, red or green). Each bucket also includes a count of the number of documents
that "fell into" that particular bucket. For example, there are four red cars.
The preceding example is operating entirely in real time: if the documents are searchable,
they can be aggregated. This means you can take the aggregation results and
pipe them straight into a graphing library to generate real-time dashboards.
As soon as you sell a silver car, your graphs would dynamically update to include
statistics about silver cars.
Voila! Your first aggregation!

26.1. Adding a Metric to the Mix

The previous example told us the number of documents in each bucket, which is
useful.

But often, our applications require more-sophisticated metrics about
the documents.
 For example, what is the average price of cars in each bucket?
To get this information, we need to tell Elasticsearch which metrics to calculate,
and on which fields.
 This requires nesting metrics inside the buckets.
Metrics will calculate mathematical statistics based on the values of documents
within a bucket.
Let’s go ahead and add an average metric to our car example:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs": {
 "colors": {
 "terms": {
 "field": "color"
 },
 "aggs": { (1)
 "avg_price": { (2)
 "avg": {
 "field": "price" (3)
 }
 }
 }
 }
 }
}
	(1)
	
We add a new aggs level to hold the metric.

	(2)
	
We then give the metric a name: avg_price.

	(3)
	
And finally, we define it as an avg metric over the price field.

As you can see, we took the previous example and tacked on a new aggs level.
This new aggregation level allows us to nest the avg metric inside the
terms bucket. Effectively, this means we will generate an average for each
color.
Just like the colors example, we need to name our metric (avg_price) so we
can retrieve the values later. Finally, we specify the metric itself (avg)
and what field we want the average to be calculated on (price):
{
...
 "aggregations": {
 "colors": {
 "buckets": [
 {
 "key": "red",
 "doc_count": 4,
 "avg_price": { (1)
 "value": 32500
 }
 },
 {
 "key": "blue",
 "doc_count": 2,
 "avg_price": {
 "value": 20000
 }
 },
 {
 "key": "green",
 "doc_count": 2,
 "avg_price": {
 "value": 21000
 }
 }
]
 }
 }
...
}
	(1)
	
New avg_price element in response

Although the response has changed minimally, the data we get out of it has grown
substantially. Before, we knew there were four red cars. Now we know that the
average price of red cars is $32,500. This is something that you can plug directly
into reports or graphs.

26.2. Buckets Inside Buckets

The true power of aggregations becomes apparent once you start playing with
different nesting schemes.

 In the previous examples, we saw how you could nest
a metric inside a bucket, which is already quite powerful.
But the real exciting analytics come from nesting buckets inside other buckets.
This time, we want to find out the distribution of car manufacturers for each
color:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs": {
 "colors": {
 "terms": {
 "field": "color"
 },
 "aggs": {
 "avg_price": { (1)
 "avg": {
 "field": "price"
 }
 },
 "make": { (2)
 "terms": {
 "field": "make" (3)
 }
 }
 }
 }
 }
}
	(1)
	
Notice that we can leave the previous avg_price metric in place.

	(2)
	
Another aggregation named make is added to the color bucket.

	(3)
	
This aggregation is a terms bucket and will generate unique buckets for
each car make.

A few interesting things happened here.
 First, you’ll notice that the previous
avg_price metric is left entirely intact. Each level of an aggregation can
have many metrics or buckets. The avg_price metric tells us the average price
for each car color. This is independent of other buckets and metrics that
are also being built.
This is important for your application, since there are often many related,
but entirely distinct, metrics that you need to collect. Aggregations allow
you to collect all of them in a single pass over the data.
The other important thing to note is that the aggregation we added, make, is
a terms bucket (nested inside the colors terms bucket). This means we will

generate a (color, make) tuple for every unique combination in your dataset.
Let’s take a look at the response (truncated for brevity, since it is now
growing quite long):
{
...
 "aggregations": {
 "colors": {
 "buckets": [
 {
 "key": "red",
 "doc_count": 4,
 "make": { (1)
 "buckets": [
 {
 "key": "honda", (2)
 "doc_count": 3
 },
 {
 "key": "bmw",
 "doc_count": 1
 }
]
 },
 "avg_price": {
 "value": 32500 (3)
 }
 },

...
}
	(1)
	
Our new aggregation is nested under each color bucket, as expected.

	(2)
	
We now see a breakdown of car makes for each color.

	(3)
	
Finally, you can see that our previous avg_price metric is still intact.

The response tells us the following:
	
There are four red cars.

	
The average price of a red car is $32,500.

	
Three of the red cars are made by Honda, and one is a BMW.

26.3. One Final Modification

Just to drive the point home, let’s make one final modification to our example
before moving on to new topics.

 Let’s add two metrics to calculate the min and
max price for each make:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs": {
 "colors": {
 "terms": {
 "field": "color"
 },
 "aggs": {
 "avg_price": { "avg": { "field": "price" }
 },
 "make" : {
 "terms" : {
 "field" : "make"
 },
 "aggs" : { (1)
 "min_price" : { "min": { "field": "price"} }, (2)
 "max_price" : { "max": { "field": "price"} } (3)
 }
 }
 }
 }
 }
}
	(1)
	
We need to add another aggs level for nesting.

	(2)
	
Then we include a min metric.

	(3)
	
And a max metric.

Which gives us the following output (again, truncated):
{
...
 "aggregations": {
 "colors": {
 "buckets": [
 {
 "key": "red",
 "doc_count": 4,
 "make": {
 "buckets": [
 {
 "key": "honda",
 "doc_count": 3,
 "min_price": {
 "value": 10000 (1)
 },
 "max_price": {
 "value": 20000 (2)
 }
 },
 {
 "key": "bmw",
 "doc_count": 1,
 "min_price": {
 "value": 80000
 },
 "max_price": {
 "value": 80000
 }
 }
]
 },
 "avg_price": {
 "value": 32500
 }
 },
...
	(1) (2)
	
The min and max metrics that we added now appear under each make

With those two buckets, we’ve expanded the information derived from this query
to include the following:
	
There are four red cars.

	
The average price of a red car is $32,500.

	
Three of the red cars are made by Honda, and one is a BMW.

	
The cheapest red Honda is $10,000.

	
The most expensive red Honda is $20,000.

Chapter 27. Building Bar Charts

One of the exciting aspects of aggregations are how easily they are converted
into charts and graphs.
 In this chapter, we are focusing
on various analytics that we can wring out of our example dataset. We will also
demonstrate the types of charts aggregations can power.
The histogram bucket is particularly useful.
 Histograms are essentially
bar charts, and if you’ve ever built a report or analytics dashboard, you
undoubtedly had a few bar charts in it. The histogram works by specifying an interval. If we were histogramming sale
prices, you might specify an interval of 20,000. This would create a new bucket
every $20,000. Documents are then sorted into buckets.
For our dashboard, we want to know how many cars sold in each price range. We
would also like to know the total revenue generated by that price bracket. This is
calculated by summing the price of each car sold in that interval.
To do this, we use a histogram and a nested sum metric:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs":{
 "price":{
 "histogram":{ (1)
 "field": "price",
 "interval": 20000
 },
 "aggs":{
 "revenue": {
 "sum": { (2)
 "field" : "price"
 }
 }
 }
 }
 }
}
	(1)
	
The histogram bucket requires two parameters: a numeric field, and an
interval that defines the bucket size.

	(2)
	
A sum metric is nested inside each price range, which will show us the
total revenue for that bracket

As you can see, our query is built around the price aggregation, which contains
a histogram bucket. This bucket requires a numeric field to calculate
buckets on, and an interval size. The interval defines how "wide" each bucket
is. An interval of 20000 means we will have the ranges [0-19999, 20000-39999, ...].
Next, we define a nested metric inside the histogram. This is a sum metric, which
will sum up the price field from each document landing in that price range.
This gives us the revenue for each price range, so we can see if our business
makes more money from commodity or luxury cars.
And here is the response:
{
...
 "aggregations": {
 "price": {
 "buckets": [
 {
 "key": 0,
 "doc_count": 3,
 "revenue": {
 "value": 37000
 }
 },
 {
 "key": 20000,
 "doc_count": 4,
 "revenue": {
 "value": 95000
 }
 },
 {
 "key": 80000,
 "doc_count": 1,
 "revenue": {
 "value": 80000
 }
 }
]
 }
 }
}
The response is fairly self-explanatory, but it should be noted that the
histogram keys correspond to the lower boundary of the interval. The key 0
means 0-19,999, the key 20000 means 20,000-39,999, and so forth.
Note
You’ll notice that empty intervals, such as $40,000-60,000, is missing in the
response. The histogram bucket omits these by default, since it could lead
to the unintended generation of potentially enormous output.
We’ll discuss how to include empty buckets in the next section, Section 28.1, “Returning Empty Buckets”.

Graphically, you could represent the preceding data in the histogram shown in Figure 27.1, “Sales and Revenue per price bracket”.
Figure 27.1. Sales and Revenue per price bracket
[image: Sales and Revenue per price bracket]

Of course, you can build bar charts with any aggregation that emits categories
and statistics, not just the histogram bucket. Let’s build a bar chart of the
top 10 most popular makes, and their average price, and then calculate the standard
error to add error bars on our chart. This will use the terms bucket and
an extended_stats metric:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs": {
 "makes": {
 "terms": {
 "field": "make",
 "size": 10
 },
 "aggs": {
 "stats": {
 "extended_stats": {
 "field": "price"
 }
 }
 }
 }
 }
}
This will return a list of makes (sorted by popularity) and a variety of statistics
about each. In particular, we are interested in stats.avg, stats.count,
and stats.std_deviation. Using this information, we can calculate the standard error:
std_err = std_deviation / count
This will allow us to build a chart like Figure 27.2, “Average price of all makes, with error bars”.
Figure 27.2. Average price of all makes, with error bars
[image: Average price of all makes, with error bars]

Chapter 28. Looking at Time

If search is the most popular activity in Elasticsearch, building date
histograms must be the second most popular.

 Why would you want to use a date
histogram?
Imagine your data has a timestamp. It doesn’t matter what the data is—Apache
log events, stock buy/sell transaction dates, baseball game times—anything with a timestamp can benefit from the date histogram. When you have
a timestamp, you often want to build metrics that are expressed over time:
	
How many cars sold each month this year?

	
What was the price of this stock for the last 12 hours?

	
What was the average latency of our website every hour in the last week?

While regular histograms are often represented as bar charts, date histograms
tend to be converted into line graphs representing time series.
 Many
companies use Elasticsearch solely for analytics over time series data. The date_histogram bucket is their bread and butter.
The date_histogram bucket works
 similarly to the regular histogram. Rather
than building buckets based on a numeric field representing numeric ranges,
it builds buckets based on time ranges. Each bucket is therefore defined as a
certain calendar size (for example, 1 month or 2.5 days).
Can a Regular Histogram Work with Dates?

Technically, yes.
 A regular histogram bucket will work with dates. However,
it is not calendar-aware. With the date_histogram, you can specify intervals
such as 1 month, which knows that February is shorter than December. The
date_histogram also has the advantage of being able to work with time zones,
which allows you to customize graphs to the time zone of the user, not the server.
The regular histogram will interpret dates as numbers, which means you must specify
intervals in terms of milliseconds. And the aggregation doesn’t know about
calendar intervals, which makes it largely useless for dates.

Our first example will build a simple line chart to answer this question:
how many cars were sold each month?
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs": {
 "sales": {
 "date_histogram": {
 "field": "sold",
 "interval": "month", (1)
 "format": "yyyy-MM-dd" (2)
 }
 }
 }
}
	(1)
	
The interval is requested in calendar terminology (for example, one month per bucket).

	(2)
	
We provide a date format so that bucket keys are pretty.

Our query has a single aggregation, which builds a bucket
per month. This will give us the number of cars sold in each month. An additional
format parameter is provided so the buckets have "pretty" keys. Internally,
dates are simply represented as a numeric value. This tends to make UI designers
grumpy, however, so a prettier format can be specified using common date formatting.
The response is both expected and a little surprising (see if you can spot
the surprise):
{
 ...
 "aggregations": {
 "sales": {
 "buckets": [
 {
 "key_as_string": "2014-01-01",
 "key": 1388534400000,
 "doc_count": 1
 },
 {
 "key_as_string": "2014-02-01",
 "key": 1391212800000,
 "doc_count": 1
 },
 {
 "key_as_string": "2014-05-01",
 "key": 1398902400000,
 "doc_count": 1
 },
 {
 "key_as_string": "2014-07-01",
 "key": 1404172800000,
 "doc_count": 1
 },
 {
 "key_as_string": "2014-08-01",
 "key": 1406851200000,
 "doc_count": 1
 },
 {
 "key_as_string": "2014-10-01",
 "key": 1412121600000,
 "doc_count": 1
 },
 {
 "key_as_string": "2014-11-01",
 "key": 1414800000000,
 "doc_count": 2
 }
]
...
}
The aggregation is represented in full. As you can see, we have buckets
that represent months, a count of docs in each month, and our pretty key_as_string.
28.1. Returning Empty Buckets

Notice something odd about that last response?
Yep, that’s right.

 We are missing a few months! By default, the date_histogram
(and histogram too) returns only buckets that have a nonzero
document count.
This means your histogram will be a minimal response. Often, this is not the
behavior you want. For many applications, you would like to dump the
response directly into a graphing library without doing any post-processing.
Essentially, we want buckets even if they have a count of zero. We can set two
additional parameters that will provide this behavior:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs": {
 "sales": {
 "date_histogram": {
 "field": "sold",
 "interval": "month",
 "format": "yyyy-MM-dd",
 "min_doc_count" : 0, (1)
 "extended_bounds" : { (2)
 "min" : "2014-01-01",
 "max" : "2014-12-31"
 }
 }
 }
 }
}
	(1)
	
This parameter forces empty buckets to be returned.

	(2)
	
This parameter forces the entire year to be returned.

The two additional parameters will force the response to return all months in the
year, regardless of their doc count. The min_doc_count is very understandable:
it forces buckets to be returned even if they are empty.
The extended_bounds parameter requires a little explanation. The min_doc_count
parameter forces empty buckets to be returned, but by default Elasticsearch will return only buckets that are between the minimum and maximum value in your data.
So if your data falls between April and July, you’ll have buckets
representing only those months (empty or otherwise). To get the full year, we need
to tell Elasticsearch that we want buckets even if they fall before the
minimum value or after the maximum value.
The extended_bounds parameter does just that. Once you add those two settings,
you’ll get a response that is easy to plug straight into your graphing libraries
and give you a graph like Figure 28.1, “Cars sold over time”.
Figure 28.1. Cars sold over time
[image: Cars sold over time]

28.2. Extended Example

Just as we’ve seen a dozen times already, buckets can be nested in buckets for
more-sophisticated behavior.

 For illustration, we’ll build an aggregation
that shows the total sum of prices for all makes, listed by quarter. Let’s also
calculate the sum of prices per individual make per quarter, so we can see
which car type is bringing in the most money to our business:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs": {
 "sales": {
 "date_histogram": {
 "field": "sold",
 "interval": "quarter", (1)
 "format": "yyyy-MM-dd",
 "min_doc_count" : 0,
 "extended_bounds" : {
 "min" : "2014-01-01",
 "max" : "2014-12-31"
 }
 },
 "aggs": {
 "per_make_sum": {
 "terms": {
 "field": "make"
 },
 "aggs": {
 "sum_price": {
 "sum": { "field": "price" } (2)
 }
 }
 },
 "total_sum": {
 "sum": { "field": "price" } (3)
 }
 }
 }
 }
}
	(1)
	
Note that we changed the interval from month to quarter.

	(2)
	
Calculate the sum per make.

	(3)
	
And the total sum of all makes combined together.

This returns a (heavily truncated) response:
{
....
"aggregations": {
 "sales": {
 "buckets": [
 {
 "key_as_string": "2014-01-01",
 "key": 1388534400000,
 "doc_count": 2,
 "total_sum": {
 "value": 105000
 },
 "per_make_sum": {
 "buckets": [
 {
 "key": "bmw",
 "doc_count": 1,
 "sum_price": {
 "value": 80000
 }
 },
 {
 "key": "ford",
 "doc_count": 1,
 "sum_price": {
 "value": 25000
 }
 }
]
 }
 },
...
}
We can take this response and put it into a graph, showing a line chart for
total sale price, and a bar chart for each individual make (per quarter), as shown in Figure 28.2, “Sales per quarter, with distribution per make”.
Figure 28.2. Sales per quarter, with distribution per make
[image: Sales per quarter, with distribution per make]

28.3. The Sky’s the Limit

These were obviously simple examples, but the sky really is the limit
when it comes to charting aggregations.

 For example, Figure 28.3, “Kibana—a real time analytics dashboard built with aggregations” shows a dashboard in
Kibana built with a variety of aggregations.
Figure 28.3. Kibana—a real time analytics dashboard built with aggregations
[image: Kibana - a real time analytics dashboard built with aggregations]

Because of the real-time nature of aggregations, dashboards like this are easy to query,
manipulate, and interact with. This makes them ideal for nontechnical employees
and analysts who need to analyze the data but cannot build a Hadoop job.
To build powerful dashboards like Kibana, however, you’ll likely need some of
the more advanced concepts such as scoping, filtering, and sorting aggregations.

Chapter 29. Scoping Aggregations

With all of the aggregation examples given so far, you may have noticed that we
omitted a query from the search request.

 The entire request was
simply an aggregation.
Aggregations can be run at the same time as search requests, but you need to
understand a new concept: scope. By default, aggregations operate in the same
scope as the query. Put another way, aggregations are calculated on the set of
documents that match your query.
Let’s look at one of our first aggregation examples:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color"
 }
 }
 }
}
You can see that the aggregation is in isolation. In reality, Elasticsearch
assumes "no query specified" is equivalent to "query all documents." The preceding
query is internally translated as follows:
GET /cars/transactions/_search
{
 "size" : 0,
 "query" : {
 "match_all" : {}
 },
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color"
 }
 }
 }
}
The aggregation always operates in the scope of the query, so an isolated
aggregation really operates in the scope of
a match_all query—that is to say,
all documents.
Once armed with the knowledge of scoping, we can start to customize
aggregations even further. All of our previous examples calculated statistics
about all of the data: top-selling cars, average price of all cars, most sales
per month, and so forth.
With scope, we can ask questions such as "How many colors are Ford cars
available in?" We do this by simply adding a query to the request (in this case
a match query):
GET /cars/transactions/_search
{
 "query" : {
 "match" : {
 "make" : "ford"
 }
 },
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color"
 }
 }
 }
}
Since we aren’t specifying "size" : 0, both the search
results and the aggregation results are returned:
{
...
 "hits": {
 "total": 2,
 "max_score": 1.6931472,
 "hits": [
 {
 "_source": {
 "price": 25000,
 "color": "blue",
 "make": "ford",
 "sold": "2014-02-12"
 }
 },
 {
 "_source": {
 "price": 30000,
 "color": "green",
 "make": "ford",
 "sold": "2014-05-18"
 }
 }
]
 },
 "aggregations": {
 "colors": {
 "buckets": [
 {
 "key": "blue",
 "doc_count": 1
 },
 {
 "key": "green",
 "doc_count": 1
 }
]
 }
 }
}
This may seem trivial, but it is the key to advanced and powerful dashboards.
You can transform any static dashboard into a real-time data exploration device
by adding a search bar.
 This allows the user to search for terms and see all
of the graphs (which are powered by aggregations, and thus scoped to the query)
update in real time. Try that with Hadoop!
Global Bucket
You’ll often want your aggregation to be scoped to your query. But sometimes
you’ll want to search for a subset of data, but aggregate across all of
your data.

For example, say you want to know the average price of Ford cars compared to the
average price of all cars. We can use a regular aggregation (scoped to the query)
to get the first piece of information. The second piece of information can be
obtained by using
 a global bucket.
The global bucket will contain all of your documents, regardless of the query
scope; it bypasses the scope completely. Because it is a bucket, you can nest
aggregations inside it as usual:
GET /cars/transactions/_search
{
 "size" : 0,
 "query" : {
 "match" : {
 "make" : "ford"
 }
 },
 "aggs" : {
 "single_avg_price": {
 "avg" : { "field" : "price" } (1)
 },
 "all": {
 "global" : {}, (2)
 "aggs" : {
 "avg_price": {
 "avg" : { "field" : "price" } (3)
 }

 }
 }
 }
}
	(1)
	
This aggregation operates in the query scope (for example, all docs matching ford)

	(2)
	
The global bucket has no parameters.

	(3)
	
This aggregation operates on the all documents, regardless of the make.

The single_avg_price metric calculation is based on all documents that fall under the
query scope—all ford cars. The avg_price metric is nested under a
global bucket, which means it ignores scoping entirely and calculates on
all the documents. The average returned for that aggregation represents
the average price of all cars.
If you’ve made it this far in the book, you’ll recognize the mantra: use a filter
wherever you can. The same applies to aggregations, and in the next chapter
we show you how to filter an aggregation instead of just limiting the query
scope.

Chapter 30. Filtering Queries and Aggregations

A natural extension to aggregation scoping are filtering queries. Because the aggregation
operates in the context of the query scope, any filter applied to the query
will also apply to the aggregation.
30.1. Filtering Queries

If we want to find all cars over $10,000 and also calculate the average price
for those cars,

 we can use a constant_score query and its filter clause:
GET /cars/transactions/_search
{
 "size" : 0,
 "query" : {
 "constant_score": {
 "filter": {
 "range": {
 "price": {
 "gte": 10000
 }
 }
 }
 }
 },
 "aggs" : {
 "single_avg_price": {
 "avg" : { "field" : "price" }
 }
 }
}
Fundamentally, using a non-scoring query is no different from using a match
query, as we discussed in the previous chapter. The query returns a certain
subset of documents, and the aggregation operates on those documents. It just happens
to omit scoring and may proactively cache bitsets, etc.

30.2. Filter Bucket

But what if you would like to filter just the aggregation results?

 Imagine we
are building the search page for our car dealership. We want to display
search results according to what the user searches for. But we also want
to enrich the page by including the average price of cars (matching the search)
that were sold in the last month.
We can’t use simple scoping here, since there are two different criteria. The
search results must match ford, but the aggregation results must match ford
AND sold > now - 1M.
To solve this problem, we can use a special bucket called filter.
 You specify
a filter, and when documents match the filter’s criteria, they are added to the
bucket.
Here is the resulting query:
GET /cars/transactions/_search
{
 "size" : 0,
 "query":{
 "match": {
 "make": "ford"
 }
 },
 "aggs":{
 "recent_sales": {
 "filter": { (1)
 "range": {
 "sold": {
 "from": "now-1M"
 }
 }
 },
 "aggs": {
 "average_price":{
 "avg": {
 "field": "price" (2)
 }
 }
 }
 }
 }
}
	(1)
	
Using the filter bucket to apply a filter in addition to the query scope.

	(2)
	
This avg metric will therefore average only docs that are both ford and sold in the last month.

Since the filter bucket operates like any other bucket, you are free to nest
other buckets and metrics inside. All nested components will "inherit" the filter.
This allows you to filter selective portions of the aggregation as required.

30.3. Post Filter

So far, we have a way to filter both the search results and aggregations (a
non-scoring filter query), as well as filtering individual portions of the aggregation
(filter bucket).
You may be thinking to yourself, "hmm…is there a way to filter just the search
results but not the aggregation?"
 The answer is to use a post_filter.
This is a top-level search-request element that accepts a filter. The filter is
applied after the query has executed (hence the post moniker: it runs
post query execution). Because it operates after the query has executed,
it does not affect the query scope—and thus does not affect the aggregations
either.
We can use this behavior to apply additional filters to our search
criteria that don’t affect things like categorical facets in your UI. Let’s
design another search page for our car dealer. This page will allow the user
to search for a car and filter by color. Color choices are populated via an
aggregation:
GET /cars/transactions/_search
{
 "size" : 0,
 "query": {
 "match": {
 "make": "ford"
 }
 },
 "post_filter": { (1)
 "term" : {
 "color" : "green"
 }
 },
 "aggs" : {
 "all_colors": {
 "terms" : { "field" : "color" }
 }
 }
}
	(1)
	
The post_filter element is a top-level element and filters just the search hits.

The query portion is finding all ford cars. We are then building a list of
colors with a terms aggregation. Because aggregations operate in the query
scope, the list of colors will correspond with the colors that Ford cars are
painted.
Finally, the post_filter will filter the search results to show only green
ford cars. This happens after the query is executed, so the aggregations
are unaffected.
This is often important for coherent UIs. Imagine that a user clicks a category in
your UI (for example, green). The expectation is that the search results are filtered,
but not the UI options. If you applied a Boolean filter query, the UI would
instantly transform to show only green as an option—not what the user wants!
Performance consideration
Use a post_filter only if you need to differentially filter search results
and aggregations.
Sometimes people will use post_filter for regular searches.
Don’t do this! The nature of the post_filter means it runs after the query,
so any performance benefit of filtering (such as caches) is lost completely.
The post_filter should be used only in combination with aggregations, and only
when you need differential filtering.

30.4. Recap

Choosing the appropriate type of filtering—search hits, aggregations, or
both—often boils down to how you want your user interface to behave. Choose
the appropriate filter (or combinations) depending on how you want to display
results to your user.
	
A non-scoring query inside a filter clause affects both search results and aggregations.

	
A filter bucket affects just aggregations.

	
A post_filter affects just search results.

Chapter 31. Sorting Multivalue Buckets

Multivalue buckets—the terms, histogram, and date_histogram—dynamically produce many buckets.

 How does Elasticsearch decide the order that
these buckets are presented to the user?
By default, buckets are ordered by doc_count in
 descending order. This is a
good default because often we want to find the documents that maximize some
criteria: price, population, frequency. But sometimes you’ll want to modify this sort order, and there are a few ways to
do it, depending on the bucket.
31.1. Intrinsic Sorts

These sort modes are intrinsic to the bucket: they operate on data that bucket

generates, such as doc_count.

 They share the same syntax but differ slightly
depending on the bucket being used.
Let’s perform a terms aggregation but sort by doc_count, in ascending order:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color",
 "order": {
 "_count" : "asc" (1)
 }
 }
 }
 }
}
	(1)
	
Using the _count keyword, we can sort by doc_count, in ascending order.

We introduce an order object into the aggregation, which allows us to sort on
one of several values:
	
_count

	
Sort by document count. Works with terms, histogram, date_histogram.

	
_term

	
Sort by the string value of a term alphabetically. Works only with terms.

	
_key

	
Sort by the numeric value of each bucket’s key (conceptually similar to _term).
Works only with histogram and date_histogram.

31.2. Sorting by a Metric

Often, you’ll find yourself wanting to sort based on a metric’s calculated value.

For our car sales analytics dashboard, we may want to build a bar chart of
sales by car color, but order the bars by the average price, ascending.
We can do this by adding a metric to our bucket, and then referencing that
metric from the order parameter:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color",
 "order": {
 "avg_price" : "asc" (1)
 }
 },
 "aggs": {
 "avg_price": {
 "avg": {"field": "price"} (2)
 }
 }
 }
 }
}
	(2)
	
The average price is calculated for each bucket.

	(1)
	
Then the buckets are ordered by the calculated average in ascending order.

This lets you override the sort order with any metric, simply by referencing
the name of the metric. Some metrics, however, emit multiple values. The
extended_stats metric is a good example: it provides half a dozen individual
metrics.
If you want to sort on a multivalue metric,

 you just need to use the
dot-path to the metric of interest:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs" : {
 "colors" : {
 "terms" : {
 "field" : "color",
 "order": {
 "stats.variance" : "asc" (1)
 }
 },
 "aggs": {
 "stats": {
 "extended_stats": {"field": "price"}
 }
 }
 }
 }
}
	(1)
	
Using dot notation, we can sort on the metric we are interested in.

In this example we are sorting on the variance of each bucket, so that colors
with the least variance in price will appear before those that have more variance.

31.3. Sorting Based on "Deep" Metrics

In the prior examples, the metric was a direct child of the bucket. An average
price was calculated for each term.

 It is possible to sort on deeper metrics,
which are grandchildren or great-grandchildren of the bucket—with some limitations.
You can define a path to a deeper, nested metric by using angle brackets (>), like
so: my_bucket>another_bucket>metric.
The caveat is that each nested bucket in the path must be a single-value bucket.
A filter bucket produces a single bucket: all documents that match the
filtering criteria. Multivalue buckets (such as terms) generate many
dynamic buckets, which makes it impossible to specify a deterministic path.
Currently, there are only three single-value buckets: filter, global, and reverse_nested. As
a quick example, let’s build a histogram of car prices, but order the buckets
by the variance in price of red and green (but not blue) cars in each price range:

GET /cars/transactions/_search
{
 "size" : 0,
 "aggs" : {
 "colors" : {
 "histogram" : {
 "field" : "price",
 "interval": 20000,
 "order": {
 "red_green_cars>stats.variance" : "asc" (1)
 }
 },
 "aggs": {
 "red_green_cars": {
 "filter": { "terms": {"color": ["red", "green"]}}, (2)
 "aggs": {
 "stats": {"extended_stats": {"field" : "price"}} (3)
 }
 }
 }
 }
 }
}
	(1)
	
Sort the buckets generated by the histogram according to the variance of a nested metric.

	(2)
	
Because we are using a single-value filter, we can use nested sorting.

	(3)
	
Sort on the stats generated by this metric.

In this example, you can see that we are accessing a nested metric. The stats
metric is a child of red_green_cars, which is in turn a child of colors. To
sort on that metric, we define the path as red_green_cars>stats.variance.
This is allowed because the filter bucket is a single-value bucket.

Chapter 32. Approximate Aggregations

Life is easy if all your data fits on a single machine.
 Classic algorithms
taught in CS201 will be sufficient for all your needs. But if all your data fits
on a single machine, there would be no need for distributed software
like Elasticsearch at all. But once you start distributing data, algorithm
selection needs to be made carefully.
Some algorithms are amenable to distributed execution. All of the aggregations
discussed thus far execute in a single pass and give exact results. These types
of algorithms are often referred to as embarrassingly parallel,
because they parallelize to multiple machines with little effort. When
performing a max metric, for example, the underlying algorithm is very simple:
	
Broadcast the request to all shards.

	
Look at the price field for each document. If price > current_max, replace
current_max with price.

	
Return the maximum price from all shards to the coordinating node.

	
Find the maximum price returned from all shards. This is the true maximum.

The algorithm scales linearly with machines because the algorithm requires no
coordination (the machines don’t need to discuss intermediate results), and the
memory footprint is very small (a single integer representing the maximum).
Not all algorithms are as simple as taking the maximum value, unfortunately.
More complex operations require algorithms that make conscious trade-offs in
performance and memory utilization. There is a triangle of factors at play:
big data, exactness, and real-time latency.
You get to choose two from this triangle:
	
Exact + real time

	
Your data fits in the RAM of a single machine. The world
is your oyster; use any algorithm you want. Results will be 100% accurate and
relatively fast.

	
Big data + exact

	
A classic Hadoop installation. Can handle petabytes of data
and give you exact answers—but it may take a week to give you that answer.

	
Big data + real time

	
Approximate algorithms that give you accurate, but not
exact, results.

Elasticsearch currently supports two approximate algorithms (cardinality and
percentiles). These will give you accurate results, but not 100% exact.
In exchange for a little bit of estimation error, these algorithms give you
fast execution and a small memory footprint.
For most domains, highly accurate results that return in real time across
all your data is more important than 100% exactness. At first blush, this may be an alien concept to you. "We need exact answers!"
you may yell. But consider the implications of a 0.5% error:
	
The true 99th percentile of latency for your website is 132ms.

	
An approximation with 0.5% error will be within +/- 0.66ms of 132ms.

	
The approximation returns in milliseconds, while the "true" answer may take seconds, or
be impossible.

For simply checking on your website’s latency, do you care if the approximate
answer is 132.66ms instead of 132ms? Certainly, not all domains can tolerate
approximations—but the vast majority will have no problem. Accepting
an approximate answer is more often a cultural hurdle rather than a business
or technical imperative.
32.1. Finding Distinct Counts

The first approximate aggregation provided by Elasticsearch is the cardinality
metric.

 This provides the cardinality of a field, also called a distinct or
unique count. You may be familiar with the SQL version:
SELECT COUNT(DISTINCT color)
FROM cars
Distinct counts are a common operation, and answer many fundamental business questions:
	
How many unique visitors have come to my website?

	
How many unique cars have we sold?

	
How many distinct users purchased a product each month?

We can use the cardinality metric to determine the number of car colors being
sold at our dealership:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs" : {
 "distinct_colors" : {
 "cardinality" : {
 "field" : "color"
 }
 }
 }
}
This returns a minimal response showing that we have sold three different-colored
cars:
...
"aggregations": {
 "distinct_colors": {
 "value": 3
 }
}
...
We can make our example more useful: how many colors were sold each month? For
that metric, we just nest the cardinality metric under a date_histogram:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs" : {
 "months" : {
 "date_histogram": {
 "field": "sold",
 "interval": "month"
 },
 "aggs": {
 "distinct_colors" : {
 "cardinality" : {
 "field" : "color"
 }
 }
 }
 }
 }
}
32.1.1. Understanding the Trade-offs

As mentioned at the top of this chapter, the cardinality metric is an approximate
algorithm.
 It is based on the HyperLogLog++ (HLL) algorithm. HLL works by
hashing your input and using the bits from the hash to make probabilistic estimations
on the cardinality.
You don’t need to understand the technical details (although if you’re interested,
the paper is a great read!), but you
should be aware of the properties of the
algorithm:
	
Configurable precision, which controls memory usage (more precise
== more memory).

	
Excellent accuracy on low-cardinality sets.

	
Fixed memory usage. Whether there are thousands or billions of unique
values, memory usage depends on only the configured precision.

To configure the precision, you must specify the precision_threshold parameter.
This threshold defines the point under which cardinalities are expected to be very
close to accurate. Consider this example:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs" : {
 "distinct_colors" : {
 "cardinality" : {
 "field" : "color",
 "precision_threshold" : 100 (1)
 }
 }
 }
}
	(1)
	
precision_threshold accepts a number from 0–40,000. Larger values
are treated as equivalent to 40,000.

This example will ensure that fields with 100 or fewer distinct values will be extremely accurate.
Although not guaranteed by the algorithm, if a cardinality is under the threshold,
it is almost always 100% accurate. Cardinalities above this will begin to trade
accuracy for memory savings, and a little error will creep into the metric.
For a given threshold, the HLL data-structure will use about
precision_threshold * 8 bytes of memory. So you must balance how much memory
you are willing to sacrifice for additional accuracy.
Practically speaking, a threshold of 100 maintains an error under 5% even when
counting millions of unique values.

32.1.2. Optimizing for Speed

If you want a distinct count, you usually want to query your entire dataset
(or nearly all of it).

 Any operation on all your data needs to execute quickly,
for obvious reasons. HyperLogLog is very fast already—it simply
hashes your data and does some bit-twiddling.
But if speed is important to you, we can optimize it a little bit further.
Since HLL simply needs the hash of the field, we can precompute that hash at
index time. When the query executes, we can skip the hash computation and load
the value directly out of fielddata.
Note
Precomputing hashes is useful only on very large and/or high-cardinality
fields. Calculating the hash on these fields is non-negligible at query time.
However, numeric fields hash very quickly, and storing the original numeric often
requires the same (or less) memory. This is also true on low-cardinality string
fields; there are internal optimizations that guarantee that hashes are
calculated only once per unique value.
Basically, precomputing hashes is not guaranteed to make all fields faster — only those that have high cardinality and/or large strings. And remember,
precomputing simply shifts the cost to index time. You still pay the price;
you just choose when to pay it.

To do this, we need to add a new multifield to our data. We’ll delete our index,
add a new mapping that includes the hashed field, and then reindex:
DELETE /cars/

PUT /cars/
{
 "mappings": {
 "transactions": {
 "properties": {
 "color": {
 "type": "string",
 "fields": {
 "hash": {
 "type": "murmur3" (1)
 }
 }
 }
 }
 }
 }
}

POST /cars/transactions/_bulk
{ "index": {}}
{ "price" : 10000, "color" : "red", "make" : "honda", "sold" : "2014-10-28" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 30000, "color" : "green", "make" : "ford", "sold" : "2014-05-18" }
{ "index": {}}
{ "price" : 15000, "color" : "blue", "make" : "toyota", "sold" : "2014-07-02" }
{ "index": {}}
{ "price" : 12000, "color" : "green", "make" : "toyota", "sold" : "2014-08-19" }
{ "index": {}}
{ "price" : 20000, "color" : "red", "make" : "honda", "sold" : "2014-11-05" }
{ "index": {}}
{ "price" : 80000, "color" : "red", "make" : "bmw", "sold" : "2014-01-01" }
{ "index": {}}
{ "price" : 25000, "color" : "blue", "make" : "ford", "sold" : "2014-02-12" }
	(1)
	
This multifield is of type murmur3, which is a hashing function.

Now when we run an aggregation, we use the color.hash field instead of the
color field:
GET /cars/transactions/_search
{
 "size" : 0,
 "aggs" : {
 "distinct_colors" : {
 "cardinality" : {
 "field" : "color.hash" (1)
 }
 }
 }
}
	(1)
	
Notice that we specify the hashed multifield, rather than the original.

Now the cardinality metric will load the values (the precomputed hashes)
from "color.hash" and use those in place of dynamically hashing the original
value.
The savings per document is small, but if hashing each field adds 10 nanoseconds and your aggregation touches 100 million documents, that adds 1 second per
query. If you find yourself using cardinality across many documents,
perform some profiling to see if precomputing hashes makes sense for your
deployment.

32.2. Calculating Percentiles

The other approximate metric offered by Elasticsearch is the percentiles metric.

