

Servers for Hackers

Server Administration for Programmers

Chris Fidao

This book is for sale at http://leanpub.com/serversforhackers

This version was published on 2015-05-01

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

©2014 - 2015 Chris Fidao

http://leanpub.com/serversforhackers
http://leanpub.com
http://leanpub.com/manifesto

Tweet This Book!

Please help Chris Fidao by spreading the word about this book on Twitter!
The suggested hashtag for this book is #srvrsforhackers.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#srvrsforhackers

http://twitter.com
https://twitter.com/search?q=%23srvrsforhackers
https://twitter.com/search?q=%23srvrsforhackers

Contents

Servers e i
Video Site i
Book Issues ii

Introduction iii

Accidental Sysadmin Syndromeo oL iv
Assumptions L e e iv

Linux Distributions v

The Sandbox 1
Install Virtualbox and Vagrant L Lo Lo L 1
Configure Vagrant. L 2
Vagrant Up! L L e 6
BasicCommands 10
Basic Software 11
Review o L e 13

Security 14

Usersand ACCESS 15
IPAddresses L 15
CreatingaNew User e 15
Making Our User a Super Userottt i it 16

Setting Up the Firewall: Iptables 27
Adding theserules 28
Inserting Rules 31
Deleting Rules 31
Saving Firewall Rules 33
Defaulting to DROP Over ACCEPT 34

Logging Dropped Packets 35

CONTENTS

Fail2Ban e 37
Iptables Integration 37
Installation 38
Configuration 39

Automatic Security Updates L 43

Package Managers 45

APt . e e 46
Installing 46
Repositories L 47
Examples 47
Searching Packages 50

Permissions and User Management 52

Permissions 53
Checking Permissions e 53
Changing Permissions 54

User Management e 57
Creating Users i i e 59
Umask & Group ID Bit 60
Running Processes. e 63

Webservers 64

HTTP, Web Servers and Web Sites 65
A QuickNoteon DNS 66

DNS & Hosts File 68
Xipdo . o e 70
Virtual Hosts o o 71

Hosting Web Applications 75
Three Actors L 75

Apache 83
Installing L 83
Configuration 84
Virtual Hosts o o 87

Apache and Web Applications 91

CONTENTS

MPM Configuration e 114
Security Configuration 117
Envvars e e e 118
Nginxo 122
Features e 122
Installation 123
Web Server Configuration L 124
Servers (virtual hosts) 126
Integration with Web Applications o 133
PHP . . . e e e 143
Installation L 143
Configuration 144
PHP-FPM . . . 146
Server Setup for Multi-Tenancy Apps 157
DN 157
Multi-Tenancy in Apache 159
Multi-Tenancy in Nginx o0 0 160
SSL Certificates 162
SSL Overview e 163
Using SSL in Your Application 163
Creating Self-Signed Certificates 165
Creating a Wildcard Self-Signed Certificate 167
Apache Setup 169
Nginx Setup e 173
One Server Block 174
ExtraSSL Tricks o 176
Multi-Server Environments L. 177
Implications of Multi-Server Environments 178
Asset Management 178
Sessions 179
Lost Client Information 180
SSLTraffic o o e 181
Logs . . . o o e 182

Load Balancing with Nginx o oL 184

CONTENTS

Balancing Algorithms 184
Configuration e 185
Load Balancing with HAProxy 192
Common Setups e e 192
Installation 192
HAProxy Configuration 193
Monitoring HAProxy e 200
Sample NodeJS Web Server 201
SSL with HAProxy e 203
HAProxy with SSL Termination, 203
HAProxy with SSL Pass-Through 206
Sample NodeJS Web Server 208
Web Cache. 210
Nuts and Bolts of HTTP Caching 211
Object Caches e 211
Web Caches 211
Typesof HTTP Caches e 212
An Origin Server 214
Testing Caching Mechanisms L 214
Nginx Web Caching 219
Use Cases . . . v v v v v it e e e e e e 219
How It Will Work 0 oo 220
Origin Server e 220
Cache Server e 221
Proxy Caching 226
Example: Caching SpecificURIs 229
Varnish 231
Origin Server e 231
Install Varnish 232
Basic Configuration 232
Increasing Cache HitRate 238
Varnish Tools 241

Extra Resources e 244

CONTENTS

Logs . . . 245
Logrotate e 246
What does Logrotate do? 246
Configuring Logrotate e 246
Going Further e 252
Rsyslog e 254
Configuration 254
Usage o o e e 258
Should IUse Rsyslog? e 262
Sending To Rsyslog From An Application 262
File Management, Deployment & Configuration Management 263
Managing Files 264
Copying FilesLocally 264
SCP:Secure COpy o o i i e 264
Rsync: Sync Files Across Hosts 265
Deployment 268
Auto-deploy with GitHub 269
How it Works 269
Node Listener 269
Shell Script. o 271
Putting it together 272
Firewall 272
Configuration Management with Ansible 274
Install o 274
Managing SErvers 275
Basic: Running Commands Lo 276
Basic Playbook 278
Roles o e 282
Facts e 291
Vault . . . o e 293
SSH . . . 298
Loggingin e 299
SSH Config e 300

SSH Tunneling 302

CONTENTS

Local Port Forwarding e 302
Remote Port Forwarding 304
One-Off Commands & Multiple Servers 306
Basic Ansible L 306
Monitoring Processes o 309
A Sample Script 310
System Services e 311
System V Init (SysVinit, SysV) 311
Upstart e e 312
The Service Command 313
Systemd 314
Using These Systems 315
Supervisord 317
A Chain of Process Monitors L 317
Installation L 318
Configuration e e e 318
Controlling Processes e 320
Web Interface 322
Forever e 323
Installation 323
Usage e 323
Circus e 325
Installation L 325
Configuration L 326
Controlling Processes e 328
Web Interface 330
Startingon Boot L 331
Development and Servers 333
Serving Static Content L 334
Built-In L 334
NodeJS e 334

Dynamic Content L 336

Servers

Servers can be fun!
Knowing how to setup, run and administer a server can be as empowering as coding itself!