Percentiles show the point at which a certain percentage of observed values occur.
For example, the 95th percentile is the value that is greater than 95% of the
data.
Percentiles are often used to find outliers. In (statistically) normal
distributions, the 0.13th and 99.87th percentiles represent three standard
deviations from the mean. Any data that falls outside three standard deviations
is often considered an anomaly because it is so different from the average value.
To be more concrete, imagine that you are running a large website and it is your
job to guarantee fast response times to visitors. You must therefore monitor
your website latency to determine whether you are meeting your goal.
A common metric to use in this scenario is the average latency.
 But this is a poor choice (despite being common), because averages can easily hide outliers.
A median metric also suffers the same problem. You could try a maximum, but this
metric is easily skewed by just a single outlier.
This graph in Figure 32.1, “Average request latency over time” visualizes the problem. If you rely on simple metrics like mean or median, you might see a graph that looks like Figure 32.1, “Average request latency over time”.
Figure 32.1. Average request latency over time
[image: Assessing website latency using mean/median]

Everything looks fine.
There is a slight bump, but nothing to be concerned about.
But if we load up the 99th percentile (the value that accounts for the slowest 1%
of latencies), we see an entirely different story, as shown in Figure 32.2, “Average request latency with 99th percentile over time”.
Figure 32.2. Average request latency with 99th percentile over time
[image: Assessing website latency using percentiles]

Whoa! At 9:30 a.m., the mean is only 75ms. As a system administrator, you wouldn’t
look at this value twice. Everything normal! But the 99th percentile is telling
you that 1% of your customers are seeing latency in excess of 850ms—a very
different story. There is also a smaller spike at 4:48 a.m. that wasn’t even
noticeable in the mean/median.
This is just one use-case for a percentile. Percentiles can also be used to quickly
eyeball the distribution of data, check for skew or bimodalities, and more.
32.2.1. Percentile Metric

Let’s load a new dataset (the car data isn’t going to work well for percentiles).
We are going to index a bunch of website latencies and run a few percentiles over
it:
POST /website/logs/_bulk
{ "index": {}}
{ "latency" : 100, "zone" : "US", "timestamp" : "2014-10-28" }
{ "index": {}}
{ "latency" : 80, "zone" : "US", "timestamp" : "2014-10-29" }
{ "index": {}}
{ "latency" : 99, "zone" : "US", "timestamp" : "2014-10-29" }
{ "index": {}}
{ "latency" : 102, "zone" : "US", "timestamp" : "2014-10-28" }
{ "index": {}}
{ "latency" : 75, "zone" : "US", "timestamp" : "2014-10-28" }
{ "index": {}}
{ "latency" : 82, "zone" : "US", "timestamp" : "2014-10-29" }
{ "index": {}}
{ "latency" : 100, "zone" : "EU", "timestamp" : "2014-10-28" }
{ "index": {}}
{ "latency" : 280, "zone" : "EU", "timestamp" : "2014-10-29" }
{ "index": {}}
{ "latency" : 155, "zone" : "EU", "timestamp" : "2014-10-29" }
{ "index": {}}
{ "latency" : 623, "zone" : "EU", "timestamp" : "2014-10-28" }
{ "index": {}}
{ "latency" : 380, "zone" : "EU", "timestamp" : "2014-10-28" }
{ "index": {}}
{ "latency" : 319, "zone" : "EU", "timestamp" : "2014-10-29" }
This data contains three values: a latency, a data center zone, and a date
timestamp. Let’s run percentiles over the whole dataset to get a feel for
the distribution:
GET /website/logs/_search
{
 "size" : 0,
 "aggs" : {
 "load_times" : {
 "percentiles" : {
 "field" : "latency" (1)
 }
 },
 "avg_load_time" : {
 "avg" : {
 "field" : "latency" (2)
 }
 }
 }
}
	(1)
	
The percentiles metric is applied to the latency field.

	(2)
	
For comparison, we also execute an avg metric on the same field.

By default, the percentiles metric will return an array of predefined percentiles:
[1, 5, 25, 50, 75, 95, 99]. These represent common percentiles that people are
interested in—the extreme percentiles at either end of the spectrum, and a
few in the middle. In the response, we see that the fastest latency is around 75ms,
while the slowest is almost 600ms. In contrast, the average is sitting near
200ms, which
is much less informative:
...
"aggregations": {
 "load_times": {
 "values": {
 "1.0": 75.55,
 "5.0": 77.75,
 "25.0": 94.75,
 "50.0": 101,
 "75.0": 289.75,
 "95.0": 489.34999999999985,
 "99.0": 596.2700000000002
 }
 },
 "avg_load_time": {
 "value": 199.58333333333334
 }
}
So there is clearly a wide distribution in latencies. Let’s see whether it is
correlated to the geographic zone of the data center:
GET /website/logs/_search
{
 "size" : 0,
 "aggs" : {
 "zones" : {
 "terms" : {
 "field" : "zone" (1)
 },
 "aggs" : {
 "load_times" : {
 "percentiles" : { (2)
 "field" : "latency",
 "percents" : [50, 95.0, 99.0] (3)
 }
 },
 "load_avg" : {
 "avg" : {
 "field" : "latency"
 }
 }
 }
 }
 }
}
	(1)
	
First we separate our latencies into buckets, depending on their zone.

	(2)
	
Then we calculate the percentiles per zone.

	(3)
	
The percents parameter accepts an array of percentiles that we want returned,
since we are interested in only slow latencies.

From the response, we can see the EU zone is much slower than the US zone. On the
US side, the 50th percentile is very close to the 99th percentile—and both are
close to the average.
In contrast, the EU zone has a large difference between the 50th and 99th
percentile. It is now obvious that the EU zone is dragging down the latency
statistics, and we know that 50% of the EU zone is seeing 300ms+ latencies.
...
"aggregations": {
 "zones": {
 "buckets": [
 {
 "key": "eu",
 "doc_count": 6,
 "load_times": {
 "values": {
 "50.0": 299.5,
 "95.0": 562.25,
 "99.0": 610.85
 }
 },
 "load_avg": {
 "value": 309.5
 }
 },
 {
 "key": "us",
 "doc_count": 6,
 "load_times": {
 "values": {
 "50.0": 90.5,
 "95.0": 101.5,
 "99.0": 101.9
 }
 },
 "load_avg": {
 "value": 89.66666666666667
 }
 }
]
 }
}
...

32.2.2. Percentile Ranks

There is another, closely

related metric called percentile_ranks. The
percentiles metric tells you the lowest value below which a given percentage of documents fall. For instance, if the 50th percentile is 119ms, then 50% of documents have values of no more than 119ms. The percentile_ranks tells you which percentile a specific value belongs to. The percentile_ranks of 119ms is the 50th percentile. It is basically a two-way relationship. For example:
	
The 50th percentile is 119ms.

	
The 119ms percentile rank is the 50th percentile.

So imagine that our website must maintain an SLA of 210ms response times or less.
And, just for fun, your boss has threatened to fire you if response times
creep over 800ms. Understandably, you would like to know what percentage of
requests are actually meeting that SLA (and hopefully at least under 800ms!).
For this, you can apply the percentile_ranks metric instead of percentiles:
GET /website/logs/_search
{
 "size" : 0,
 "aggs" : {
 "zones" : {
 "terms" : {
 "field" : "zone"
 },
 "aggs" : {
 "load_times" : {
 "percentile_ranks" : {
 "field" : "latency",
 "values" : [210, 800] (1)
 }
 }
 }
 }
 }
}
	(1)
	
The percentile_ranks metric accepts an array of values that you want ranks for.

After running this aggregation, we get two values back:
"aggregations": {
 "zones": {
 "buckets": [
 {
 "key": "eu",
 "doc_count": 6,
 "load_times": {
 "values": {
 "210.0": 31.944444444444443,
 "800.0": 100
 }
 }
 },
 {
 "key": "us",
 "doc_count": 6,
 "load_times": {
 "values": {
 "210.0": 100,
 "800.0": 100
 }
 }
 }
]
 }
}
This tells us three important things:
	
In the EU zone, the percentile rank for 210ms is 31.94%.

	
In the US zone, the percentile rank for 210ms is 100%.

	
In both EU and US, the percentile rank for 800ms is 100%.

In plain english, this means that the EU zone is meeting the SLA only 32% of the
time, while the US zone is always meeting the SLA. But luckily for you, both
zones are under 800ms, so you won’t be fired (yet!).
The percentile_ranks metric provides the same information as percentiles, but
presented in a different format that may be more convenient if you are interested in specific value(s).

32.2.3. Understanding the Trade-offs

Like cardinality, calculating percentiles requires an approximate algorithm.
The naive

 implementation would maintain a sorted list of all values—but this
clearly is not possible when you have billions of values distributed across
dozens of nodes.
Instead, percentiles uses an algorithm called TDigest (introduced by Ted Dunning
in Computing Extremely Accurate Quantiles Using T-Digests). As with HyperLogLog, it isn’t
necessary to understand the full technical details, but it is good to know
the properties of the algorithm:
	
Percentile accuracy is proportional to how extreme the percentile is. This
means that percentiles such as the 1st or 99th are more accurate than the 50th.
This is just a property of how the data structure works, but
it happens to be a nice property, because most people care about extreme percentiles.

	
For small sets of values, percentiles are highly accurate. If the dataset is
small enough, the percentiles may be 100% exact.

	
As the quantity of values in a bucket grows, the algorithm begins to
approximate the percentiles. It is effectively trading accuracy for memory
savings. The exact level of inaccuracy is difficult to generalize, since it
depends on your data distribution and volume of data being aggregated.

Similar to cardinality, you can control the memory-to-accuracy ratio by changing
a parameter: compression.
The TDigest algorithm uses nodes to approximate percentiles: the more nodes available, the higher the accuracy (and the larger the memory footprint)
proportional to the volume of data. The compression parameter limits the maximum
number of nodes to 20 * compression.
Therefore, by increasing the compression value, you can increase the accuracy of
your percentiles at the cost of more memory. Larger compression values also
make the algorithm slower since the underlying tree data structure grows in size, resulting in more expensive operations. The default compression value is 100.
A node uses roughly 32 bytes of memory, so in a worst-case scenario (for example, a large
amount of data that arrives sorted and in order), the default settings will
produce a TDigest roughly 64KB in size. In practice, data tends to be more
random, and the TDigest will use less memory.

Chapter 33. Significant Terms

The significant_terms (SigTerms) aggregation
 is rather different from the rest of the
aggregations. All the aggregations we have seen so far are essentially simple math
operations. By combining the various building blocks, you can build sophisticated
aggregations and reports about your data.
significant_terms has a different agenda. To some, it may even look a bit like
machine learning.
 The significant_terms aggregation finds uncommonly common terms
in your data-set.
What do we mean by uncommonly common? These are terms that are statistically
unusual — data that appears more frequently than the background rate would
suggest. These statistical anomalies are usually indicative of something
interesting in your data.
For example, imagine you are in charge of detecting and tracking down credit
card fraud. Customers call and complain about unusual transactions appearing
on their credit card — their account has been compromised. These transactions
are just symptoms of a larger problem. Somewhere in the recent past,
a merchant has either knowingly stolen the customers' credit card information,
or has unknowingly been compromised themselves.
Your job is to find the common point of compromise. If you have 100 customers
complaining of unusual transactions, those customers likely share a single merchant—and it is this merchant that is likely the source of
blame.
Of course, it is a little more nuanced than just finding a merchant that all
customers share. For example, many of the customers will have large merchants
like Amazon in their recent transaction history. We can rule out Amazon, however,
since many uncompromised credit cards also have Amazon as a recent merchant.
This is an example of a commonly common merchant. Everyone, whether compromised
or not, shares the merchant. This makes it of little interest to us.
On the opposite end of the spectrum, you have tiny merchants such as the corner
drug store. These are commonly uncommon—only one or two customers have
transactions from the merchant. We can rule these out as well. Since all of
the compromised cards did not interact with the merchant, we can be sure it was
not to blame for the security breach.
What we want are uncommonly common merchants. These are merchants that every
compromised card shares, but that are not well represented in the background
noise of uncompromised cards. These merchants are statistical anomalies; they
appear more frequently than they should. It is highly likely that these
uncommonly common merchants are to blame.
significant_terms aggregation does just this. It analyzes your data and finds
terms that appear with a frequency that is statistically anomalous compared
to the background data.
What you do with this statistical anomaly depends on the data. With the credit
card data, you might be looking for fraud. With ecommerce, you might be looking
for an unidentified demographic so you can market to them more efficiently.
If you are analyzing logs, you might find one server that throws a certain type of error
more often than it should. The applications of significant_terms is nearly endless.
33.1. significant_terms Demo

Because the significant_terms aggregation

 works by analyzing
statistics, you need to have a certain threshold of data for it to become effective.
That means we won’t be able to index a small amount of example data for the demo.
Instead, we prepared a dataset that contains about 80,000 documents and saved it
as a snapshot in our public demo repository. To "restore"
this dataset into your cluster:
	
Add the following setting to your elasticsearch.yml configuration file to
whitelist the Elastic demo repository:

repositories.url.allowed_urls: ["http://download.elastic.co/*"]

	
Restart Elasticsearch.

	
Run the following snapshot commands. (For more information about using
snapshots, see Backing Up Your Cluster.)

PUT /_snapshot/sigterms (1)
{
 "type": "url",
 "settings": {
 "url": "http://download.elastic.co/definitiveguide/sigterms_demo/"
 }
}

GET /_snapshot/sigterms/_all (2)

POST /_snapshot/sigterms/snapshot/_restore (3)

GET /mlmovies,mlratings/_recovery (4)

	(1)
	
Register a new read-only URL repository pointing at the demo snapshot

	(2)
	
(Optional) Inspect the repository to learn details about available snapshots

	(3)
	
Begin the Restore process. This will download two indices into your cluster: mlmovies
and mlratings

	(4)
	
(Optional) Monitor the Restore process using the Recovery API

Note
The dataset is around 50 MB and may take some time to download.

In this demo, we are going to look at movie ratings by users of MovieLens. At
MovieLens, users make movie recommendations so other users can find new
movies to watch. For this demo, we are going to recommend movies by using significant_terms
based on an input movie.
Let’s take a look at some sample data, to get a feel for what we are working with.
There are two indices in this dataset, mlmovies and mlratings. Let’s look
at mlmovies first:
GET mlmovies/_search (1)

{
 "took": 4,
 "timed_out": false,
 "_shards": {...},
 "hits": {
 "total": 10681,
 "max_score": 1,
 "hits": [
 {
 "_index": "mlmovies",
 "_type": "mlmovie",
 "_id": "2",
 "_score": 1,
 "_source": {
 "offset": 2,
 "bytes": 34,
 "title": "Jumanji (1995)"
 }
 },

	(1)
	
Execute a search without a query, so that we can see a random sampling of docs.

Each document in mlmovies represents a single movie. The two important pieces
of data are the _id of the movie and the title of the movie. You can ignore
offset and bytes; they are artifacts of the process used to extract this
data from the original CSV files. There are 10,681 movies in this dataset.
Now let’s look at mlratings:
GET mlratings/_search

{
 "took": 3,
 "timed_out": false,
 "_shards": {...},
 "hits": {
 "total": 69796,
 "max_score": 1,
 "hits": [
 {
 "_index": "mlratings",
 "_type": "mlrating",
 "_id": "00IC-2jDQFiQkpD6vhbFYA",
 "_score": 1,
 "_source": {
 "offset": 1,
 "bytes": 108,
 "movie": [122,185,231,292,
 316,329,355,356,362,364,370,377,420,
 466,480,520,539,586,588,589,594,616
],
 "user": 1
 }
 },
 ...
Here we can see the recommendations of individual users. Each document represents
a single user, denoted by the user ID field. The movie field holds a list
of movies that this user watched and recommended.
33.1.1. Recommending Based on Popularity

The first strategy we could take is trying to recommend movies based on popularity.

Given a particular movie, we find all users who recommended that movie. Then
we aggregate all their recommendations and take the top five most popular.
We can express that easily with a terms aggregation
and some filtering. Let’s
look at Talladega Nights, a comedy about NASCAR racing starring
Will Ferrell. Ideally, our recommender should find other comedies in a similar
style (and more than likely also starring Will Ferrell).
First we need to find the Talladega Nights ID:
GET mlmovies/_search
{
 "query": {
 "match": {
 "title": "Talladega Nights"
 }
 }
}

 ...
 "hits": [
 {
 "_index": "mlmovies",
 "_type": "mlmovie",
 "_id": "46970", (1)
 "_score": 3.658795,
 "_source": {
 "offset": 9575,
 "bytes": 74,
 "title": "Talladega Nights: The Ballad of Ricky Bobby (2006)"
 }
 },
 ...
	(1)
	
Talladega Nights is ID 46970.

Armed with the ID, we can now filter the ratings and
apply our terms aggregation
to find the most popular movies from people who also like Talladega Nights:
GET mlratings/_search
{
 "size" : 0, (1)
 "query": {
 "filtered": {
 "filter": {
 "term": {
 "movie": 46970 (2)
 }
 }
 }
 },
 "aggs": {
 "most_popular": {
 "terms": {
 "field": "movie", (3)
 "size": 6
 }
 }
 }
}
	(1)
	
We execute our query on mlratings this time, and set the size to 0
since we are interested only in the aggregation results.

	(2)
	
Apply a filter on the ID corresponding to Talladega Nights.

	(3)
	
Finally, find the most popular movies by using a terms bucket.

We perform the search on the mlratings index, and apply a filter for the ID of
Talladega Nights. Since aggregations operate on query scope, this will
effectively filter the aggregation results to only the users who recommended
Talladega Nights. Finally, we execute
a terms aggregation to bucket the most
popular movies. We are requesting the top six results, since it is likely
that Talladega Nights itself will be returned as a hit (and we don’t want
to recommend the same movie).
The results come back like so:
{
...
 "aggregations": {
 "most_popular": {
 "buckets": [
 {
 "key": 46970,
 "key_as_string": "46970",
 "doc_count": 271
 },
 {
 "key": 2571,
 "key_as_string": "2571",
 "doc_count": 197
 },
 {
 "key": 318,
 "key_as_string": "318",
 "doc_count": 196
 },
 {
 "key": 296,
 "key_as_string": "296",
 "doc_count": 183
 },
 {
 "key": 2959,
 "key_as_string": "2959",
 "doc_count": 183
 },
 {
 "key": 260,
 "key_as_string": "260",
 "doc_count": 90
 }
]
 }
 }
...
We need to correlate these back to their original titles, which can be done
with a simple filtered query:
GET mlmovies/_search
{
 "query": {
 "filtered": {
 "filter": {
 "ids": {
 "values": [2571,318,296,2959,260]
 }
 }
 }
 }
}
And finally, we end up with the following list:
	
Matrix, The

	
Shawshank Redemption

	
Pulp Fiction

	
Fight Club

	
Star Wars Episode IV: A New Hope

OK—well that is certainly a good list! I like all of those movies. But that’s
the problem: most everyone likes that list. Those movies are universally
well-liked, which means they are popular on everyone’s recommendations. The
list is basically a recommendation of popular movies, not recommendations related
to Talladega Nights.
This is easily verified by running the aggregation again, but without the filter
on Talladega Nights. This will give a top-five most popular movie list:
GET mlratings/_search
{
 "size" : 0,
 "aggs": {
 "most_popular": {
 "terms": {
 "field": "movie",
 "size": 5
 }
 }
 }
}
This returns a list that is very similar:
	
Shawshank Redemption

	
Silence of the Lambs, The

	
Pulp Fiction

	
Forrest Gump

	
Star Wars Episode IV: A New Hope

Clearly, just checking the most popular movies is not sufficient to build a good,
discriminating recommender.

33.1.2. Recommending Based on Statistics

Now that the scene is set, let’s try using significant_terms. significant_terms will analyze
the group of people who enjoy Talladega Nights (the foreground group) and
determine what movies are most popular. It will then construct a list of
popular films for everyone (the background group) and compare the two.
The statistical anomalies will be the movies that are over-represented in the
foreground compared to the background. Theoretically, this should be a list
of comedies, since people who enjoy Will Ferrell comedies will recommend them
at a higher rate than the background population of people.
Let’s give it a shot:
GET mlratings/_search
{
 "size" : 0,
 "query": {
 "filtered": {
 "filter": {
 "term": {
 "movie": 46970
 }
 }
 }
 },
 "aggs": {
 "most_sig": {
 "significant_terms": { (1)
 "field": "movie",
 "size": 6
 }
 }
 }
}
	(1)
	
The setup is nearly identical — we just use significant_terms instead of
terms.

As you can see, the query is nearly the same. We filter for users who
liked Talladega Nights; this forms the foreground group. By default,
significant_terms will use the entire index as the background, so we don’t need to do
anything special.
The results come back as a list of buckets similar to terms, but with some
extra
metadata:
...
 "aggregations": {
 "most_sig": {
 "doc_count": 271, (1)
 "buckets": [
 {
 "key": 46970,
 "key_as_string": "46970",
 "doc_count": 271,
 "score": 256.549815498155,
 "bg_count": 271
 },
 {
 "key": 52245, (2)
 "key_as_string": "52245",
 "doc_count": 59, (3)
 "score": 17.66462367106966,
 "bg_count": 185 (4)
 },
 {
 "key": 8641,
 "key_as_string": "8641",
 "doc_count": 107,
 "score": 13.884387742677438,
 "bg_count": 762
 },
 {
 "key": 58156,
 "key_as_string": "58156",
 "doc_count": 17,
 "score": 9.746428133759462,
 "bg_count": 28
 },
 {
 "key": 52973,
 "key_as_string": "52973",
 "doc_count": 95,
 "score": 9.65770100311672,
 "bg_count": 857
 },
 {
 "key": 35836,
 "key_as_string": "35836",
 "doc_count": 128,
 "score": 9.199001116457955,
 "bg_count": 1610
 }
]
 ...
	(1)
	
The top-level doc_count shows the number of docs in the foreground group.

	(2)
	
Each bucket lists the key (for example, movie ID) being aggregated.

	(3)
	
A doc_count for that bucket.

	(4)
	
And a background count, which shows the rate at which this value appears in
the entire background.

You can see that the first bucket we get back is Talladega Nights. It is
found in all 271 documents, which is not surprising. Let’s look at the next bucket:
key 52245.
This ID corresponds to Blades of Glory, a comedy about male figure skating
that also stars Will Ferrell. We can see that it was recommended 59 times by
the people who also liked Talladega Nights. This means that 21% of the foreground
group recommended Blades of Glory (59 / 271 = 0.2177).
In contrast, Blades of Glory was recommended only 185 times in the entire dataset,
which equates to a mere 0.26% (185 / 69796 = 0.00265). Blades of Glory is therefore
a statistical anomaly: it is uncommonly common in the group of people who
like Talladega Nights. We just found a good recommendation!
If we look at the entire list, they are all comedies that would fit as good
recommendations (many of which also star Will Ferrell):
	
Blades of Glory

	
Anchorman: The Legend of Ron Burgundy

	
Semi-Pro

	
Knocked Up

	
40-Year-Old Virgin, The

This is just one example of the power of significant_terms. Once you start using
significant_terms, you find many situations where you don’t want the most popular—you want the most uncommonly common. This simple aggregation can uncover some
surprisingly sophisticated trends in your data.

Chapter 34. Doc Values and Fielddata

34.1. Doc Values

Aggregations work via a data structure known as doc values (briefly introduced
in Section 8.4, “Doc Values Intro”). Doc values
are what make aggregations fast, efficient and memory-friendly, so it is useful
to understand how they work.
Doc values exists because inverted indices are efficient for only certain operations.
The inverted index excels
 at finding documents that contain a term. It does not
perform well in the opposite direction: determining which terms exist in a single
document. Aggregations need this secondary access pattern.
Consider the following inverted index:
Term Doc_1 Doc_2 Doc_3

brown | X | X |
dog | X | | X
dogs | | X | X
fox | X | | X
foxes | | X |
in | | X |
jumped | X | | X
lazy | X | X |
leap | | X |
over | X | X | X
quick | X | X | X
summer | | X |
the | X | | X

If we want to compile a complete list of terms in any document that mentions
brown, we might build a query like so:
GET /my_index/_search
{
 "query" : {
 "match" : {
 "body" : "brown"
 }
 },
 "aggs" : {
 "popular_terms": {
 "terms" : {
 "field" : "body"
 }
 }
 }
}
The query portion is easy and efficient. The inverted index is sorted by
terms, so first we find brown in the terms list, and then scan across all the
columns to see which documents contain brown. We can very quickly see that
Doc_1 and Doc_2 contain the token brown.
Then, for the aggregation portion, we need to find all the unique terms in
Doc_1 and Doc_2.

 Trying to do this with the inverted index would be a
very expensive process: we would have to iterate over every term in the index
and collect tokens from Doc_1 and Doc_2 columns. This would be slow
and scale poorly: as the number of terms and documents grows, so would the
execution time.
Doc values addresses this problem by inverting the relationship. While the
inverted index maps terms to the documents containing the term, doc values
maps documents to the terms contained by the document:
Doc Terms

Doc_1 | brown, dog, fox, jumped, lazy, over, quick, the
Doc_2 | brown, dogs, foxes, in, lazy, leap, over, quick, summer
Doc_3 | dog, dogs, fox, jumped, over, quick, the

Once the data has been uninverted, it is trivial to collect the unique tokens from
Doc_1 and Doc_2. Go to the rows for each document, collect all the terms, and
take the union of the two sets.
Thus, search and aggregations are closely intertwined. Search finds documents
by using the inverted index. Aggregations collect and aggregate values from
doc values.
Note
Doc values are not just used for aggregations.
 They are required for any
operation that must look up the value contained in a specific document.
Besides aggregations, this includes sorting, scripts that access field
values and parent-child relationships (see Chapter 42, Parent-Child Relationship).

34.2. Deep Dive on Doc Values

The last section opened by saying doc values are "fast, efficient and memory-friendly".
Those are some nice marketing buzzwords, but how do doc values actually work?
Doc values are generated at index-time, alongside the creation of the inverted index.
That means doc values are generated on a per-segment basis and are immutable, just like
the inverted index used for search. And, like the inverted index, doc values are serialized
to disk. This is important to performance and scalability.
By serializing a persistent data structure to disk, we can rely on the OS’s file
system cache to manage memory instead of retaining structures on the JVM heap.
In situations where the "working set" of data is smaller than the available
memory, the OS will naturally keep the doc values resident in memory. This gives
the same performance profile as on-heap data structures.
But when your working set is much larger than available memory, the OS will begin
paging the doc values on/off disk as required. This will obviously be slower
than an entirely memory-resident data structure, but it has the advantage of scaling
well beyond the server’s memory capacity. If these data structures were
purely on-heap, the only option is to crash with an OutOfMemory exception (or implement
a paging scheme just like the OS).
Note
Because doc values are not managed by the JVM, Elasticsearch servers can be
configured with a much smaller heap. This gives more memory to the OS for caching.
It also has the benefit of letting the JVM’s garbage collector work with a smaller
heap, which will result in faster and more efficient collection cycles.
Traditionally, the recommendation has been to dedicate 50% of the machine’s memory
to the JVM heap. With the introduction of doc values, this recommendation is starting
to slide. Consider giving far less to the heap, perhaps 4-16gb on a 64gb machine,
instead of the full 32gb previously recommended.
For a more detailed discussion, see Section 45.7, “Heap: Sizing and Swapping”.

34.2.1. Column-store compression

At a high level, doc values are essentially a serialized column-store. As we
discussed in the last section, column-stores excel at certain operations because
the data is naturally laid out in a fashion that is amenable to those queries.
But they also excel at compressing data, particularly numbers. This is important for both saving space
on disk and for faster access. Modern CPU’s are many orders of magnitude faster
than disk drives (although the gap is narrowing quickly with upcoming NVMe drives). That means
it is often advantageous to minimize the amount of data that must be read from disk,
even if it requires extra CPU cycles to decompress.
To see how it can help compression, take this set of doc values for a numeric field:
Doc Terms

Doc_1 | 100
Doc_2 | 1000
Doc_3 | 1500
Doc_4 | 1200
Doc_5 | 300
Doc_6 | 1900
Doc_7 | 4200

The column-stride layout means we have a contiguous block of numbers:
[100,1000,1500,1200,300,1900,4200]. Because we know they are all numbers
(instead of a heterogeneous collection like you’d see in a document or row)
values can be packed tightly together with uniform offsets.
Further, there are a variety of compression tricks we can apply to these numbers.
You’ll notice that each of the above numbers are a multiple of 100. Doc values
detect when all the values in a segment share a greatest common divisor and use
that to compress the values further.
If we save 100 as the divisor for this segment, we can divide each number by 100
to get: [1,10,15,12,3,19,42]. Now that the numbers are smaller, they require
fewer bits to store and we’ve reduced the size on-disk.
Doc values use several tricks like this. In order, the following compression
schemes are checked:
	
If all values are identical (or missing), set a flag and record the value

	
If there are fewer than 256 values, a simple table encoding is used

	
If there are > 256 values, check to see if there is a common divisor

	
If there is no common divisor, encode everything as an offset from the smallest
value

You’ll note that these compression schemes are not "traditional" general purpose
compression like DEFLATE or LZ4. Because the structure of column-stores are
rigid and well-defined, we can achieve higher compression by using specialized
schemes rather than the more general compression algorithms like LZ4.
Note
You may be thinking "Well that’s great for numbers, but what about strings?"
Strings are encoded similarly, with the help of an ordinal table. The
strings are de-duplicated and sorted into a table, assigned an ID, and then those
ID’s are used as numeric doc values. Which means strings enjoy many of the same
compression benefits that numerics do.
The ordinal table itself has some compression tricks, such as using fixed, variable
or prefix-encoded strings.

34.2.2. Disabling Doc Values

Doc values are enabled by default for all fields except analyzed strings. That means
all numerics, geo_points, dates, IPs and not_analyzed strings.
Analyzed strings are not able to use doc values at this time; the analysis process
generates many tokens and does not work efficiently with doc values. We’ll discuss
using analyzed strings for aggregations in Section 34.3, “Aggregations and Analysis”.
Because doc values are on by default, you have the option to aggregate and sort
on most fields in your dataset. But what if you know you will never aggregate,
sort or script on a certain field?
While rare, these circumstances do arise and you may wish to disable doc values
on that particular field. This will save you some disk space (since the doc values
are not being serialized to disk anymore) and may increase indexing speed slightly
(since the doc values don’t need to be generated).
To disable doc values, set doc_values: false in the field’s mapping. For example,
here we create a new index where doc values are disabled for the "session_id" field:
PUT my_index
{
 "mappings": {
 "my_type": {
 "properties": {
 "session_id": {
 "type": "string",
 "index": "not_analyzed",
 "doc_values": false (1)
 }
 }
 }
 }
}
	(1)
	
By setting doc_values: false, this field will not be usable in aggregations, sorts
or scripts

It is possible to configure the inverse relationship too: make a field available
for aggregations via doc values, but make it unavailable for normal search by disabling
the inverted index. For example:
PUT my_index
{
 "mappings": {
 "my_type": {
 "properties": {
 "customer_token": {
 "type": "string",
 "index": "not_analyzed",
 "doc_values": true, (1)
 "index": "no" (2)
 }
 }
 }
 }
}
	(1)
	
Doc values are enabled to allow aggregations

	(2)
	
Indexing is disabled, which makes the field unavailable to queries/searches

By setting doc_values: true and index: no, we generate a field which can only
be used in aggregations/sorts/scripts. This is admittedly a very rare requirement,
but sometimes useful.

34.3. Aggregations and Analysis

Some aggregations, such as the terms bucket, operate

 on string fields. And
string fields may be either analyzed or not_analyzed, which begs the question:
how does analysis affect aggregations?

The answer is "a lot," for two reasons: analysis affects the tokens used in the aggregation,
and doc values do not work with analyzed strings.
Let’s tackle the first problem: how the generation of analyzed tokens affects
aggregations. First, let’s index some documents representing various states in the US:
POST /agg_analysis/data/_bulk
{ "index": {}}
{ "state" : "New York" }
{ "index": {}}
{ "state" : "New Jersey" }
{ "index": {}}
{ "state" : "New Mexico" }
{ "index": {}}
{ "state" : "New York" }
{ "index": {}}
{ "state" : "New York" }
We want to build a list of unique states in our dataset, complete with counts.
Simple—let’s use a terms bucket:
GET /agg_analysis/data/_search
{
 "size" : 0,
 "aggs" : {
 "states" : {
 "terms" : {
 "field" : "state"
 }
 }
 }
}
This gives us these results:
{
...
 "aggregations": {
 "states": {
 "buckets": [
 {
 "key": "new",
 "doc_count": 5
 },
 {
 "key": "york",
 "doc_count": 3
 },
 {
 "key": "jersey",
 "doc_count": 1
 },
 {
 "key": "mexico",
 "doc_count": 1
 }
]
 }
 }
}
Oh dear, that’s not at all what we want! Instead of counting states, the aggregation
is counting individual words. The underlying reason is simple: aggregations
are built from the inverted index, and the inverted index is post-analysis.
When we added those documents to Elasticsearch, the string "New York" was
analyzed/tokenized into ["new", "york"]. These individual tokens were then
used to populate aggregation counts, and ultimately we see counts for new instead of
New York.
This is obviously not the behavior that we wanted, but luckily it is easily
corrected.
We need to define a multifield for state and set it to not_analyzed. This
will prevent New York from being analyzed, which means it will stay a single
token in the aggregation. Let’s try the whole process over, but this time
specify a raw multifield:
DELETE /agg_analysis/
PUT /agg_analysis
{
 "mappings": {
 "data": {
 "properties": {
 "state" : {
 "type": "string",
 "fields": {
 "raw" : {
 "type": "string",
 "index": "not_analyzed"(1)
 }
 }
 }
 }
 }
 }
}

POST /agg_analysis/data/_bulk
{ "index": {}}
{ "state" : "New York" }
{ "index": {}}
{ "state" : "New Jersey" }
{ "index": {}}
{ "state" : "New Mexico" }
{ "index": {}}
{ "state" : "New York" }
{ "index": {}}
{ "state" : "New York" }

GET /agg_analysis/data/_search
{
 "size" : 0,
 "aggs" : {
 "states" : {
 "terms" : {
 "field" : "state.raw" (2)
 }
 }
 }
}
	(1)
	
This time we explicitly map the state field and include a not_analyzed sub-field.

	(2)
	
The aggregation is run on state.raw instead of state.

Now when we run our aggregation, we get results that make sense:
{
...
 "aggregations": {
 "states": {
 "buckets": [
 {
 "key": "New York",
 "doc_count": 3
 },
 {
 "key": "New Jersey",
 "doc_count": 1
 },
 {
 "key": "New Mexico",
 "doc_count": 1
 }
]
 }
 }
}
In practice, this kind of problem is easy to spot. Your aggregations
will simply return strange buckets, and you’ll remember the analysis issue.
It is a generalization, but there are not many instances where you want to use
an analyzed field in an aggregation. When in doubt, add a multifield so
you have the option for both.

34.3.1. Analyzed strings and Fielddata

While the first problem relates to how data is aggregated and displayed to your
user, the second problem is largely technical and behind the scenes.
Doc values do not support analyzed string fields because they are not very efficient
at representing multi-valued strings. Doc values are most efficient
when each document has one or several tokens, but not thousands as in the case
of large, analyzed strings (imagine a PDF body, which may be several megabytes
and have thousands of unique tokens).
For that reason, doc values are not generated for analyzed strings. Yet these fields
can still be used in aggregations. How is that possible?
The answer is a data structure known as fielddata. Unlike doc values, fielddata
is built and managed 100% in memory, living inside the JVM heap. That means
it is inherently less scalable and has a lot of edge-cases to watch out for.
The rest of this chapter are addressing the challenges of fielddata in the context
of analyzed strings
Note
Historically, fielddata was the default for all fields, but Elasticsearch
has been migrating towards doc values to reduce the chance of OOM.
Analyzed strings are the last holdout where fielddata is still used. The goal is to
eventually build a serialized data structure similar to doc values which can handle
highly dimensional analyzed strings, obsoleting fielddata once and for all.

34.3.2. High-Cardinality Memory Implications

There is another reason to avoid aggregating analyzed fields: high-cardinality
fields consume a large amount of memory when loaded into fielddata.

 The
analysis process often (although not always) generates a large number of tokens,
many of which are unique. This increases the overall cardinality of the field
and contributes to more memory pressure.

Some types of analysis are extremely unfriendly with regards to memory.
Consider an n-gram analysis process.
 The term New York might be n-grammed into
the following tokens:
	
ne

	
ew

	
w

	
 y

	
yo

	
or

	
rk

You can imagine how the n-gramming process creates a huge number of unique tokens,
especially when analyzing paragraphs of text. When these are loaded into memory,
you can easily exhaust your heap space.
So, before aggregating string fields, assess the situation:
	
Is it a not_analyzed field? If yes, the field will use doc values and be memory-friendly

	
Otherwise, this is an analyzed field. It will use fielddata and live in-memory.
Does this field have a very large cardinality caused by ngrams, shingles, etc? If yes,
it may be very memory unfriendly.

34.4. Limiting Memory Usage

Once analyzed strings have been loaded into fielddata, they will sit there until
evicted (or your node crashes). For that reason it is important to keep an eye on this
memory usage, understand how and when it loads, and how you can limit the impact on your cluster.
Fielddata is loaded lazily. If you never aggregate on an analyzed string, you’ll
never load fielddata into memory. Furthermore, fielddata is loaded on a per-field basis,
meaning only actively used fields will incur the "fielddata tax".
However, there is a subtle surprise lurking here. Suppose your query is highly selective and
only returns 100 hits. Most people assume fielddata is only loaded for those
100 documents.
In reality, fielddata will be loaded for all documents in that index (for that
particular field), regardless of the query’s specificity. The logic is:
if you need access to documents X, Y, and Z for this query, you
will probably need access to other documents in the next query.
Unlike doc values,
the fielddata structure is not created at index time. Instead, it is populated
on-the-fly when the query is run. This is a potentially non-trivial operation and
can take some time. It is cheaper to load all the values once, and keep them in
memory, than load only a portion of the total fielddata repeatedly.
The JVM heap
is a limited resource that should be used wisely. A number of
mechanisms exist to limit the impact of fielddata on heap usage. These limits
are important because abuse of the heap will cause node instability (thanks to
slow garbage collections) or even node death (with an OutOfMemory exception).
Choosing a Heap Size

There are two rules to apply when setting
the Elasticsearch heap size, with
the $ES_HEAP_SIZE environment variable:
	
No more than 50% of available RAM

	
Lucene makes good use of the filesystem caches, which are managed by the
kernel. Without enough filesystem cache space, performance will suffer.
Furthermore, the more memory dedicated to the heap means less available
for all your other fields using doc values.

	
No more than 32 GB

	
If the heap is less than 32 GB, the JVM can use compressed pointers, which
saves a lot of memory: 4 bytes per pointer instead of 8 bytes.

For a longer and more complete discussion of heap sizing, see Section 45.7, “Heap: Sizing and Swapping”

34.4.1. Fielddata Size

The indices.fielddata.cache.size controls how much heap space is allocated
to fielddata.

As you are issuing queries, aggregations on analyzed strings will load into fielddata
if the field wasn’t previously loaded. If the resulting fielddata size would
exceed the specified size, other values will be evicted in order to make space.
By default, this setting is unbounded—Elasticsearch will never evict data
from fielddata.
This default was chosen deliberately: fielddata is not a transient cache. It
is an in-memory data structure that must be accessible for fast execution, and
it is expensive to build. If you have to reload data for every request,
performance is going to be awful.
A bounded size forces the data structure to evict data. We will look at when
to set this value, but first a warning:
Warning
This setting is a safeguard, not a solution for insufficient memory.
If you don’t have enough memory to keep your fielddata resident in memory,
Elasticsearch will constantly have to reload data from disk, and evict other
data to make space. Evictions cause heavy disk I/O and generate a large
amount of garbage in memory, which must be garbage collected later on.

Imagine that you are indexing logs, using a new index every day. Normally you
are interested in data from only the last day or two. Although you keep older
indices around, you seldom need to query them. However, with the default
settings, the fielddata from the old indices is never evicted! fielddata
will just keep on growing until you trip the fielddata circuit breaker (see
Section 34.4.3, “Circuit Breaker”), which will prevent you from loading any more
fielddata.
At that point, you’re stuck. While you can still run queries that access
fielddata from the old indices, you can’t load any new values. Instead, we
should evict old values to make space for the new values.
To prevent this scenario, place an upper limit on the fielddata by adding this
setting to the config/elasticsearch.yml file:
indices.fielddata.cache.size: 20% (1)
	(1)
	
Can be set to a percentage of the heap size, or a concrete
 value like 5gb

With this setting in place, the least recently used fielddata will be evicted
to make space for newly loaded data.

Warning
There is another setting that you may see online: indices.fielddata.cache.expire.
We beg that you never use this setting! It will likely be deprecated in the
future.
This setting tells Elasticsearch to evict values from fielddata if they are older
than expire, whether the values are being used or not.
This is terrible for performance. Evictions are costly, and this effectively
schedules evictions on purpose, for no real gain.
There isn’t a good reason to use this setting; we literally cannot theory-craft
a hypothetically useful situation. It exists only for backward compatibility at
the moment. We mention the setting in this book only since, sadly, it has been
recommended in various articles on the Internet as a good performance tip.
It is not. Never use it!

34.4.2. Monitoring fielddata

It is important to keep a close watch on how much memory

 is being used by
fielddata, and whether any data is being evicted. High eviction counts can
indicate a serious resource issue and a reason for poor performance.
Fielddata usage can be monitored:
	
per-index using the indices-stats API:

GET /_stats/fielddata?fields=*

	
per-node using the nodes-stats API:

GET /_nodes/stats/indices/fielddata?fields=*

	
Or even per-index per-node:

GET /_nodes/stats/indices/fielddata?level=indices&fields=*
By setting ?fields=*, the memory usage is broken down for each field.

34.4.3. Circuit Breaker

An astute reader might have noticed a problem with the fielddata size settings.
fielddata size is checked after the data is loaded.

 What happens if a query
arrives that tries to load more into fielddata than available memory? The
answer is ugly: you would get an OutOfMemoryException.
Elasticsearch includes a fielddata circuit breaker that is designed to deal
with this situation. The circuit breaker estimates the memory requirements of
a query by introspecting the fields involved (their type, cardinality, size,
and so forth). It then checks to see whether loading the required fielddata would push
the total fielddata size over the configured percentage of the heap.
If the estimated query size is larger than the limit, the circuit breaker is
tripped and the query will be aborted and return an exception. This happens
before data is loaded, which means that you won’t hit an
OutOfMemoryException.
Available Circuit Breakers

Elasticsearch has a family of circuit breakers, all of which work to ensure
that memory limits are not exceeded:
	
indices.breaker.fielddata.limit

	
 The fielddata circuit breaker limits the size of fielddata to 60% of the
 heap, by default.

	
indices.breaker.request.limit

	
 The request circuit breaker estimates the size of structures required to
 complete other parts of a request, such as creating aggregation buckets,
 and limits them to 40% of the heap, by default.

	
indices.breaker.total.limit

	
 The total circuit breaker wraps the request and fielddata circuit
 breakers to ensure that the combination of the two doesn’t use more than
 70% of the heap by default.

The circuit breaker limits can be specified in the config/elasticsearch.yml
file, or can be updated dynamically on a live cluster:
PUT /_cluster/settings
{
 "persistent" : {
 "indices.breaker.fielddata.limit" : "40%" (1)
 }
}
	(1)
	
The limit is a percentage of the heap.

It is best to configure the circuit breaker with a relatively conservative
value. Remember that fielddata needs to share the heap with the request
circuit breaker, the indexing memory buffer, the filter cache, Lucene data
structures for open indices, and various other transient data structures. For
this reason, it defaults to a fairly conservative 60%. Overly optimistic
settings can cause potential OOM exceptions, which will take down an entire
node.
On the other hand, an overly conservative value will simply return a query
exception that can be handled by your application. An exception is better
than a crash. These exceptions should also encourage you to reassess your
query: why does a single query need more than 60% of the heap?
Tip
In Section 34.4.1, “Fielddata Size”, we spoke about adding a limit to the size of fielddata,
to ensure that old unused fielddata can be evicted. The relationship between
indices.fielddata.cache.size and indices.breaker.fielddata.limit is an
important one. If the circuit-breaker limit is lower than the cache size, no data will ever be evicted. In order for it to work properly, the
circuit breaker limit must be higher than the cache size.

It is important to note that the circuit breaker compares estimated query size
against the total heap size, not against the actual amount of heap memory
used. This is done for a variety of technical reasons (for example, the heap may look
full but is actually just garbage waiting to be collected, which is hard to
estimate properly). But as the end user, this means the setting needs to be
conservative, since it is comparing against total heap, not free heap.

34.5. Fielddata Filtering

Imagine that you are running a website that allows users to listen to their
favorite songs.

 To make it easier for them to manage their music library,
users can tag songs with whatever tags make sense to them. You will end up
with a lot of tracks tagged with rock, hiphop, and electronica, but
also with some tracks tagged with my_16th_birthday_favorite_anthem.
Now imagine that you want to show users the most popular three tags for each
song. It is highly likely that tags like rock will show up in the top
three, but my_16th_birthday_favorite_anthem is very unlikely to make the
grade. However, in order to calculate the most popular tags, you have been
forced to load all of these one-off terms into memory.
Thanks to fielddata filtering, we can take control of this situation. We
know that we’re interested in only the most popular terms, so we can simply
avoid loading any terms that fall into the less interesting long tail:
PUT /music/_mapping/song
{
 "properties": {
 "tag": {
 "type": "string",
 "fielddata": { (1)
 "filter": {
 "frequency": { (2)
 "min": 0.01, (3)
 "min_segment_size": 500 (4)
 }
 }
 }
 }
 }
}
	(1)
	
The fielddata key allows us to configure how fielddata is handled for this field.

	(2)
	
The frequency filter allows us to filter fielddata loading based on term frequencies.

	(3)
	
Load only terms that occur in at least 1% of documents in this segment.

	(4)
	
Ignore any segments that have fewer than 500 documents.

With this mapping in place, only terms that appear in at least 1% of the
documents in that segment will be loaded into memory. You can also specify a
max term frequency, which could be used to exclude terms that are too
common, such as stopwords.
Term frequencies, in this case, are calculated per segment. This is a
limitation of the implementation: fielddata is loaded per segment, and at
that point the only term frequencies that are visible are the frequencies for
that segment. However, this limitation has interesting properties: it
allows newly popular terms to rise to the top quickly.
Let’s say that a new genre of song becomes popular one day. You would like to
include the tag for this new genre in the most popular list, but if you were
relying on term frequencies calculated across the whole index, you would have
to wait for the new tag to become as popular as rock and electronica.
Because of the way frequency filtering is implemented, the newly added tag
will quickly show up as a high-frequency tag within new segments, so will
quickly float to the top.
The min_segment_size parameter tells Elasticsearch to ignore segments below
a certain size. If a segment holds only a few documents, the term frequencies
are too coarse to have any meaning. Small segments will soon be merged into
bigger segments, which will then be big enough to take into account.
Tip
Filtering terms by frequency is not the only option. You can also decide to
load only those terms that match a regular expression. For instance, you
could use a regex filter on tweets to load only hashtags into memory — terms the start with a #. This assumes that you are using an analyzer that
preserves punctuation, like the whitespace analyzer.

Fielddata filtering can have a massive impact on memory usage. The
trade-off is fairly obvious: you are essentially ignoring data. But for many
applications, the trade-off is reasonable since the data is not being used
anyway. The memory savings is often more important than including a large and
relatively useless long tail of terms.

34.6. Preloading Fielddata

The default behavior of Elasticsearch is to
load in-memory fielddata lazily.
The first time Elasticsearch encounters a query that needs fielddata for a
particular field, it will load that entire field into memory for each segment
in the index.
For small segments, this requires a negligible amount of time. But if you
have a few 5 GB segments and need to load 10 GB of fielddata into memory, this
process could take tens of seconds. Users accustomed to subsecond response
times would all of a sudden be hit by an apparently unresponsive website.
There are three methods to combat this latency spike:
	
Eagerly load fielddata

	
Eagerly load global ordinals

	
Prepopulate caches with warmers

All are variations on the same concept: preload the fielddata so that there is
no latency spike when the user needs to execute a search.
34.6.1. Eagerly Loading Fielddata

The first tool is called eager loading (as opposed
to the default lazy
loading). As new segments are created (by refreshing, flushing, or merging),
fields with eager loading enabled will have their per-segment fielddata
preloaded before the segment becomes visible to search.
This means that the first query to hit the segment will not need to trigger
fielddata loading, as the in-memory cache has already been populated. This
prevents your users from experiencing the cold cache latency spike.
Eager loading is enabled on a per-field basis, so you can control which fields
are pre-loaded:
PUT /music/_mapping/_song
{
 "tags": {
 "type": "string",
 "fielddata": {
 "loading" : "eager" (1)
 }
 }
}
	(1)
	
By setting fielddata.loading: eager, we tell Elasticsearch to preload
this field’s contents into memory.

Fielddata loading can be set to lazy or eager on existing fields, using
the update-mapping API.
Warning
Eager loading simply shifts the cost of loading fielddata. Instead of paying
at query time, you pay at refresh time.
Large segments will take longer to refresh than small segments. Usually,
large segments are created by merging smaller segments that are already
visible to search, so the slower refresh time is not important.

34.6.2. Global Ordinals

One of the techniques used to reduce the memory usage of string
fielddata is called ordinals.
Imagine that we have a billion documents, each of which has a status field.
There are only three statuses: status_pending, status_published,
status_deleted. If we were to hold the full string status in memory for
every document, we would use 14 to 16 bytes per document, or about 15 GB.
Instead, we can identify the three unique strings, sort them, and number them: 0, 1, 2.
Ordinal | Term

0 | status_deleted
1 | status_pending
2 | status_published
The original strings are stored only once in the ordinals list, and each
document just uses the numbered ordinal to point to the value that it
contains.
Doc | Ordinal

0 | 1 # pending
1 | 1 # pending
2 | 2 # published
3 | 0 # deleted
This reduces memory usage from 15 GB to less than 1 GB!
But there is a problem. Remember that fielddata caches are per segment. If
one segment contains only two statuses—status_deleted and
status_published—then the resulting ordinals (0 and 1) will not be the
same as the ordinals for a segment that contains all three statuses.
If we try to run a terms aggregation on the status field, we need to
aggregate on the actual string values, which means that we need to identify
the same values across all segments. A naive way of doing this would be to
run the aggregation on each segment, return the string values from each
segment, and then reduce them into an overall result. While this would work,
it would be slow and CPU intensive.
Instead, we use a structure called global ordinals. Global ordinals are a
small in-memory data structure built on top of fielddata. Unique values are
identified across all segments and stored in an ordinals list like the one
we have already described.
Now, our terms aggregation can just aggregate on the global ordinals, and
the conversion from ordinal to actual string value happens only once at the
end of the aggregation. This increases performance of aggregations (and
sorting) by a factor of three or four.
Building global ordinals

Of course, nothing in life is free.
 Global ordinals cross all segments in an
index, so if a new segment is added or an old segment is deleted, the global
ordinals need to be rebuilt. Rebuilding requires reading every unique term in
every segment. The higher the cardinality—the more unique terms that exist—the longer this process takes.
Global ordinals are built on top of in-memory fielddata and doc values. In
fact, they are one of the major reasons that doc values perform as well as
they do.
Like fielddata loading, global ordinals are built lazily, by default. The
first request that requires fielddata to hit an index will trigger the
building of global ordinals. Depending on the cardinality of the field, this
can result in a significant latency spike for your users. Once global
ordinals have been rebuilt, they will be reused until the segments in the index
change: after a refresh, a flush, or a merge.

Eager global ordinals

Individual string fields

 can be configured to prebuild global ordinals eagerly:
PUT /music/_mapping/_song
{
 "song_title": {
 "type": "string",
 "fielddata": {
 "loading" : "eager_global_ordinals" (1)
 }
 }
}
	(1)
	
Setting eager_global_ordinals also implies loading fielddata eagerly.

Just like the eager preloading of fielddata, eager global ordinals are built
before a new segment becomes visible to search.
Note
Ordinals are only built and used for strings. Numerical data (integers, geopoints,
dates, etc) doesn’t need an ordinal mapping, since the value itself acts as an
intrinsic ordinal mapping.
Therefore, you can only enable eager global ordinals for string fields.

Doc values can also have their global ordinals built eagerly:
PUT /music/_mapping/_song
{
 "song_title": {
 "type": "string",
 "doc_values": true,
 "fielddata": {
 "loading" : "eager_global_ordinals" (1)
 }
 }
}
	(1)
	
In this case, fielddata is not loaded into memory, but doc values are
 loaded into the filesystem cache.

Unlike fielddata preloading, eager building of global ordinals can have an
impact on the real-time aspect of your data. For very high cardinality
fields, building global ordinals can delay a refresh by several seconds. The
choice is between paying the cost on each refresh, or on the first query after
a refresh. If you index often and query seldom, it is probably better to pay
the price at query time instead of on every refresh.
Tip
Make your global ordinals pay for themselves. If you have very high
cardinality fields that take seconds to rebuild, increase the
refresh_interval so that global ordinals remain valid for longer. This will
also reduce CPU usage, as you will need to rebuild global ordinals less often.

34.6.3. Index Warmers

Finally, we come to index warmers. Warmers predate eager fielddata loading
and eager global ordinals, but they still serve a purpose. An index warmer
allows you to specify a query and aggregations that should be run before a new
segment is made visible to search. The idea is to prepopulate, or warm,
caches so your users never see a spike in latency.
Originally, the most important use for warmers was to make sure that fielddata
was pre-loaded, as this is usually the most costly step. This is now better
controlled with the techniques we discussed previously. However, warmers can
be used to prebuild filter caches, and can still be used to preload fielddata
should you so choose.
Let’s register a warmer and then talk about what’s happening:
PUT /music/_warmer/warmer_1 (1)
{
 "query" : {
 "bool" : {
 "filter" : {
 "bool": {
 "should": [(2)
 { "term": { "tag": "rock" }},
 { "term": { "tag": "hiphop" }},
 { "term": { "tag": "electronics" }}
]
 }
 }
 }
 },
 "aggs" : {
 "price" : {
 "histogram" : {
 "field" : "price", (3)
 "interval" : 10
 }
 }
 }
}
	(1)
	
Warmers are associated with an index (music) and are registered using
the _warmer endpoint and a unique ID (warmer_1).

	(2)
	
The three most popular music genres are pre-warmed to help encourage caching.

	(3)
	
The fielddata and global ordinals for the price field will be preloaded.

Warmers are registered against a specific index. Each warmer is given a
unique ID, because you can have multiple warmers per index.
Then you just specify a query, any query. It can include queries, filters,
aggregations, sort values, scripts—literally any valid query DSL. The
point is to register queries that are representative of the traffic that your
users will generate, so that appropriate caches can be prepopulated.
When a new segment is created, Elasticsearch will literally execute the queries
registered in your warmers. The act of executing these queries will force
caches to be loaded. Only after all warmers have been executed will the segment
be made visible to search.
Warning
Similar to eager loading, warmers shift the cost of cold caches to refresh time.
When registering warmers, it is important to be judicious. You could add
thousands of warmers to make sure every cache is populated—but that will
drastically increase the time it takes for new segments to be made searchable.
In practice, select a handful of queries that represent the majority of your
user’s queries and register those.

Some administrative details (such as getting existing warmers and deleting warmers) that have been omitted from this explanation. Refer to the warmers documentation for the rest
of the details.

34.7. Preventing Combinatorial Explosions

The terms bucket dynamically builds buckets based on your data; it doesn’t
know up front how many buckets will be generated.
 While this is fine with a
single aggregation, think about what can happen when one aggregation contains
another aggregation, which contains another aggregation, and so forth. The combination of
unique values in each of these aggregations can lead to an explosion in the
number of buckets generated.
Imagine we have a modest dataset that represents movies. Each document lists
the actors in that movie:
{
 "actors" : [
 "Fred Jones",
 "Mary Jane",
 "Elizabeth Worthing"
]
}
If we want to determine the top 10 actors and their top costars, that’s trivial
with an aggregation:
{
 "aggs" : {
 "actors" : {
 "terms" : {
 "field" : "actors",
 "size" : 10
 },
 "aggs" : {
 "costars" : {
 "terms" : {
 "field" : "actors",
 "size" : 5
 }
 }
 }
 }
 }
}
This will return a list of the top 10 actors, and for each actor, a list of their
top five costars. This seems like a very modest aggregation; only 50
values will be returned!
However, this seemingly

innocuous query can easily consume a vast amount of
memory. You can visualize a terms aggregation as building a tree in memory.
The actors aggregation will build the first level of the tree, with a bucket
for every actor. Then, nested under each node in the first level, the
costars aggregation will build a second level, with a bucket for every costar, as seen in Figure 34.1, “Build full depth tree”. That means that a single movie will generate n2 buckets!
Figure 34.1. Build full depth tree
[image: Build full depth tree]

To use some real numbers, imagine each movie has 10 actors on average. Each movie
will then generate 102 == 100 buckets. If you have 20,000 movies, that’s
roughly 2,000,000 generated buckets.
Now, remember, our aggregation is simply asking for the top 10 actors and their
co-stars, totaling 50 values. To get the final results, we have to generate
that tree of 2,000,000 buckets, sort it, and finally prune it such that only the
top 10 actors are left. This is illustrated in Figure 34.2, “Sort tree” and Figure 34.3, “Prune tree”.
Figure 34.2. Sort tree
[image: Sort tree]

Figure 34.3. Prune tree
[image: Prune tree]

At this point you should be quite distraught. Twenty thousand documents is paltry,
and the aggregation is pretty tame. What if you had 200 million documents, wanted
the top 100 actors and their top 20 costars, as well as the costars' costars?
You can appreciate how quickly combinatorial expansion can grow, making this
strategy untenable. There is not enough memory in the world to support uncontrolled
combinatorial explosions.
34.7.1. Depth-First Versus Breadth-First

Elasticsearch allows you to change the collection mode of an aggregation, for
exactly this situation.

The strategy we outlined previously—building the tree fully
and then pruning—is called depth-first and it is the default. Depth-first
works well for the majority of aggregations, but can fall apart in situations
like our actors and costars example.
For these special cases, you should use an alternative collection strategy called
breadth-first. This strategy works a little differently. It executes the first
layer of aggregations, and then performs a pruning phase before continuing, as illustrated in Figure 34.4, “Build first level” through Figure 34.6, “Prune first level”.
In our example, the actors aggregation would be executed first. At this
point, we have a single layer in the tree, but we already know who the top 10
actors are! There is no need to keep the other actors since they won’t be in
the top 10 anyway.
Figure 34.4. Build first level
[image: Build first level]

Figure 34.5. Sort first level
[image: Sort first level]

Figure 34.6. Prune first level
[image: Prune first level]

Since we already know the top ten actors, we can safely prune away the rest of the
long tail. After pruning, the next layer is populated based on its execution mode,
and the process repeats until the aggregation is done, as illustrated in Figure 34.7, “Populate full depth for remaining nodes”. This prevents the
combinatorial explosion of buckets and drastically reduces memory requirements
for classes of queries that are amenable to breadth-first.
Figure 34.7. Populate full depth for remaining nodes
[image: Step 4: populate full depth for remaining nodes]

To use breadth-first, simply enable it via the collect parameter:
{
 "aggs" : {
 "actors" : {
 "terms" : {
 "field" : "actors",
 "size" : 10,
 "collect_mode" : "breadth_first" (1)
 },
 "aggs" : {
 "costars" : {
 "terms" : {
 "field" : "actors",
 "size" : 5
 }
 }
 }
 }
 }
}
	(1)
	
Enable breadth_first on a per-aggregation basis.

Breadth-first should be used only when you expect more buckets to be generated
than documents landing in the buckets. Breadth-first works by caching
document data at the bucket level, and then replaying those documents to child
aggregations after the pruning phase.
The memory requirement of a breadth-first aggregation is linear to the number
of documents in each bucket prior to pruning. For many aggregations, the
number of documents in each bucket is very large. Think of a histogram with
monthly intervals: you might have thousands or hundreds of thousands of
documents per bucket. This makes breadth-first a bad choice, and is why
depth-first is the default.
But for the actor example—which generates a large number of
buckets, but each bucket has relatively few documents—breadth-first is much
more memory efficient, and allows you to build aggregations that would
otherwise fail.

Chapter 35. Closing Thoughts

This section covered a lot of ground, and a lot of deeply technical issues.
Aggregations bring a power and flexibility to Elasticsearch that is hard to
overstate. The ability to nest buckets and metrics, to quickly approximate
cardinality and percentiles, to find statistical anomalies in your data, all
while operating on near-real-time data and in parallel to full-text search—these are game-changers to many organizations.
It is a feature that, once you start using it, you’ll find dozens
of other candidate uses. Real-time reporting and analytics is central to many
 organizations (be it over business intelligence or server logs).
Elasticsearch has made great strides in becoming more memory friendly by defaulting
to doc values for most fields, but the necessity of fielddata for string fields
means you must remain vigilant.
The management of this memory can take several forms, depending on your
particular use-case:
	
During the planning stage, attempt to organize your data so that aggregations are
run on not_analyzed strings instead of analyzed so that doc values may be leveraged.

	
While testing, verify that analysis chains are not creating high cardinality
fields which are later aggregated on

	
At search time, by utilizing approximate aggregations and data filtering

	
At a node level, by setting hard memory and dynamic circuit-breaker limits

	
At an operations level, by monitoring memory usage and controlling slow garbage-collection cycles,
potentially by adding more nodes to the cluster

Most deployments will use one or more of the preceding methods. The exact combination
is highly dependent on your particular environment.
Whatever the path you take, it is important to assess the available options and
create both a short- and long-term plan. Decide how your memory situation exists
today and what (if anything) needs to be done. Then decide what will happen in
six months or one year as your data grows. What methods will you use to continue
scaling?
It is better to plan out these life cycles of your cluster ahead of time, rather
than panicking at 3 a.m. because your cluster is at 90% heap utilization.

Part V. Geolocation

Gone are the days when we wander around a city with paper maps. Thanks to
smartphones, we now know exactly where we are all the time, and we expect
websites to use that information. I’m not interested in restaurants in
Greater London—I want to know about restaurants within a 5-minute walk of my
current location.
But geolocation is only one part of the puzzle. The beauty of Elasticsearch
is that it allows you to combine geolocation with full-text search, structured
search, and analytics.
For instance: show me restaurants that mention vitello tonnato, are within a 5-minute walk, and are open at 11 p.m., and then rank them by a combination of user
rating, distance, and price. Another example: show me a map of vacation rental
properties available in August throughout the city, and calculate the average
price per zone.
Elasticsearch offers two ways of
representing geolocations: latitude-longitude
points using the geo_point field type, and complex shapes defined in
GeoJSON, using the geo_shape field
type.
Geo-points allow you to find points within a certain distance of another
point, to calculate distances between two points for sorting or relevance
scoring, or to aggregate into a grid to display on a map. Geo-shapes, on the
other hand, are used purely for filtering. They can be used to decide whether
two shapes overlap, or whether one shape completely contains other
shapes.

Chapter 36. Geo Points

A geo-point is a single latitude/longitude point on the Earth’s surface. Geo-points
can be used to calculate distance from a point, to determine whether a point
falls within a bounding box, or in aggregations.
Geo-points cannot be automatically detected
 with
dynamic mapping. Instead, geo_point fields should be
mapped
explicitly:
PUT /attractions
{
 "mappings": {
 "restaurant": {
 "properties": {
 "name": {
 "type": "string"
 },
 "location": {
 "type": "geo_point"
 }
 }
 }
 }
}
36.1. Lat/Lon Formats

With the location field defined as a geo_point, we can proceed to index
documents containing latitude/longitude pairs,

 which can be formatted as
strings, arrays, or objects:
PUT /attractions/restaurant/1
{
 "name": "Chipotle Mexican Grill",
 "location": "40.715, -74.011" (1)
}

PUT /attractions/restaurant/2
{
 "name": "Pala Pizza",
 "location": { (2)
 "lat": 40.722,
 "lon": -73.989
 }
}

PUT /attractions/restaurant/3
{
 "name": "Mini Munchies Pizza",
 "location": [-73.983, 40.719] (3)
}
	(1)
	
A string representation, with "lat,lon".

	(2)
	
An object representation with lat and lon explicitly named.

	(3)
	
An array representation with [lon,lat].

Caution
Everybody gets caught at least once: string geo-points are
"latitude,longitude", while array geo-points are [longitude,latitude]—the opposite order!
Originally, both strings and arrays in Elasticsearch used latitude followed by
longitude. However, it was decided early on to switch the order for arrays in
order to conform with GeoJSON.
The result is a bear trap that captures all unsuspecting users on their
journey to full geolocation nirvana.

36.2. Filtering by Geo Point

Four geo-point filters

can be used to include or exclude documents by
geolocation:
	
geo_bounding_box

	
 Find geo-points that fall within the specified rectangle.

	
geo_distance

	
 Find geo-points within the specified distance of a central point.

	
geo_distance_range

	
 Find geo-points within a specified minimum and maximum distance from a
 central point.

	
geo_polygon

	
 Find geo-points that fall within the specified polygon. This filter is
 very expensive. If you find yourself wanting to use it, you should be
 looking at geo-shapes instead.

Each filter performs a slightly different calculation to check whether a point
falls into the containing area, but the process is similar. The requested area
is converted into a range of quad/geohash prefix tokens and used to search the
inverted index for documents who share the same tokens.
Tip
Geo-filters are relatively expensive — they should be used on as few documents as
possible. First remove as many documents as you can with cheaper filters, like
term or range filters, and apply the geo-filters last.
The bool filter will do this for you automatically.
 First it
applies any bitset-based filters (see Section 12.6, “All About Caching”) to exclude as many
documents as it can as cheaply as possible. Then it applies the more
expensive geo or script filters to each remaining document in turn.

36.3. Geo Bounding Box Filter

This is by far the most efficient geo-filter because its calculation is very
simple.

 You provide it with the top, bottom, left, and right
coordinates of a rectangle, and all it does is compare the longitude with the
left and right coordinates, and the latitude with the top and bottom
coordinates:
GET /attractions/restaurant/_search
{
 "query": {
 "filtered": {
 "filter": {
 "geo_bounding_box": {
 "location": { (1)
 "top_left": {
 "lat": 40.8,
 "lon": -74.0
 },
 "bottom_right": {
 "lat": 40.7,
 "lon": -73.0
 }
 }
 }
 }
 }
 }
}
	(1)
	
These coordinates can also be specified as bottom_left and top_right.

36.3.1. Optimizing Bounding Boxes

The geo_bounding_box is the one geo-filter that doesn’t require all
geo-points to be loaded into memory.
 Because all it has to do is check
whether the lat and lon values fall within the specified ranges, it can
use the inverted index to do a glorified range filter.
To use this optimization, the geo_point field
must be mapped to
index the lat and lon values separately:
PUT /attractions
{
 "mappings": {
 "restaurant": {
 "properties": {
 "name": {
 "type": "string"
 },
 "location": {
 "type": "geo_point",
 "lat_lon": true (1)
 }
 }
 }
 }
}
	(1)
	
The location.lat and location.lon fields will be indexed separately.
 These fields can be used for searching, but their values cannot be retrieved.

Now, when we run our query, we have to tell Elasticsearch to use the indexed
lat and lon values:
GET /attractions/restaurant/_search
{
 "query": {
 "filtered": {
 "filter": {
 "geo_bounding_box": {
 "type": "indexed", (1)
 "location": {
 "top_left": {
 "lat": 40.8,
 "lon": -74.0
 },
 "bottom_right": {
 "lat": 40.7,
 "lon": -73.0
 }
 }
 }
 }
 }
 }
}
	(1)
	
Setting the type parameter to indexed (instead of the default
 memory) tells Elasticsearch to use the inverted index for this filter.

Caution
While a geo_point field can contain multiple geo-points, the
lat_lon optimization can be used only on fields that contain a single
geo-point.

36.4. Geo Distance Filter

The geo_distance filter draws a circle around the specified location and
finds all documents

 that have a geo-point within that circle:
GET /attractions/restaurant/_search
{
 "query": {
 "filtered": {
 "filter": {
 "geo_distance": {
 "distance": "1km", (1)
 "location": { (2)
 "lat": 40.715,
 "lon": -73.988
 }
 }
 }
 }
 }
}
	(1)
	
Find all location fields within 1km of the specified point.
 See Distance Units for
 a list of the accepted units.

	(2)
	
The central point can be specified as a string, an array, or (as in this
 example) an object. See Section 36.1, “Lat/Lon Formats”.

A geo-distance calculation is expensive. To optimize performance,
Elasticsearch draws a box around the circle and first uses the less expensive
bounding-box calculation to exclude as many documents as it can. It runs
the geo-distance calculation on only those points that fall within the bounding
box.
Tip
Do your users really require an accurate circular filter to be applied to
their results?
 Using a rectangular bounding box is much
more efficient than geo-distance and will usually serve their purposes just as
well.

36.4.1. Faster Geo-Distance Calculations

The distance between two points can be calculated using algorithms,
which trade performance for accuracy:

	
arc

	
The slowest but most accurate is the arc calculation, which treats the world
as a sphere. Accuracy is still limited because the world isn’t really a sphere.

	
plane

	
The plane calculation, which treats the world as if it were flat, is faster
but less accurate. It is most accurate at the equator and becomes less
accurate toward the poles.

	
sloppy_arc

	
So called because it uses the SloppyMath Lucene class to trade accuracy for speed,
the sloppy_arc calculation uses the
Haversine formula to calculate
distance. It is four to five times as fast as arc, and distances are 99.9% accurate.
This is the default calculation.

You can specify a different calculation as follows:
GET /attractions/restaurant/_search
{
 "query": {
 "filtered": {
 "filter": {
 "geo_distance": {
 "distance": "1km",
 "distance_type": "plane", (1)
 "location": {
 "lat": 40.715,
 "lon": -73.988
 }
 }
 }
 }
 }
}
	(1)
	
Use the faster but less accurate plane calculation.

Tip
Will your users really care if a restaurant is a few meters outside their specified radius? While some geo applications require great accuracy,
less-accurate but faster calculations will suit the majority of use cases just
fine.

36.4.2. geo_distance_range Filter

The only difference between the geo_distance and geo_distance_range
filters

 is that the latter has a doughnut shape and excludes documents within
the central hole.
Instead of specifying a single distance from the center, you specify a
minimum distance (with gt or gte) and maximum distance (with lt or
lte), just like a range filter:
GET /attractions/restaurant/_search
{
 "query": {
 "filtered": {
 "filter": {
 "geo_distance_range": {
 "gte": "1km", (1)
 "lt": "2km", (2)
 "location": {
 "lat": 40.715,
 "lon": -73.988
 }
 }
 }
 }
 }
}
	(1) (2)
	
Matches locations that are at least 1km from the center, and less than
 2km from the center.

36.5. Sorting by Distance

Search results can be sorted by distance

 from a point:
Tip
While you can sort by distance, Section 36.5.1, “Scoring by Distance” is usually a
better solution.

GET /attractions/restaurant/_search
{
 "query": {
 "filtered": {
 "filter": {
 "geo_bounding_box": {
 "type": "indexed",
 "location": {
 "top_left": {
 "lat": 40.8,
 "lon": -74.0
 },
 "bottom_right": {
 "lat": 40.4,
 "lon": -73.0
 }
 }
 }
 }
 }
 },
 "sort": [
 {
 "_geo_distance": {
 "location": { (1)
 "lat": 40.715,
 "lon": -73.998
 },
 "order": "asc",
 "unit": "km", (2)
 "distance_type": "plane" (3)
 }
 }
]
}
	(1)
	
Calculate the distance between the specified lat/lon point and the
 geo-point in the location field of each document.

	(2)
	
Return the distance in km in the sort keys for each result.

	(3)
	
Use the faster but less accurate plane calculation.

You may ask yourself: why do we specify the distance unit? For sorting, it
doesn’t matter whether we compare distances in miles, kilometers, or light
years. The reason is that the actual value used for sorting is returned with
each result, in the sort element:
...
 "hits": [
 {
 "_index": "attractions",
 "_type": "restaurant",
 "_id": "2",
 "_score": null,
 "_source": {
 "name": "New Malaysia",
 "location": {
 "lat": 40.715,
 "lon": -73.997
 }
 },
 "sort": [
 0.08425653647614346 (1)
]
 },
...
	(1)
	
This restaurant is 0.084km from the location we specified.

You can set the unit to return these values in whatever form makes sense for
your application.
Tip
Geo-distance sorting can also handle multiple geo-points, both in the document
and in the sort parameters. Use the sort_mode to specify whether it should
use the min, max, or avg distance between each combination of locations.
This can be used to return “friends nearest to my work and home locations.”

36.5.1. Scoring by Distance

It may be that distance is the only important factor in deciding the order in
which results are returned, but more frequently we need to combine distance
with other factors, such as full-text relevance, popularity, and price.
In these situations, we should reach for the
function_score query that allows us to blend all
of these factors into an overall score. See Section 17.11, “The Closer, The Better” for an
example that uses geo-distance to influence scoring.
The other drawback of sorting by distance is performance: the distance has to
be calculated for all matching documents. The function_score query, on the
other hand, can be executed during the rescore phase,
limiting the number of calculations to just the top n results.

Chapter 37. Geohashes

Geohashes are a way of encoding
lat/lon points as strings.

 The original intention was to have a
URL-friendly way of specifying geolocations, but geohashes have turned out to
be a useful way of indexing geo-points and geo-shapes in databases.
Geohashes divide the world into a grid of 32 cells—4 rows and 8 columns—each represented by a letter or number. The g cell covers half of
Greenland, all of Iceland, and most of Great Britian. Each cell can be further
divided into another 32 cells, which can be divided into another 32 cells,
and so on. The gc cell covers Ireland and England, gcp covers most of
London and part of Southern England, and gcpuuz94k is the entrance to
Buckingham Palace, accurate to about 5 meters.
In other words, the longer the geohash string, the more accurate it is. If
two geohashes share a prefix— and gcpuuz—then it implies that
they are near each other. The longer the shared prefix, the closer they
are.
That said, two locations that are right next to each other may have completely
different geohashes. For instance, the
Millenium Dome in London has
geohash u10hbp, because it falls into the u cell, the next top-level cell
to the east of the g cell.
Geo-points can index their associated geohashes automatically, but more
important, they can also index all geohash prefixes. Indexing the location
of the entrance to Buckingham Palace—latitude 51.501568 and longitude
-0.141257—would index all of the geohashes listed in the following table,
along with the approximate dimensions of each geohash cell:
	Geohash 	Level	 Dimensions
	g
	1
	~ 5,004km x 5,004km

	gc
	2
	~ 1,251km x 625km

	gcp
	3
	~ 156km x 156km

	gcpu
	4
	~ 39km x 19.5km

	gcpuu
	5
	~ 4.9km x 4.9km

	gcpuuz
	6
	~ 1.2km x 0.61km

	gcpuuz9
	7
	~ 152.8m x 152.8m

	gcpuuz94
	8
	~ 38.2m x 19.1m

	gcpuuz94k
	9
	~ 4.78m x 4.78m

	gcpuuz94kk
	10
	~ 1.19m x 0.60m

	gcpuuz94kkp
	11
	~ 14.9cm x 14.9cm

	gcpuuz94kkp5
	12
	~ 3.7cm x 1.8cm

The geohash_cell filter can use
these geohash prefixes
 to find locations near a specified lat/lon point.
37.1. Mapping Geohashes

The first step is to decide just how much precision you need.

 Although you could
index all geo-points with the default full 12 levels of precision, do you
really need to be accurate to within a few centimeters? You can save yourself
a lot of space in the index by reducing your precision requirements to
something more realistic, such as 1km:
PUT /attractions
{
 "mappings": {
 "restaurant": {
 "properties": {
 "name": {
 "type": "string"
 },
 "location": {
 "type": "geo_point",
 "geohash_prefix": true, (1)
 "geohash_precision": "1km" (2)
 }
 }
 }
 }
}
	(1)
	
Setting geohash_prefix to true tells Elasticsearch to index
 all geohash prefixes, up to the specified precision.

	(2)
	
The precision can be specified as an absolute number, representing the
 length of the geohash, or as a distance. A precision of 1km corresponds
 to a geohash of length 7.

With this mapping in place, geohash prefixes of lengths 1 to 7 will be indexed,
providing geohashes accurate to about 150 meters.

37.2. Geohash Cell Query

The geohash_cell query simply translates a lat/lon location into a
geohash with the specified precision and finds all locations that contain
that geohash—a very efficient query indeed.
GET /attractions/restaurant/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "geohash_cell": {
 "location": {
 "lat": 40.718,
 "lon": -73.983
 },
 "precision": "2km" (1)
 }
 }
 }
 }
}
	(1)
	
The precision cannot be more precise than that specified in the
 geohash_precision mapping.

This query translates the lat/lon point into a geohash of the appropriate
length—in this example dr5rsk—and looks for all locations that contain
that exact term.
However, the query as written in the preceding example may not return all restaurants within 5km
of the specified point. Remember that a geohash is just a rectangle, and the
point may fall anywhere within that rectangle. If the point happens to fall
near the edge of a geohash cell, the filter may well exclude any
restaurants in the adjacent cell.
To fix that, we can tell the query to include the neigboring cells, by
setting neighbors to true:
GET /attractions/restaurant/_search
{
 "query": {
 "constant_score": {
 "filter": {
 "geohash_cell": {
 "location": {
 "lat": 40.718,
 "lon": -73.983
 },
 "neighbors": true, (1)
 "precision": "2km"
 }
 }
 }
 }
}
	(1)
	
This query will look for the resolved geohash and all surrounding
 geohashes.

Clearly, looking for a geohash with precision 2km plus all the neighboring
cells results in quite a large search area. This query is not built for
accuracy, but it is very efficient and can be used as a prefiltering step
before applying a more accurate geo-filter.
Tip
Specifying the precision as a distance can be misleading. A precision
of 2km is converted to a geohash of length 6, which actually has dimensions
of about 1.2km x 0.6km. You may find it more understandable to specify an
actual length such as 5 or 6.

The other advantage that this query has over a geo_bounding_box query is
that it supports multiple locations per field.

The lat_lon option that we discussed in Section 36.3.1, “Optimizing Bounding Boxes” is efficient,
but only when there is a single lat/lon point per field.

Chapter 38. Geo Aggregations

Although filtering or scoring results by geolocation is useful,
 it is often more
useful to be able to present information to the user on a map. A search may
return way too many results to be able to display each geo-point individually,
but geo-aggregations can be used to cluster geo-points into more manageable
buckets.
Three aggregations work with fields of type geo_point:
	
geo_distance

	
 Groups documents into concentric circles around a central point.

	
geohash_grid

	
 Groups documents by geohash cell, for display on a map.

	
geo_bounds

	
 Returns the lat/lon coordinates of a bounding box that would
 encompass all of the geo-points. This is useful for choosing
 the correct zoom level when displaying a map.