Some application have needs stretching beyond what hosting providers can give. This shouldn’t stop
us from building the application.

Servers can be hard!

Consumers expect and demand services to be functioning. Downtime can cost real money, and is
often met with frustration and anger.

At the same time, servers are increasingly commodified. Hosting once involved a few, powerful
servers. Now, the modern “Cloud” consists of many small, cheap virtual machines. Virtual machines
commonly die for many reasons.

The end result is that we need to build for failure. This is a Hard Problem™, and requires us to know
a lot about the servers running our applications.

This book exists because we developers are now faced with System Administration issues. We need
to at least know the basics of what goes into hosting and serving our application!

So, let’s not get stuck with limiting hosting or a broken server!

Video Site

Since publishing this book, I've also started a subcription-based video site, found at https://serversforhackers.com®.
This includes all book videos, and many, many more.

I'll be adding new videos weekly! These continue to concentrate on topics important to web servers
and web development, from the basic to the complex.

The videos all come with a write-up of the commands and information presented in the video,
usually along with some extra resources. This makes the videos easy to come back to for quick
reference later.

"https://serversforhackers.com

https://serversforhackers.com
https://serversforhackers.com

Servers ii

@ ® < Em| @ (0) @ serversforhackers.com & t [l |T

@: Videos Forums Editions Articles Login | Sign Up

Server Admin for Programmers

"Other than experience, nothing else has boosted my
development career more than learning about the servers
running our applications."

Servers for Hackers Video Site

Book Issues

All feedback is hugely appreciated! Any questions, comments, issues, stories of glory/valor and
praise can be directed to the Github repository” created for feedback!

https://github.com/Servers-for-Hackers/the-book

*https://github.com/Servers-for-Hackers/the-book

https://github.com/Servers-for-Hackers/the-book
https://github.com/Servers-for-Hackers/the-book

Introduction

Accidental Sysadmin Syndrome

You're a developer.
A server broke, and you’re the only one around to fix it.
You have a special-needs application that requires specific software.

You need to setup a development server, and will spend half of your day trying to get some “simple”
configuration to work.

These are symptoms of Accidental Sysadmin Syndrome.

This book is for developers who find themselves needing or wanting to be a SysAdmin.

Assumptions

This book assumes at least a passing familiarity with the command line. Those who have logged
into the shell and poked around a server before will benefit the most.

% If you are new to the command line, concentrate on getting comfortable with Vagrant. This
will help familiarize you with using the command line and servers.

Linux Distributions

There are many distributions of Linux. Some popular ones are Arch, Debian, Ubuntu, Redhat,
CentOS, Fedora and CoreOS.

Many of these distributions are related to each other in some way. For example, some of these
distributions are “downstream” from others.

A downstream Linux distribution includes the upstream’s distribution’s changes, and may add their
own.

For example, Ubuntu is based on Debian and is considered downstream of Debian. CentOS is based
on RedHat and is therefore downstream from RedHat. RedHat sponsors Fedora and so Fedora is
very similar to RedHat and CentOS (although it has a much more rapid release cycle).

Each distribution has opinions about Linux and its use. It would be too cumbersome to cover all
topics for each distribution and so I've chosen to concentrate on Ubuntu.

This book concentrates on Debian/Ubuntu, however, the serversforhackers.com? video site
covers multiple distributions!

Ubuntu is one of the most popular server and desktop distributions. It has a great set of configurations
that come out of the box, allowing us to worry less about configuration until we need to. This makes
it easy to use.

Ubuntu updates software packages quickly relative to some other distributions. However, updating
to the latest software makes it easier to introduce new bugs and version conflicts.

Luckily, Ubuntu’s LTS releases are a good solution to this potential issue.

Q LTS stands for Long Term Support

LTS versions are released every 2 years but support for them last 5 years. This makes them ideal for
longer-term use.

As major versions are released yearly, only every other major release of Ubuntu is an LTS. The
current LTS is 14.04 - the next LTS release will be 16.04.

Trusty, the codename for Ubuntu 14.04, was released in April of 2014. This will be a relevant server
for at least 2 years.

*https://serversforhackers.com

https://serversforhackers.com
https://serversforhackers.com

Linux Distributions vi

LTS releases offer more stability and security, and do not prevent us from installing the latest
software when we need to. This makes them ideal candidates for every-day server usage.

o Popularity is Relative

RedHat Enterprise (RHEL) is a popular distribution in the enterprise world. Many hosting
companies use CentOS along with cPanel/WHM or Plesk control panels. In the open
source/startup worlds Ubuntu is one of the most popular distributions of Linux.

Because Ubuntu is closely tied to Debian, most topics included here will be exactly the same for
Debian. Some topics may vary slightly.

For RedHat/CentOS distributions, most topics will have small-to-large differences from what you
read here.

In any case, much of what you learn here will be applicable to all distributions. The difference in
distributions is usually just configuration.

I recommend this Rackspace knowledge-base article for more information on the various Linux
distributions: http://www.rackspace.com/knowledge_center/article/choosing-a-linux-distribution®.