38.1. Geo Distance Aggregation

The geo_distance agg is useful
 for searches such as
to "find all pizza restaurants within 1km of me." The search results
should, indeed, be limited to the 1km radius specified by the user, but we can
add “another result found within 2km”:
GET /attractions/restaurant/_search
{
 "query": {
 "bool": {
 "must": {
 "match": { (1)
 "name": "pizza"
 }
 },
 "filter": {
 "geo_bounding_box": {
 "location": { (2)
 "top_left": {
 "lat": 40.8,
 "lon": -74.1
 },
 "bottom_right": {
 "lat": 40.4,
 "lon": -73.7
 }
 }
 }
 }
 }
 },
 "aggs": {
 "per_ring": {
 "geo_distance": { (3)
 "field": "location",
 "unit": "km",
 "origin": {
 "lat": 40.712,
 "lon": -73.988
 },
 "ranges": [
 { "from": 0, "to": 1 },
 { "from": 1, "to": 2 }
]
 }
 }
 },
 "post_filter": { (4)
 "geo_distance": {
 "distance": "1km",
 "location": {
 "lat": 40.712,
 "lon": -73.988
 }
 }
 }
}
	(1)
	
The main query looks for restaurants with pizza in the name.

	(2)
	
The bounding box filters these results down to just those in
 the greater New York area.

	(3)
	
The geo_distance agg counts the number of results within
 1km of the user, and between 1km and 2km from the user.

	(4)
	
Finally, the post_filter reduces the search results to just
 those restaurants within 1km of the user.

The response from
the preceding request is as follows:
"hits": {
 "total": 1,
 "max_score": 0.15342641,
 "hits": [(1)
 {
 "_index": "attractions",
 "_type": "restaurant",
 "_id": "3",
 "_score": 0.15342641,
 "_source": {
 "name": "Mini Munchies Pizza",
 "location": [
 -73.983,
 40.719
]
 }
 }
]
},
"aggregations": {
 "per_ring": { (2)
 "buckets": [
 {
 "key": "*-1.0",
 "from": 0,
 "to": 1,
 "doc_count": 1
 },
 {
 "key": "1.0-2.0",
 "from": 1,
 "to": 2,
 "doc_count": 1
 }
]
 }
}
	(1)
	
The post_filter has reduced the search hits to just the single
 pizza restaurant within 1km of the user.

	(2)
	
The aggregation includes the search result plus the other pizza
 restaurant within 2km of the user.

In this example, we have counted the number of restaurants that fall
into each concentric ring. Of course, we could nest sub-aggregations under
the per_rings aggregation to calculate the average price per ring, the
maximum popularity, and more.

38.2. Geohash Grid Aggregation

The number of results returned by a query may be far too many to display each
geo-point individually on a map.
 The geohash_grid aggregation buckets nearby
geo-points together by calculating the geohash for each point, at the level of
precision that you define.
The result is a grid of cells—one cell per geohash—that can be
displayed on a map. By changing the precision of the geohash, you can
summarize information across the whole world, by country, or by city block.
The aggregation is sparse—it returns only cells that contain documents.
If your geohashes are too precise and too many buckets are generated, it will
return, by default, the 10,000 most populous cells—those containing the
most documents.
 However, it still needs to generate all the buckets in
order to figure out which are the most populous 10,000. You need to control
the number of buckets generated by doing the following:
	
Limit the result with a geo_bounding_box query.

	
Choose an appropriate precision for the size of your bounding box.

GET /attractions/restaurant/_search
{
 "size" : 0,
 "query": {
 "constant_score": {
 "filter": {
 "geo_bounding_box": {
 "location": { (1)
 "top_left": {
 "lat": 40.8,
 "lon": -74.1
 },
 "bottom_right": {
 "lat": 40.4,
 "lon": -73.7
 }
 }
 }
 }
 }
 },
 "aggs": {
 "new_york": {
 "geohash_grid": { (2)
 "field": "location",
 "precision": 5
 }
 }
 }
}
	(1)
	
The bounding box limits the scope of the search to the greater New York area.

	(2)
	
Geohashes of precision 5 are approximately 5km x 5km.

Geohashes with precision 5 measure about 25km2 each, so 10,000 cells at
this precision would cover 250,000km2. The bounding box that we specified
measures approximately 44km x 33km, or about 1,452km2, so we are well within
safe limits; we definitely won’t create too many buckets in memory.
The response from the preceding request looks like this:
...
"aggregations": {
 "new_york": {
 "buckets": [(1)
 {
 "key": "dr5rs",
 "doc_count": 2
 },
 {
 "key": "dr5re",
 "doc_count": 1
 }
]
 }
}
...
	(1)
	
Each bucket contains the geohash as the key.

Again, we didn’t specify any sub-aggregations, so all we got back was the
document count. We could have asked for popular restaurant types, average
price, or other details.
Tip
To plot these buckets on a map, you need a library that
understands how to convert a geohash into the equivalent bounding box or
central point. Libraries exist in JavaScript and other languages
that will perform this conversion for you, but you can also use information from
Section 38.3, “Geo Bounds Aggregation” to perform a similar job.

38.3. Geo Bounds Aggregation

In our previous example, we filtered our results by using a
bounding box that covered the greater New York area.
 However, our results
were all located in downtown Manhattan. When displaying a map for our user, it
makes sense to zoom into the area of the map that contains the data; there
is no point in showing lots of empty space.
The geo_bounds aggregation does exactly this: it calculates the smallest
bounding box that is needed to encapsulate all of the geo-points:
GET /attractions/restaurant/_search
{
 "size" : 0,
 "query": {
 "constant_score": {
 "filter": {
 "geo_bounding_box": {
 "location": {
 "top_left": {
 "lat": 40,8,
 "lon": -74.1
 },
 "bottom_right": {
 "lat": 40.4,
 "lon": -73.9
 }
 }
 }
 }
 }
 },
 "aggs": {
 "new_york": {
 "geohash_grid": {
 "field": "location",
 "precision": 5
 }
 },
 "map_zoom": { (1)
 "geo_bounds": {
 "field": "location"
 }
 }
 }
}
	(1)
	
The geo_bounds aggregation will calculate the smallest bounding box required to encapsulate all of the documents matching our query.

The response now includes a bounding box that we can use to zoom our map:
...
"aggregations": {
 "map_zoom": {
 "bounds": {
 "top_left": {
 "lat": 40.722,
 "lon": -74.011
 },
 "bottom_right": {
 "lat": 40.715,
 "lon": -73.983
 }
 }
 },
...
In fact, we could even use the geo_bounds aggregation inside each geohash
cell, in case the geo-points inside a cell are clustered in just a part of the
cell:
GET /attractions/restaurant/_search
{
 "size" : 0,
 "query": {
 "constant_score": {
 "filter": {
 "geo_bounding_box": {
 "location": {
 "top_left": {
 "lat": 40,8,
 "lon": -74.1
 },
 "bottom_right": {
 "lat": 40.4,
 "lon": -73.9
 }
 }
 }
 }
 }
 },
 "aggs": {
 "new_york": {
 "geohash_grid": {
 "field": "location",
 "precision": 5
 },
 "aggs": {
 "cell": { (1)
 "geo_bounds": {
 "field": "location"
 }
 }
 }
 }
 }
}
	(1)
	
The cell_bounds sub-aggregation is calculated for every geohash cell.

Now the points in each cell have a bounding box:
...
"aggregations": {
 "new_york": {
 "buckets": [
 {
 "key": "dr5rs",
 "doc_count": 2,
 "cell": {
 "bounds": {
 "top_left": {
 "lat": 40.722,
 "lon": -73.989
 },
 "bottom_right": {
 "lat": 40.719,
 "lon": -73.983
 }
 }
 }
 },
...

Chapter 39. Geo Shapes

Geo-shapes use a completely different approach than geo-points. A circle on a
computer screen does not consist of a perfect continuous line. Instead it is
drawn by coloring adjacent pixels as an approximation of a circle. Geo-shapes
work in much the same way.
Complex shapes—such as points, lines, polygons, multipolygons, and polygons with
holes,--are “painted” onto a grid of geohash cells, and the shape is
converted into a list of the
geohashes of all the cells that it touches.
Note
Actually, two types of grids can be used with geo-shapes:
geohashes, which we have already discussed and which are the default encoding,
and quad trees. Quad trees are similar to geohashes except that there are
only four cells at each level, instead of 32. The difference comes down to a
choice of encoding.

All of the geohashes that compose a shape are indexed as if they were terms.
With this information in the index, it is easy to determine whether one shape
intersects with another, as they will share the same geohash terms.
That is the extent of what you can do with geo-shapes: determine the
relationship between a query shape and a shape in the index. The relation
can be one of the following:
	
intersects

	
 The query shape overlaps with the indexed shape (default).

	
disjoint

	
 The query shape does not overlap at all with the indexed shape.

	
within

	
 The indexed shape is entirely within the query shape.

Geo-shapes cannot be used to caculate distance, cannot be used for
sorting or scoring, and cannot be used in aggregations.
39.1. Mapping Geo Shapes

Like fields of type geo_point, geo-shapes

 have to be mapped explicitly
before they can be used:
PUT /attractions
{
 "mappings": {
 "landmark": {
 "properties": {
 "name": {
 "type": "string"
 },
 "location": {
 "type": "geo_shape"
 }
 }
 }
 }
}
There are two important settings that you should consider changing precision and distance_error_pct.
39.1.1. precision

The precision parameter
controls the maximum length of the geohashes that
are generated. It defaults to a precision of 9, which equates to a
geohash with dimensions of about 5m x 5m. That is probably far
more precise than you need.
The lower the precision, the fewer terms that will be indexed and the faster
the search will be. But of course, the lower the precision, the less accurate are
your geo-shapes. Consider just how accurate you need your shapes to be—even one or two levels of precision can represent a significant savings.
You can specify precisions by using distances—for example, 50m or 2km—but
ultimately these distances are converted to the same levels as described in
Chapter 37, Geohashes.

39.1.2. distance_error_pct

When indexing a polygon, the big central continuous part can be represented
cheaply by a short geohash.
 It is the edges that matter. Edges require much
smaller geohashes to represent them with any accuracy.
If you’re indexing a small landmark, you want the edges to be quite accurate.
It wouldn’t be good to have one monument overlapping with the next. When
indexing an entire country, you don’t need quite as much precision. Fifty
meters here or there isn’t likely to start any wars.
The distance_error_pct specifies the maximum allowable error based on the
size of the shape. It defaults to 0.025, or 2.5%. In other words, big shapes
(like countries) are allowed to have fuzzier edges than small shapes (like
monuments).
The default of 0.025 is a good starting point, but the more error that is
allowed, the fewer terms that are required to index a shape.

39.2. Indexing Geo Shapes

Shapes are represented using GeoJSON, a simple open
standard for encoding two-dimensional shapes in JSON.

 Each shape definition
contains the type of shape—point, line, polygon, envelope,—and one or more arrays of longitude/latitude points.
Caution
In GeoJSON, coordinates are always written as longitude followed
by latitude.

For instance, we can index a polygon representing Dam Square in Amsterdam as
follows:
PUT /attractions/landmark/dam_square
{
 "name" : "Dam Square, Amsterdam",
 "location" : {
 "type" : "polygon", (1)
 "coordinates" : [[(2)
 [4.89218, 52.37356],
 [4.89205, 52.37276],
 [4.89301, 52.37274],
 [4.89392, 52.37250],
 [4.89431, 52.37287],
 [4.89331, 52.37346],
 [4.89305, 52.37326],
 [4.89218, 52.37356]
]]
 }
}
	(1)
	
The type parameter indicates the type of shape that the coordinates
 represent.

	(2)
	
The list of lon/lat points that describe the polygon.

The excess of square brackets in the example may look confusing, but the
GeoJSON syntax is quite simple:
	
Each lon/lat point is represented as an array:

[lon,lat]

	
A list of points is wrapped in an array to represent a polygon:

[[lon,lat],[lon,lat], ...]

	
A shape of type polygon can optionally contain several polygons; the
 first represents the polygon proper, while any subsequent polygons represent
 holes in the first:

[
 [[lon,lat],[lon,lat], ...], # main polygon
 [[lon,lat],[lon,lat], ...], # hole in main polygon
 ...
]

See the Geo-shape mapping documentation for
more details about the supported shapes.

39.3. Querying Geo Shapes

The unusual thing
about the geo_shape query is that it allows us to query and filter using shapes, rather than just points.
For instance, if our user steps out of the central train station in Amsterdam,
we could find all landmarks within a 1km radius with a query like this:
GET /attractions/landmark/_search
{
 "query": {
 "geo_shape": {
 "location": { (1)
 "shape": { (2)
 "type": "circle", (3)
 "radius": "1km",
 "coordinates": [(4)
 4.89994,
 52.37815
]
 }
 }
 }
 }
}
	(1)
	
The query looks at geo-shapes in the location field.

	(2)
	
The shape key indicates that the shape is specified inline in the query.

	(3)
	
The shape is a circle, with a radius of 1km.

	(4)
	
This point is situated at the entrance of the central train station in
 Amsterdam.

By default, the query (or filter—do the same job) looks for indexed
shapes that intersect with the query shape.
 The relation parameter can be
set to disjoint to find indexed shapes that don’t intersect with the query
shape, or within to find indexed shapes that are completely contained by the
query shape.
For instance, we could find all landmarks in the center of Amsterdam with this
query:
GET /attractions/landmark/_search
{
 "query": {
 "geo_shape": {
 "location": {
 "relation": "within", (1)
 "shape": {
 "type": "polygon",
 "coordinates": [[(2)
 [4.88330,52.38617],
 [4.87463,52.37254],
 [4.87875,52.36369],
 [4.88939,52.35850],
 [4.89840,52.35755],
 [4.91909,52.36217],
 [4.92656,52.36594],
 [4.93368,52.36615],
 [4.93342,52.37275],
 [4.92690,52.37632],
 [4.88330,52.38617]
]]
 }
 }
 }
 }
}
	(1)
	
Match only indexed shapes that are completely within the query shape.

	(2)
	
This polygon represents the center of Amsterdam.

39.4. Querying with Indexed Shapes

With shapes that are often used in queries, it can be more convenient to store
them in the index and to refer to them by name in the query.
 Take our example
of central Amsterdam in the previous example. We could store it as a document
of type neighborhood.
First, we set up the mapping in the same way as we did for landmark:
PUT /attractions/_mapping/neighborhood
{
 "properties": {
 "name": {
 "type": "string"
 },
 "location": {
 "type": "geo_shape"
 }
 }
}
Then we can index a shape for central Amsterdam:
PUT /attractions/neighborhood/central_amsterdam
{
 "name" : "Central Amsterdam",
 "location" : {
 "type" : "polygon",
 "coordinates" : [[
 [4.88330,52.38617],
 [4.87463,52.37254],
 [4.87875,52.36369],
 [4.88939,52.35850],
 [4.89840,52.35755],
 [4.91909,52.36217],
 [4.92656,52.36594],
 [4.93368,52.36615],
 [4.93342,52.37275],
 [4.92690,52.37632],
 [4.88330,52.38617]
]]
 }
}
After the shape is indexed, we can refer to it by index, type, and id in the
query itself:
GET /attractions/landmark/_search
{
 "query": {
 "geo_shape": {
 "location": {
 "relation": "within",
 "indexed_shape": { (1)
 "index": "attractions",
 "type": "neighborhood",
 "id": "central_amsterdam",
 "path": "location"
 }
 }
 }
 }
}
	(1)
	
By specifying indexed_shape instead of shape, Elasticsearch knows that
 it needs to retrieve the query shape from the specified document and
 path.

There is nothing special about the shape for central Amsterdam. We could
equally use our existing shape for Dam Square in queries. This query finds
neighborhoods that intersect with Dam Square:
GET /attractions/neighborhood/_search
{
 "query": {
 "geo_shape": {
 "location": {
 "indexed_shape": {
 "index": "attractions",
 "type": "landmark",
 "id": "dam_square",
 "path": "location"
 }
 }
 }
 }
}

Part VI. Modeling Your Data

Elasticsearch is a different kind of beast, especially if you come from the
world of SQL. It comes with many benefits: performance, scale, near real-time
search, and analytics across massive amounts of data. And it is easy to get
going! Just download and start using it.
But it is not magic. To get the most out of Elasticsearch, you need to
understand how it works and how to make it work for your needs.
Handling relationships between entities is not as obvious as it is with a
dedicated relational store. The golden rule of a relational database—normalize your data—does not apply to Elasticsearch. In Chapter 40, Handling Relationships,
Chapter 41, Nested Objects, and Chapter 42, Parent-Child Relationship we discuss the pros and cons of
the available approaches.
Then in Chapter 43, Designing for Scale we talk about the features that Elasticsearch offers
that enable you to scale out quickly and flexibly. Scale is not one-size-fits-all. You need to think about how data flows through your system, and
design your model accordingly. Time-based data like log events or social
network streams require a very different approach than more static collections
of documents.
And finally, we talk about the one thing in Elasticsearch that doesn’t scale.

Chapter 40. Handling Relationships

In the real world, relationships matter: blog posts have comments, bank
accounts have transactions, customers have bank accounts, orders have order
lines, and directories have files and subdirectories.
Relational databases are specifically designed—and this will not come as a
surprise to you—to manage
 relationships:
	
Each entity (or row, in the relational world) can be uniquely identified
 by a primary key.

	
Entities are normalized. The data for a unique entity is stored only
 once, and related entities store just its primary key. Changing the data of
 an entity has to happen in only one place.

	
Entities can be joined at query time, allowing for cross-entity search.

	
Changes to a single entity are atomic, consistent, isolated, and
 durable. (See ACID Transactions
 for more on this subject.)

	
Most relational databases support ACID transactions across multiple
 entities.

But relational databases do have their limitations, besides their poor support
for full-text search. Joining entities at query time is expensive—the more
joins that are required, the more expensive the query. Performing joins
between entities that live on different hardware is so expensive that it is
just not practical. This places a limit on the amount of data that can be
stored on a single server.
Elasticsearch, like most NoSQL databases, treats the world as though it were
flat. An index is a flat collection of independent documents. A single
document should contain all of the information that is required to decide
whether it matches a search request.
While changing the data of a single document in Elasticsearch is
ACIDic, transactions
involving multiple documents are not. There is no way to roll back the index
to its previous state if part of a transaction fails.
This FlatWorld has its advantages:
	
Indexing is fast and lock-free.

	
Searching is fast and lock-free.

	
Massive amounts of data can be spread across multiple nodes, because each
 document is independent of the others.

But relationships matter. Somehow, we need to bridge the gap between
FlatWorld and the real world.
 Four common techniques are used to manage
relational data in Elasticsearch:
	
Application-side joins

	
Data denormalization

	
Nested objects

	
Parent/child relationships

Often the final solution will require a mixture of a few of these techniques.
40.1. Application-side Joins

We can (partly) emulate a relational
 database by implementing joins in our
application.
For instance, let’s say we are indexing users and their
blog posts. In the relational world, we would do something like this:
PUT /my_index/user/1 (1)
{
 "name": "John Smith",
 "email": "john@smith.com",
 "dob": "1970/10/24"
}

PUT /my_index/blogpost/2 (2)
{
 "title": "Relationships",
 "body": "It's complicated...",
 "user": 1 (3)
}
	(1) (2)
	
The index, type, and id of each document together function as a primary key.

	(3)
	
The blogpost links to the user by storing the user’s id. The index
 and type aren’t required as they are hardcoded in our application.

Finding blog posts by user with ID 1 is easy:
GET /my_index/blogpost/_search
{
 "query": {
 "filtered": {
 "filter": {
 "term": { "user": 1 }
 }
 }
 }
}
To find blogposts by a user called John, we would need to run two queries:
the first would look up all users called John in order to find their IDs,
and the second would pass those IDs in a query similar to the preceding one:
GET /my_index/user/_search
{
 "query": {
 "match": {
 "name": "John"
 }
 }
}

GET /my_index/blogpost/_search
{
 "query": {
 "filtered": {
 "filter": {
 "terms": { "user": [1] } (1)
 }
 }
 }
}
	(1)
	
The values in the terms filter would be populated with the results from
 the first query.

The main advantage of application-side joins is that the data is normalized.
Changing the user’s name has to happen in only one place: the user document.
The disadvantage is that you have to run extra queries in order to join documents at search time.
In this example, there was only one user who matched our first query, but in
the real world we could easily have millions of users named John.
Including all of their IDs in the second query would make for a very large
query, and one that has to do millions of term lookups.
This approach is suitable when the first entity (the user in this example)
has a small number of documents and, preferably, they seldom change. This
would allow the application to cache the results and avoid running the first
query often.

40.2. Denormalizing Your Data

The way to get the best search performance out of Elasticsearch is to use it
as it is intended, by

denormalizing your data at index
time. Having redundant copies of data in each document that requires access to
it removes the need for joins.
If we want to be able to find a blog post by the name of the user who wrote it,
include the user’s name in the blog-post document itself:
PUT /my_index/user/1
{
 "name": "John Smith",
 "email": "john@smith.com",
 "dob": "1970/10/24"
}

PUT /my_index/blogpost/2
{
 "title": "Relationships",
 "body": "It's complicated...",
 "user": {
 "id": 1,
 "name": "John Smith" (1)
 }
}
	(1)
	
Part of the user’s data has been denormalized into the blogpost document.

Now, we can find blog posts about relationships by users called John
with a single query:
GET /my_index/blogpost/_search
{
 "query": {
 "bool": {
 "must": [
 { "match": { "title": "relationships" }},
 { "match": { "user.name": "John" }}
]
 }
 }
}
The advantage of data denormalization is speed. Because each document
contains all of the information that is required to determine whether it
matches the query, there is no need for expensive joins.

40.3. Field Collapsing

A common requirement is the need to present search results grouped by a particular
field.
We might want to return the most relevant blog posts grouped by the
user’s name.
 Grouping by name implies the need for a terms aggregation. To
be able to group on the user’s whole name, the name field should be
available in its original not_analyzed form, as explained in
Section 34.3, “Aggregations and Analysis”:
PUT /my_index/_mapping/blogpost
{
 "properties": {
 "user": {
 "properties": {
 "name": { (1)
 "type": "string",
 "fields": {
 "raw": { (2)
 "type": "string",
 "index": "not_analyzed"
 }
 }
 }
 }
 }
 }
}
	(1)
	
The user.name field will be used for full-text search.

	(2)
	
The user.name.raw field will be used for grouping with the terms
 aggregation.

Then add some data:
PUT /my_index/user/1
{
 "name": "John Smith",
 "email": "john@smith.com",
 "dob": "1970/10/24"
}

PUT /my_index/blogpost/2
{
 "title": "Relationships",
 "body": "It's complicated...",
 "user": {
 "id": 1,
 "name": "John Smith"
 }
}

PUT /my_index/user/3
{
 "name": "Alice John",
 "email": "alice@john.com",
 "dob": "1979/01/04"
}

PUT /my_index/blogpost/4
{
 "title": "Relationships are cool",
 "body": "It's not complicated at all...",
 "user": {
 "id": 3,
 "name": "Alice John"
 }
}
Now we can run a query looking for blog posts about relationships, by users
called John, and group the results by user, thanks to the
top_hits aggregation:
GET /my_index/blogpost/_search
{
 "size" : 0, (1)
 "query": { (2)
 "bool": {
 "must": [
 { "match": { "title": "relationships" }},
 { "match": { "user.name": "John" }}
]
 }
 },
 "aggs": {
 "users": {
 "terms": {
 "field": "user.name.raw", (3)
 "order": { "top_score": "desc" } (4)
 },
 "aggs": {
 "top_score": { "max": { "script": "_score" }}, (5)
 "blogposts": { "top_hits": { "_source": "title", "size": 5 }} (6)
 }
 }
 }
}
	(1)
	
The blog posts that we are interested in are returned under the
 blogposts aggregation, so we can disable the usual search hits by
 setting the size to 0.

	(2)
	
The query returns blog posts about relationships by users named John.

	(3)
	
The terms aggregation creates a bucket for each user.name.raw value.

	(4) (5)
	
The top_score aggregation orders the terms in the users aggregation
 by the top-scoring document in each bucket.

	(6)
	
The top_hits aggregation returns just the title field of the five most
 relevant blog posts for each user.

The abbreviated response is shown here:
...
"hits": {
 "total": 2,
 "max_score": 0,
 "hits": [] (1)
},
"aggregations": {
 "users": {
 "buckets": [
 {
 "key": "John Smith", (2)
 "doc_count": 1,
 "blogposts": {
 "hits": { (3)
 "total": 1,
 "max_score": 0.35258877,
 "hits": [
 {
 "_index": "my_index",
 "_type": "blogpost",
 "_id": "2",
 "_score": 0.35258877,
 "_source": {
 "title": "Relationships"
 }
 }
]
 }
 },
 "top_score": { (4)
 "value": 0.3525887727737427
 }
 },
...
	(1)
	
The hits array is empty because we set size to 0.

	(2)
	
There is a bucket for each user who appeared in the top results.

	(3)
	
Under each user bucket there is a blogposts.hits array containing
 the top results for that user.

	(4)
	
The user buckets are sorted by the user’s most relevant blog post.

Using the top_hits aggregation is the equivalent of running a query to
return the names of the users with the most relevant blog posts, and then running
the same query for each user, to get their best blog posts. But it is much more
efficient.
The top hits returned in each bucket are the result of running a light
mini-query based on the original main query. The mini-query supports the
usual features that you would expect from search such as highlighting and
pagination.

40.4. Denormalization and Concurrency

Of course, data denormalization has downsides too.

 The first disadvantage is
that the index will be bigger because the _source document for every
blog post is bigger, and there are more indexed fields. This usually isn’t a
huge problem. The data written to disk is highly compressed, and disk space
is cheap. Elasticsearch can happily cope with the extra data.
The more important issue is that, if the user were to change his name, all
of his blog posts would need to be updated too. Fortunately, users don’t
often change names. Even if they did, it is unlikely that a user would have
written more than a few thousand blog posts, so updating blog posts with
the scroll and bulk APIs would take less than a
second.
However, let’s consider a more complex scenario in which changes are common, far
reaching, and, most important, concurrent.

In this example, we are going to emulate a filesystem with directory trees in
Elasticsearch, much like a filesystem on Linux: the root of the directory is
/, and each directory can contain files and subdirectories.
We want to be able to search for files that live in a particular directory,
the equivalent of this:
grep "some text" /clinton/projects/elasticsearch/*
This requires us to index the path of the directory where the file lives:
PUT /fs/file/1
{
 "name": "README.txt", (1)
 "path": "/clinton/projects/elasticsearch", (2)
 "contents": "Starting a new Elasticsearch project is easy..."
}
	(1)
	
The filename

	(2)
	
The full path to the directory holding the file

Note
Really, we should also index directory documents so we can list all
files and subdirectories within a directory, but for brevity’s sake, we will
ignore that requirement.

We also want to be able to search for files that live anywhere in the
directory tree below a particular directory, the equivalent of this:
grep -r "some text" /clinton
To support this, we need to index the path hierarchy:
	
/clinton

	
/clinton/projects

	
/clinton/projects/elasticsearch

This hierarchy can be generated automatically from the path field using the
path_hierarchy tokenizer:
PUT /fs
{
 "settings": {
 "analysis": {
 "analyzer": {
 "paths": { (1)
 "tokenizer": "path_hierarchy"
 }
 }
 }
 }
}
	(1)
	
The custom paths analyzer uses the path_hierarchy tokenizer with its default settings.

The mapping for the file type would look like this:
PUT /fs/_mapping/file
{
 "properties": {
 "name": { (1)
 "type": "string",
 "index": "not_analyzed"
 },
 "path": { (2)
 "type": "string",
 "index": "not_analyzed",
 "fields": {
 "tree": { (3)
 "type": "string",
 "analyzer": "paths"
 }
 }
 }
 }
}
	(1)
	
The name field will contain the exact name.

	(2) (3)
	
The path field will contain the exact directory name, while the path.tree
 field will contain the path hierarchy.

Once the index is set up and the files have been indexed, we can perform a
search for files containing elasticsearch in just the
/clinton/projects/elasticsearch directory like this:
GET /fs/file/_search
{
 "query": {
 "filtered": {
 "query": {
 "match": {
 "contents": "elasticsearch"
 }
 },
 "filter": {
 "term": { (1)
 "path": "/clinton/projects/elasticsearch"
 }
 }
 }
 }
}
	(1)
	
Find files in this directory only.

Every file that lives in any subdirectory under /clinton will include the
term /clinton in the path.tree field. So we can search for all files in
any subdirectory of /clinton as follows:
GET /fs/file/_search
{
 "query": {
 "filtered": {
 "query": {
 "match": {
 "contents": "elasticsearch"
 }
 },
 "filter": {
 "term": { (1)
 "path.tree": "/clinton"
 }
 }
 }
 }
}
	(1)
	
Find files in this directory or in any of its subdirectories.

40.4.1. Renaming Files and Directories

So far, so good.
 Renaming a file is easy—a simple update or index
request is all that is required. You can even use
optimistic concurrency control to
ensure that your change doesn’t conflict with the changes from another user:
PUT /fs/file/1?version=2 (1)
{
 "name": "README.asciidoc",
 "path": "/clinton/projects/elasticsearch",
 "contents": "Starting a new Elasticsearch project is easy..."
}
	(1)
	
The version number ensures that the change is applied only if the
 document in the index has this same version number.

We can even rename a directory, but this means updating all of the files that
exist anywhere in the path hierarchy beneath that directory. This may be
quick or slow, depending on how many files need to be updated. All we would
need to do is to use scroll to retrieve all the
files, and the bulk API to update them. The process isn’t
atomic, but all files will quickly move to their new home.

40.5. Solving Concurrency Issues

The problem comes when we want to allow more than one person to rename files
or directories at the same time.

 Imagine that you rename the /clinton
directory, which contains hundreds of thousands of files. Meanwhile, another
user renames the single file /clinton/projects/elasticsearch/README.txt.
That user’s change, although it started after yours, will probably finish more
quickly.
One of two things will happen:
	
You have decided to use version numbers, in which case your mass rename
 will fail with a version conflict when it hits the renamed
 README.txt file.

	
You didn’t use versioning, and your changes will overwrite the changes from
 the other user.

The problem is that Elasticsearch does not support
ACID transactions. Changes to
individual documents are ACIDic, but not changes involving multiple documents.
If your main data store is a relational database, and Elasticsearch is simply
being used as a search engine
 or as a way to improve performance, make
your changes in the database first and replicate those changes to
Elasticsearch after they have succeeded. This way, you benefit from the ACID
transactions available in the database, and all changes to Elasticsearch happen
in the right order. Concurrency is dealt with in the relational database.
If you are not using a relational store, these concurrency issues need to
be dealt with at the Elasticsearch level. The following are three practical
solutions using Elasticsearch, all of which involve some form of locking:
	
Global Locking

	
Document Locking

	
Tree Locking

Tip
The solutions described in this section could also be implemented by applying the same
principles while using an external system instead of Elasticsearch.

40.5.1. Global Locking

We can avoid concurrency issues completely by allowing only one process to
make changes at any time.
 Most changes will involve only a few files and will
complete very quickly. A rename of a top-level directory may block all other
changes for longer, but these are likely to be much less frequent.
Because document-level changes in Elasticsearch are ACIDic, we can use the
existence or absence of a document as a global lock. To request a
lock, we try to create the global-lock document:
PUT /fs/lock/global/_create
{}
If this create request fails with a conflict exception,
another process has already been granted the global lock and we will have to
try again later. If it succeeds, we are now the proud owners of the
global lock and we can continue with our changes. Once we are finished, we
must release the lock by deleting the global lock document:
DELETE /fs/lock/global
Depending on how frequent changes are, and how long they take, a global lock
could restrict the performance of a system significantly. We can increase
parallelism by making our locking more fine-grained.

40.5.2. Document Locking

Instead of locking the whole filesystem, we could lock individual documents
by using the same technique as previously described.

We can use a scrolled search to retrieve all documents that would be affected by the change and
create a lock file for each one:
PUT /fs/lock/_bulk
{ "create": { "_id": 1}} (1)
{ "process_id": 123 } (2)
{ "create": { "_id": 2}}
{ "process_id": 123 }
	(1)
	
The ID of the lock document would be the same as the ID of the file
 that should be locked.

	(2)
	
The process_id is a unique ID that represents the process that
 wants to perform the changes.

If some files are already locked, parts of the bulk request will fail and we
will have to try again.
Of course, if we try to lock all of the files again, the create statements
that we used previously will fail for any file that is already locked by us!
Instead of a simple create statement, we need an update request with an
upsert parameter and this script:
if (ctx._source.process_id != process_id) { (1)
 assert false; (2)
}
ctx.op = 'noop'; (3)
	(1)
	
process_id is a parameter that we pass into the script.

	(2)
	
assert false will throw an exception, causing the update to fail.

	(3)
	
Changing the op from update to noop prevents the update request
 from making any changes, but still returns success.

The full update request looks like this:
POST /fs/lock/1/_update
{
 "upsert": { "process_id": 123 },
 "script": "if (ctx._source.process_id != process_id)
 { assert false }; ctx.op = 'noop';"
 "params": {
 "process_id": 123
 }
}
If the document doesn’t already exist, the upsert document is inserted—much
the same as the previous create request. However, if the
document does exist, the script looks at the process_id stored in the
document. If the process_id matches, no update is performed (noop) but the
script returns successfully. If it is different, assert false throws an exception
and you know that the lock has failed.
Once all locks have been successfully created, you can proceed with your changes.
Afterward, you must release all of the locks, which you can do by
retrieving all of the locked documents and performing a bulk delete:
POST /fs/_refresh (1)

GET /fs/lock/_search?scroll=1m (2)
{
 "sort" : ["_doc"],
 "query": {
 "match" : {
 "process_id" : 123
 }
 }
}

PUT /fs/lock/_bulk
{ "delete": { "_id": 1}}
{ "delete": { "_id": 2}}
	(1)
	
The refresh call ensures that all lock documents are visible to
 the search request.

	(2)
	
You can use a scroll query when you need to retrieve large
numbers of results with a single search request.

Document-level locking enables fine-grained access control, but creating lock
files for millions of documents can be expensive. In some cases,
you can achieve fine-grained locking with much less work, as shown in the
following directory tree scenario.

40.5.3. Tree Locking

Rather than locking every involved document as in the previous example, we
could lock just part of the directory tree.
 We will need exclusive access
to the file or directory that we want to rename, which can be achieved with an
exclusive lock document:
{ "lock_type": "exclusive" }
And we need shared locks on any parent directories, with a shared lock
document:
{
 "lock_type": "shared",
 "lock_count": 1 (1)
}
	(1)
	
The lock_count records the number of processes that hold a shared lock.

A process that wants to rename /clinton/projects/elasticsearch/README.txt
needs an exclusive lock on that file, and a shared lock on /clinton,
/clinton/projects, and /clinton/projects/elasticsearch.
A simple create request will suffice for the exclusive lock, but the shared
lock needs a scripted update to implement some extra logic:
if (ctx._source.lock_type == 'exclusive') {
 assert false; (1)
}
ctx._source.lock_count++ (2)
	(1)
	
If the lock_type is exclusive, the assert statement will throw
 an exception, causing the update request to fail.

	(2)
	
Otherwise, we increment the lock_count.

This script handles the case where the lock document already exists, but we
will also need an upsert document to handle the case where it doesn’t exist
yet. The full update request is as follows:
POST /fs/lock/%2Fclinton/_update (1)
{
 "upsert": { (2)
 "lock_type": "shared",
 "lock_count": 1
 },
 "script": "if (ctx._source.lock_type == 'exclusive')
 { assert false }; ctx._source.lock_count++"
}
	(1)
	
The ID of the document is /clinton, which is URL-encoded to %2fclinton.

	(2)
	
The upsert document will be inserted if the document does not already
 exist.

Once we succeed in gaining a shared lock on all of the parent directories, we
try to create an exclusive lock on the file itself:
PUT /fs/lock/%2Fclinton%2fprojects%2felasticsearch%2fREADME.txt/_create
{ "lock_type": "exclusive" }
Now, if somebody else wants to rename the /clinton directory, they would
have to gain an exclusive lock on that path:
PUT /fs/lock/%2Fclinton/_create
{ "lock_type": "exclusive" }
This request would fail because a lock document with the same ID already
exists. The other user would have to wait until our operation is done and we
have released our locks. The exclusive lock can just be deleted:
DELETE /fs/lock/%2Fclinton%2fprojects%2felasticsearch%2fREADME.txt
The shared locks need another script that decrements the lock_count and, if
the count drops to zero, deletes the lock document:
if (--ctx._source.lock_count == 0) {
 ctx.op = 'delete' (1)
}
	(1)
	
Once the lock_count reaches 0, the ctx.op is changed from update
 to delete.

This update request would need to be run for each parent directory in reverse
order, from longest to shortest:
POST /fs/lock/%2Fclinton%2fprojects%2felasticsearch/_update
{
 "script": "if (--ctx._source.lock_count == 0) { ctx.op = 'delete' } "
}
Tree locking gives us fine-grained concurrency control with the minimum of
effort. Of course, it is not applicable to every situation—the data model
must have some sort of access path like the directory tree for it to work.
Note
None of the three options—global, document, or tree locking—deals with
the thorniest problem associated with locking: what happens if the process
holding the lock dies?
The unexpected death of a process leaves us with two problems:
	
How do we know that we can release the locks held by the dead process?

	
How do we clean up the change that the dead process did not manage to complete?

These topics are beyond the scope of this book, but you will need to give them
some thought if you decide to use locking.

While denormalization is a good choice for many projects, the need for locking
schemes can make for complicated implementations. Instead, Elasticsearch
provides two models that help us deal with related entities:
nested objects and parent-child relationships.

Chapter 41. Nested Objects

Given the fact that creating, deleting, and updating a single document in
Elasticsearch is atomic, it makes sense to store closely related entities
within the same document.
 For instance, we could store an order and all of
its order lines in one document, or we could store a blog post and all of its
comments together, by passing an array of comments:
PUT /my_index/blogpost/1
{
 "title": "Nest eggs",
 "body": "Making your money work...",
 "tags": ["cash", "shares"],
 "comments": [(1)
 {
 "name": "John Smith",
 "comment": "Great article",
 "age": 28,
 "stars": 4,
 "date": "2014-09-01"
 },
 {
 "name": "Alice White",
 "comment": "More like this please",
 "age": 31,
 "stars": 5,
 "date": "2014-10-22"
 }
]
}
	(1)
	
If we rely on dynamic mapping, the comments
 field will be autocreated as an object field.

Because all of the content is in the same document, there is no need to join
blog posts and comments at query time, so searches perform well.
The problem is that the preceding document would match a query like this:
GET /_search
{
 "query": {
 "bool": {
 "must": [
 { "match": { "name": "Alice" }},
 { "match": { "age": 28 }} (1)
]
 }
 }
}
	(1)
	
Alice is 31, not 28!

The reason for this cross-object matching, as discussed in Section 6.5.6, “Arrays of Inner Objects”,
is that our beautifully structured JSON document is flattened into a simple
key-value format in the index that looks like this:
{
 "title": [eggs, nest],
 "body": [making, money, work, your],
 "tags": [cash, shares],
 "comments.name": [alice, john, smith, white],
 "comments.comment": [article, great, like, more, please, this],
 "comments.age": [28, 31],
 "comments.stars": [4, 5],
 "comments.date": [2014-09-01, 2014-10-22]
}
The correlation between Alice and 31, or between John and 2014-09-01, has been irretrievably lost. While fields of type object (see
Section 6.5.3, “Multilevel Objects”) are useful for storing a single object, they are useless,
from a search point of view, for storing an array of objects.
This is the problem that nested objects are designed to solve. By mapping
the comments field as type nested instead of type object, each nested
object is indexed as a hidden separate document, something like this:
{ (1)
 "comments.name": [john, smith],
 "comments.comment": [article, great],
 "comments.age": [28],
 "comments.stars": [4],
 "comments.date": [2014-09-01]
}
{ (2)
 "comments.name": [alice, white],
 "comments.comment": [like, more, please, this],
 "comments.age": [31],
 "comments.stars": [5],
 "comments.date": [2014-10-22]
}
{ (3)
 "title": [eggs, nest],
 "body": [making, money, work, your],
 "tags": [cash, shares]
}
	(1)
	
First nested object

	(2)
	
Second nested object

	(3)
	
The root or parent document

By indexing each nested object separately, the fields within the object
maintain their relationships. We can run queries that will match only if the
match occurs within the same nested object.
Not only that, because of the way that nested objects are indexed, joining the
nested documents to the root document at query time is fast—almost as fast
as if they were a single document.
These extra nested documents are hidden; we can’t access them directly. To
update, add, or remove a nested object, we have to reindex the whole document.
It’s important to note that, the result returned by a search request is not the nested object
alone; it is the whole document.
41.1. Nested Object Mapping

Setting up a nested field is simple—where
you would normally specify type
object, make it type nested instead:
PUT /my_index
{
 "mappings": {
 "blogpost": {
 "properties": {
 "comments": {
 "type": "nested", (1)
 "properties": {
 "name": { "type": "string" },
 "comment": { "type": "string" },
 "age": { "type": "short" },
 "stars": { "type": "short" },
 "date": { "type": "date" }
 }
 }
 }
 }
 }
}
	(1)
	
A nested field accepts the same parameters as a field of type object.

That’s all that is required. Any comments objects would now be indexed as
separate nested documents. See the
nested type reference docs for more.

41.2. Querying a Nested Object

Because nested objects
are indexed as separate hidden documents, we can’t
query them directly.
 Instead, we have to use the
nested query to access them:
GET /my_index/blogpost/_search
{
 "query": {
 "bool": {
 "must": [
 {
 "match": {
 "title": "eggs" (1)
 }
 },
 {
 "nested": {
 "path": "comments", (2)
 "query": {
 "bool": {
 "must": [(3)
 {
 "match": {
 "comments.name": "john"
 }
 },
 {
 "match": {
 "comments.age": 28
 }
 }
]
 }
 }
 }
 }
]
}}}
	(1)
	
The title clause operates on the root document.

	(2)
	
The nested clause “steps down” into the nested comments field.
 It no longer has access to fields in the root document, nor fields in
 any other nested document.

	(3)
	
The comments.name and comments.age clauses operate on the same nested
 document.

Tip
A nested field can contain other nested fields. Similarly, a nested
query can contain other nested queries. The nesting hierarchy is applied
as you would expect.

Of course, a nested query could match several nested documents.
Each matching nested document would have its own relevance score, but these
multiple scores need to be reduced to a single score that can be applied to
the root document.
By default, it averages the scores of the matching nested documents. This can
be controlled by setting the score_mode parameter to avg, max, sum, or
even none (in which case the root document gets a constant score of 1.0).
GET /my_index/blogpost/_search
{
 "query": {
 "bool": {
 "must": [
 {
 "match": {
 "title": "eggs"
 }
 },
 {
 "nested": {
 "path": "comments",
 "score_mode": "max", (1)
 "query": {
 "bool": {
 "must": [
 {
 "match": {
 "comments.name": "john"
 }
 },
 {
 "match": {
 "comments.age": 28
 }
 }
]
 }
 }
 }
 }
]
 }
 }
}
	(1)
	
Give the root document the _score from the best-matching
 nested document.

Note
If placed inside the filter clause of a Boolean query, a nested query behaves
much like a nested query, except that it doesn’t accept the score_mode
parameter. Because it is being used as a non-scoring query — it includes or excludes,
but doesn’t score —  a score_mode doesn’t make sense since there is nothing to score.

41.3. Sorting by Nested Fields

It is possible to sort by the value of a nested field, even though the value
exists in a separate nested document.
 To make the result more
interesting, we will add another record:
PUT /my_index/blogpost/2
{
 "title": "Investment secrets",
 "body": "What they don't tell you ...",
 "tags": ["shares", "equities"],
 "comments": [
 {
 "name": "Mary Brown",
 "comment": "Lies, lies, lies",
 "age": 42,
 "stars": 1,
 "date": "2014-10-18"
 },
 {
 "name": "John Smith",
 "comment": "You're making it up!",
 "age": 28,
 "stars": 2,
 "date": "2014-10-16"
 }
]
}
Imagine that we want to retrieve blog posts that received comments in October,
ordered by the lowest number of stars that each blog post received. The
search request would look like this:
GET /_search
{
 "query": {
 "nested": { (1)
 "path": "comments",
 "filter": {
 "range": {
 "comments.date": {
 "gte": "2014-10-01",
 "lt": "2014-11-01"
 }
 }
 }
 }
 },
 "sort": {
 "comments.stars": { (2)
 "order": "asc", (3)
 "mode": "min", (4)
 "nested_path": "comments", (5)
 "nested_filter": {
 "range": {
 "comments.date": {
 "gte": "2014-10-01",
 "lt": "2014-11-01"
 }
 }
 }
 }
 }
}
	(1)
	
The nested query limits the results to blog posts that received a
 comment in October.

	(2) (3) (4)
	
Results are sorted in ascending (asc) order by the lowest value (min)
 in the comment.stars field in any matching comments.

	(5)
	
The nested_path and nested_filter in the sort clause are the same as the nested query in
 the main query clause. The reason is explained next.

Why do we need to repeat the query conditions in the nested_path and nested_filter? The
reason is that sorting happens after the query has been executed. The query
matches blog posts that received comments in October, but it returns
blog post documents as the result. If we didn’t include the nested_filter
clause, we would end up sorting based on any comments that the blog post has
ever received, not just those received in October.

41.4. Nested Aggregations

In the same way as we need to use the special nested query
to gain access to
nested objects at search time, the dedicated nested aggregation allows us to
aggregate fields in nested objects:
GET /my_index/blogpost/_search
{
 "size" : 0,
 "aggs": {
 "comments": { (1)
 "nested": {
 "path": "comments"
 },
 "aggs": {
 "by_month": {
 "date_histogram": { (2)
 "field": "comments.date",
 "interval": "month",
 "format": "yyyy-MM"
 },
 "aggs": {
 "avg_stars": {
 "avg": { (3)
 "field": "comments.stars"
 }
 }
 }
 }
 }
 }
 }
}
	(1)
	
The nested aggregation “steps down” into the nested comments object.

	(2)
	
Comments are bucketed into months based on the comments.date field.

	(3)
	
The average number of stars is calculated for each bucket.

The results show that aggregation has happened at the nested document level:
...
"aggregations": {
 "comments": {
 "doc_count": 4, (1)
 "by_month": {
 "buckets": [
 {
 "key_as_string": "2014-09",
 "key": 1409529600000,
 "doc_count": 1, (2)
 "avg_stars": {
 "value": 4
 }
 },
 {
 "key_as_string": "2014-10",
 "key": 1412121600000,
 "doc_count": 3, (3)
 "avg_stars": {
 "value": 2.6666666666666665
 }
 }
]
 }
 }
}
...
	(1) (2) (3)
	
There are a total of four comments: one in September and three in October.

41.4.1. reverse_nested Aggregation

A nested aggregation can access

 only the fields within the nested document.
It can’t see fields in the root document or in a different nested document.
However, we can step out of the nested scope back into the parent with a
reverse_nested aggregation.
For instance, we can find out which tags our commenters are interested in,
based on the age of the commenter. The comment.age is a nested field, while
the tags are in the root document:
GET /my_index/blogpost/_search
{
 "size" : 0,
 "aggs": {
 "comments": {
 "nested": { (1)
 "path": "comments"
 },
 "aggs": {
 "age_group": {
 "histogram": { (2)
 "field": "comments.age",
 "interval": 10
 },
 "aggs": {
 "blogposts": {
 "reverse_nested": {}, (3)
 "aggs": {
 "tags": {
 "terms": { (4)
 "field": "tags"
 }
 }
 }
 }
 }
 }
 }
 }
 }
}
	(1)
	
The nested agg steps down into the comments object.

	(2)
	
The histogram agg groups on the comments.age field, in buckets
 of 10 years.

	(3)
	
The reverse_nested agg steps back up to the root document.

	(4)
	
The terms agg counts popular terms per age group of the commenter.

The abbreviated results show us the following:
..
"aggregations": {
 "comments": {
 "doc_count": 4, (1)
 "age_group": {
 "buckets": [
 {
 "key": 20, (2)
 "doc_count": 2, (3)
 "blogposts": {
 "doc_count": 2, (4)
 "tags": {
 "doc_count_error_upper_bound": 0,
 "buckets": [(5)
 { "key": "shares", "doc_count": 2 },
 { "key": "cash", "doc_count": 1 },
 { "key": "equities", "doc_count": 1 }
]
 }
 }
 },
...
	(1)
	
There are four comments.

	(2) (3)
	
There are two comments by commenters between the ages of 20 and 30.

	(4)
	
Two blog posts are associated with those comments.

	(5)
	
The popular tags in those blog posts are shares, cash, and equities.

41.4.2. When to Use Nested Objects

Nested objects
 are useful when there is one main entity, like our blogpost,
with a limited number of closely related but less important entities, such as
comments. It is useful to be able to find blog posts based on the content of
the comments, and the nested query and filter provide for fast query-time
joins.
The disadvantages of the nested model are as follows:
	
To add, change, or delete a nested document, the whole document must be
 reindexed. This becomes more costly the more nested documents there are.

	
Search requests return the whole document, not just the matching nested
 documents. Although there are plans afoot to support returning the best
 -matching nested documents with the root document, this is not yet supported.

Sometimes you need a complete separation between the main document and its
associated entities. This separation is provided by the parent-child
relationship.

Chapter 42. Parent-Child Relationship

The parent-child relationship is
similar in nature to the
nested model: both allow you to associate one entity
with another.
The difference is that, with nested objects, all entities live
within the same document while, with parent-child, the parent and children
are completely separate documents.
The parent-child functionality allows you to associate one document type with
another, in a one-to-many relationship—one parent to many children. The
advantages that parent-child has over nested objects are as follows:
	
The parent document can be updated without reindexing the children.

	
Child documents can be added, changed, or deleted without affecting either
 the parent or other children. This is especially useful when child documents
 are large in number and need to be added or changed frequently.

	
Child documents can be returned as the results of a search request.

Elasticsearch maintains a map of which parents are associated with
which children. It is thanks to this map that query-time joins are fast, but
it does place a limitation on the parent-child relationship: the parent
document and all of its children must live on the same shard.
The parent-child ID maps are stored in Section 34.1, “Doc Values”, which allows them to execute
quickly when fully hot in memory, but scalable enough to spill to disk when
the map is very large.
42.1. Parent-Child Mapping

All that is needed in order to establish the parent-child relationship is to
specify which document type should be the parent of a child type.

 This must
be done at index creation time, or with the update-mapping API before the
child type has been created.
As an example, let’s say that we have a company that has branches in many
cities. We would like to associate employees with the branch where they work.
We need to be able to search for branches, individual employees, and employees
who work for particular branches, so the nested model will not help. We
could, of course,
use application-side-joins or
data denormalization here instead, but for demonstration
purposes we will use parent-child.
All that we have to do is to tell Elasticsearch that the employee type has
the branch document type as its _parent, which we can do when we create
the index:
PUT /company
{
 "mappings": {
 "branch": {},
 "employee": {
 "_parent": {
 "type": "branch" (1)
 }
 }
 }
}
	(1)
	
Documents of type employee are children of type branch.

42.2. Indexing Parents and Children

Indexing parent documents is no different from any other document. Parents
don’t need to know anything about their children:
POST /company/branch/_bulk
{ "index": { "_id": "london" }}
{ "name": "London Westminster", "city": "London", "country": "UK" }
{ "index": { "_id": "liverpool" }}
{ "name": "Liverpool Central", "city": "Liverpool", "country": "UK" }
{ "index": { "_id": "paris" }}
{ "name": "Champs Élysées", "city": "Paris", "country": "France" }
When indexing child documents, you must specify the ID of the associated
parent document:
PUT /company/employee/1?parent=london (1)
{
 "name": "Alice Smith",
 "dob": "1970-10-24",
 "hobby": "hiking"
}
	(1)
	
This employee document is a child of the london branch.

This parent ID serves two purposes: it creates the link between the parent
and the child, and it ensures that the child document is stored on the same
shard as the parent.
In Section 4.1, “Routing a Document to a Shard”, we explained how Elasticsearch uses a routing value,
which defaults to the _id of the document, to decide which shard a document
should belong to. The routing value is plugged into this simple formula:
shard = hash(routing) % number_of_primary_shards
However, if a parent ID is specified, it is used as the routing value
instead of the _id. In other words, both the parent and the child use the
same routing value—the _id of the parent—and so they are both stored
on the same shard.
The parent ID needs to be specified on all single-document requests:
when retrieving a child document with a GET request, or when indexing,
updating, or deleting a child document. Unlike a search request, which is
forwarded to all shards in an index, these single-document requests are
forwarded only to the shard that holds the document—if the parent ID is
not specified, the request will probably be forwarded to the wrong shard.
The parent ID should also be specified when using the bulk API:
POST /company/employee/_bulk
{ "index": { "_id": 2, "parent": "london" }}
{ "name": "Mark Thomas", "dob": "1982-05-16", "hobby": "diving" }
{ "index": { "_id": 3, "parent": "liverpool" }}
{ "name": "Barry Smith", "dob": "1979-04-01", "hobby": "hiking" }
{ "index": { "_id": 4, "parent": "paris" }}
{ "name": "Adrien Grand", "dob": "1987-05-11", "hobby": "horses" }
Warning
If you want to change the parent value of a child document, it is
not sufficient to just reindex or update the child document—the new parent
document may be on a different shard. Instead, you must first delete the old
child, and then index the new child.

42.3. Finding Parents by Their Children

The has_child query and filter can be used to find parent documents based on
the contents of their children.
 For instance, we could find all branches that
have employees born after 1980 with a query like this:
GET /company/branch/_search
{
 "query": {
 "has_child": {
 "type": "employee",
 "query": {
 "range": {
 "dob": {
 "gte": "1980-01-01"
 }
 }
 }
 }
 }
}
Like the nested query, the has_child query could
match several child documents,
 each with a different relevance
score. How these scores are reduced to a single score for the parent document
depends on the score_mode parameter. The default setting is none, which
ignores the child scores and assigns a score of 1.0 to the parents, but it
also accepts avg, min, max, and sum.
The following query will return both london and liverpool, but london
will get a better score because Alice Smith is a better match than
Barry Smith:
GET /company/branch/_search
{
 "query": {
 "has_child": {
 "type": "employee",
 "score_mode": "max",
 "query": {
 "match": {
 "name": "Alice Smith"
 }
 }
 }
 }
}
Tip
The default score_mode of none is significantly faster than the other
modes because Elasticsearch doesn’t need to calculate the score for each child
document. Set it to avg, min, max, or sum only if you care about the
score.

42.3.1. min_children and max_children

The has_child query and filter both accept the min_children and
max_children parameters,
 which will return the parent document only if the
number of matching children is within the specified range.
This query will match only branches that have at least two employees:
GET /company/branch/_search
{
 "query": {
 "has_child": {
 "type": "employee",
 "min_children": 2, (1)
 "query": {
 "match_all": {}
 }
 }
 }
}
	(1)
	
A branch must have at least two employees in order to match.

The performance of a has_child query or filter with the min_children or
max_children parameters is much the same as a has_child query with scoring
enabled.
has_child Filter

The has_child filter works
 in the same way as the has_child query, except
that it doesn’t support the score_mode parameter. It can be used only in
filter context—such as inside a filtered query—and behaves
like any other filter: it includes or excludes, but doesn’t score.
While the results of a has_child filter are not cached, the usual caching
rules apply to the filter inside the has_child filter.

42.4. Finding Children by Their Parents

While a nested query can always
return only the root document as a result,
parent and child documents are independent and each can be queried
independently. The has_child query allows us to return parents based on
data in their children, and the has_parent query returns children based on
data in their parents.

It looks very similar to the has_child query. This example returns
employees who work in the UK:
GET /company/employee/_search
{
 "query": {
 "has_parent": {
 "type": "branch", (1)
 "query": {
 "match": {
 "country": "UK"
 }
 }
 }
 }
}
	(1)
	
Returns children who have parents of type branch

The has_parent query also supports the score_mode, but it accepts only two
settings: none (the default) and score. Each child can have only one
parent, so there is no need to reduce multiple scores into a single score for
the child. The choice is simply between using the score (score) or not
(none).
Non-scoring has_parent Query

When used in non-scoring mode (e.g. inside a filter clause), the has_parent
query no longer supports the score_mode parameter. Because it is merely
including/excluding documents and not scoring, the score_mode parameter
no longer applies.

42.5. Children Aggregation

Parent-child supports a
children aggregation as

a direct analog to the nested aggregation discussed in
Section 41.4, “Nested Aggregations”. A parent aggregation (the equivalent of
reverse_nested) is not supported.
This example demonstrates how we could determine the favorite hobbies of our
employees by country:
GET /company/branch/_search
{
 "size" : 0,
 "aggs": {
 "country": {
 "terms": { (1)
 "field": "country"
 },
 "aggs": {
 "employees": {
 "children": { (2)
 "type": "employee"
 },
 "aggs": {
 "hobby": {
 "terms": { (3)
 "field": "employee.hobby"
 }
 }
 }
 }
 }
 }
 }
}
	(1)
	
The country field in the branch documents.

	(2)
	
The children aggregation joins the parent documents with
 their associated children of type employee.

	(3)
	
The hobby field from the employee child documents.

42.6. Grandparents and Grandchildren

The parent-child relationship can extend across more than one generation—grandchildren can
have grandparents—but it requires an extra step to ensure
that documents from all generations are indexed on the same shard.
Let’s change our previous example to make the country type a parent of the
branch type:
PUT /company
{
 "mappings": {
 "country": {},
 "branch": {
 "_parent": {
 "type": "country" (1)
 }
 },
 "employee": {
 "_parent": {
 "type": "branch" (2)
 }
 }
 }
}
	(1)
	
branch is a child of country.

	(2)
	
employee is a child of branch.

Countries and branches have a simple parent-child relationship, so we use the
same process as we used in Section 42.2, “Indexing Parents and Children”:
POST /company/country/_bulk
{ "index": { "_id": "uk" }}
{ "name": "UK" }
{ "index": { "_id": "france" }}
{ "name": "France" }

POST /company/branch/_bulk
{ "index": { "_id": "london", "parent": "uk" }}
{ "name": "London Westmintster" }
{ "index": { "_id": "liverpool", "parent": "uk" }}
{ "name": "Liverpool Central" }
{ "index": { "_id": "paris", "parent": "france" }}
{ "name": "Champs Élysées" }
The parent ID has ensured that each branch document is routed to the same
shard as its parent country document. However, look what would happen if we
were to use the same technique with the employee grandchildren:
PUT /company/employee/1?parent=london
{
 "name": "Alice Smith",
 "dob": "1970-10-24",
 "hobby": "hiking"
}
The shard routing of the employee document would be decided by the parent ID—london—but the london document was routed to a shard by its own
parent ID—uk. It is very likely that the grandchild would end up on
a different shard from its parent and grandparent, which would prevent the
same-shard parent-child mapping from functioning.
Instead, we need to add an extra routing parameter, set to the ID of the
grandparent, to ensure that all three generations are indexed on the same
shard. The indexing request should look like this:
PUT /company/employee/1?parent=london&routing=uk (1)
{
 "name": "Alice Smith",
 "dob": "1970-10-24",
 "hobby": "hiking"
}
	(1)
	
The routing value overrides the parent value.

The parent parameter is still used to link the employee document with its
parent, but the routing parameter ensures that it is stored on the same
shard as its parent and grandparent. The routing value needs to be provided
for all single-document requests.
Querying and aggregating across generations works, as long as you step through
each generation. For instance, to find countries where employees enjoy hiking,
we need to join countries with branches, and branches with employees:
GET /company/country/_search
{
 "query": {
 "has_child": {
 "type": "branch",
 "query": {
 "has_child": {
 "type": "employee",
 "query": {
 "match": {
 "hobby": "hiking"
 }
 }
 }
 }
 }
 }
}

42.7. Practical Considerations

Parent-child joins can be a useful technique for managing relationships when
index-time performance
 is more important than search-time performance, but it
comes at a significant cost. Parent-child queries can be 5 to 10 times slower
than the equivalent nested query!
42.7.1. Global Ordinals and Latency

Parent-child uses global ordinals to speed
 up joins.
Regardless of whether the parent-child map uses an in-memory cache or on-disk
doc values, global ordinals still need to be rebuilt after any change to the
index.
The more parents in a shard, the longer global ordinals will take to build.
Parent-child is best suited to situations where there are many children for
each parent, rather than many parents and few children.
Global ordinals, by default, are built lazily: the first parent-child query or
aggregation after a refresh will trigger building of global ordinals. This
can introduce a significant latency spike for your users. You can use
eager_global_ordinals to shift the cost of
building global ordinals from query time to refresh time, by mapping the
_parent field as follows:
PUT /company
{
 "mappings": {
 "branch": {},
 "employee": {
 "_parent": {
 "type": "branch",
 "fielddata": {
 "loading": "eager_global_ordinals" (1)
 }
 }
 }
 }
}
	(1)
	
Global ordinals for the _parent field will be built before a new segment
 becomes visible to search.

With many parents, global ordinals can take several seconds to build. In this
case, it makes sense to increase the refresh_interval so that refreshes
happen less often and global ordinals remain valid for longer. This will
greatly reduce the CPU cost of rebuilding global ordinals every second.

42.7.2. Multigenerations and Concluding Thoughts

The ability to join multiple generations (see Section 42.6, “Grandparents and Grandchildren”) sounds
attractive until
you think of the costs involved:
	
The more joins you have, the worse performance will be.

	
Each generation of parents needs to have their string _id fields stored in
 memory, which can consume a lot of RAM.

As you consider your relationship schemes and whether parent-child is right for you,
consider this advice
about parent-child relationships:
	
Use parent-child relationships sparingly, and only when there are many more children than parents.

	
Avoid using multiple parent-child joins in a single query.

	
Avoid scoring by using the has_child filter, or the has_child query with
 score_mode set to none.

	
Keep the parent IDs short, so that they compress better in doc values, and use
less memory when transiently loaded.

Above all: think about the other relationship techniques that we have discussed before reaching for parent-child.

Chapter 43. Designing for Scale

Elasticsearch is used by some companies to index
and search petabytes of data
every day, but most of us start out with something a little more humble in
size. Even if we aspire to be the next Facebook, it is unlikely that our bank
balance matches our aspirations. We need to build for what we have today, but
in a way that will allow us to scale out flexibly and rapidly.
Elasticsearch is built to scale. It will run very happily on your laptop or
in a cluster containing hundreds of nodes, and the experience is almost
identical. Growing from a small cluster to a large cluster is almost entirely
automatic and painless. Growing from a large cluster to a very large cluster
requires a bit more planning and design, but it is still relatively painless.
Of course, it is not magic. Elasticsearch has its limitations too. If you
are aware of those limitations and work with them, the growing process will be
pleasant. If you treat Elasticsearch badly, you could be in for a world of
pain.
The default settings in Elasticsearch will take you a long way, but to get the
most bang for your buck, you need to think about how data flows through your
system. We will talk about two common data flows: time-based data (such as log
events or social network streams, where relevance is driven by recency), and
user-based data (where a large document collection can be subdivided by user or
customer).
This chapter will help you make the right decisions up front, to avoid
nasty surprises later.
43.1. The Unit of Scale

In Section 11.2, “Dynamically Updatable Indices”, we explained that a shard is a Lucene index and that
an Elasticsearch index is a collection of shards.
 Your application talks to an
index, and Elasticsearch routes your requests to the appropriate shards.
A shard is the unit of scale.
 The smallest index you can have is one with a
single shard. This may be more than sufficient for your needs—a single
shard can hold a lot of data—but it limits your ability to scale.
Imagine that our cluster consists of one node, and in our cluster we have one
index, which has only one shard:
PUT /my_index
{
 "settings": {
 "number_of_shards": 1, (1)
 "number_of_replicas": 0
 }
}
	(1)
	
Create an index with one primary shard and zero replica shards.

This setup may be small, but it serves our current needs and is cheap to run.
Note
At the moment we are talking about only primary shards. We discuss
replica shards in Section 43.5, “Replica Shards”.

One glorious day, the Internet discovers us, and a single node just can’t keep up with
the traffic. We decide to add a second node, as per Figure 43.1, “An index with one shard has no scale factor”. What happens?
Figure 43.1. An index with one shard has no scale factor
[image: An index with one shard has no scale factor]

The answer is: nothing. Because we have only one shard, there is nothing to
put on the second node. We can’t increase the number of shards in the index,
because the number of shards is an important element in the algorithm used to
route documents to shards:
shard = hash(routing) % number_of_primary_shards
Our only option now is to reindex our data into a new, bigger index that has
more shards, but that will take time that we can ill afford. By planning
ahead, we could have avoided this problem completely by overallocating.

43.2. Shard Overallocation

A shard lives on a single node,

 but a node can hold multiple shards. Imagine
that we created our index with two primary shards instead of one:
PUT /my_index
{
 "settings": {
 "number_of_shards": 2, (1)
 "number_of_replicas": 0
 }
}
	(1)
	
Create an index with two primary shards and zero replica shards.

With a single node, both shards would be assigned to the same node. From the
point of view of our application, everything functions as it did before. The
application communicates with the index, not the shards, and there is still
only one index.
This time, when we add a second node, Elasticsearch will automatically move
one shard from the first node to the second node, as depicted in Figure 43.2, “An index with two shards can take advantage of a second node”. Once the relocation has
finished, each shard will have access to twice the computing power that it had
before.
Figure 43.2. An index with two shards can take advantage of a second node
[image: An index with two shards can take advantage of a second node]

We have been able to double our capacity by simply copying a shard across the
network to the new node. The best part is, we achieved this with zero
downtime. All indexing and search requests continued to function normally
while the shard was being moved.
A new index in Elasticsearch is allotted five primary shards by default. That
means that we can spread that index out over a maximum of five nodes, with one
shard on each node. That’s a lot of capacity, and it happens without you
having to think about it at all!
Shard Splitting

Users often ask why Elasticsearch doesn’t support shard-splitting—the
ability to split each shard into two or more pieces. The reason is that
shard-splitting is a bad idea:
	
Splitting a shard is almost equivalent to reindexing your data. It’s a much
 heavier process than just copying a shard from one node to another.

	
Splitting is exponential. You start with one shard, then split into two, and then
 four, eight, sixteen, and so on. Splitting doesn’t allow you to increase capacity
 by just 50%.

	
Shard splitting requires you to have enough capacity to hold a second copy
 of your index. Usually, by the time you realize that you need to scale out,
 you don’t have enough free space left to perform the split.

In a way, Elasticsearch does support shard splitting. You can always reindex
your data to a new index with the appropriate number of shards (see
Section 10.11, “Reindexing Your Data”). It is still a more intensive process than moving shards around,
and still requires enough free space to complete, but at least you can control
the number of shards in the new index.

43.3. Kagillion Shards

The first thing that new users do when they learn about
shard overallocation is

 to say to themselves:
	 	I don’t know how big this is going to be, and I can’t change the index size
later on, so to be on the safe side, I’ll just give this index 1,000 shards…
	
	 	--
A new user

One thousand shards—really? And you don’t think that, perhaps, between now
and the time you need to buy one thousand nodes, that you may need to
rethink your data model once or twice and have to reindex?
A shard is not free. Remember:
	
A shard is a Lucene index under the covers, which uses file handles,
 memory, and CPU cycles.

	
Every search request needs to hit a copy of every shard in the index.
 That’s fine if every shard is sitting on a different node, but not if many
 shards have to compete for the same resources.

	
Term statistics, used to calculate relevance, are per shard. Having a small
 amount of data in many shards leads to poor relevance.

Tip
A little overallocation is good. A kagillion shards is bad. It is difficult to
define what constitutes too many shards, as it depends on their size and how
they are being used. A hundred shards that are seldom used may be fine, while
two shards experiencing very heavy usage could be too many. Monitor your nodes
to ensure that they have enough spare capacity to deal with exceptional
conditions.

Scaling out should be done in phases. Build in enough capacity to get to the
next phase. Once you get to the next phase, you have time to think about the
changes you need to make to reach the phase after that.

43.4. Capacity Planning

If 1 shard is too few and 1,000 shards are too many, how do I know how many
shards I need?

 This is a question that is impossible to answer in the general case. There are
just too many variables: the hardware that you use, the size and complexity
of your documents, how you index and analyze those documents, the types of
queries that you run, the aggregations that you perform, how you model your
data, and more.
Fortunately, it is an easy question to answer in the specific case—yours:
	
Create a cluster consisting of a single server, with the hardware that you
 are considering using in production.

	
Create an index with the same settings and analyzers that you plan to use
 in production, but with only one primary shard and no replicas.

	
Fill it with real documents (or as close to real as you can get).

	
Run real queries and aggregations (or as close to real as you can get).

Essentially, you want to replicate real-world usage and to push this single
shard until it “breaks.” Even the definition of breaks depends on you:
some users require that all responses return within 50ms; others are quite
happy to wait for 5 seconds.
Once you define the capacity of a single shard, it is easy to extrapolate that
number to your whole index. Take the total amount of data that you need to
index, plus some extra for future growth, and divide by the capacity of a
single shard. The result is the number of primary shards that you will need.
Tip
Capacity planning should not be your first step.
First look for ways to optimize how you are using Elasticsearch. Perhaps you
have inefficient queries, not enough RAM, or you have left swap enabled?
We have seen new users who, frustrated by initial performance, immediately
start trying to tune the garbage collector or adjust the number of threads,
instead of tackling the simple problems like removing wildcard queries.

43.5. Replica Shards

Up until now we have spoken only about primary shards, but we have another
tool in our belt: replica shards.

 The main purpose of replicas is for
failover, as discussed in Chapter 2, Life Inside a Cluster: if the node holding a
primary shard dies, a replica is promoted to the role of primary.
At index time, a replica shard does the same amount of work as the primary
shard. New documents are first indexed on the primary and then on any
replicas. Increasing the number of replicas does not change the capacity of
the index.
However, replica shards can serve read requests. If, as is often the case,
your index is search heavy, you can increase search performance by increasing
the number of replicas, but only if you also add extra hardware.
Let’s return to our example of an index with two primary shards. We increased
capacity of the index by adding a second node. Adding more nodes would not
help us to add indexing capacity, but we could take advantage of the extra
hardware at search time by increasing the number of replicas:
PUT /my_index/_settings
{
 "number_of_replicas": 1
}
Having two primary shards, plus a replica of each primary, would give us a
total of four shards: one for each node, as shown in Figure 43.3, “An index with two primary shards and one replica can scale out across four nodes”.
Figure 43.3. An index with two primary shards and one replica can scale out across four nodes
[image: An index with two primary shards and one replica can scale out across four nodes]

43.5.1. Balancing Load with Replicas

Search performance depends on the response times of the slowest node, so it is a good idea to try to balance out the load across all nodes.
 If we
added just one extra node instead of two, we would end up with two nodes having one shard each, and one node doing double the work with two shards.
We can even things out by adjusting the number of replicas. By allocating two
replicas instead of one, we end up with a total of six shards, which can be
evenly divided between three nodes, as shown in Figure 43.4, “Adjust the number of replicas to balance the load between nodes”:
PUT /my_index/_settings
{
 "number_of_replicas": 2
}
As a bonus, we have also increased our availability. We can now afford to
lose two nodes and still have a copy of all our data.
Figure 43.4. Adjust the number of replicas to balance the load between nodes
[image: Adjust the number of replicas to balance the load between nodes]

Note
The fact that node 3 holds two replicas and no primaries is not
important. Replicas and primaries do the same amount of work; they just play
slightly different roles. There is no need to ensure that primaries are
distributed evenly across all nodes.

43.6. Multiple Indices

Finally, remember that there is no rule that limits your application to using
only a single index.

 When we issue a search request, it is forwarded to a
copy (a primary or a replica) of all the shards in an index. If we issue the
same search request on multiple indices, the exact same thing happens—there
are just more shards involved.
Tip
Searching 1 index of 50 shards is exactly equivalent to searching
50 indices with 1 shard each: both search requests hit 50 shards.

This can be a useful fact to remember when you need to add capacity on the
fly. Instead of having to reindex your data into a bigger index, you can
just do the following:
	
Create a new index to hold new data.

	
Search across both indices to retrieve new and old data.

In fact, with a little forethought, adding a new index can be done in a
completely transparent way, without your application ever knowing that
anything has changed.
In Section 10.12, “Index Aliases and Zero Downtime”, we spoke about using an index alias to point to the
current version of your index. For instance, instead of naming your index
tweets, name it tweets_v1. Your application would still talk to tweets,
but in reality that would be an alias that points to tweets_v1. This allows
you to switch the alias to point to a newer version of the index on the fly.
A similar technique can be used to expand capacity by adding a new index. It
requires a bit of planning because you will need two aliases: one for
searching and one for indexing:
PUT /tweets_1/_alias/tweets_search (1)
PUT /tweets_1/_alias/tweets_index (2)
	(1) (2)
	
Both the tweets_search and the tweets_index alias point to
 index tweets_1.

New documents should be indexed into tweets_index, and searches should be
performed against tweets_search. For the moment, these two aliases point to
the same index.
When we need extra capacity, we can create a new index called tweets_2 and
update the aliases as follows:
POST /_aliases
{
 "actions": [
 { "add": { "index": "tweets_2", "alias": "tweets_search" }}, (1)
 { "remove": { "index": "tweets_1", "alias": "tweets_index" }}, (2)
 { "add": { "index": "tweets_2", "alias": "tweets_index" }} (3)
]
}
	(1)
	
Add index tweets_2 to the tweets_search alias.

	(2) (3)
	
Switch tweets_index from tweets_1 to tweets_2.

A search request can target multiple indices, so having the search alias point
to tweets_1 and tweets_2 is perfectly valid. However, indexing requests can
target only a single index. For this reason, we have to switch the index alias
to point to only the new index.
Tip
A document GET request, like
 an indexing request, can target only one index.
This makes retrieving a document by ID a bit more complicated in this
scenario. Instead, run a search request with the
ids query, or do a
multi-get request on tweets_1 and tweets_2.

Using multiple indices to expand index capacity on the fly is of particular
benefit when dealing with time-based data such as logs or social-event
streams, which we discuss in the next section.

43.7. Time-Based Data

One of the most common use cases for Elasticsearch is for logging,

 so common
in fact that Elasticsearch provides an integrated logging platform called the
ELK stack—Elasticsearch, Logstash, and Kibana—to make the process easy.
Logstash collects, parses, and
enriches logs before indexing them into Elasticsearch. Elasticsearch acts as
a centralized logging server, and
Kibana is a graphic frontend
that makes it easy to query and visualize what is happening across your
network in near real-time.
Most traditional use cases for search engines involve a relatively static
collection of documents that grows slowly. Searches look for the most relevant
documents, regardless of when they were created.
Logging—and other time-based data streams such as social-network activity—are very different in nature. The number of documents in the index grows
rapidly, often accelerating with time. Documents are almost never updated,
and searches mostly target the most recent documents. As documents age, they
lose value.
We need to adapt our index design to function with the flow of time-based
data.
43.7.1. Index per Time Frame

If we were to have one big index for documents of this type, we would soon run
out of space. Logging events just keep on coming, without pause or
interruption. We could delete the old events with a scroll
query and bulk delete, but this approach is very inefficient. When you delete a
document, it is only marked as deleted (see Section 11.2.1, “Deletes and Updates”). It won’t
be physically deleted until the segment containing it is merged away.
Instead, use an index per time frame.
You could start out with an index per
year (logs_2014) or per month (logs_2014-10). Perhaps, when your
website gets really busy, you need to switch to an index per day
(logs_2014-10-24). Purging old data is easy: just delete old indices.
This approach has the advantage of allowing you to scale as and when you need
to. You don’t have to make any difficult decisions up front. Every day is a
new opportunity to change your indexing time frames to suit the current demand.
Apply the same logic to how big you make each index. Perhaps all you need is
one primary shard per week initially. Later, maybe you need five primary shards
per day. It doesn’t matter—you can adjust to new circumstances at any
time.
Aliases can help make switching indices more transparent. For indexing,
you can point logs_current to the index currently accepting new log events,
and for searching, update last_3_months to point to all indices for the
previous three months:
POST /_aliases
{
 "actions": [
 { "add": { "alias": "logs_current", "index": "logs_2014-10" }}, (1)
 { "remove": { "alias": "logs_current", "index": "logs_2014-09" }}, (2)
 { "add": { "alias": "last_3_months", "index": "logs_2014-10" }}, (3)
 { "remove": { "alias": "last_3_months", "index": "logs_2014-07" }} (4)
]
}
	(1) (2)
	
Switch logs_current from September to October.

	(3) (4)
	
Add October to last_3_months and remove July.

43.8. Index Templates

Elasticsearch doesn’t require you to create an index before using it.

 With
logging, it is often more convenient to rely on index autocreation than to
have to create indices manually.
Logstash uses the timestamp from an event to derive the index name. By
default, it indexes into a different index every day, so an event with a
@timestamp of 2014-10-01 00:00:01 will be sent to the index
logstash-2014.10.01. If that index doesn’t already exist, it will be
created for us.
Usually we want some control over the settings and mappings of the new index.
Perhaps we want to limit the number of shards to 1, and we want to disable the
_all field. Index templates can be used to control which settings should be
applied to newly created indices:
PUT /_template/my_logs (1)
{
 "template": "logstash-*", (2)
 "order": 1, (3)
 "settings": {
 "number_of_shards": 1 (4)
 },
 "mappings": {
 "_default_": { (5)
 "_all": {
 "enabled": false
 }
 }
 },
 "aliases": {
 "last_3_months": {} (6)
 }
}
	(1)
	
Create a template called my_logs.

	(2)
	
Apply this template to all indices beginning with logstash-.

	(3)
	
This template should override the default logstash template that has
 a lower order.

	(4)
	
Limit the number of primary shards to 1.

	(5)
	
Disable the _all field for all types.

	(6)
	
Add this index to the last_3_months alias.

This template specifies the default settings that will be applied to any index
whose name begins with logstash-, whether it is created manually or
automatically. If we think the index for tomorrow will need more capacity than
today, we can update the index to use a higher number of shards.
The template even adds the newly created index into the last_3_months alias, although
removing the old indices from that alias will have to be done manually.