“http://www.rackspace.com/knowledge_center/article/choosing-a-linux-distribution

http://www.rackspace.com/knowledge_center/article/choosing-a-linux-distribution
http://www.rackspace.com/knowledge_center/article/choosing-a-linux-distribution

The Sandbox

If you want a sandbox - a place to safely play with a server - this chapter is for you.

The topics of the “Sandbox” section is not necessary to follow along in this book, but it will be
helpful.

You’ll learn how to setup a local server on which you can develop an application or experiment with
new technology. As a bonus, you’ll avoid mucking up your computer with development software!

We'll briefly cover using Vagrant to setup a local server.

The benefit of Vagrant is that it will let us use a “real” server to test on. You can create a server
also used in production. Virtual servers are also safe - we can thoroughly mess them up, throw them
away and recreate them as much as we need.

Let’s get started with Vagrant!

Install Virtualbox and Vagrant

Virtualbox is a tool for creating Virtual Machines. Vagrant is a tool that lets you easily create and
manage virtual machines.

Vagrant takes care of file sharing, network setup and other sticky topics.

O A Virtual Machine is a (guest) computer running inside of your (host) computer. VirtualBox
“virtualizes” hardware by making virtual servers think they are running on real hardware.

A guest computer can be almost anything - Windows, Mac, Linux or other operating
systems.

Here’s some important vocabulary: Your computer is called the “host” machine. Any virtual machine
running within the host machine is called a “guest” machine.

I'll use the term “virtual machine” with “server” interchangeably, as we’ll be creating
Ubuntu servers (VMs) to learn on.

To get started, the first step is to install Virtualbox and Vagrant. These are available for Windows,
Mac and Linux. Intalling them only involves browsing to their websites and downloading/running
their installers. You may need to restart your Windows after installing Vagrant.

The Sandbox 2

9 For this book, you will need Vagrant version 1.5 or higher. Most versions of Virtualbox
should work, I always update to the latest of these two tools.

Configure Vagrant

Once you have installed these, we can get started! We’ll get Vagrant going by running the following
commands on our host machine.

On Mac, open up the Terminal app. On Windows, you can use the CMD prompt (or your command
line tool of choice) to run Vagrant commands.

On Mac:

mkdir -p ~/Sites/sfh
cd ~/Sites/sfh
vagrant init ubuntu/trusty64

On Windows:

mkdir C:\sfh
cd C:\sfh
vagrant init ubuntu/trusty64

From here on, I won’t differentiate between Windows and Mac commands. We’ll mostly
be within a server in any case, so the commands will not vary no matter what type of
computer your host is.

The vagrant init command creates a new file called Vagantfile. This file is configured to use
Ubuntu 14.04 LTS server, codenamed “trusty”. This is the server we’ll be using for this book.

The Vagrantfile created will look something like this (when all the comments are stripped out):

<N O O & W N =

The Sandbox 3

File: Vagrantfile

VAGRANTFILE_API_VERSION = "2"
Vagrant.configure(VAGRANTFILE_API_VERSION) do [configl|
config.vm.box = "ubuntu/trusty64"

end

If you look at your file, you’ll see lots of comments, which show some configurations you can use.
I’ll cover a few that you should know about.

Networking

The basic install of Vagrant will do some “port forwarding”. For example, if Vagrant forwards port
8080 to the server’s port 80, then we’ll go to http://localhost:8080 in your browser to reach the server’s
web server at port 80. This has some side effects.

The Sandbox 4

© OO0 /| 192.169.22.10:8111 x SR s
& C [7192.169.22.10:8111 v A0 9% =
Hello, SFH!

® O O vagrant@vagrant-ubuntu-trusty-64: ~/www — ssh %

vagrant@vagrant...usty-64: ~ /www

vagrant@vagrant-ubuntu-trusty-64:~/waww$ python -m SimpleHTTPServer 80 B
Serving HTTP on 0.0.0.0 port 80 ...

192.169.22.1 - - [14/Aug/2014 00:02:12] "GET / HTTP/1.1" 200 -

192.169.22.1 - - [14/Aug/2014 00:02:13] code 404, message File not found

192.169.22.1 - - [14/Aug/2014 00:02:13] "GET /favicon.ico HTTP/1.1" 404 -

A side effect of this port forwarding has to do with interacting with web applications. You’ll need
to access web pages in your browser using the port which Vagrant sets up, often “8888”. Instead of
“http://localhost”, you’ll use “http://localhost:8888” in the browser. However, your application may
not be coded to be aware of the non-standard port (8888). The application may redirect to, create
links for or submit forms to standard port 80 instead of the forwarded port!

I like to get around this potential problem by assigning an private-network IP address to my Vagrant
server.

To do this, open up your Vagrantfile and make it look like this:

© 00 39 O O b W N =

The Sandbox 5

File: Vagrantfile

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config]

config.vm.box = "ubuntu/trusty64"

config.vm.network :private_network, ip: "192.168.22.10"

end

The private_network directive tells Vagrant to setup a private network. Our host and guest
machines can communicate on this network. This assigns the guest server the IP address of
192.168.22.10. Note that each server should have a unique IP address just in case they are run at
the same time.

Q There are IP address ranges set aside for private networks. Generally you can use10.0.0.0
- 10.255.255.255,172.16.0.0 - 172.31.255.255,and 192.168.0.0 - 192.168.255.255.
However, always avoid the lower and upper IP addresses within those ranges, as they are

often reserved.