43.9. Retiring Data

As time-based data ages, it becomes less relevant.
 It’s possible that we
will want to see what happened last week, last month, or even last year, but
for the most part, we’re interested in only the here and now.
The nice thing about an index per time frame

is that it enables us to easily
delete old data: just delete the indices that are no longer relevant:
DELETE /logs_2013*
Deleting a whole index is much more efficient than deleting individual
documents: Elasticsearch just removes whole directories.
But deleting an index is very final. There are a number of things we can
do to help data age gracefully, before we decide to delete it completely.
43.9.1. Migrate Old Indices

With logging data, there is likely to be one hot index—the index for
today.
 All new documents will be added to that index, and almost all queries
will target that index. It should use your best hardware.
How does Elasticsearch know which servers are your best servers? You tell it,
by assigning arbitrary tags to each server. For instance, you could start a
node as follows:
./bin/elasticsearch --node.box_type strong
The box_type parameter is completely arbitrary—you could have named it
whatever you like—but you can use these arbitrary values to tell
Elasticsearch where to allocate an index.
We can ensure that today’s index is on our strongest boxes by creating it with
the following settings:
PUT /logs_2014-10-01
{
 "settings": {
 "index.routing.allocation.include.box_type" : "strong"
 }
}
Yesterday’s index no longer needs to be on our strongest boxes, so we can move
it to the nodes tagged as medium by updating its index settings:
POST /logs_2014-09-30/_settings
{
 "index.routing.allocation.include.box_type" : "medium"
}

43.9.2. Optimize Indices

Yesterday’s index is unlikely to change.
 Log events are static: what
happened in the past stays in the past. If we merge each shard down to just a
single segment, it’ll use fewer resources and will be quicker to query. We
can do this with the Section 11.5.1, “optimize API”.
It would be a bad idea to optimize the index while it was still allocated to
the strong boxes, as the optimization process could swamp the I/O on those
nodes and impact the indexing of today’s logs. But the medium boxes aren’t
doing very much at all, so we are safe to optimize.
Yesterday’s index may have replica shards.
 If we issue an optimize request, it
will optimize the primary shard and the replica shards, which is a waste.
Instead, we can remove the replicas temporarily, optimize, and then restore the
replicas:
POST /logs_2014-09-30/_settings
{ "number_of_replicas": 0 }

POST /logs_2014-09-30/_optimize?max_num_segments=1

POST /logs_2014-09-30/_settings
{ "number_of_replicas": 1 }
Of course, without replicas, we run the risk of losing data if a disk suffers
catastrophic failure. You may want to back up the data first, with the
snapshot-restore API.

43.9.3. Closing Old Indices

As indices get even older, they reach a point where they are almost never
accessed.
 We could delete them at this stage, but perhaps you want to keep
them around just in case somebody asks for them in six months.
These indices can be closed. They will still exist in the cluster, but they
won’t consume resources other than disk space. Reopening an index is much
quicker than restoring it from backup.
Before closing, it is worth flushing the index to make sure that there are no
transactions left in the transaction log. An empty transaction log will make
index recovery faster when it is reopened:
POST /logs_2014-01-*/_flush (1)
POST /logs_2014-01-*/_close (2)
POST /logs_2014-01-*/_open (3)
	(1)
	
Flush all indices from January to empty the transaction logs.

	(2)
	
Close all indices from January.

	(3)
	
When you need access to them again, reopen them with the open API.

43.9.4. Archiving Old Indices

Finally, very old indices
can be archived off to some long-term storage like a
shared disk or Amazon’s S3 using the
snapshot-restore API, just in case you may need
to access them in the future. Once a backup exists, the index can be deleted
from the cluster.

43.10. User-Based Data

Often, users start using Elasticsearch because they need to add full-text
search or analytics to an existing application.
 They create a single index
that holds all of their documents. Gradually, others in the company realize
how much benefit Elasticsearch brings, and they want to add their data to
Elasticsearch as well.
Fortunately, Elasticsearch supports
multitenancy so each new user can
have her own index in the same cluster. Occasionally, somebody will want to
search across the documents for all users, which they can do by searching
across all indices, but most of the time, users are interested in only their
own documents.
Some users have more documents than others, and some users will have heavier
search loads than others, so the ability to specify the number of primary shards
and replica shards that each index should have fits well with the index-per-user
model.

 Similarly, busier indices can be allocated to stronger boxes with shard
allocation filtering. (See Section 43.9.1, “Migrate Old Indices”.)
Tip
Don’t just use the default number of primary shards for every index.
Think about how much data that index needs to hold. It may be that all you
need is one shard—any more is a waste of resources.

Most users of Elasticsearch can stop here. A simple index-per-user approach
is sufficient for the majority of cases.
In exceptional cases, you may find that you need to support a large number of
users, all with similar needs. An example might be hosting a search engine
for thousands of email forums. Some forums may have a huge amount of traffic,
but the majority of forums are quite small. Dedicating an index with a single
shard to a small forum is overkill—a single shard could hold the data for
many forums.
What we need is a way to share resources across users, to give the impression
that each user has his own index without wasting resources on small users.

43.11. Shared Index

We can use a large shared index for the many smaller

forums by indexing
the forum identifier in a field and using it as a filter:
PUT /forums
{
 "settings": {
 "number_of_shards": 10 (1)
 },
 "mappings": {
 "post": {
 "properties": {
 "forum_id": { (2)
 "type": "string",
 "index": "not_analyzed"
 }
 }
 }
 }
}

PUT /forums/post/1
{
 "forum_id": "baking", (3)
 "title": "Easy recipe for ginger nuts",
 ...
}
	(1)
	
Create an index large enough to hold thousands of smaller forums.

	(2) (3)
	
Each post must include a forum_id to identify which forum it belongs
 to.

We can use the forum_id as a filter to search within a single forum. The
filter will exclude most of the documents in the index (those from other
forums), and caching will ensure that responses are fast:
GET /forums/post/_search
{
 "query": {
 "bool": {
 "must": {
 "match": {
 "title": "ginger nuts"
 }
 },
 "filter": {
 "term": {
 "forum_id": {
 "baking"
 }
 }
 }
 }
 }
}
This approach works, but we can do better.
 The posts from a single forum
would fit easily onto one shard, but currently they are scattered across all ten
shards in the index. This means that every search request has to be forwarded
to a primary or replica of all ten shards. What would be ideal is to ensure
that all the posts from a single forum are stored on the same shard.
In Section 4.1, “Routing a Document to a Shard”, we explained that a document is allocated to a
particular shard by using this formula:
shard = hash(routing) % number_of_primary_shards
The routing value defaults to the document’s _id, but we can override that
and provide our own custom routing value, such as forum_id. All
documents with the same routing value will be stored on the same shard:
PUT /forums/post/1?routing=baking (1)
{
 "forum_id": "baking", (2)
 "title": "Easy recipe for ginger nuts",
 ...
}
	(1) (2)
	
Using forum_id as the routing value ensures that all posts from the
 same forum are stored on the same shard.

When we search for posts in a particular forum, we can pass the same routing
value to ensure that the search request is run on only the single shard that
holds our documents:
GET /forums/post/_search?routing=baking (1)
{
 "query": {
 "bool": {
 "must": {
 "match": {
 "title": "ginger nuts"
 }
 },
 "filter": {
 "term": { (2)
 "forum_id": {
 "baking"
 }
 }
 }
 }
 }
}
	(1)
	
The query is run on only the shard that corresponds to this routing value.

	(2)
	
We still need the filtering query, as a single shard can hold posts from many forums.

Multiple forums can be queried by passing a comma-separated list of routing
values, and including each forum_id in a terms query:
GET /forums/post/_search?routing=baking,cooking,recipes
{
 "query": {
 "bool": {
 "must": {
 "match": {
 "title": "ginger nuts"
 }
 },
 "filter": {
 "terms": {
 "forum_id": {
 ["baking", "cooking", "recipes"]
 }
 }
 }
 }
 }
}
While this approach is technically efficient, it looks a bit clumsy because of
the need to specify routing values and terms queries on every query or
indexing request. Index aliases to the rescue!

43.12. Faking Index per User with Aliases

To keep our design simple and clean, we would
 like our application to believe that
we have a dedicated index per user—or per forum in our example—even if
the reality is that we are using one big shared index. To do
that, we need some way to hide the routing value and the filter on
forum_id.
Index aliases allow us to do just that. When you associate an alias with an
index, you can also specify a filter and routing values:
PUT /forums/_alias/baking
{
 "routing": "baking",
 "filter": {
 "term": {
 "forum_id": "baking"
 }
 }
}
Now, we can treat the baking alias as if it were its own index. Documents
indexed into the baking alias automatically get the custom routing value
applied:
PUT /baking/post/1 (1)
{
 "forum_id": "baking", (2)
 "title": "Easy recipe for ginger nuts",
 ...
}
	(1) (2)
	
We still need the forum_id field for the filter to work, but
 the custom routing value is now implicit.

Queries run against the baking alias are run just on the shard associated
with the custom routing value, and the results are automatically filtered by
the filter we specified:
GET /baking/post/_search
{
 "query": {
 "match": {
 "title": "ginger nuts"
 }
 }
}
Multiple aliases can be specified when searching across multiple forums:
GET /baking,recipes/post/_search (1)
{
 "query": {
 "match": {
 "title": "ginger nuts"
 }
 }
}
	(1)
	
Both routing values are applied, and results can match either filter.

43.13. One Big User

Big, popular forums start out as small forums.
 One day we will find that one
shard in our shared index is doing a lot more work than the other shards,
because it holds the documents for a forum that has become very popular. That
forum now needs its own index.
The index aliases that we’re using to fake an index per user give us a clean
migration path for the big forum.

The first step is to create a new index dedicated to the forum, and with the
appropriate number of shards to allow for expected growth:
PUT /baking_v1
{
 "settings": {
 "number_of_shards": 3
 }
}
The next step is to migrate the data from the shared index into the dedicated
index, which can be done using a scroll query and the
bulk API. As soon as the migration is finished, the index alias
can be updated to point to the new index:
POST /_aliases
{
 "actions": [
 { "remove": { "alias": "baking", "index": "forums" }},
 { "add": { "alias": "baking", "index": "baking_v1" }}
]
}
Updating the alias is atomic; it’s like throwing a switch. Your application
continues talking to the baking API and is completely unaware that it now
points to a new dedicated index.
The dedicated index no longer needs the filter or the routing values. We can
just rely on the default sharding that Elasticsearch does using each
document’s _id field.
The last step is to remove the old documents from the shared index, which can
be done by searching using the original routing value and forum ID and performing
a bulk delete.
The beauty of this index-per-user model is that it allows you to reduce
resources, keeping costs low, while still giving you the flexibility to scale
out when necessary, and with zero downtime.

43.14. Scale Is Not Infinite

Throughout this chapter we have spoken about many of the ways that
Elasticsearch can scale.
Most scaling problems can be solved by adding more
nodes. But one resource is finite and should be treated with
respect: the cluster state.
The cluster state is a data structure that holds the following cluster-level information:
	
Cluster-level settings

	
Nodes that are part of the cluster

	
Indices, plus their settings, mappings, analyzers, warmers, and aliases

	
The shards associated with each index, plus the node on which they are
 allocated

You can view the current cluster state with this request:
GET /_cluster/state
The cluster state exists on every node in the cluster,
 including client nodes.
This is how any node can forward a request directly to the node that holds the
requested data—every node knows where every document lives.
Only the master node is allowed to update the cluster state. Imagine that an
indexing request introduces a previously unknown field. The node holding the
primary shard for the document must forward the new mapping to the master
node. The master node incorporates the changes in the cluster state, and
publishes a new version to all of the nodes in the cluster.
Search requests use the cluster state, but they don’t change it. The same
applies to document-level CRUD requests unless, of course, they introduce a
new field that requires a mapping update. By and large, the cluster state is
static and is not a bottleneck.
However, remember that this same data structure has to exist in memory on
every node, and must be published to every node whenever it is updated. The
bigger it is, the longer that process will take.
The most common problem that we see with the cluster state is the introduction
of too many fields. A user might decide to use a separate field for every IP
address, or every referer URL. The following example keeps track of the number of
times a page has been visited by using a different field name for every unique
referer:
POST /counters/pageview/home_page/_update
{
 "script": "ctx._source[referer]++",
 "params": {
 "referer": "http://www.foo.com/links?bar=baz"
 }
}
This approach is catastrophically bad! It will result in millions of fields,
all of which have to be stored in the cluster state. Every time a new referer
is seen, a new field is added to the already bloated cluster state, which then
has to be published to every node in the cluster.
A much better approach
is to use nested objects, with one
field for the parameter name—referer— and another field for its
associated value—count:
 "counters": [
 { "referer": "http://www.foo.com/links?bar=baz", "count": 2 },
 { "referer": "http://www.linkbait.com/article_3", "count": 10 },
 ...
]
The nested approach may increase the number of documents, but Elasticsearch is
built to handle that. The important thing is that it keeps the cluster state
small and agile.
Eventually, despite your best intentions, you may find that the number of
nodes and indices and mappings that you have is just too much for one cluster.
At this stage, it is probably worth dividing the problem into multiple
clusters. Thanks to tribe nodes, you can even run
searches across multiple clusters, as if they were one big cluster.

Part VII. Administration, Monitoring, and Deployment

The majority of this book is aimed at building applications by using Elasticsearch
as the backend. This section is a little different. Here, you will learn
how to manage Elasticsearch itself. Elasticsearch is a complex piece of
software, with many moving parts. Many APIs are designed
to help you manage your Elasticsearch deployment.
In this chapter, we cover three main topics:
	
Monitoring your cluster’s vital statistics, understanding which behaviors are normal and which
should be cause for alarm, and interpreting various stats provided by Elasticsearch

	
Deploying your cluster to production, including best practices and important
configuration that should (or should not!) be changed

	
Performing post-deployment logistics, such as a rolling restart or backup of
your cluster

Chapter 44. Monitoring

Elasticsearch is often deployed as a cluster of nodes.
 A variety of
APIs let you manage and monitor the cluster itself, rather than interact
with the data stored within the cluster.
As with most functionality in Elasticsearch, there is an overarching design goal
that tasks should be performed through an API rather than by modifying static
configuration files. This becomes especially important as your cluster scales.
Even with a provisioning system (such as Puppet, Chef, and Ansible), a single HTTP API call
is often simpler than pushing new configurations to hundreds of physical machines.
To that end, this chapter presents the various APIs that allow you to
dynamically tweak, tune, and configure your cluster. It also covers a
host of APIs that provide statistics about the cluster itself so you can
monitor for health and performance.
44.1. Marvel for Monitoring

Marvel enables
you to easily monitor Elasticsearch through Kibana. You can view your
cluster’s health and performance in real time as well as analyze
past cluster, index, and node metrics.
While you can access a large number of statistics through the APIs described
in this chapter, they only show you what’s going on at a single point in time.
Knowing memory usage at this instant is helpful, but knowing
memory usage over time is much more useful. Marvel queries and aggregates
the metrics so you can visualize your cluster’s
behavior over time, which makes it easy to spot trends.
As your cluster grows, the output from the stats APIs can get truly hairy.
Once you have a dozen nodes, let alone a hundred, reading through stacks of JSON
becomes very tedious. Marvel lets your explore the data interactively and
makes it easy to zero in on what’s going on with particular nodes or indices.
Marvel uses the same stats APIs that are available to you—it does not expose
any statistics that you can’t access through the APIs. However, Marvel greatly
simplifies the collection and visualization of those statistics.
Marvel is free to use (even in production!), so you should definitely try it out!
For installation instructions, see
Getting Started with Marvel.

44.2. Cluster Health

An Elasticsearch cluster may consist of a single node with a single index. Or it

may have a hundred data nodes, three dedicated masters, a few dozen client nodes—all operating on a thousand indices (and tens of thousands of shards).
No matter the scale of the cluster, you’ll want a quick way to assess the status
of your cluster. The Cluster Health API fills that role. You can think of it
as a 10,000-foot view of your cluster. It can reassure you that everything
is all right, or alert you to a problem somewhere in your cluster.
Let’s execute a cluster-health API and see what the response looks like:
GET _cluster/health
Like other APIs in Elasticsearch, cluster-health will return a JSON response.
This makes it convenient to parse for automation and alerting. The response
contains some critical information about your cluster:
{
 "cluster_name": "elasticsearch_zach",
 "status": "green",
 "timed_out": false,
 "number_of_nodes": 1,
 "number_of_data_nodes": 1,
 "active_primary_shards": 10,
 "active_shards": 10,
 "relocating_shards": 0,
 "initializing_shards": 0,
 "unassigned_shards": 0
}
The most important piece of information in the response is the status field.
The status may be one of three values:
	
green

	
 All primary and replica shards are allocated. Your cluster is 100%
operational.

	
yellow

	
 All primary shards are allocated, but at least one replica is missing.
No data is missing, so search results will still be complete. However, your
high availability is compromised to some degree. If more shards disappear, you
might lose data. Think of yellow as a warning that should prompt investigation.

	
red

	
 At least one primary shard (and all of its replicas) is missing. This means
that you are missing data: searches will return partial results, and indexing
into that shard will return an exception.

The green/yellow/red status is a great way to glance at your cluster and understand
what’s going on. The rest of the metrics give you a general summary of your cluster:
	
number_of_nodes and number_of_data_nodes are fairly self-descriptive.

	
active_primary_shards indicates the number of primary shards in your cluster. This
is an aggregate total across all indices.

	
active_shards is an aggregate total of all shards across all indices, which
includes replica shards.

	
relocating_shards shows the number of shards that are currently moving from
one node to another node. This number is often zero, but can increase when
Elasticsearch decides a cluster is not properly balanced, a new node is added,
or a node is taken down, for example.

	
initializing_shards is a count of shards that are being freshly created. For
example, when you first create an index, the shards will all briefly reside in
initializing state. This is typically a transient event, and shards shouldn’t
linger in initializing too long. You may also see initializing shards when a
node is first restarted: as shards are loaded from disk, they start as initializing.

	
unassigned_shards are shards that exist in the cluster state, but cannot be
found in the cluster itself. A common source of unassigned shards are unassigned
replicas. For example, an index with five shards and one replica will have five unassigned
replicas in a single-node cluster. Unassigned shards will also be present if your
cluster is red (since primaries are missing).

44.2.1. Drilling Deeper: Finding Problematic Indices

Imagine something goes wrong one day,
 and you notice that your cluster health
looks like this:
{
 "cluster_name": "elasticsearch_zach",
 "status": "red",
 "timed_out": false,
 "number_of_nodes": 8,
 "number_of_data_nodes": 8,
 "active_primary_shards": 90,
 "active_shards": 180,
 "relocating_shards": 0,
 "initializing_shards": 0,
 "unassigned_shards": 20
}
OK, so what can we deduce from this health status? Well, our cluster is red,
which means we are missing data (primary + replicas). We know our cluster has
10 nodes, but see only 8 data nodes listed in the health. Two of our nodes
have gone missing. We see that there are 20 unassigned shards.
That’s about all the information we can glean. The nature of those missing
shards are still a mystery. Are we missing 20 indices with 1 primary shard each?
Or 1 index with 20 primary shards? Or 10 indices with 1 primary + 1 replica?
Which index?
To answer these questions, we need to ask cluster-health for a little more
information by using the level parameter:
GET _cluster/health?level=indices
This parameter will make the cluster-health API add a list of indices in our
cluster and details about each of those indices (status, number of shards,
unassigned shards, and so forth):
{
 "cluster_name": "elasticsearch_zach",
 "status": "red",
 "timed_out": false,
 "number_of_nodes": 8,
 "number_of_data_nodes": 8,
 "active_primary_shards": 90,
 "active_shards": 180,
 "relocating_shards": 0,
 "initializing_shards": 0,
 "unassigned_shards": 20
 "indices": {
 "v1": {
 "status": "green",
 "number_of_shards": 10,
 "number_of_replicas": 1,
 "active_primary_shards": 10,
 "active_shards": 20,
 "relocating_shards": 0,
 "initializing_shards": 0,
 "unassigned_shards": 0
 },
 "v2": {
 "status": "red", (1)
 "number_of_shards": 10,
 "number_of_replicas": 1,
 "active_primary_shards": 0,
 "active_shards": 0,
 "relocating_shards": 0,
 "initializing_shards": 0,
 "unassigned_shards": 20 (2)
 },
 "v3": {
 "status": "green",
 "number_of_shards": 10,
 "number_of_replicas": 1,
 "active_primary_shards": 10,
 "active_shards": 20,
 "relocating_shards": 0,
 "initializing_shards": 0,
 "unassigned_shards": 0
 },

 }
}
	(1)
	
We can now see that the v2 index is the index that has made the cluster red.

	(2)
	
And it becomes clear that all 20 missing shards are from this index.

Once we ask for the indices output, it becomes immediately clear which index is
having problems: the v2 index. We also see that the index has 10 primary shards
and one replica, and that all 20 shards are missing. Presumably these 20 shards
were on the two nodes that are missing from our cluster.
The level parameter accepts one more option:
GET _cluster/health?level=shards
The shards option will provide a very verbose output, which lists the status
and location of every shard inside every index. This output is sometimes useful,
but because of the verbosity can be difficult to work with. Once you know the index
that is having problems, other APIs that we discuss in this chapter will tend
to be more helpful.

44.2.2. Blocking for Status Changes

The cluster-health API has another neat trick that is useful when building
unit and integration tests, or automated scripts that work with Elasticsearch.
You can specify a wait_for_status parameter, which will only return after the status is satisfied. For example:
GET _cluster/health?wait_for_status=green
This call will block (not return control to your program) until the cluster-health has turned green, meaning all primary and replica shards have been allocated.
This is important for automated scripts and tests.
If you create an index, Elasticsearch must broadcast the change in cluster state
to all nodes. Those nodes must initialize those new shards, and then respond to the
master that the shards are Started. This process is fast, but because of network
latency may take 10–20ms.
If you have an automated script that (a) creates an index and then (b) immediately
attempts to index a document, this operation may fail, because the index has not
been fully initialized yet. The time between (a) and (b) will likely be less than 1ms—not nearly enough time to account for network latency.
Rather than sleeping, just have your script/test call cluster-health with
a wait_for_status parameter. As soon as the index is fully created, the cluster-health will change to green, the call will return control to your script, and you may
begin indexing.
Valid options are green, yellow, and red. The call will return when the
requested status (or one "higher") is reached. For example, if you request yellow,
a status change to yellow or green will unblock the call.

44.3. Monitoring Individual Nodes

Cluster-health is at one end of the spectrum—a very high-level overview of
everything in your cluster.

 The node-stats API is at the other end. It provides
a bewildering array of statistics about each node in your cluster.
Node-stats provides so many stats that, until you are accustomed to the output,
you may be unsure which metrics are most important to keep an eye on. We’ll
highlight the most important metrics to monitor (but we encourage you to
log all the metrics provided—or use Marvel—because you’ll never know when
you need one stat or another).
The node-stats API can be executed with the following:
GET _nodes/stats
Starting at the top of the output, we see the cluster name and our first node:
{
 "cluster_name": "elasticsearch_zach",
 "nodes": {
 "UNr6ZMf5Qk-YCPA_L18BOQ": {
 "timestamp": 1408474151742,
 "name": "Zach",
 "transport_address": "inet[zacharys-air/192.168.1.131:9300]",
 "host": "zacharys-air",
 "ip": [
 "inet[zacharys-air/192.168.1.131:9300]",
 "NONE"
],
...
The nodes are listed in a hash, with the key being the UUID of the node. Some
information about the node’s network properties are displayed (such as transport address,
and host). These values are useful for debugging discovery problems, where
nodes won’t join the cluster. Often you’ll see that the port being used is wrong,
or the node is binding to the wrong IP address/interface.
44.3.1. indices Section

The indices section lists aggregate statistics
 for all the indices that reside
on this particular node:
 "indices": {
 "docs": {
 "count": 6163666,
 "deleted": 0
 },
 "store": {
 "size_in_bytes": 2301398179,
 "throttle_time_in_millis": 122850
 },
The returned statistics are grouped into the following sections:
	
docs shows how many documents reside on
this node, as well as the number of deleted docs that haven’t been purged
from segments yet.

	
The store portion indicates how much physical storage is consumed by the node.
This metric includes both primary and replica shards. If the throttle time is
large, it may be an indicator that your disk throttling is set too low
(discussed in Section 46.3.4, “Segments and Merging”).

 "indexing": {
 "index_total": 803441,
 "index_time_in_millis": 367654,
 "index_current": 99,
 "delete_total": 0,
 "delete_time_in_millis": 0,
 "delete_current": 0
 },
 "get": {
 "total": 6,
 "time_in_millis": 2,
 "exists_total": 5,
 "exists_time_in_millis": 2,
 "missing_total": 1,
 "missing_time_in_millis": 0,
 "current": 0
 },
 "search": {
 "open_contexts": 0,
 "query_total": 123,
 "query_time_in_millis": 531,
 "query_current": 0,
 "fetch_total": 3,
 "fetch_time_in_millis": 55,
 "fetch_current": 0
 },
 "merges": {
 "current": 0,
 "current_docs": 0,
 "current_size_in_bytes": 0,
 "total": 1128,
 "total_time_in_millis": 21338523,
 "total_docs": 7241313,
 "total_size_in_bytes": 5724869463
 },
	
indexing shows the number of docs that have been indexed. This value is a monotonically
increasing counter; it doesn’t decrease when docs are deleted. Also note that it
is incremented anytime an index operation happens internally, which includes
things like updates.

Also listed are times for indexing, the number of docs currently being indexed,
and similar statistics for deletes.

	
get shows statistics about get-by-ID statistics. This includes GET and
HEAD requests for a single document.

	
search describes the number of active searches (open_contexts), number of
queries total, and the amount of time spent on queries since the node was
started. The ratio between query_time_in_millis / query_total can be used as a
rough indicator for how efficient your queries are. The larger the ratio,
the more time each query is taking, and you should consider tuning or optimization.

The fetch statistics detail the second half of the query process (the fetch in
query-then-fetch). If more time is spent in fetch than query, this can be an
indicator of slow disks or very large documents being fetched, or
potentially search requests with paginations that are too large (for example, size: 10000).

	
merges contains information about Lucene segment merges. It will tell you
the number of merges that are currently active, the number of docs involved, the cumulative
size of segments being merged, and the amount of time spent on merges in total.

Merge statistics can be important if your cluster is write heavy. Merging consumes
a large amount of disk I/O and CPU resources. If your index is write heavy and
you see large merge numbers, be sure to read Section 46.3, “Indexing Performance Tips”.
Note: updates and deletes will contribute to large merge numbers too, since they
cause segment fragmentation that needs to be merged out eventually.

 "filter_cache": {
 "memory_size_in_bytes": 48,
 "evictions": 0
 },
 "fielddata": {
 "memory_size_in_bytes": 0,
 "evictions": 0
 },
 "segments": {
 "count": 319,
 "memory_in_bytes": 65812120
 },
 ...
	
filter_cache indicates the amount of memory used by the cached filter bitsets,
and the number of times a filter has been evicted. A large number of evictions
could indicate that you need to increase the filter cache size, or that
your filters are not caching well (for example, they are churning heavily because of high cardinality,
such as caching now date expressions).

However, evictions are a difficult metric to evaluate. Filters are cached on a
per-segment basis, and evicting a filter from a small segment is much less
expensive than evicting a filter from a large segment. It’s possible that you have many evictions, but they all occur on small segments, which means they have
little impact on query performance.
Use the eviction metric as a rough guideline. If you see a large number, investigate
your filters to make sure they are caching well. Filters that constantly evict,
even on small segments, will be much less effective than properly cached filters.

	
field_data displays the memory used by fielddata,
 which is used for aggregations,
sorting, and more. There is also an eviction count. Unlike filter_cache, the eviction
count here is useful: it should be zero or very close. Since field data
is not a cache, any eviction is costly and should be avoided. If you see
evictions here, you need to reevaluate your memory situation, fielddata limits,
queries, or all three.

	
segments will tell you the number of Lucene segments this node currently serves.

This can be an important number. Most indices should have around 50–150 segments,
even if they are terabytes in size with billions of documents. Large numbers
of segments can indicate a problem with merging (for example, merging is not keeping up
with segment creation). Note that this statistic is the aggregate total of all
indices on the node, so keep that in mind.

The memory statistic gives you an idea of the amount of memory being used by the
Lucene segments themselves.
 This includes low-level data structures such as
posting lists, dictionaries, and bloom filters. A very large number of segments
will increase the amount of overhead lost to these data structures, and the memory
usage can be a handy metric to gauge that overhead.

44.3.2. OS and Process Sections

The OS and Process sections are fairly self-explanatory and won’t be covered
in great detail. They list basic resource statistics such as CPU and load. The
OS section describes it for the entire OS, while the Process section shows just
what the Elasticsearch JVM process is using.
These are obviously useful metrics, but are often being measured elsewhere in your
monitoring stack. Some stats include the following:
	
CPU

	
Load

	
Memory usage

	
Swap usage

	
Open file descriptors

44.3.3. JVM Section

The jvm section contains some critical information about the JVM process that
is running Elasticsearch.
 Most important, it contains garbage collection details,
which have a large impact on the stability of your Elasticsearch cluster.
Garbage Collection Primer

Before we describe the stats, it is useful to give a crash course in garbage
collection and its impact on Elasticsearch. If you are familar with garbage
collection in the JVM, feel free to skip down.
Java is a garbage-collected language, which means that the programmer does
not manually manage memory allocation and deallocation. The programmer simply
writes code, and the Java Virtual Machine (JVM) manages the process of allocating
memory as needed, and then later cleaning up that memory when no longer needed.
When memory is allocated to a JVM process, it is allocated in a big chunk called
the heap. The JVM then breaks the heap into two groups, referred to as
generations:
	
Young (or Eden)

	
 The space where newly instantiated objects are allocated. The
young generation space is often quite small, usually 100 MB–500 MB. The young-gen
also contains two survivor spaces.

	
Old

	
 The space where older objects are stored. These objects are expected to be long-lived
and persist for a long time. The old-gen is often much larger than the young-gen,
and Elasticsearch nodes can see old-gens as large as 30 GB.

When an object is instantiated, it is placed into young-gen. When the young
generation space is full, a young-gen garbage collection (GC) is started. Objects that are still
"alive" are moved into one of the survivor spaces, and "dead" objects are removed.
If an object has survived several young-gen GCs, it will be "tenured" into the
old generation.
A similar process happens in the old generation: when the space becomes full, a
garbage collection is started and dead objects are removed.
Nothing comes for free, however. Both the young- and old-generation garbage collectors
have phases that "stop the world." During this time, the JVM literally halts
execution of the program so it can trace the object graph and collect dead
objects. During this stop-the-world phase, nothing happens. Requests are not serviced,
pings are not responded to, shards are not relocated. The world quite literally
stops.
This isn’t a big deal for the young generation; its small size means GCs execute
quickly. But the old-gen is quite a bit larger, and a slow GC here could mean
1s or even 15s of pausing—which is unacceptable for server software.
The garbage collectors in the JVM are very sophisticated algorithms and do
a great job minimizing pauses. And Elasticsearch tries very hard to be garbage-collection friendly, by intelligently reusing objects internally, reusing network
buffers, and enabling Section 34.1, “Doc Values” by default. But ultimately,
GC frequency and duration is a metric that needs to be watched by you, since it
is the number one culprit for cluster instability.
A cluster that is frequently experiencing long GC will be a cluster that is under
heavy load with not enough memory. These long GCs will make nodes drop off the
cluster for brief periods. This instability causes shards to relocate frequently
as Elasticsearch tries to keep the cluster balanced and enough replicas available. This in
turn increases network traffic and disk I/O, all while your cluster is attempting
to service the normal indexing and query load.
In short, long GCs are bad and need to be minimized as much as possible.

Because garbage collection is so critical to Elasticsearch, you should become intimately
familiar with this section of the node-stats API:
 "jvm": {
 "timestamp": 1408556438203,
 "uptime_in_millis": 14457,
 "mem": {
 "heap_used_in_bytes": 457252160,
 "heap_used_percent": 44,
 "heap_committed_in_bytes": 1038876672,
 "heap_max_in_bytes": 1038876672,
 "non_heap_used_in_bytes": 38680680,
 "non_heap_committed_in_bytes": 38993920,
	
The jvm section first lists some general stats about heap memory usage. You
can see how much of the heap is being used, how much is committed (actually allocated
to the process), and the max size the heap is allowed to grow to. Ideally,
heap_committed_in_bytes should be identical to heap_max_in_bytes. If the
committed size is smaller, the JVM will have to resize the heap eventually—and this is a very expensive process. If your numbers are not identical, see
Section 45.7, “Heap: Sizing and Swapping” for how to configure it correctly.

The heap_used_percent metric is a useful number to keep an eye on. Elasticsearch
is configured to initiate GCs when the heap reaches 75% full. If your node is
consistently >= 75%, your node is experiencing memory pressure.
This is a warning sign that slow GCs may be in your near future.
If the heap usage is consistently >=85%, you are in trouble. Heaps over 90–95%
are in risk of horrible performance with long 10–30s GCs at best, and out-of-memory
(OOM) exceptions at worst.

 "pools": {
 "young": {
 "used_in_bytes": 138467752,
 "max_in_bytes": 279183360,
 "peak_used_in_bytes": 279183360,
 "peak_max_in_bytes": 279183360
 },
 "survivor": {
 "used_in_bytes": 34865152,
 "max_in_bytes": 34865152,
 "peak_used_in_bytes": 34865152,
 "peak_max_in_bytes": 34865152
 },
 "old": {
 "used_in_bytes": 283919256,
 "max_in_bytes": 724828160,
 "peak_used_in_bytes": 283919256,
 "peak_max_in_bytes": 724828160
 }
 }
},
	
The young, survivor, and old sections will give you a breakdown of memory
usage of each generation in the GC. These stats are handy for keeping an eye on
relative sizes, but are often not overly important when debugging problems.

"gc": {
 "collectors": {
 "young": {
 "collection_count": 13,
 "collection_time_in_millis": 923
 },
 "old": {
 "collection_count": 0,
 "collection_time_in_millis": 0
 }
 }
}
	
gc section shows the garbage collection counts and cumulative time for both
young and old generations. You can safely ignore the young generation counts
for the most part: this number will usually be large. That is perfectly
normal.

In contrast, the old generation collection count should remain small, and
have a small collection_time_in_millis. These are cumulative counts, so it is
hard to give an exact number when you should start worrying (for example, a node with a
one-year uptime will have a large count even if it is healthy). This is one of the
reasons that tools such as Marvel are so helpful. GC counts over time are the
important consideration.
Time spent GC’ing is also important. For example, a certain amount of garbage
is generated while indexing documents. This is normal and causes a GC every
now and then. These GCs are almost always fast and have little effect on the
node: young generation takes a millisecond or two, and old generation takes
a few hundred milliseconds. This is much different from 10-second GCs.
Our best advice is to collect collection counts and duration periodically (or use Marvel)
and keep an eye out for frequent GCs. You can also enable slow-GC logging,
discussed in Section 46.2, “Logging”.

44.3.4. Threadpool Section

Elasticsearch maintains threadpools internally.
 These threadpools
cooperate to get work done, passing work between each other as necessary. In
general, you don’t need to configure or tune the threadpools, but it is sometimes
useful to see their stats so you can gain insight into how your cluster is behaving.
There are about a dozen threadpools, but they all share the same format:
 "index": {
 "threads": 1,
 "queue": 0,
 "active": 0,
 "rejected": 0,
 "largest": 1,
 "completed": 1
 }
Each threadpool lists the number of threads that are configured (threads),
how many of those threads are actively processing some work (active), and how
many work units are sitting in a queue (queue).
If the queue fills up to its limit, new work units will begin to be rejected, and
you will see that reflected in the rejected statistic. This is often a sign
that your cluster is starting to bottleneck on some resources, since a full
queue means your node/cluster is processing at maximum speed but unable to keep
up with the influx of work.
Bulk Rejections

If you are going to encounter queue rejections, it will most likely be caused
by bulk indexing requests.
 It is easy to send many bulk requests to Elasticsearch
by using concurrent import processes. More is better, right?
In reality, each cluster has a certain limit at which it can not keep up with
ingestion. Once this threshold is crossed, the queue will quickly fill up, and
new bulks will be rejected.
This is a good thing. Queue rejections are a useful form of back pressure. They
let you know that your cluster is at maximum capacity, which is much better than
sticking data into an in-memory queue. Increasing the queue size doesn’t increase
performance; it just hides the problem. If your cluster can process only 10,000
docs per second, it doesn’t matter whether the queue is 100 or 10,000,000—your cluster can
still process only 10,000 docs per second.
The queue simply hides the performance problem and carries a real risk of data-loss.
Anything sitting in a queue is by definition not processed yet. If the node
goes down, all those requests are lost forever. Furthermore, the queue eats
up a lot of memory, which is not ideal.
It is much better to handle queuing in your application by gracefully handling
the back pressure from a full queue. When you receive bulk rejections, you should take these steps:
	
Pause the import thread for 3–5 seconds.

	
Extract the rejected actions from the bulk response, since it is probable that
many of the actions were successful. The bulk response will tell you which succeeded
and which were rejected.

	
Send a new bulk request with just the rejected actions.

	
Repeat from step 1 if rejections are encountered again.

Using this procedure, your code naturally adapts to the load of your cluster and
naturally backs off.
Rejections are not errors: they just mean you should try again later.

There are a dozen threadpools. Most you can safely ignore, but a few
are good to keep an eye on:
	
indexing

	
 Threadpool for normal indexing requests

	
bulk

	
 Bulk requests, which are distinct from the nonbulk indexing requests

	
get

	
 Get-by-ID operations

	
search

	
 All search and query requests

	
merging

	
 Threadpool dedicated to managing Lucene merges

44.3.5. FS and Network Sections

Continuing down the node-stats API, you’ll see a bunch of statistics about your
filesystem: free space, data directory paths, disk I/O stats, and more. If you are
not monitoring free disk space, you can get those stats here. The disk I/O stats
are also handy, but often more specialized command-line tools (iostat, for example)
are more useful.
Obviously, Elasticsearch has a difficult time functioning if you run out of disk
space—so make sure you don’t.
There are also two sections on
network statistics:
 "transport": {
 "server_open": 13,
 "rx_count": 11696,
 "rx_size_in_bytes": 1525774,
 "tx_count": 10282,
 "tx_size_in_bytes": 1440101928
 },
 "http": {
 "current_open": 4,
 "total_opened": 23
 },
	
transport shows some basic stats about the transport address. This
relates to inter-node communication (often on port 9300) and any transport client
or node client connections. Don’t worry if you see many connections here;
Elasticsearch maintains a large number of connections between nodes.

	
http represents stats about the HTTP port (often 9200). If you see a very
large total_opened number that is constantly increasing, that is a sure sign
that one of your HTTP clients is not using keep-alive connections. Persistent,
keep-alive connections are important for performance, since building up and tearing
down sockets is expensive (and wastes file descriptors). Make sure your clients
are configured appropriately.