® O O vim Vagrantfile — vim %)

1 # -*- mode: ruby -*-

2 # vi: set ft=ruby :

3

4 # Vagrantfile API/syntax version. Don't touch unless you know what you're doing!
5 VAGRANTFILE_API_VERSION =

6

7 Vagrant.configure(VAGRANTFILE_API_VERSION) do Iconfigl

8

9 # Every Vagrant virtual environment requires a box to build off of.

10 config.vm.box =

11

12 # Create a private network, which allows host-only access to the machine
13 # using a specific IP.

14 config.vm.network , ip:

15

16 end

*;V Vagrantfile[+] conf <JUEFS8URTX]
1Wq

0 I O O b W N =

The Sandbox 6

Vagrant Up!

Once the Vagrant file changes are saved, we can run the vagrant up command. This will download
the ubuntu/trusty64 base server (“box”) and run it with our set configuration.

vagrant up

If Vagrant cannot find the Vagrantfile, you need to cd into the directory containing the
Vagrantfile.

You’ll see some output as Vagrant sets up the Ubuntu server. Once it’s complete, run vagrant status
to see that it’s powered on and running.

vagrant status
You should see output similar to this:

Current machine states:
default running (virtualbox)

The VM is running. To stop this VM, you can run “vagrant halt™ to
shut it down forcefully, or you can run “vagrant suspend” to simply
suspend the virtual machine. In either case, to restart it again,
run “vagrant up’.

Our machine, named “default” is running, using VirtualBox.

Now we need to log into this server. Vagrant sets up a way to log in without needing a password
nor SSH key. Run vagrant ssh to log into the server!

The Sandbox 7

[CHGNG) 2 vagrant@vagrant-ubuntu-trusty-64: ~ — ssh =
vagrant@vagrant...ntu-trusty-64: ~

efi pe ~/Sites/sfh
% vagrant status 110028
Current machine states:

default running (virtualbox)

The VM is running. To stop this VM, you can run “vagrant halt® to
shut it down forcefully, or you can run ‘vagrant suspend’ to simply
suspend the virtual machine. In either case, to restart it again,
simply run ‘vagrant up.

ape ~/Sites/sfh
% vagrant ssh 110029
Welcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/
System information as of Tue Aug 5 21:03:20 UTC 2014

System load: 0.0 Users logged in: o

Usage of /: 24.4% of 39.34GB IP address for eth@: 10.0.2.15
Memory usage: 30% IP address for ethl: 192.169.22.10
Swap usage: 0% IP address for docker@: 172.17.42.1
Processes: 88

Graph this data and manage this system at:
https://landscape.canonical.com/

Get cloud support with Ubuntu Advantage Cloud Guest:
http://www.ubuntu.com/business/services/cloud

Last login: Tue Aug 5 21:03:20 2014 from 10.0.2.2
vagrant@vagrant-ubuntu-trusty-64:~$

Congratulations, you’re now inside of a real server! Poke around a bit - try some of these commands
out if they are not familiar to you:

« 11 - A buit-in alias for the command 1s -alF, this will list all files within the current directory

+ lsb_release -a- A command to show all release information about this server

+ top - A command to show running processes and various system information. Use the ctrl+c
keyboard shortcut to return to the prompt.

« clear - A command to clear currently visible output within your terminal

« df -h - See how much hard drive space is used/available

File Sharing

Vagrant sets up file sharing for you. The default shares the server’s /vagrant directory to the host’s
directory containing the Vagrantfile.

In our example, the host machine’s ~/Sites/sth directory is shared with the guest’s /vagrant
directory.

The tilde ~ expands to the current user’s home directory. ~/Sites/sfh expands to
/Users/fideloper/Sites/sfh.

List the contents of the /vagrant directory within your server:

=N O O & W N = B W N -

O N O O & W N~

(AN
N »~ O ©

The Sandbox

ls -la /vagrant

Its output will be something like this:

drwxr-xr-x 1 vagrant vagrant 136 Jun 14 16:56 ./
drwxr-xr-x 23 root root 4096 Jun 14 19:33 ../
drwxr-xr-x 1 vagrant vagrant 102 Jun 14 16:54 .vagrant/

-rw-r--r-- 1 vagrant vagrant 480 Jun 14 16:56 Vagrantfile

We see our Vagrantfile and a hidden .vagrant directory containing some meta data used by

Vagrant.

On my host machine, I'll create a new text file in ~/Sites/sfh named hello. txt:

echo "Hello World" > ~/Sites/sfh/hello.txt

Now if I log into the guest server, I'll see that file is available there as well:

See files in /vagrant

cd /vagrant

1s -1a

Qutput the content of "hello.txt"
with the "cat" command
cat /vagrant/hello.txt // Output: "Hello World"

This allows us to edit files from our host machine while running the server software within our

guest server!