44.3.6. Circuit Breaker

Finally, we come to the last section: stats about the fielddata circuit breaker
(introduced in Section 34.4.3, “Circuit Breaker”):
 "fielddata_breaker": {
 "maximum_size_in_bytes": 623326003,
 "maximum_size": "594.4mb",
 "estimated_size_in_bytes": 0,
 "estimated_size": "0b",
 "overhead": 1.03,
 "tripped": 0
 }
Here, you can determine the maximum circuit-breaker size (for example, at what
size the circuit breaker will trip if a query attempts to use more memory). This section
will also let you know the number of times the circuit breaker has been tripped, and
the currently configured overhead. The overhead is used to pad estimates, because some queries are more difficult to estimate than others.
The main thing to watch is the tripped metric. If this number is large or
consistently increasing, it’s a sign that your queries may need to be optimized
or that you may need to obtain more memory (either per box or by adding more
nodes).

44.4. Cluster Stats

The cluster-stats API provides similar output to the node-stats.

 There
is one crucial difference: Node Stats shows you statistics per node, while
cluster-stats shows you the sum total of all nodes in a single metric.
This provides some useful stats to glance at. You can see for example, that your entire cluster
is using 50% of the available heap or that filter cache is not evicting heavily. Its
main use is to provide a quick summary that is more extensive than
the cluster-health, but less detailed than node-stats. It is also useful for
clusters that are very large, which makes node-stats output difficult
to read.
The API may be invoked as follows:
GET _cluster/stats

44.5. Index Stats

So far, we have been looking at node-centric statistics:

 How much memory does
this node have? How much CPU is being used? How many searches is this node
servicing?
Sometimes it is useful to look at statistics from an index-centric perspective:
How many search requests is this index receiving? How much time is spent fetching
docs in that index?
To do this, select the index (or indices) that you are interested in and
execute an Index stats API:
GET my_index/_stats (1)

GET my_index,another_index/_stats (2)

GET _all/_stats (3)
	(1)
	
Stats for my_index.

	(2)
	
Stats for multiple indices can be requested by separating their names with a comma.

	(3)
	
Stats for all indices can be requested using the special _all index name.

The stats returned will be familar to the node-stats output: search fetch get
index bulk segment counts and so forth
Index-centric stats can be useful for identifying or verifying hot indices
inside your cluster, or trying to determine why some indices are faster/slower
than others.
In practice, however, node-centric statistics tend to be more useful. Entire
nodes tend to bottleneck, not individual indices. And because indices
are usually spread across multiple nodes, index-centric statistics
are usually not very helpful because they aggregate data from different physical machines
operating in different environments.
Index-centric stats are a useful tool to keep in your repertoire, but are not usually
the first tool to reach for.

44.6. Pending Tasks

There are certain tasks that only the master can perform, such as creating a new

index or moving shards around the cluster. Since a cluster can have only one
master, only one node can ever process cluster-level metadata changes. For
99.9999% of the time, this is never a problem. The queue of metadata changes
remains essentially zero.
In some rare clusters, the number of metadata changes occurs faster than
the master can process them. This leads to a buildup of pending actions that
are queued.
The pending-tasks API will show you what (if any) cluster-level metadata changes
are pending in the queue:
GET _cluster/pending_tasks
Usually, the response will look like this:
{
 "tasks": []
}
This means there are no pending tasks. If you have one of the rare clusters that
bottlenecks on the master node, your pending task list may look like this:
{
 "tasks": [
 {
 "insert_order": 101,
 "priority": "URGENT",
 "source": "create-index [foo_9], cause [api]",
 "time_in_queue_millis": 86,
 "time_in_queue": "86ms"
 },
 {
 "insert_order": 46,
 "priority": "HIGH",
 "source": "shard-started ([foo_2][1], node[tMTocMvQQgGCkj7QDHl3OA], [P],
 s[INITIALIZING]), reason [after recovery from gateway]",
 "time_in_queue_millis": 842,
 "time_in_queue": "842ms"
 },
 {
 "insert_order": 45,
 "priority": "HIGH",
 "source": "shard-started ([foo_2][0], node[tMTocMvQQgGCkj7QDHl3OA], [P],
 s[INITIALIZING]), reason [after recovery from gateway]",
 "time_in_queue_millis": 858,
 "time_in_queue": "858ms"
 }
]
}
You can see that tasks are assigned a priority (URGENT is processed before HIGH,
for example), the order it was inserted, how long the action has been queued and
what the action is trying to perform. In the preceding list, there is a create-index
action and two shard-started actions pending.
When Should I Worry About Pending Tasks?

As mentioned, the master node is rarely the bottleneck for clusters. The only
time it could bottleneck is if the cluster state is both very large
and updated frequently.
For example, if you allow customers to create as many dynamic fields as they wish,
and have a unique index for each customer every day, your cluster state will grow
very large. The cluster state includes (among other things) a list of all indices,
their types, and the fields for each index.
So if you have 100,000 customers, and each customer averages 1,000 fields and 90
days of retention—that’s nine billion fields to keep in the cluster state.
Whenever this changes, the nodes must be notified.
The master must process these changes, which requires nontrivial CPU overhead,
plus the network overhead of pushing the updated cluster state to all nodes.
It is these clusters that may begin to see cluster-state actions queuing up.
There is no easy solution to this problem, however. You have three options:
	
Obtain a beefier master node. Vertical scaling just delays the inevitable,
unfortunately.

	
Restrict the dynamic nature of the documents in some way, so as to limit the
cluster-state size.

	
Spin up another cluster after a certain threshold has been crossed.

44.7. cat API

If you work from the command line often, the cat APIs will be helpful
to you.

 Named after the linux cat command, these APIs are designed to
work like *nix command-line tools.
They provide statistics that are identical to all the previously discussed APIs
(Health, node-stats, and so forth), but present the output in tabular form instead of
JSON. This is very convenient for a system administrator, and you just want
to glance over your cluster or find nodes with high memory usage.
Executing a plain GET against the cat endpoint will show you all available
APIs:
GET /_cat

=^.^=
/_cat/allocation
/_cat/shards
/_cat/shards/{index}
/_cat/master
/_cat/nodes
/_cat/indices
/_cat/indices/{index}
/_cat/segments
/_cat/segments/{index}
/_cat/count
/_cat/count/{index}
/_cat/recovery
/_cat/recovery/{index}
/_cat/health
/_cat/pending_tasks
/_cat/aliases
/_cat/aliases/{alias}
/_cat/thread_pool
/_cat/plugins
/_cat/fielddata
/_cat/fielddata/{fields}
Many of these APIs should look familiar to you (and yes, that’s a cat at the top
:)). Let’s take a look at the Cat Health API:
GET /_cat/health

1408723713 12:08:33 elasticsearch_zach yellow 1 1 114 114 0 0 114
The first thing you’ll notice is that the response is plain text in tabular form,
not JSON. The second thing you’ll notice is that there are no column headers
enabled by default. This is designed to emulate *nix tools, since it is assumed
that once you become familiar with the output, you no longer want to see
the headers.
To enable headers, add the ?v parameter:
GET /_cat/health?v

epoch time cluster status node.total node.data shards pri relo init
1408[..] 12[..] el[..] 1 1 114 114 0 0 114
unassign
Ah, much better. We now see the timestamp, cluster name, status, the number of
nodes in the cluster, and more—all the same information as the cluster-health
API.
Let’s look at node-stats in the cat API:
GET /_cat/nodes?v

host ip heap.percent ram.percent load node.role master name
zacharys-air 192.168.1.131 45 72 1.85 d * Zach
We see some stats about the nodes in our cluster, but the output is basic compared
to the full node-stats output. You can
include many additional metrics, but rather than consulting the documentation, let’s just ask the cat
API what is available.
You can do this by adding ?help to any API:
GET /_cat/nodes?help

id | id,nodeId | unique node id
pid | p | process id
host | h | host name
ip | i | ip address
port | po | bound transport port
version | v | es version
build | b | es build hash
jdk | j | jdk version
disk.avail | d,disk,diskAvail | available disk space
heap.percent | hp,heapPercent | used heap ratio
heap.max | hm,heapMax | max configured heap
ram.percent | rp,ramPercent | used machine memory ratio
ram.max | rm,ramMax | total machine memory
load | l | most recent load avg
uptime | u | node uptime
node.role | r,role,dc,nodeRole | d:data node, c:client node
master | m | m:master-eligible, *:current master
...
...
(Note that the output has been truncated for brevity).
The first column shows the full name, the second column shows the short name,
and the third column offers a brief description about the parameter. Now that
we know some column names, we can ask for those explicitly by using the ?h
parameter:
GET /_cat/nodes?v&h=ip,port,heapPercent,heapMax

ip port heapPercent heapMax
192.168.1.131 9300 53 990.7mb
Because the cat API tries to behave like *nix utilities, you can pipe the output
to other tools such as sort grep or awk. For example, we can find the largest
index in our cluster by using the following:
% curl 'localhost:9200/_cat/indices?bytes=b' | sort -rnk8

yellow test_names 5 1 3476004 0 376324705 376324705
yellow .marvel-2014.08.19 1 1 263878 0 160777194 160777194
yellow .marvel-2014.08.15 1 1 234482 0 143020770 143020770
yellow .marvel-2014.08.09 1 1 222532 0 138177271 138177271
yellow .marvel-2014.08.18 1 1 225921 0 138116185 138116185
yellow .marvel-2014.07.26 1 1 173423 0 132031505 132031505
yellow .marvel-2014.08.21 1 1 219857 0 128414798 128414798
yellow .marvel-2014.07.27 1 1 75202 0 56320862 56320862
yellow wavelet 5 1 5979 0 54815185 54815185
yellow .marvel-2014.07.28 1 1 57483 0 43006141 43006141
yellow .marvel-2014.07.21 1 1 31134 0 27558507 27558507
yellow .marvel-2014.08.01 1 1 41100 0 27000476 27000476
yellow kibana-int 5 1 2 0 17791 17791
yellow t 5 1 7 0 15280 15280
yellow website 5 1 12 0 12631 12631
yellow agg_analysis 5 1 5 0 5804 5804
yellow v2 5 1 2 0 5410 5410
yellow v1 5 1 2 0 5367 5367
yellow bank 1 1 16 0 4303 4303
yellow v 5 1 1 0 2954 2954
yellow p 5 1 2 0 2939 2939
yellow b0001_072320141238 5 1 1 0 2923 2923
yellow ipaddr 5 1 1 0 2917 2917
yellow v2a 5 1 1 0 2895 2895
yellow movies 5 1 1 0 2738 2738
yellow cars 5 1 0 0 1249 1249
yellow wavelet2 5 1 0 0 615 615
By adding ?bytes=b, we disable the human-readable formatting on numbers and
force them to be listed as bytes. This output is then piped into sort so that
our indices are ranked according to size (the eighth column).
Unfortunately, you’ll notice that the Marvel indices are clogging up the results,
and we don’t really care about those indices right now. Let’s pipe the output
through grep and remove anything mentioning Marvel:
% curl 'localhost:9200/_cat/indices?bytes=b' | sort -rnk8 | grep -v marvel

yellow test_names 5 1 3476004 0 376324705 376324705
yellow wavelet 5 1 5979 0 54815185 54815185
yellow kibana-int 5 1 2 0 17791 17791
yellow t 5 1 7 0 15280 15280
yellow website 5 1 12 0 12631 12631
yellow agg_analysis 5 1 5 0 5804 5804
yellow v2 5 1 2 0 5410 5410
yellow v1 5 1 2 0 5367 5367
yellow bank 1 1 16 0 4303 4303
yellow v 5 1 1 0 2954 2954
yellow p 5 1 2 0 2939 2939
yellow b0001_072320141238 5 1 1 0 2923 2923
yellow ipaddr 5 1 1 0 2917 2917
yellow v2a 5 1 1 0 2895 2895
yellow movies 5 1 1 0 2738 2738
yellow cars 5 1 0 0 1249 1249
yellow wavelet2 5 1 0 0 615 615
Voila! After piping through grep (with -v to invert the matches), we get
a sorted list of indices without Marvel cluttering it up.
This is just a simple example of the flexibility of cat at the command line.
Once you get used to using cat, you’ll see it like any other *nix tool and start
going crazy with piping, sorting, and grepping. If you are a system admin and spend
any time SSH’d into boxes, definitely spend some time getting familiar
with the cat API.

Chapter 45. Production Deployment

If you have made it this far in the book, hopefully you’ve learned a thing or
two about Elasticsearch and are ready to deploy your cluster to production.

This chapter is not meant to be an exhaustive guide to running your cluster
in production, but it covers the key things to consider before putting
your cluster live.
Three main areas are covered:
	
Logistical considerations, such as hardware recommendations and deployment
strategies

	
Configuration changes that are more suited to a production environment

	
Post-deployment considerations, such as security, maximizing indexing performance,
and backups

45.1. Hardware

If you’ve been following the normal development path, you’ve probably been playing

with Elasticsearch on your laptop or on a small cluster of machines lying around.
But when it comes time to deploy Elasticsearch to production, there are a few
recommendations that you should consider. Nothing is a hard-and-fast rule;
Elasticsearch is used for a wide range of tasks and on a bewildering array of
machines. But these recommendations provide good starting points based on our experience with
production clusters.
45.1.1. Memory

If there is one resource that you will run out of first, it will likely be memory.

Sorting and aggregations can both be memory hungry, so enough heap space to
accommodate these is important. Even when the heap is comparatively small,
extra memory can be given to the OS filesystem cache. Because many data structures
used by Lucene are disk-based formats, Elasticsearch leverages the OS cache to
great effect.
A machine with 64 GB of RAM is the ideal sweet spot, but 32 GB and 16 GB machines
are also common. Less than 8 GB tends to be counterproductive (you end up
needing many, many small machines), and greater than 64 GB has problems that we will
discuss in Section 45.7, “Heap: Sizing and Swapping”.

45.1.2. CPUs

Most Elasticsearch deployments tend to be rather light on CPU requirements. As
such,
 the exact processor setup matters less than the other resources. You should
choose a modern processor with multiple cores. Common clusters utilize two- to eight-core machines.
If you need to choose between faster CPUs or more cores, choose more cores. The
extra concurrency that multiple cores offers will far outweigh a slightly faster
clock speed.

45.1.3. Disks

Disks are important for all clusters,
 and doubly so for indexing-heavy clusters
(such as those that ingest log data). Disks are the slowest subsystem in a server,
which means that write-heavy clusters can easily saturate their disks, which in
turn become the bottleneck of the cluster.
If you can afford SSDs, they are by far superior to any spinning media. SSD-backed
nodes see boosts in both query and indexing performance. If you can afford it,
SSDs are the way to go.
Check Your I/O Scheduler

If you are using SSDs, make sure your OS I/O scheduler is configured correctly.
When you write data to disk, the I/O scheduler decides when that data is
actually sent to the disk. The default under most *nix distributions is a
scheduler called cfq (Completely Fair Queuing).
This scheduler allocates time slices to each process, and then optimizes the
delivery of these various queues to the disk. It is optimized for spinning media:
the nature of rotating platters means it is more efficient to write data to disk
based on physical layout.
This is inefficient for SSD, however, since there are no spinning platters
involved. Instead, deadline or noop should be used instead. The deadline
scheduler optimizes based on how long writes have been pending, while noop
is just a simple FIFO queue.
This simple change can have dramatic impacts. We’ve seen a 500-fold improvement
to write throughput just by using the correct scheduler.

If you use spinning media, try to obtain the fastest disks possible (high-performance server disks, 15k RPM drives).
Using RAID 0 is an effective way to increase disk speed, for both spinning disks
and SSD. There is no need to use mirroring or parity variants of RAID, since
high availability is built into Elasticsearch via replicas.
Finally, avoid network-attached storage (NAS). People routinely claim their
NAS solution is faster and more reliable than local drives. Despite these claims,
we have never seen NAS live up to its hype. NAS is often slower, displays
larger latencies with a wider deviation in average latency, and is a single
point of failure.

45.1.4. Network

A fast and reliable network is obviously important to performance in a distributed

system. Low latency helps ensure that nodes can communicate easily, while
high bandwidth helps shard movement and recovery. Modern data-center networking
(1 GbE, 10 GbE) is sufficient for the vast majority of clusters.
Avoid clusters that span multiple data centers, even if the data centers are
colocated in close proximity. Definitely avoid clusters that span large geographic
distances.
Elasticsearch clusters assume that all nodes are equal—not that half the nodes
are actually 150ms distant in another data center. Larger latencies tend to
exacerbate problems in distributed systems and make debugging and resolution
more difficult.
Similar to the NAS argument, everyone claims that their pipe between data centers is
robust and low latency. This is true—until it isn’t (a network failure will
happen eventually; you can count on it). From our experience, the hassle of
managing cross–data center clusters is simply not worth the cost.

45.1.5. General Considerations

It is possible nowadays to obtain truly enormous machines:
 hundreds of gigabytes
of RAM with dozens of CPU cores. Conversely, it is also possible to spin up
thousands of small virtual machines in cloud platforms such as EC2. Which
approach is best?
In general, it is better to prefer medium-to-large boxes. Avoid small machines,
because you don’t want to manage a cluster with a thousand nodes, and the overhead
of simply running Elasticsearch is more apparent on such small boxes.
At the same time, avoid the truly enormous machines. They often lead to imbalanced
resource usage (for example, all the memory is being used, but none of the CPU) and can
add logistical complexity if you have to run multiple nodes per machine.

45.2. Java Virtual Machine

You should always run the most recent version of the Java Virtual Machine (JVM),
unless otherwise stated on the Elasticsearch website.
 Elasticsearch, and in
particular Lucene, is a demanding piece of software. The unit and integration
tests from Lucene often expose bugs in the JVM itself. These bugs range from
mild annoyances to serious segfaults, so it is best to use the latest version
of the JVM where possible.
Java 7 is strongly preferred over Java 6. Either Oracle or OpenJDK are acceptable. They are comparable in performance and stability.
If your application is written in Java and you are using the transport client
or node client, make sure the JVM running your application is identical to the
server JVM. In few locations in Elasticsearch, Java’s native serialization
is used (IP addresses, exceptions, and so forth). Unfortunately, Oracle has been known to
change the serialization format between minor releases, leading to strange errors.
This happens rarely, but it is best practice to keep the JVM versions identical
between client and server.
Please Do Not Tweak JVM Settings

The JVM exposes dozens (hundreds even!) of settings, parameters, and configurations.

They allow you to tweak and tune almost every aspect of the JVM.
When a knob is encountered, it is human nature to want to turn it. We implore
you to squash this desire and not use custom JVM settings. Elasticsearch is
a complex piece of software, and the current JVM settings have been tuned
over years of real-world usage.
It is easy to start turning knobs, producing opaque effects that are hard to measure,
and eventually detune your cluster into a slow, unstable mess. When debugging
clusters, the first step is often to remove all custom configurations. About
half the time, this alone restores stability and performance.

45.3. Transport Client Versus Node Client

If you are using Java, you may wonder when to use the transport client versus the
node client.

 As discussed at the beginning of the book, the transport client
acts as a communication layer between the cluster and your application. It knows
the API and can automatically round-robin between nodes, sniff the cluster for you,
and more. But it is external to the cluster, similar to the REST clients.
The node client, on the other hand, is actually a node within the cluster (but
does not hold data, and cannot become master). Because it is a node, it knows
the entire cluster state (where all the nodes reside, which shards live in which
nodes, and so forth). This means it can execute APIs with one less network hop.
There are uses-cases for both clients:
	
The transport client is ideal if you want to decouple your application from the
cluster. For example, if your application quickly creates and destroys
connections to the cluster, a transport client is much "lighter" than a node client,
since it is not part of a cluster.

Similarly, if you need to create thousands of connections, you don’t want to
have thousands of node clients join the cluster. The TC will be a better choice.

	
On the flipside, if you need only a few long-lived, persistent connection
objects to the cluster, a node client can be a bit more efficient since it knows
the cluster layout. But it ties your application into the cluster, so it may
pose problems from a firewall perspective.

45.4. Configuration Management

If you use configuration management already (Puppet, Chef, Ansible), you can skip this tip.

If you don’t use configuration management tools yet, you should! Managing
a handful of servers by parallel-ssh may work now, but it will become a nightmare
as you grow your cluster. It is almost impossible to edit 30 configuration files
by hand without making a mistake.
Configuration management tools help make your cluster consistent by automating
the process of config changes. It may take a little time to set up and learn,
but it will pay itself off handsomely over time.

45.5. Important Configuration Changes

Elasticsearch ships with very good defaults,
 especially when it comes to performance-
related settings and options. When in doubt, just leave
the settings alone. We have witnessed countless dozens of clusters ruined
by errant settings because the administrator thought he could turn a knob
and gain 100-fold improvement.
Note
Please read this entire section! All configurations presented are equally
important, and are not listed in any particular order. Please read
through all configuration options and apply them to your cluster.

Other databases may require tuning, but by and large, Elasticsearch does not.
If you are hitting performance problems, the solution is usually better data
layout or more nodes. There are very few "magic knobs" in Elasticsearch.
If there were, we’d have turned them already!
With that said, there are some logistical configurations that should be changed
for production. These changes are necessary either to make your life easier, or because
there is no way to set a good default (because it depends on your cluster layout).
45.5.1. Assign Names

Elasticseach by default starts a cluster named elasticsearch.
 It is wise
to rename your production cluster to something else, simply to prevent accidents
whereby someone’s laptop joins the cluster. A simple change to elasticsearch_production
can save a lot of heartache.
This can be changed in your elasticsearch.yml file:
cluster.name: elasticsearch_production
Similarly, it is wise to change the names of your nodes. As you’ve probably
noticed by now, Elasticsearch assigns a random Marvel superhero name
to your nodes at startup. This is cute in development—but less cute when it is
3a.m. and you are trying to remember which physical machine was Tagak the Leopard Lord.
More important, since these names are generated on startup, each time you
restart your node, it will get a new name. This can make logs confusing,
since the names of all the nodes are constantly changing.
Boring as it might be, we recommend you give each node a name that makes sense
to you—a plain, descriptive name. This is also configured in your elasticsearch.yml:
node.name: elasticsearch_005_data

45.5.2. Paths

By default, Elasticsearch will place the plug-ins,

 logs, and—most important—your data in the installation directory. This can lead to
unfortunate accidents, whereby the installation directory is accidentally overwritten
by a new installation of Elasticsearch. If you aren’t careful, you can erase all your data.
Don’t laugh—we’ve seen it happen more than a few times.
The best thing to do is relocate your data directory outside the installation
location. You can optionally move your plug-in and log directories as well.
This can be changed as follows:
path.data: /path/to/data1,/path/to/data2 (1)

Path to log files:
path.logs: /path/to/logs

Path to where plugins are installed:
path.plugins: /path/to/plugins
	(1)
	
Notice that you can specify more than one directory for data by using comma-separated lists.

Data can be saved to multiple directories, and if each directory
is mounted on a different hard drive, this is a simple and effective way to
set up a software RAID 0. Elasticsearch will automatically stripe
data between the different directories, boosting performance.
Multiple data path safety and performance
Like any RAID 0 configuration, only a single copy of your data is saved to the
hard drives. If you lose a hard drive, you are guaranteed to lose a portion
of your data on that machine. With luck you’ll have replicas elsewhere in the
cluster which can recover the data, and/or a recent backup.
Elasticsearch attempts to minimize the extent of data loss by striping entire
shards to a drive. That means that Shard 0 will be placed entirely on a single
drive. Elasticsearch will not stripe a shard across multiple drives, since the
loss of one drive would corrupt the entire shard.
This has ramifications for performance: if you are adding multiple drives
to improve the performance of a single index, it is unlikely to help since
most nodes will only have one shard, and thus one active drive. Multiple data
paths only helps if you have many indices/shards on a single node.
Multiple data paths is a nice convenience feature, but at the end of the day,
Elasticsearch is not a software RAID package. If you need more advanced configuration,
robustness and flexibility, we encourage you to use actual software RAID packages
instead of the multiple data path feature.

45.5.3. Minimum Master Nodes

The minimum_master_nodes setting is extremely important to the
stability of your cluster.
 This setting helps prevent split brains, the existence of two masters in a single cluster.
When you have a split brain, your cluster is at danger of losing data. Because
the master is considered the supreme ruler of the cluster, it decides
when new indices can be created, how shards are moved, and so forth. If you have two
masters, data integrity becomes perilous, since you have two nodes
that think they are in charge.
This setting tells Elasticsearch to not elect a master unless there are enough
master-eligible nodes available. Only then will an election take place.
This setting should always be configured to a quorum (majority) of your master-eligible nodes. A quorum is (number of master-eligible nodes / 2) + 1.
Here are some examples:
	
If you have ten regular nodes (can hold data, can become master), a quorum is
6.

	
If you have three dedicated master nodes and a hundred data nodes, the quorum is 2,
since you need to count only nodes that are master eligible.

	
If you have two regular nodes, you are in a conundrum. A quorum would be
2, but this means a loss of one node will make your cluster inoperable. A
setting of 1 will allow your cluster to function, but doesn’t protect against
split brain. It is best to have a minimum of three nodes in situations like this.

This setting can be configured in your elasticsearch.yml file:
discovery.zen.minimum_master_nodes: 2
But because Elasticsearch clusters are dynamic, you could easily add or remove
nodes that will change the quorum. It would be extremely irritating if you had
to push new configurations to each node and restart your whole cluster just to
change the setting.
For this reason, minimum_master_nodes (and other settings) can be configured
via a dynamic API call. You can change the setting while your cluster is online:
PUT /_cluster/settings
{
 "persistent" : {
 "discovery.zen.minimum_master_nodes" : 2
 }
}
This will become a persistent setting that takes precedence over whatever is
in the static configuration. You should modify this setting whenever you add or
remove master-eligible nodes.

45.5.4. Recovery Settings

Several settings affect the behavior of shard recovery when
your cluster restarts.
 First, we need to understand what happens if nothing is
configured.
Imagine you have ten nodes, and each node holds a single shard—either a primary
or a replica—in a 5 primary / 1 replica index. You take your
entire cluster offline for maintenance (installing new drives, for example). When you
restart your cluster, it just so happens that five nodes come online before
the other five.
Maybe the switch to the other five is being flaky, and they didn’t
receive the restart command right away. Whatever the reason, you have five nodes
online. These five nodes will gossip with each other, elect a master, and form a
cluster. They notice that data is no longer evenly distributed, since five
nodes are missing from the cluster, and immediately start replicating new
shards between each other.
Finally, your other five nodes turn on and join the cluster. These nodes see
that their data is being replicated to other nodes, so they delete their local
data (since it is now redundant, and may be outdated). Then the cluster starts
to rebalance even more, since the cluster size just went from five to ten.
During this whole process, your nodes are thrashing the disk and network, moving
data around—for no good reason. For large clusters with terabytes of data,
this useless shuffling of data can take a really long time. If all the nodes
had simply waited for the cluster to come online, all the data would have been
local and nothing would need to move.
Now that we know the problem, we can configure a few settings to alleviate it.
First, we need to give Elasticsearch a hard limit:
gateway.recover_after_nodes: 8
This will prevent Elasticsearch from starting a recovery until at least eight (data or master) nodes
are present. The value for this setting is a matter of personal preference: how
many nodes do you want present before you consider your cluster functional?
In this case, we are setting it to 8, which means the cluster is inoperable
unless there are at least eight nodes.
Then we tell Elasticsearch how many nodes should be in the cluster, and how
long we want to wait for all those nodes:
gateway.expected_nodes: 10
gateway.recover_after_time: 5m
What this means is that Elasticsearch will do the following:
	
Wait for eight nodes to be present

	
Begin recovering after 5 minutes or after ten nodes have joined the cluster,
whichever comes first.

These three settings allow you to avoid the excessive shard swapping that can
occur on cluster restarts. It can literally make recovery take seconds instead
of hours.
Note
These settings can only be set in the config/elasticsearch.yml file or on
the command line (they are not dynamically updatable) and they are only relevant
during a full cluster restart.

45.5.5. Prefer Unicast over Multicast

Elasticsearch is configured to use unicast discovery out of the box to prevent
nodes from accidentally joining a cluster. Only nodes running on the same
machine will automatically form cluster.
While multicast is still provided
as a plugin, it should never be used in production. The
last thing you want is for nodes to accidentally join your production network, simply
because they received an errant multicast ping. There is nothing wrong with
multicast per se. Multicast simply leads to silly problems, and can be a bit
more fragile (for example, a network engineer fiddles with the network without telling
you—and all of a sudden nodes can’t find each other anymore).
To use unicast, you provide Elasticsearch a list of nodes that it should try to contact.
When a node contacts a member of the unicast list, it receives a full cluster
state that lists all of the nodes in the cluster. It then contacts
the master and joins the cluster.
This means your unicast list does not need to include all of the nodes in your cluster.
It just needs enough nodes that a new node can find someone to talk to. If you
use dedicated masters, just list your three dedicated masters and call it a day.
This setting is configured in elasticsearch.yml:
discovery.zen.ping.unicast.hosts: ["host1", "host2:port"]
For more information about how Elasticsearch nodes find eachother, see
Zen Discovery
in the Elasticsearch Reference.

45.6. Don’t Touch These Settings!

There are a few hotspots in Elasticsearch that people just can’t seem to avoid
tweaking.
 We understand: knobs just beg to be turned. But of all the knobs to turn, these you should really leave alone. They are
often abused and will contribute to terrible stability or terrible performance.
Or both.
45.6.1. Garbage Collector

As briefly introduced in Garbage Collection Primer, the JVM uses a garbage
collector to free unused memory. This tip is really an extension of the last tip,
but deserves its own section for emphasis:
Do not change the default garbage collector!
The default GC for Elasticsearch is Concurrent-Mark and Sweep (CMS). This GC
runs concurrently with the execution of the application so that it can minimize
pauses. It does, however, have two stop-the-world phases. It also has trouble
collecting large heaps.
Despite these downsides, it is currently the best GC for low-latency server software
like Elasticsearch. The official recommendation is to use CMS.
There is a newer GC called the Garbage First GC (G1GC). This newer GC is designed
to minimize pausing even more than CMS, and operate on large heaps. It works
by dividing the heap into regions and predicting which regions contain the most
reclaimable space. By collecting those regions first (garbage first), it can
minimize pauses and operate on very large heaps.
Sounds great! Unfortunately, G1GC is still new, and fresh bugs are found routinely.
These bugs are usually of the segfault variety, and will cause hard crashes.
The Lucene test suite is brutal on GC algorithms, and it seems that G1GC hasn’t
had the kinks worked out yet.
We would like to recommend G1GC someday, but for now, it is simply not stable
enough to meet the demands of Elasticsearch and Lucene.

45.6.2. Threadpools

Everyone loves to tweak threadpools. For whatever reason, it seems people
cannot resist increasing thread counts. Indexing a lot? More threads! Searching
a lot? More threads! Node idling 95% of the time? More threads!
The default threadpool settings in Elasticsearch are very sensible. For all
threadpools (except search) the threadcount is set to the number of CPU cores.
If you have eight cores, you can be running only eight threads simultaneously. It makes
sense to assign only eight threads to any particular threadpool.
Search gets a larger threadpool, and is configured to int((# of cores * 3) / 2) + 1.
You might argue that some threads can block (such as on a disk I/O operation),
which is why you need more threads. This is not a problem in Elasticsearch:
much of the disk I/O is handled by threads managed by Lucene, not Elasticsearch.
Furthermore, threadpools cooperate by passing work between each other. You don’t
need to worry about a networking thread blocking because it is waiting on a disk
write. The networking thread will have long since handed off that work unit to
another threadpool and gotten back to networking.
Finally, the compute capacity of your process is finite. Having more threads just forces
the processor to switch thread contexts. A processor can run only one thread
at a time, so when it needs to switch to a different thread, it stores the current
state (registers, and so forth) and loads another thread. If you are lucky, the switch
will happen on the same core. If you are unlucky, the switch may migrate to a
different core and require transport on an inter-core communication bus.
This context switching eats up cycles simply by doing administrative housekeeping; estimates can peg it as high as 30μs on modern CPUs. So unless the thread
will be blocked for longer than 30μs, it is highly likely that that time would
have been better spent just processing and finishing early.
People routinely set threadpools to silly values. On eight core machines, we have
run across configs with 60, 100, or even 1000 threads. These settings will simply
thrash the CPU more than getting real work done.
So. Next time you want to tweak a threadpool, please don’t. And if you
absolutely cannot resist, please keep your core count in mind and perhaps set
the count to double. More than that is just a waste.

45.7. Heap: Sizing and Swapping

The default installation of Elasticsearch is configured with a 1 GB heap.

 For
just about every deployment, this number is usually too small. If you are using the
default heap values, your cluster is probably configured incorrectly.
There are two ways to change the heap size in Elasticsearch. The easiest is to
set an environment variable called ES_HEAP_SIZE. When the server process
starts, it will read this environment variable and set the heap accordingly.
As an example, you can set it via the command line as follows:
export ES_HEAP_SIZE=10g
Alternatively, you can pass in the heap size via a command-line argument when starting
the process, if that is easier for your setup:
./bin/elasticsearch -Xmx10g -Xms10g (1)
	(1)
	
Ensure that the min (Xms) and max (Xmx) sizes are the same to prevent
the heap from resizing at runtime, a very costly process.

Generally, setting the ES_HEAP_SIZE environment variable is preferred over setting
explicit -Xmx and -Xms values.
45.7.1. Give (less than) Half Your Memory to Lucene

A common problem is configuring a heap that is too large.

 You have a 64 GB
machine—and by golly, you want to give Elasticsearch all 64 GB of memory. More
is better!
Heap is definitely important to Elasticsearch. It is used by many in-memory data
structures to provide fast operation. But with that said, there is another major
user of memory that is off heap: Lucene.
Lucene is designed to leverage the underlying OS for caching in-memory data structures.

Lucene segments are stored in individual files. Because segments are immutable,
these files never change. This makes them very cache friendly, and the underlying
OS will happily keep hot segments resident in memory for faster access. These segments
include both the inverted index (for fulltext search) and doc values (for aggregations).
Lucene’s performance relies on this interaction with the OS. But if you give all
available memory to Elasticsearch’s heap, there won’t be any left over for Lucene.
This can seriously impact the performance.
The standard recommendation is to give 50% of the available memory to Elasticsearch
heap, while leaving the other 50% free. It won’t go unused; Lucene will happily
gobble up whatever is left over.
If you are not aggregating on analyzed string fields (e.g. you won’t be needing
fielddata) you can consider lowering the heap even
more. The smaller you can make the heap, the better performance you can expect
from both Elasticsearch (faster GCs) and Lucene (more memory for caching).

45.7.2. Don’t Cross 32 GB!

There is another reason to not allocate enormous heaps to Elasticsearch. As it turns

out, the HotSpot JVM uses a trick to compress object pointers when heaps are less
than around 32 GB.
In Java, all objects are allocated on the heap and referenced by a pointer.
Ordinary object pointers (OOP) point at these objects, and are traditionally
the size of the CPU’s native word: either 32 bits or 64 bits, depending on the
processor. The pointer references the exact byte location of the value.
For 32-bit systems, this means the maximum heap size is 4 GB. For 64-bit systems,
the heap size can get much larger, but the overhead of 64-bit pointers means there
is more wasted space simply because the pointer is larger. And worse than wasted
space, the larger pointers eat up more bandwidth when moving values between
main memory and various caches (LLC, L1, and so forth).
Java uses a trick called compressed oops
to get around this problem. Instead of pointing at exact byte locations in
memory, the pointers reference object offsets. This means a 32-bit pointer can
reference four billion objects, rather than four billion bytes. Ultimately, this
means the heap can grow to around 32 GB of physical size while still using a 32-bit
pointer.
Once you cross that magical ~32 GB boundary, the pointers switch back to
ordinary object pointers. The size of each pointer grows, more CPU-memory
bandwidth is used, and you effectively lose memory. In fact, it takes until around
40–50 GB of allocated heap before you have the same effective memory of a
heap just under 32 GB using compressed oops.
The moral of the story is this: even when you have memory to spare, try to avoid
crossing the 32 GB heap boundary. It wastes memory, reduces CPU performance, and
makes the GC struggle with large heaps.

45.7.3. Just how far under 32gb should I set the JVM?

Unfortunately, that depends. The exact cutoff varies by JVMs and platforms.
If you want to play it safe, setting the heap to 31gb is likely safe.
Alternatively, you can verify the cutoff point for the HotSpot JVM by adding
-XX:+PrintFlagsFinal to your JVM options and checking that the value of the
UseCompressedOops flag is true. This will let you find the exact cutoff for your
platform and JVM.
For example, here we test a Java 1.7 installation on MacOSX and see the max heap
size is around 32600mb (~31.83gb) before compressed pointers are disabled:
$ JAVA_HOME=`/usr/libexec/java_home -v 1.7` java -Xmx32600m -XX:+PrintFlagsFinal 2> /dev/null | grep UseCompressedOops
 bool UseCompressedOops := true
$ JAVA_HOME=`/usr/libexec/java_home -v 1.7` java -Xmx32766m -XX:+PrintFlagsFinal 2> /dev/null | grep UseCompressedOops
 bool UseCompressedOops = false
In contrast, a Java 1.8 installation on the same machine has a max heap size
around 32766mb (~31.99gb):
$ JAVA_HOME=`/usr/libexec/java_home -v 1.8` java -Xmx32766m -XX:+PrintFlagsFinal 2> /dev/null | grep UseCompressedOops
 bool UseCompressedOops := true
$ JAVA_HOME=`/usr/libexec/java_home -v 1.8` java -Xmx32767m -XX:+PrintFlagsFinal 2> /dev/null | grep UseCompressedOops
 bool UseCompressedOops = false
The moral of the story is that the exact cutoff to leverage compressed oops
varies from JVM to JVM, so take caution when taking examples from elsewhere and
be sure to check your system with your configuration and JVM.
Beginning with Elasticsearch v2.2.0, the startup log will actually tell you if your
JVM is using compressed OOPs or not. You’ll see a log message like:
[2015-12-16 13:53:33,417][INFO][env] [Illyana Rasputin] heap size [989.8mb], compressed ordinary object pointers [true]
Which indicates that compressed object pointers are being used. If they are not,
the message will say [false].
I Have a Machine with 1 TB RAM!

The 32 GB line is fairly important. So what do you do when your machine has a lot
of memory? It is becoming increasingly common to see super-servers with 512–768 GB
of RAM.
First, we would recommend avoiding such large machines (see Section 45.1, “Hardware”).
But if you already have the machines, you have three practical options:
	
Are you doing mostly full-text search? Consider giving 4-32 GB to Elasticsearch
and letting Lucene use the rest of memory via the OS filesystem cache. All that
memory will cache segments and lead to blisteringly fast full-text search.

	
Are you doing a lot of sorting/aggregations? Are most of your aggregations on numerics,
dates, geo_points and not_analyzed strings? You’re in luck, your aggregations will be done on
memory-friendly doc values! Give Elasticsearch somewhere from 4-32 GB of memory and leave the
rest for the OS to cache doc values in memory.

	
Are you doing a lot of sorting/aggregations on analyzed strings (e.g. for word-tags,
or SigTerms, etc)? Unfortunately that means you’ll need fielddata, which means you
need heap space. Instead of one node with a huge amount of RAM, consider running two or
more nodes on a single machine. Still adhere to the 50% rule, though.