A Vagrantfile with the default file sharing configuration in place would look like this:

File: Vagrantfile

VAGRANTFILE_API_VERSION = "2"

Vagrant.configure(VAGRANTFILE_API_VERSION) do |config]

end

config.vm.box = "ubuntu/trusty64"

config.vm.network :private_network, ip: "192.168.22.10"

Share Vagrantfile's directory on the host with /vagrant on the guest

nwon

config.vm.synced_folder ".", "/vagrant"

0 < O O & W N =~

NN NN NN B Bl s s
O b WO N O O 0 0O Ol d W N~ O ©

The Sandbox 9

Server Network

Let’s check out the network configuration. Within the server, run the command i fconfig:
ifconfig
This usually has a good amount of output:

etho Link encap:Ethernet HWaddr 08:00:27:2aa:0e:10
inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0
inet6 addr: fe80::a00:27ff:feaa:el1@/64 Scope:Link
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:558 errors:0 dropped:@ overruns:@ frame:Q
TX packets:379 errors:0 dropped:@ overruns:@ carrier:0
collisions:@ txqueuelen:1000
RX bytes:56936 (56.9 KB) TX bytes:48491 (48.4 KB)

ethl Link encap:Ethernet HWaddr ©8:00:27:ac:ef:d2
inet addr:192.168.22.10 Bcast:192.168.22.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:4 errors:0 dropped:@ overruns:@ frame:Q
TX packets:11 errors:0 dropped:@ overruns:Q carrier:Q
collisions:0@ txqueuelen:1000
RX bytes:1188 (1.1 KB) TX bytes:958 (958.0 B)

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
inet6 addr: ::1/128 Scope:Host
UP LOOPBACK RUNNING MTU:65536 Metric:1
RX packets:12 errors:0@ dropped:@ overruns:@ frame:0
TX packets:12 errors:@ dropped:@ overruns:Q carrier:0
collisions:@ txqueuelen:@
RX bytes:888 (888.0 B) TX bytes:888 (888.0 B)

Q The i fconfig command will one day be replaced by the ip command, but not yet!

The i fconfig command output a lot of content! What are we looking at? Well without getting too
deep into this, we are looking at three networks setup within this server. Each network is called an
“interface”.

© 00 N O U b W N =

(AN
= o

The Sandbox 10

+ lo - The loopback interface. This is used for internal communication between services within
the server. This is “localhost” - 127.0.0.1

« etho and eth1 - These are two additional networks created as well. We can see the IP address
we assigend the server at eth1 - 192.168.22.10. The server also has its own private network,
with the IP address 10.0.2.15 assigned to this machine.

The ifconfig command is a quick way to check the IP address of your server as well as see the
various networks the server is connected to.

You’'ll always see a loopback interface. You'll usually see an internal network, useful for communi-
cating within a local network such as a data center.

Most server providers will assign a server a public IP address. Servers with a public IP address can
usually be reached by users on the internet.

Basic Commands

We'll be using the command line for 99.9% of this book. On Mac and most Linux desktop
distributions, this means using the Terminal app.

On Windows, this means using the CMD prompt, or any other shell you might install. I'm personally
partial to Git Bash, which is usually installed alongside Git on Windows. You can run the most
common Linux commands with it.

If you’re not logged into your Vagrant server, log back in using vagrant ssh.
Here are some commands you’ll need to know for getting around a server:

pwd - Print working directory. The “working directory” is the directory you are current in. When
you first log into a server, you're usually placed in the user’s “home” directory, most often at
/home/username. In our Vagrant server, we’ll be placed in the /home/vagrant directory when we
log in.

1s - List Directory Contents

| ist contents of current working directory
1s

[ist contents in a list form, with extra information:
1s -1

| ist contents, including "hidden" files/folders

1s -1a

Add human-readable file/folder sizes:
1s -1ah

O O B W N

=N O O & W N -

© © 00 N O O b W N =

[N

The Sandbox 11
cd - Change Directory.

Change into the "/home/fideloper/sites/sfh" directory.
cd /home/fideloper/sites/sfh

Same as above, but with the "~" shortcut
to the current users home directory
cd ~/sites/sfh

mkdir - Create a directory

Create the ‘sfh” directory
inside of /home/fideloper/sites/sfh
mkdir ~/sites/sfh

Create the /home/fideloper/sites/sfh directory and
any directory in between that doesn't exist
mkdir -p ~/sites/sfh

rm - Delete a file or directory

Delete (permanently) the “file.ext ™ file.
rm /path/to/file.ext

Delete (recursively) the /path/to/directory’ directory.
rm -r /path/to/directory

the additional “f° flag is to "force" the action,
without prompting to make sure you want to do it.
This 1is dangerous.

rm -rf /path/to/directory

Basic Software

When we get a new server, it is useful to install basic tools that are used again and again. What tools
you install will change as dictated by your requirements and experience.

These can include editors (vim, nano), http tools (wget, curl), monitoring tool (htop), searching tools
(ack) and anything else! Your personal list of favorites will grow as you gain experience.

Here’s what I install:

The Sandbox 12

» curl - Making HTTP requests

« wget - Retrieve files from the web

« unzip - Unzip zip files

« git - Git version control

« ack - An advanced search tool for searching content of files

« htop - Interactive process viewer (better than the simple “top”)

« vim - The timeless editor. Pro-Tip: Hit “esc” then type “:q” then hit “Enter” to quit. Now you
know.

+ tmux - Terminal Multiplexor - Basically, split your terminal session into different panes

« software-properties-common - This is specific to Ubuntu. We’ll use it to add software
repositories that allow us to install the latest software.

0 As of Ubuntu 14.04, the add-apt-repository command is now included in the
software-properties-common package rather than the python-software-properties
package.

Don’t worry if you're not sure what that means or aren’t familiar with the
add-apt-repository command, it will be covered in the “Package Managers” section.

Install the Basics

The first thing we’ll use is the apt-get command to install our packages:

1 sudo apt-get install curl wget unzip git ack-grep htop \
2 vim tmux software-properties-common

Let’s cover this command:

« sudo - We used “sudo” as we need to install these items as a super user (the root user,
essentially). Only some users are allowed to use “sudo”. If you are already user “root” while
installing these, then you don’t need to use “sudo” before any command.

« apt-get install - Install packages with APT

« Then we list all the packages we want to install, separated by a space

0 This command will prompt us to make sure we want to install all of these packages. We
could also add the -y flag to skip the prompt: sudo apt-get install -y curl wget [...].

Note that I also split the command into two lines by escaping the newline character with
a backslash.

The Sandbox 13

Review

This chapter was a quick primer on Vagrant and some server basics. We saw how to download and
install VirtualBox and Vagrant, how to configure Vagrant, and how to install basic software.

This is not the only way to go about this. You may want to use a remote server, rather than have
one running on your local computer. I suggest using Digital Ocean or Linode. Use what works best
for you!

Security

When you create a server that is publicly accessible, the first thing you should do is guard the server

against unwanted intrusion.

The following chapters will show you measures you should take to lock down any server.

Users and Access

Some security precautions are always warranted when we get a fresh server. This is especially
important if the server is open to a public network.

The servers spun up by providers are usually open to the public. Providers assign the servers a IP
address on a public network upon creation.

IP Addresses

Freshly provisioned servers aren’t safe just because they haven’t announced their presence.

Providers purchase IP addresses in blocks. Finding the ranges of IP addresses used by a hosting
provider is not difficult. Providers have only a limited number of public-facing IP addresses they
can assign.

As a result, IP addresses are often released and reassigned when customers destroy and create
servers.

This means that someone likely knows the IP address of your server. Automated bots may come
snooping to see what vulnerabilities might be open on your server the instant it’s created!

Compounding this, many providers provide the root user’s password in plaintext within email.

From a security point of view, none of the above is particularly great. We need to lock new servers
down with some basic security.

In the following chapter, we’ll address these concerns and more. Here’s what we’ll cover:

Creating a new (non-root) user

Allowing this user to use “sudo” for administrative privileges

Stopping user “root” from remotely logging in via SSH

Configuring SSH to change the port and add other restrictions

Creating an SSH key on our local computer for logging in as our new user

Turning off password-based authentication, so we must use an SSH key to access the server

AR e

Creating a New User

Let’s create a new user. First, of course, you need to log into your server. Within Vagrant, this is
simply the command vagrant ssh.

If, however, you’re using one of the many cloud (or traditional) providers, then you need to SSH in
using the usual means:

Users and Access 16
ssh username@your -server -host

The “username” is the username provided by you, and the “server-host” is either an IP address or a
hostname.

We likely have a root user and an IP address to log in with:
ssh root@server-ip

On AWS, we might be using user “ubuntu”, and a PEM identity key that AWS has you create and
download to your computer:

ssh -i ~/.ssh/identity.pem ubuntu@your-server-ip

The -i flag lets you specify an identity file to use to log in with. Its location on your computer may
vary, as AWS has you download it or create it with their APL

In any case, once you're logged in, you can simply use the adduser command to create a new user:

Creating new user ‘someusername’

sudo adduser someusername

This will ask you for some information, but only the password is required. Take the time to add
a lengthy, secure password, but keep in mind you may be asked your password to run privileged
commands down the line. You’ll be typing this a lot.

Q Don’t confuse the adduser command with the useradd command. On Debian/Ubuntu
servers, using adduser takes care of some work that we’d have to do manually otherwise.

On Fedora/CentOS/RedHat, adduser and useradd are the same command (one is symlinked
to the other). % signifies a group

Making Our User a Super User

Next, we need to make this new user (“someusername”) a sudo user. This means allowing the user to
use “sudo” to run commands as root. How easily you can do this depends on your Linux distribution.

On Ubuntu, you can simply add the user to the pre-existing “sudo” group. We’ll cover users and
groups more in a later chapter. Just know for now that all users belong to one or more groups, and
groups can be used to manage shared permissions.

Users and Access 17

Add user ‘someusername’ to group ‘sudo’

sudo usermod -a -G sudo someusername

Let’s go over that command:

« usermod - Command to modify an existing user

« -a - Append the group to the username’s list of secondary groups

+ -G sudo - Assign the group “sudo” as a secondary group (vs a primary groups, assigned with
-9)

» someusername - The user to assign the group

That’s it! Now if we log in as this user, we can use “sudo” with our commands to run them as root.
We'll be asked for our users password by default, but then the OS will remember that for a short
time. Note that when prompted, you should enter in the current user’s password, not the password
for user “root”.

On RedHat systems, we can add a user to group “wheel” to enable the use of sudo:

sudo usermod -a -G wheel someusername

On some systems, we likely need to do some extra work to give a new user “sudo” abilities. This is
configurable the same way on most systems and is worth covering.

On all distributions mentioned here, there exists the /etc/sudoers file. This file controls which users
can use sudo, and how.

Ubuntu’s sudoers file specifies that users within group “sudo” can use the sudo command. This
provides us with the handy shortcut to granting sudo abilities. On other systems, we’ll do this by
editing the sudoers file.

We shouldn’t edit the sudoers file directly, however. To safely edit this file, use the visudo command.
Warning: this uses Vim as its editor when opening the file.

Q If you want to use a friendlier editor, such as nano, then we need to set the “EDITOR”
environmental variable to “nano”. To do so, run export EDITOR=nano and then proceed.

Let’s begin!
sudo visudo

Search for a section labeled # User privilege specification. Underneath it, you’ll likely see
something like this:

O O B~ W N

Users and Access 18

Editing /etc/sudoers via visudo

User privilege specification
root ALL=(ALL) ALL

This specifies that user “root” can run all commands using sudo with no restrictions.