So if your machine has 128 GB of RAM, run two nodes each with just under 32 GB. This means that less
than 64 GB will be used for heaps, and more than 64 GB will be left over for Lucene.
If you choose this option, set cluster.routing.allocation.same_shard.host: true
in your config. This will prevent a primary and a replica shard from colocating
to the same physical machine (since this would remove the benefits of replica high availability).

45.7.4. Swapping Is the Death of Performance

It should be obvious,

 but it bears spelling out clearly: swapping main memory
to disk will crush server performance. Think about it: an in-memory operation
is one that needs to execute quickly.
If memory swaps to disk, a 100-microsecond operation becomes one that take 10
milliseconds. Now repeat that increase in latency for all other 10us operations.
It isn’t difficult to see why swapping is terrible for performance.
The best thing to do is disable swap completely on your system. This can be done
temporarily:
sudo swapoff -a
To disable it permanently, you’ll likely need to edit your /etc/fstab. Consult
the documentation for your OS.
If disabling swap completely is not an option, you can try to lower swappiness.
This value controls how aggressively the OS tries to swap memory.
This prevents swapping under normal circumstances, but still allows the OS to swap
under emergency memory situations.
For most Linux systems, this is configured using the sysctl value:
vm.swappiness = 1 (1)
	(1)
	
A swappiness of 1 is better than 0, since on some kernel versions a swappiness
of 0 can invoke the OOM-killer.

Finally, if neither approach is possible, you should enable mlockall.
 file. This allows the JVM to lock its memory and prevent
it from being swapped by the OS. In your elasticsearch.yml, set this:
bootstrap.mlockall: true

45.8. File Descriptors and MMap

Lucene uses a very large number of files.
 At the same time, Elasticsearch
uses a large number of sockets to communicate between nodes and HTTP clients.
All of this requires available file descriptors.
Sadly, many modern Linux distributions ship with a paltry 1,024 file descriptors
allowed per process. This is far too low for even a small Elasticsearch
node, let alone one that is handling hundreds of indices.
You should increase your file descriptor count to something very large, such as
64,000. This process is irritatingly difficult and highly dependent on your
particular OS and distribution. Consult the documentation for your OS to determine
how best to change the allowed file descriptor count.
Once you think you’ve changed it, check Elasticsearch to make sure it really does
have enough file descriptors:
GET /_nodes/process

{
 "cluster_name": "elasticsearch__zach",
 "nodes": {
 "TGn9iO2_QQKb0kavcLbnDw": {
 "name": "Zach",
 "transport_address": "inet[/192.168.1.131:9300]",
 "host": "zacharys-air",
 "ip": "192.168.1.131",
 "version": "2.0.0-SNAPSHOT",
 "build": "612f461",
 "http_address": "inet[/192.168.1.131:9200]",
 "process": {
 "refresh_interval_in_millis": 1000,
 "id": 19808,
 "max_file_descriptors": 64000, (1)
 "mlockall": true
 }
 }
 }
}
	(1)
	
The max_file_descriptors field shows the number of available descriptors that
the Elasticsearch process can access.

Elasticsearch also uses a mix of NioFS and MMapFS for the various files. Ensure
that you configure the maximum map count so that there is ample virtual memory available for
mmapped files. This can be set temporarily:
sysctl -w vm.max_map_count=262144
Or you can set it permanently by modifying vm.max_map_count setting in your /etc/sysctl.conf.

45.9. Revisit This List Before Production

You are likely reading this section before you go into production.
The details covered in this chapter are good to be generally aware of, but it is
critical to revisit this entire list right before deploying to production.
Some of the topics will simply stop you cold (such as too few available file
descriptors). These are easy enough to debug because they are quickly apparent.
Other issues, such as split brains and memory settings, are visible only after
something bad happens. At that point, the resolution is often messy and tedious.
It is much better to proactively prevent these situations from occurring by configuring
your cluster appropriately before disaster strikes. So if you are going to
dog-ear (or bookmark) one section from the entire book, this chapter would be
a good candidate. The week before deploying to production, simply flip through
the list presented here and check off all the recommendations.

Chapter 46. Post-Deployment

Once you have deployed your cluster in production, there are some tools and
best practices to keep your cluster running in top shape. In this short
chapter, we talk about configuring settings dynamically, tweaking
logging levels, improving indexing performance, and backing up your cluster.
46.1. Changing Settings Dynamically

Many settings in Elasticsearch are dynamic and can be modified through the API.
Configuration changes that force a node (or cluster) restart are strenuously avoided.

And while it’s possible to make the changes through the static configs, we
recommend that you use the API instead.
The cluster-update API operates in two modes:
	
Transient

	
 These changes are in effect until the cluster restarts. Once
a full cluster restart takes place, these settings are erased.

	
Persistent

	
 These changes are permanently in place unless explicitly changed.
They will survive full cluster restarts and override the static configuration files.

Transient versus persistent settings are supplied in the JSON body:
PUT /_cluster/settings
{
 "persistent" : {
 "discovery.zen.minimum_master_nodes" : 2 (1)
 },
 "transient" : {
 "indices.store.throttle.max_bytes_per_sec" : "50mb" (2)
 }
}
	(1)
	
This persistent setting will survive full cluster restarts.

	(2)
	
This transient setting will be removed after the first full cluster
restart.

A complete list of settings that can be updated dynamically can be found in the
online reference docs.

46.2. Logging

Elasticsearch emits a number of logs, which are placed in ES_HOME/logs.
The default logging level is INFO.

 It provides a moderate amount of information,
but is designed to be rather light so that your logs are not enormous.
When debugging problems, particularly problems with node discovery (since this
often depends on finicky network configurations), it can be helpful to bump
up the logging level to DEBUG.
You could modify the logging.yml file and restart your nodes—but that is
both tedious and leads to unnecessary downtime. Instead, you can update logging
levels through the cluster-settings API that we just learned about.
To do so, take the logger you are interested in and prepend logger. to it. You can refer to the root logger as logger._root.
Let’s turn up the discovery logging:
PUT /_cluster/settings
{
 "transient" : {
 "logger.discovery" : "DEBUG"
 }
}
While this setting is in effect, Elasticsearch will begin to emit DEBUG-level
logs for the discovery module.
Tip
Avoid TRACE. It is extremely verbose, to the point where the logs
are no longer useful.

46.2.1. Slowlog

There is another log called the slowlog. The purpose of this log is to catch
queries and indexing requests that take over a certain threshold of time.
It is useful for hunting down user-generated queries that are particularly slow.
By default, the slowlog is not enabled. It can be enabled by defining the action
(query, fetch, or index), the level that you want the event logged at (WARN, DEBUG,
and so forth) and a time threshold.
This is an index-level setting, which means it is applied to individual indices:
PUT /my_index/_settings
{
 "index.search.slowlog.threshold.query.warn" : "10s", (1)
 "index.search.slowlog.threshold.fetch.debug": "500ms", (2)
 "index.indexing.slowlog.threshold.index.info": "5s" (3)
}
	(1)
	
Emit a WARN log when queries are slower than 10s.

	(2)
	
Emit a DEBUG log when fetches are slower than 500ms.

	(3)
	
Emit an INFO log when indexing takes longer than 5s.

You can also define these thresholds in your elasticsearch.yml file. Indices
that do not have a threshold set will inherit whatever is configured in the
static config.
Once the thresholds are set, you can toggle the logging level like any other
logger:
PUT /_cluster/settings
{
 "transient" : {
 "logger.index.search.slowlog" : "DEBUG", (1)
 "logger.index.indexing.slowlog" : "WARN" (2)
 }
}
	(1)
	
Set the search slowlog to DEBUG level.

	(2)
	
Set the indexing slowlog to WARN level.

46.3. Indexing Performance Tips

If you are in an indexing-heavy environment,

 such as indexing infrastructure
logs, you may be willing to sacrifice some search performance for faster indexing
rates. In these scenarios, searches tend to be relatively rare and performed
by people internal to your organization. They are willing to wait several
seconds for a search, as opposed to a consumer facing a search that must
return in milliseconds.
Because of this unique position, certain trade-offs can be made
that will increase your indexing performance.
These Tips Apply Only to Elasticsearch 1.3+

This book is written for the most recent versions of Elasticsearch, although much
of the content works on older versions.
The tips presented in this section, however, are explicitly for version 1.3+. There
have been multiple performance improvements and bugs fixed that directly impact
indexing. In fact, some of these recommendations will reduce performance on
older versions because of the presence of bugs or performance defects.

46.3.1. Test Performance Scientifically

Performance testing is always difficult, so try to be as scientific as possible
in your approach.

 Randomly fiddling with knobs and turning on ingestion is not
a good way to tune performance. If there are too many causes, it is impossible
to determine which one had the best effect. A reasonable approach to testing is as follows:
	
Test performance on a single node, with a single shard and no replicas.

	
Record performance under 100% default settings so that you have a baseline to
measure against.

	
Make sure performance tests run for a long time (30+ minutes) so you can
evaluate long-term performance, not short-term spikes or latencies. Some events
(such as segment merging, and GCs) won’t happen right away, so the performance
profile can change over time.

	
Begin making single changes to the baseline defaults. Test these rigorously,
and if performance improvement is acceptable, keep the setting and move on to the
next one.

46.3.2. Using and Sizing Bulk Requests

This should be fairly obvious, but use bulk indexing requests for optimal performance.

Bulk sizing is dependent on your data, analysis, and cluster configuration, but
a good starting point is 5–15 MB per bulk. Note that this is physical size.
Document count is not a good metric for bulk size. For example, if you are
indexing 1,000 documents per bulk, keep the following in mind:
	
1,000 documents at 1 KB each is 1 MB.

	
1,000 documents at 100 KB each is 100 MB.

Those are drastically different bulk sizes. Bulks need to be loaded into memory
at the coordinating node, so it is the physical size of the bulk that is more
important than the document count.
Start with a bulk size around 5–15 MB and slowly increase it until you do not
see performance gains anymore. Then start increasing the concurrency of your
bulk ingestion (multiple threads, and so forth).
Monitor your nodes with Marvel and/or tools such as iostat, top, and ps to see
when resources start to bottleneck. If you start to receive EsRejectedExecutionException,
your cluster can no longer keep up: at least one resource has reached capacity. Either reduce concurrency, provide more of the limited resource (such as switching from spinning disks to SSDs), or add more nodes.
Note
When ingesting data, make sure bulk requests are round-robined across all your
data nodes. Do not send all requests to a single node, since that single node
will need to store all the bulks in memory while processing.

46.3.3. Storage

Disks are usually the bottleneck of any modern server. Elasticsearch heavily uses disks, and the more throughput your disks can handle, the more stable your nodes will be. Here are some tips for optimizing disk I/O:
	
Use SSDs. As mentioned elsewhere,

they are superior to spinning media.

	
Use RAID 0. Striped RAID will increase disk I/O, at the obvious expense of
potential failure if a drive dies. Don’t use mirrored or parity RAIDS since
replicas provide that functionality.

	
Alternatively, use multiple drives and allow Elasticsearch to stripe data across
them via multiple path.data directories.

	
Do not use remote-mounted storage, such as NFS or SMB/CIFS. The latency introduced
here is antithetical to performance.

	
If you are on EC2, beware of EBS. Even the SSD-backed EBS options are often slower
than local instance storage.

46.3.4. Segments and Merging

Segment merging is computationally expensive,

 and can eat up a lot of disk I/O.
Merges are scheduled to operate in the background because they can take a long
time to finish, especially large segments. This is normally fine, because the
rate of large segment merges is relatively rare.
But sometimes merging falls behind the ingestion rate. If this happens, Elasticsearch
will automatically throttle indexing requests to a single thread. This prevents
a segment explosion problem, in which hundreds of segments are generated before
they can be merged. Elasticsearch will log INFO-level messages stating now
throttling indexing when it detects merging falling behind indexing.
Elasticsearch defaults here are conservative: you don’t want search performance
to be impacted by background merging. But sometimes (especially on SSD, or logging
scenarios), the throttle limit is too low.
The default is 20 MB/s, which is a good setting for spinning disks. If you have
SSDs, you might consider increasing this to 100–200 MB/s. Test to see what works
for your system:
PUT /_cluster/settings
{
 "persistent" : {
 "indices.store.throttle.max_bytes_per_sec" : "100mb"
 }
}
If you are doing a bulk import and don’t care about search at all, you can disable
merge throttling entirely. This will allow indexing to run as fast as your
disks will allow:
PUT /_cluster/settings
{
 "transient" : {
 "indices.store.throttle.type" : "none" (1)
 }
}
	(1)
	
Setting the throttle type to none disables merge throttling entirely. When
you are done importing, set it back to merge to reenable throttling.

If you are using spinning media instead of SSD, you need to add this to your
elasticsearch.yml:
index.merge.scheduler.max_thread_count: 1
Spinning media has a harder time with concurrent I/O, so we need to decrease
the number of threads that can concurrently access the disk per index. This setting
will allow max_thread_count + 2 threads to operate on the disk at one time,
so a setting of 1 will allow three threads.
For SSDs, you can ignore this setting. The default is
Math.min(3, Runtime.getRuntime().availableProcessors() / 2), which works well
for SSD.
Finally, you can increase index.translog.flush_threshold_size from the default
512 MB to something larger, such as 1 GB. This allows larger segments to accumulate
in the translog before a flush occurs. By letting larger segments build, you
flush less often, and the larger segments merge less often. All of this adds up
to less disk I/O overhead and better indexing rates. Of course, you will need
the corresponding amount of heap memory free to accumulate the extra buffering
space, so keep that in mind when adjusting this setting.

46.3.5. Other

Finally, there are some other considerations to keep in mind:
	
If you don’t need near real-time accuracy on your search results, consider
dropping the index.refresh_interval of

 each index to 30s. If you are doing
a large import, you can disable refreshes by setting this value to -1 for the
duration of the import. Don’t forget to reenable it when you are finished!

	
If you are doing a large bulk import, consider disabling replicas by setting
index.number_of_replicas: 0. When documents are replicated, the entire document
is sent to the replica node and the indexing process is repeated verbatim. This
means each replica will perform the analysis, indexing, and potentially merging
process.

In contrast, if you index with zero replicas and then enable replicas when ingestion
is finished, the recovery process is essentially a byte-for-byte network transfer.
This is much more efficient than duplicating the indexing process.

	
If you don’t have a natural ID for each document, use Elasticsearch’s auto-ID
functionality.
 It is optimized to avoid version lookups, since the autogenerated
ID is unique.

	
If you are using your own ID, try to pick an ID that is friendly to Lucene. Examples include zero-padded
sequential IDs, UUID-1, and nanotime; these IDs have consistent, sequential
patterns that compress well. In contrast, IDs such as UUID-4 are essentially
random, which offer poor compression and slow down Lucene.

46.4. Delaying Shard Allocation

As discussed way back in Section 2.5, “Scale Horizontally”, Elasticsearch will automatically
balance shards between your available nodes, both when new nodes are added and
when existing nodes leave.
Theoretically, this is the best thing to do. We want to recover missing primaries
by promoting replicas as soon as possible. We also want to make sure resources
are balanced evenly across the cluster to prevent hotspots.
In practice, however, immediately re-balancing can cause more problems than it solves.
For example, consider this situation:
	
Node 19 loses connectivity to your network (someone tripped on the power cable)

	
Immediately, the master notices the node departure. It determines
what primary shards were on Node 19 and promotes the corresponding replicas around
the cluster

	
After replicas have been promoted to primary, the master begins issuing recovery
commands to rebuild the now-missing replicas. Nodes around the cluster fire up
their NICs and start pumping shard data to each other in an attempt to get back
to green health status

	
This process will likely trigger a small cascade of shard movement, since the
cluster is now unbalanced. Unrelated shards will be moved between hosts to accomplish
better balancing

Meanwhile, the hapless admin who kicked out the power cable plugs it back in.
Node 19 reboots and rejoins the cluster. Unfortunately, the node is informed that
its existing data is now useless; the data being re-allocated elsewhere.
So Node 19 deletes its local data and begins recovering a different
set of shards from the cluster (which then causes a new minor re-balancing dance).
If this all sounds needless and expensive, you’re right. It is, but only when
you know the node will be back soon. If Node 19 was truly gone, the above procedure
is exactly what we want to happen.
To help address these transient outages, Elasticsearch has the ability to delay
shard allocation. This gives your cluster time to see if nodes will rejoin before
starting the re-balancing dance.
46.4.1. Changing the default delay

By default, the cluster will wait one minute to see if the node will rejoin. If
the node rejoins before the timer expires, the rejoining node will use its existing
shards and no shard allocation occurs.
This default time can be changed either globally, or on a per-index basis, by
configuring the delayed_timeout setting:
PUT /_all/_settings (1)
{
 "settings": {
 "index.unassigned.node_left.delayed_timeout": "5m" (2)
 }
}
	(1)
	
By using the _all index name, we can apply this setting to all indices
in the cluster

	(2)
	
The default time is changed to 5 minutes

The setting is dynamic and can be changed at runtime. If you would like shards to
allocate immediately instead of waiting, you can set delayed_timeout: 0.
Note
Delayed allocation won’t prevent replicas from being promoted to primaries.
The cluster will still perform promotions as necessary to get the cluster back to
yellow status. The allocation of the now-missing replicas will be the only process
that is delayed

46.4.2. Auto-cancellation of shard relocation

What happens if the node comes back after the timeout expires, but before
the cluster has finished moving shards around? In this case, Elasticsearch will
check to see if the on-disk data matches the current "live" data in the primary shard.
If the two shards are identical — meaning there have been no new documents, updates
or deletes — the master will cancel the on-going rebalancing and restore the
on-disk data.
This is done since recovery of on-disk data will always be faster
than transferring over the network, and since we can guarantee the shards are identical,
the process is a win-win.
If the shards have diverged (e.g. new documents have been indexed since the node
went down), the recovery process will continue as normal. The rejoining node
will delete it’s local, out-dated shards and obtain a new set.

46.5. Rolling Restarts

There will come a time when you need to perform a rolling restart of your
cluster—keeping the cluster online and operational, but taking nodes offline
one at a time.

The common reason is either an Elasticsearch version upgrade, or some kind of
maintenance on the server itself (such as an OS update, or hardware). Whatever the case,
there is a particular method to perform a rolling restart.
By nature, Elasticsearch wants your data to be fully replicated and evenly balanced.
If you shut down a single node for maintenance, the cluster will
immediately recognize the loss of a node and begin rebalancing. This can be irritating
if you know the node maintenance is short term, since the rebalancing of
very large shards can take some time (think of trying to replicate 1TB—even
on fast networks this is nontrivial).
What we want to do is tell Elasticsearch to hold off on rebalancing, because
we have more knowledge about the state of the cluster due to external factors.
The procedure is as follows:
	
If possible, stop indexing new data. This is not always possible, but will
help speed up recovery time.

	
Disable shard allocation. This prevents Elasticsearch from rebalancing
missing shards until you tell it otherwise. If you know the maintenance window will be
short, this is a good idea. You can disable allocation as follows:

PUT /_cluster/settings
{
 "transient" : {
 "cluster.routing.allocation.enable" : "none"
 }
}

	
Shut down a single node.

	
Perform a maintenance/upgrade.

	
Restart the node, and confirm that it joins the cluster.

	
Reenable shard allocation as follows:

PUT /_cluster/settings
{
 "transient" : {
 "cluster.routing.allocation.enable" : "all"
 }
}
Shard rebalancing may take some time. Wait until the cluster has returned
to status green before continuing.

	
Repeat steps 2 through 6 for the rest of your nodes.

	
At this point you are safe to resume indexing (if you had previously stopped),
but waiting until the cluster is fully balanced before resuming indexing will help
to speed up the process.

46.6. Backing Up Your Cluster

As with any software that stores data, it is important to routinely back up your
data.

 Elasticsearch replicas provide high availability during runtime; they allow
you to tolerate sporadic node loss without an interruption of service.
Replicas do not provide protection from catastrophic failure, however. For that,
you need a real backup of your cluster—a complete copy in case something goes
wrong.
To back up your cluster, you can use the snapshot API. This will take the current
state and data in your cluster and save it to a shared repository. This
backup process is "smart." Your first snapshot will be a complete copy of data,
but all subsequent snapshots will save the delta between the existing
snapshots and the new data. Data is incrementally added and deleted as you snapshot
data over time. This means subsequent backups will be substantially
faster since they are transmitting far less data.
To use this functionality, you must first create a repository to save data.
There are several repository types that you may choose from:
	
Shared filesystem, such as a NAS

	
Amazon S3

	
HDFS (Hadoop Distributed File System)

	
Azure Cloud

46.6.1. Creating the Repository

Let’s set up a shared
filesystem repository:
PUT _snapshot/my_backup (1)
{
 "type": "fs", (2)
 "settings": {
 "location": "/mount/backups/my_backup" (3)
 }
}
	(1)
	
We provide a name for our repository, in this case it is called my_backup.

	(2)
	
We specify that the type of the repository should be a shared filesystem.

	(3)
	
And finally, we provide a mounted drive as the destination.

Note
The shared filesystem path must be accessible from all nodes in your
cluster!

This will create the repository and required metadata at the mount point. There
are also some other options that you may want to configure, depending on the
performance profile of your nodes, network, and repository location:
	
max_snapshot_bytes_per_sec

	
 When snapshotting data into the repo, this controls
the throttling of that process. The default is 20mb per second.

	
max_restore_bytes_per_sec

	
When restoring data from the repo, this controls
how much the restore is throttled so that your network is not saturated. The
default is 20mb per second.

Let’s assume we have a very fast network and are OK with extra traffic, so we
can increase the defaults:
POST _snapshot/my_backup/ (1)
{
 "type": "fs",
 "settings": {
 "location": "/mount/backups/my_backup",
 "max_snapshot_bytes_per_sec" : "50mb", (2)
 "max_restore_bytes_per_sec" : "50mb"
 }
}
	(1)
	
Note that we are using a POST instead of PUT. This will update the settings
of the existing repository.

	(2)
	
Then add our new settings.

46.6.2. Snapshotting All Open Indices

A repository can contain multiple snapshots.

 Each snapshot is associated with a
certain set of indices (for example, all indices, some subset, or a single index). When
creating a snapshot, you specify which indices you are interested in and
give the snapshot a unique name.
Let’s start with the most basic snapshot command:
PUT _snapshot/my_backup/snapshot_1
This will back up all open indices into a snapshot named snapshot_1, under the
my_backup repository. This call will return immediately, and the snapshot will
proceed in the background.
Tip
Usually you’ll want your snapshots to proceed as a background process, but occasionally
you may want to wait for completion in your script. This can be accomplished by
adding a wait_for_completion flag:
PUT _snapshot/my_backup/snapshot_1?wait_for_completion=true
This will block the call until the snapshot has completed. Note that large snapshots
may take a long time to return!

46.6.3. Snapshotting Particular Indices

The default behavior is to back up all open indices.

 But say you are using Marvel,
and don’t really want to back up all the diagnostic .marvel indices. You
just don’t have enough space to back up everything.
In that case, you can specify which indices to back up when snapshotting your cluster:
PUT _snapshot/my_backup/snapshot_2
{
 "indices": "index_1,index_2"
}
This snapshot command will now back up only index1 and index2.

46.6.4. Listing Information About Snapshots

Once you start accumulating snapshots in your repository, you may forget the details

relating to each—particularly when the snapshots are named based on time
demarcations (for example, backup_2014_10_28).
To obtain information about a single snapshot, simply issue a GET reguest against
the repo and snapshot name:
GET _snapshot/my_backup/snapshot_2
This will return a small response with various pieces of information regarding
the snapshot:
{
 "snapshots": [
 {
 "snapshot": "snapshot_1",
 "indices": [
 ".marvel_2014_28_10",
 "index1",
 "index2"
],
 "state": "SUCCESS",
 "start_time": "2014-09-02T13:01:43.115Z",
 "start_time_in_millis": 1409662903115,
 "end_time": "2014-09-02T13:01:43.439Z",
 "end_time_in_millis": 1409662903439,
 "duration_in_millis": 324,
 "failures": [],
 "shards": {
 "total": 10,
 "failed": 0,
 "successful": 10
 }
 }
]
}
For a complete listing of all snapshots in a repository, use the _all placeholder
instead of a snapshot name:
GET _snapshot/my_backup/_all

46.6.5. Deleting Snapshots

Finally, we need a command to delete old snapshots that
are no longer useful.
This is simply a DELETE HTTP call to the repo/snapshot name:
DELETE _snapshot/my_backup/snapshot_2
It is important to use the API to delete snapshots, and not some other mechanism
(such as deleting by hand, or using automated cleanup tools on S3). Because snapshots are
incremental, it is possible that many snapshots are relying on old segments.
The delete API understands what data is still in use by more recent snapshots,
and will delete only unused segments.
If you do a manual file delete, however, you are at risk of seriously corrupting
your backups because you are deleting data that is still in use.

46.6.6. Monitoring Snapshot Progress

The wait_for_completion flag provides a rudimentary form of monitoring, but
really isn’t sufficient when snapshotting or restoring even moderately sized clusters.
Two other APIs will give you more-detailed status about the
state of the snapshotting. First you can execute a GET to the snapshot ID,
just as we did earlier get information about a particular snapshot:
GET _snapshot/my_backup/snapshot_3
If the snapshot is still in progress when you call this, you’ll see information
about when it was started, how long it has been running, and so forth. Note, however,
that this API uses the same threadpool as the snapshot mechanism. If you are
snapshotting very large shards, the time between status updates can be quite large,
since the API is competing for the same threadpool resources.
A better option is to poll the _status API:
GET _snapshot/my_backup/snapshot_3/_status
The _status API returns immediately and gives a much more verbose output of
statistics:
{
 "snapshots": [
 {
 "snapshot": "snapshot_3",
 "repository": "my_backup",
 "state": "IN_PROGRESS", (1)
 "shards_stats": {
 "initializing": 0,
 "started": 1, (2)
 "finalizing": 0,
 "done": 4,
 "failed": 0,
 "total": 5
 },
 "stats": {
 "number_of_files": 5,
 "processed_files": 5,
 "total_size_in_bytes": 1792,
 "processed_size_in_bytes": 1792,
 "start_time_in_millis": 1409663054859,
 "time_in_millis": 64
 },
 "indices": {
 "index_3": {
 "shards_stats": {
 "initializing": 0,
 "started": 0,
 "finalizing": 0,
 "done": 5,
 "failed": 0,
 "total": 5
 },
 "stats": {
 "number_of_files": 5,
 "processed_files": 5,
 "total_size_in_bytes": 1792,
 "processed_size_in_bytes": 1792,
 "start_time_in_millis": 1409663054859,
 "time_in_millis": 64
 },
 "shards": {
 "0": {
 "stage": "DONE",
 "stats": {
 "number_of_files": 1,
 "processed_files": 1,
 "total_size_in_bytes": 514,
 "processed_size_in_bytes": 514,
 "start_time_in_millis": 1409663054862,
 "time_in_millis": 22
 }
 },
 ...
	(1)
	
A snapshot that is currently running will show IN_PROGRESS as its status.

	(2)
	
This particular snapshot has one shard still transferring (the other four have already completed).

The response includes the overall status of the snapshot, but also drills down into
per-index and per-shard statistics. This gives you an incredibly detailed view
of how the snapshot is progressing. Shards can be in various states of completion:
	
INITIALIZING

	
 The shard is checking with the cluster state to see whether it can
be snapshotted. This is usually very fast.

	
STARTED

	
 Data is being transferred to the repository.

	
FINALIZING

	
 Data transfer is complete; the shard is now sending snapshot metadata.

	
DONE

	
 Snapshot complete!

	
FAILED

	
 An error was encountered during the snapshot process, and this shard/index/snapshot
could not be completed. Check your logs for more information.

46.6.7. Canceling a Snapshot

Finally, you may want to cancel a snapshot or restore.
 Since these are long-running
processes, a typo or mistake when executing the operation could take a long time to
resolve—and use up valuable resources at the same time.
To cancel a snapshot, simply delete the snapshot while it is in progress:
DELETE _snapshot/my_backup/snapshot_3
This will halt the snapshot process. Then proceed to delete the half-completed
snapshot from the repository.

46.7. Restoring from a Snapshot

Once you’ve backed up some data, restoring it is easy: simply add _restore
to the ID of
 the snapshot you wish to restore into your cluster:
POST _snapshot/my_backup/snapshot_1/_restore
The default behavior is to restore all indices that exist in that snapshot.
If snapshot_1 contains five indices, all five will be restored into
our cluster.
 As with the snapshot API, it is possible to select which indices
we want to restore.
There are also additional options for renaming indices. This allows you to
match index names with a pattern, and then provide a new name during the restore process.
This is useful if you want to restore old data to verify its contents, or perform
some other processing, without replacing existing data. Let’s restore
a single index from the snapshot and provide a replacement name:
POST /_snapshot/my_backup/snapshot_1/_restore
{
 "indices": "index_1", (1)
 "rename_pattern": "index_(.+)", (2)
 "rename_replacement": "restored_index_$1" (3)
}
	(1)
	
Restore only the index_1 index, ignoring the rest that are present in the
snapshot.

	(2)
	
Find any indices being restored that match the provided pattern.

	(3)
	
Then rename them with the replacement pattern.

This will restore index_1 into your cluster, but rename it to restored_index_1.
Tip
Similar to snapshotting, the restore command will return immediately, and the
restoration process will happen in the background. If you would prefer your HTTP
call to block until the restore is finished, simply add the wait_for_completion
flag:
POST _snapshot/my_backup/snapshot_1/_restore?wait_for_completion=true

46.7.1. Monitoring Restore Operations

The restoration of data from a repository piggybacks on the existing recovery
mechanisms already in place in Elasticsearch.
 Internally, recovering shards
from a repository is identical to recovering from another node.
If you wish to monitor the progress of a restore, you can use the recovery
API. This is a general-purpose API that shows the status of shards moving around
your cluster.
The API can be invoked for the specific indices that you are recovering:
GET restored_index_3/_recovery
Or for all indices in your cluster, which may include other shards moving around,
unrelated to your restore process:
GET /_recovery/
The output will look similar to this (and note, it can become very verbose
depending on the activity of your cluster!):
{
 "restored_index_3" : {
 "shards" : [{
 "id" : 0,
 "type" : "snapshot", (1)
 "stage" : "index",
 "primary" : true,
 "start_time" : "2014-02-24T12:15:59.716",
 "stop_time" : 0,
 "total_time_in_millis" : 175576,
 "source" : { (2)
 "repository" : "my_backup",
 "snapshot" : "snapshot_3",
 "index" : "restored_index_3"
 },
 "target" : {
 "id" : "ryqJ5lO5S4-lSFbGntkEkg",
 "hostname" : "my.fqdn",
 "ip" : "10.0.1.7",
 "name" : "my_es_node"
 },
 "index" : {
 "files" : {
 "total" : 73,
 "reused" : 0,
 "recovered" : 69,
 "percent" : "94.5%" (3)
 },
 "bytes" : {
 "total" : 79063092,
 "reused" : 0,
 "recovered" : 68891939,
 "percent" : "87.1%"
 },
 "total_time_in_millis" : 0
 },
 "translog" : {
 "recovered" : 0,
 "total_time_in_millis" : 0
 },
 "start" : {
 "check_index_time" : 0,
 "total_time_in_millis" : 0
 }
 }]
 }
}
	(1)
	
The type field tells you the nature of the recovery; this shard is being
recovered from a snapshot.

	(2)
	
The source hash describes the particular snapshot and repository that is
being recovered from.

	(3)
	
The percent field gives you an idea about the status of the recovery.
This particular shard has recovered 94% of the files so far; it is almost complete.

The output will list all indices currently undergoing a recovery, and then
list all shards in each of those indices. Each shard will have stats
about start/stop time, duration, recover percentage, bytes transferred, and more.

46.7.2. Canceling a Restore

To cancel a restore, you need to delete the indices being restored.
 Because
a restore process is really just shard recovery, issuing a delete-index API
alters the cluster state, which will in turn halt recovery. For example:
DELETE /restored_index_3
If restored_index_3 was actively being restored, this delete command would
halt the restoration as well as deleting any data that had already been restored
into the cluster.

46.8. Clusters Are Living, Breathing Creatures

Once you get a cluster into production, you’ll find that it takes on a life of its
own.

Elasticsearch works hard to make clusters self-sufficient and just work.
But a cluster still requires routine care and feeding, such as routine backups
and upgrades.
Elasticsearch releases new versions with bug fixes and performance enhancements at
a very fast pace, and it is always a good idea to keep your cluster current.
Similarly, Lucene continues to find new and exciting bugs in the JVM itself, which
means you should always try to keep your JVM up-to-date.
This means it is a good idea to have a standardized, routine way to perform rolling
restarts and upgrades in your cluster. Upgrading should be a routine process,
rather than a once-yearly fiasco that requires countless hours of precise planning.
Similarly, it is important to have disaster recovery plans in place. Take frequent
snapshots of your cluster—and periodically test those snapshots by performing
a real recovery! It is all too common for organizations to make routine backups but
never test their recovery strategy. Often you’ll find a glaring deficiency
the first time you perform a real recovery (such as users being unaware of which
drive to mount). It’s better to work these bugs out of your process with
routine testing, rather than at 3 a.m. when there is a crisis.

OEBPS/images/elas_0404.png
CLUSTER

NODE 1- * MASTER

e @

OEBPS/images/elas_1701.png
New score

old_score * number_of_votes

Number of votes

OEBPS/images/elas_29in01.png
Cars Sold over Time
3 <= Count

ok
W23 1MNG 32N8 424 610Na 73004 SNENA 11/7N4 1227N4

OEBPS/images/elas_29in02.png
Sales per Quarter, with distribution per Make

$12000000 - Ford
— Toyota

$100,000.00 Honda
— BMW
=== Total Sales

580,000.00

$60,000.00

54000000

52000000

$0,00 F

ar a @ Qs

OEBPS/images/elas_0205.png
CLUSTER

NODE 1 - * MASTER

NODE 2

®E

NODE 3

OEBPS/images/elas_28in01.png
#of Cars

Sales & Revenue per Price Range

$100000 gy Carssold
s00000 M Revenue

$80,000
$70,000
560,000
50,000
$40,000
$30,000

Revenue in Dollars

$20,000

$10,000

$0
0-20,000 20,000-40,000 40,000-60,000 60,000-80,000 80,000-100,000

Price Ranges

OEBPS/images/elas_17in02.png
g
o
-
v
o
©

“hippopotamus”

OEBPS/images/elas_1704.png
New score

F35
F3

old_score + log(l + 0.1 * number_of_votes)
25

F1s
F1

Fos

1 2 3 4 5 6 7 8 9

Number of votes

OEBPS/images/elas_1101.png
Commit point

VS

((

((

((

Searchable

OEBPS/images/elas_0901.png
CLUSTER

NODE 1- * MASTER

w [

l NODE 2

NODE 3

C) (=]

\;/;

OEBPS/images/elas_1103.png
Commit point

In-memory buffer

OEBPS/images/elas_0405.png
CLUSTER

NODE 1- * MASTER NODE 2

NODE 3

;&{/

OEBPS/images/elas_1110.png
Commit point

'

l-—U

Searchable

OEBPS/images/elas_1107.png
Commit point

In-memory buffer

Translog

OEBPS/images/elas_0203.png
CLUSTER

NODE 1 - * MASTER

NODE 2

®E

OEBPS/images/elas_33in01.png
1000 —— Mean

Median

900

800

700

600

500

400

300

200

100

000 224 a8 712 936 12:00 1424
Time

OEBPS/images/elas_1702.png
New score

old_score * log(l + number_of_votes)

Number of votes

OEBPS/images/elas_28in02.png
30000

20000

10000

AVG Price of all Makes

OEBPS/images/elas_1703.png
New score

old_score * log(l + 3 * number_of_votes)

Number of votes

OEBPS/images/elas_0204.png
CLUSTER

NODE 1 - * MASTER

NODE 2

OEBPS/images/elas_4401.png
e

OEBPS/images/elas_0202.png
CLUSTER

NODE 1 - * MASTER

OEBPS/images/elas_1108.png
Commit point

In-memory buffer Translog

OEBPS/images/elas_1705.png
Score

scale

offset

origin

OEBPS/images/elas_1102.png
Commit point

Y

- &
Ivuul

Searchable

In-memory buffer

OEBPS/images/elas_1706.png
Score

10

20

tf() of TF/IDF

tf() of BM25

30 40 50 60 70

90

Frequency

OEBPS/images/elas_29in03.png
A Logstash Search
e

 bytesi0 TO 4000000] AND Gtags:success

2dapagotodmnuesago T A B B @ 8

a+

Vew s | @ ZoomOu | ® rmlfex) 838) ® prp (ex) (659) @ prg () (317) @ g (ex) (229) @ css ex) (121) countper 30m | (2214)
)

0224 0224 0224 0224 22 0224 0225

REVENUE © & + x VoM 0 & + x

O

ALLEVENTS
Felds O oge < goarcdst»
A0 Curo 2) I N
| Type tofiter... oSS Mo, T
0 anessage Ll s

© o & x mp

0225 0225 225 0225

TOPDESTINATIONS ~ © © + x TOPSOURCES © © + x GEOPARS 0 8 & x

&
)
2
o
e o & x
010100 o1 500 avaableor paging >
< extonsion » < ctentip <byess < < phpmemory ! responso.
nm 1671222180 540 1068 0
g 1648717073 2045 1903 200
nm 2223102238 1801 138 20
nm 1382268081 7020 1801 20

OEBPS/images/elas_17in01.png
“happy”

2 3

“hippopotamus”

OEBPS/images/elas_0902.png
CLUSTER

NODE 1- * MASTER

=

‘ NODE 2

NODE 3

R1

OEBPS/images/elas_0406.png
CLUSTER

NODE 1- * MASTER

OEBPS/images/elas_0301.png
f A

Web-1 Web-2

OEBPS/images/elas_4402.png

OEBPS/images/elas_4404.png

OEBPS/images/elas_0403.png
CLUSTER

NODE 1- * MASTER

NODE 2

NODE 3

OEBPS/images/elas_33in02.png
1000

900

800

700

600

500

400

300

200

100

000 224 a8 712 936 12:00 1424
Time

OEBPS/images/elas_0402.png
CLUSTER

NODE 1- * MASTER

\m

NODE 2

RO

R1

OEBPS/images/elas_0206.png
CLUSTER

NODE 2 - # MASTER

NODE 3

OEBPS/images/elas_1105.png
Commit point

In-memory buffer

OEBPS/images/elas_1111.png
Commit point

]

S -

Searchable

OEBPS/images/elas_1104.png
Commit point

Y

- &
Ivuul

Searchable

In-memory buffer

OEBPS/images/elas_4403.png

OEBPS/images/elas_1106.png
Commit point

Y

- &
quul

Searchable

In-memory buffer Translog

OEBPS/images/elas_1109.png
Commit point

In-memory buffer

Translog

OEBPS/images/elas_0401.png
CLUSTER

NODE 1- * MASTER

NODE 2

NODE 3

OEBPS/images/elas_0201.png
CLUSTER

NODE 1 - * MASTER