We can grant another user sudo privileges here:

Editing /etc/sudoers via visudo

User privilege specification
root ALL=(ALL) ALL
someusername ALL=(ALL) ALL

Similar to user “root”, the user “someusername” would now be able to use all sudo privileges.
However, this is not exactly the same because “someusername” will still need to provide a password
to do so.

If you want to setup your server to use the group “sudo” to grant sudo privileges, you can set that
as well:

Editing /etc/sudoers via visudo

User privilege specification
root ALL=(ALL) ALL
%sudo ALL=(ALL) ALL

The use of % signifies a group name instead of a username. After saving and exiting, we can assign
group “sudo” to our new user and they’ll also have sudo abilities:

Create group "sudo" if
1t doesn't already exist
sudo groupadd sudo

Assign someusername the group "sudo"
sudo usermod -a -G sudo someusername

More Visudo

Visudo gives us the ability to restrict how users can use the sudo command.

Let’s cover using the /etc/sudoers file in more detail. Here’s an example for user root:

Users and Access 19

Editing /etc/sudoers via visudo
root ALL=(ALL:ALL) ALL

Here’s how to interpret that. I'll put a [bracket] around each section being discussed. Keep in mind
that this specifies under conditions user “root” can use the sudo command:

[root] ALL=(ALL:ALL) ALL - This applies to user root

root [ALL]=(ALL:ALL) ALL - This rule applies to all user root logged in from all hosts
root ALL=([ALL]:ALL) ALL - User root can run commands as all users

root ALL=(ALL:[ALL]) ALL - User root can run commands as all groups

root ALL=(ALL:ALL) [ALL] - These rules apply to all commands

As previously covered, you can add your own users:

Editing /etc/sudoers via visudo
root ALL=(ALL:ALL) ALL
someusername ALL=(ALL:ALL) ALL

We can also set rules for groups. Group rules are prefixed with a %:

Editing /etc/sudoers via visudo
%admin ALL=(ALL:ALL) ALL

Here, users of group admin can have all the same sudo privileges as defined above. The group name
you use is arbitrary. In Ubuntu, we used group sudo.

You may have noticed that in Vagrant, your user can run sudo commands without having to enter
a password. That’s accomplished by editing the sudoers file as well!

The following entry will allow user vagrant to run all commands with sudo without specifying a

password:

Editing /etc/sudoers via visudo
vagrant ALL=(ALL:ALL) NOPASSWD:ALL

The “NOPASSWD” directive does just what it says - all commands run using root do not require a
password.

Don’t allow users to run ALL commands in production. It makes your privileged user as
dangerous as root.

You can get pretty granular with this. Let’s give the group “admin” the ability to run ‘sudo mkdir’
without a password, but require a password to run sudo rm:

O b W N =

Users and Access 20

Editing /etc/sudoers via visudo

%admin ALL NOPASSWD:/bin/mkdir, PASSWD:/bin/rm

o Note that we skipped the (ALL:ALL) user:group portion. Defining that is optional and
defaults to “ALL”.

There’s more you can do, but that’s a great start on managing how users can use of “sudo”!

Root User Access

Now we have a new user who can use sudo. This is more secure because the user needs to provide
their password (generally) to run sudo commands. If an attacker gains access but doesn’t know the
user’s password, then that reduces the damage they can do.

Additionally, this user’s actions, even when using sudo, will be logged in their command history.
That’s not always the case for user “root”.

Our next step in securing our server is to make sure we can’t remotely (using SSH) log in directly
as the root user. To do this, we’ll edit our SSH configuration file /etc/ssh/sshd_config:

Edit with vim
vim /etc/ssh/sshd_config

Or, if you're not a vim user:
nano /etc/ssh/sshd_config

Use “sudo” with those commands if you’re not logged in as “root” currently.

Once inside that file, find the PermitRootLogin option, and set it to “no™:

File: /etc/ssh/sshd_config

PermitRootLogin no

Once that’s changed, exit and save the file. Then you can restart the SSH process to make the changes
take effect:

O = W N =

Users and Access 21

Debian/Ubuntu:
sudo service ssh restart

RedHat,/CentOS/Fedora:
sudo service sshd restart

Now user “root” will no longer be able to login via SSH.

9 This won’t stop user root from logging in directly if the user is physically at the server.

Generally this isn’t an issue unless an attacker is at a data center itself! However, some
services let you log in directly as root online just as if you’re physically next to a computer.

There’s still more we can do to secure our servers!

Configure SSH
Many automated bots are out there sniffing for vulnerabilities. One common check is whether the
default SSH port is open for connections.

This is such a common attack vector that it’s often recommended that you change the default SSH
port (22).

0 This is an example of “Security through obscurity”. It is appealing, but found by some to
be not worth the effort.

Consider keeping SSH on standard port 22 if it makes sense for and your team. Keep in mind
that some software may assume an SSH port of 22. I consider this an optional change.

In “userland”, we’re allowed to assign ports between 1024 and 65536. To change the SSH port, change
the Port option in the same /etc/ssh/sshd_config file:

File: /etc/ssh/sshd_config

Port 1234

Add or edit the Port directive and set the port to “1234”.

This will tell SSH to no longer accept connections from the standard port 22. One side effect of this
is the need to specify the port when you log in later:

O = W N =

Users and Access 22

Instead of this:
ssh user@hostname

Add the -p flag to specify the port:
ssh -p 1234 user@hostname

We can take this a step further. If we want to explicitly define a list of users who are allowed to
login, use the AllowUsers directive:

File: /etc/ssh/sshd_config

Can define multiple users,
separated by a space

AllowUsers someusername anotherusername

This tells SSH to only allow logins from the two users listed.

There’s also an option to only allow certain groups, using the AllowedGroups directive. This is useful
for simplifying access - you can add a user to a specific group to decide if they can log in with SSH:

File: /etc/ssh/sshd_config

AllowGroups sudo canssh

This tells SSH to only allow login from groups “sudo” and “canssh.”

Then we can add a user to a secondary group as we saw in an earlier chapter:

Assign secondary group "canssh" to user "ausername"
sudo usermod -a -G canssh ausername

Conversely, we can choose to use the DenyUsers or DenyGroups options. Be careful, however, not to
use competing directives.

Once these changes are saved to the sshd_config file, we need to restart the SSH service:

sudo service ssh restart # Debian/Ubuntu
OR
sudo service sshd restart # RedHat/CentOS/Fedora

O = W N =

Users and Access 23

Creating a Local SSH Key

We have restricted who can log in, now let’s restrict how they can log in. User passwords are
often “simpler” ones we can remember as we need to use them often. Since passwords are often
guessable/crackable, our goal will be to add another layer of security.

What we’ll do is disable password-based login altogether, and enforce the use of SSH keys in order
to access the server.

Q Before continuing on, log into the server on a new Terminal window, and keep that
connection open. If you get locked out, you’ll need this still-open connection to fix any
errors.

In order to log in using an SSH key, we need to first create one! What we do is create an SSH key on
the computer you need to connect FROM.

We’ll generate a public and private key, and add the public key to the server. That will let the server
know that a private key matching the given public key should allow one to login.

This is more secure. It’s substantially less likely for an attacker to get their hands on a local file. Using
password-based login, attackers may gain entry by guessing, brute force or social engineering. Your
SSH private keys usually only exist on your local computer and thus make it much harder for an
attacker to gain entry.

To create an SSH key, run this on your local computer:

Go to or create a .ssh directory for your user
cd ~/.ssh

Generate an SSH key pair

ssh-keygen -t rsa -b 4096 -C your@email.com -f id_myidentity
Let’s go over this command:

« -t rsa - Create an RSA type key pair”°.

« -b 4096 - Use 4096 bit encryption. 2048 is “usually sufficient”, but I go higher.

« -C your@email.com - Keys can have comments. Often a user’s identity goes here as a
comment, such as their name or email address

« -fid_myidentity - The name of the SSH identity files created. The two files would be id_-
myidentity and id_myidentity.pub in this example.

*http://security.stackexchange.com/questions/23383/ssh-key-type-rsa-dsa-ecdsa-are- there- easy-answers-for-which-to-choose-when

http://security.stackexchange.com/questions/23383/ssh-key-type-rsa-dsa-ecdsa-are-there-easy-answers-for-which-to-choose-when
http://security.stackexchange.com/questions/23383/ssh-key-type-rsa-dsa-ecdsa-are-there-easy-answers-for-which-to-choose-when

O b W N =

Users and Access 24

While creating an SSH key, you’ll be asked you for a password! You can either leave this blank (for
passwordless access) or enter in a password.

I highly suggest using a password. Using one forces attackers to have both your private key AND
your SSH password to gain access. If your user has sudo abilities, the attacker would also need the
user’s password to run any sudo command! That’s three hard-to-obtain things an attacker would
need to get in order to do real damage to your server.

The SSH password you create is NOT the user password used to run sudo commands on
the server. It is only used to log into the server. You'll still need the user’s regular password
to use sudo commands. I recommend not re-using passwords for users and SSH access.

We’ve created a private key file (id_myidentity) and a public key file (id_myidentity.pub). Next,
we need to put the public key on the server, so that the server knows it’s a key-pair authorized to
log in.

To do so, copy the contents of the public key file - the one ending in . pub. Once that’s copied, you
can SSH into your server as your new user (“someusername” in our example).

Adding public key to authorized_keys file for user ‘someusername’

In your server
Use nano instead of vim, if that's your preference
$ sudo vim ~/.ssh/authorized_keys

(Paste in your public key and save/exit)

I showed editing the file ~/.ssh/authorized_keys. This will expand out to the full file path for the
current user.

Note that we're editing authorized_keys for user someusername. That means we're enabling
ourselves to use SSH-key based login for the someusername user.

To gain SSH access, all you need to do is append the public key from our local computer to the
authorized_keys file of a user on our server.

If there’s already content in the authorized_keys file, just add your public key in. If the autho-
rized_keys file doesn’t exist, create it!

You can use the ssh-copy-id command as well, if it’s available on your system. MacOS
does not have this command out of the box, but can be obtained using the Brew package
manager.

Once the authorized_keys file is saved, you should be able to login using your key. You shouldn’t
need to do anything more. Logging in with SSH will attempt your keys first and, finding one, log

Users and Access 25

in using it, or else fall back to password-based login. You’ll need to enter in your password created
while generating your SSH key, if you elected to use a password.

If you receive an error when trying to log in, there are two things you can try:

1. Define the identity to use
2. Inform SSH to only use identities (SSH keys), disallowing password-based login attempts

Logging in via SSH key only

ssh -i ~/.ssh/my_identity -o "IdentitiesOnly yes" someusername@my-server.com

The -i flag allows you to define an identity file (SSH private key). The -o flag let’s you set an
“option”. In this case we tell SSH to only attempt logins with identify files (SSH keys).

Q You may also need to set some permissions of your .ssh directory and authorized_keys
file on your server.

The following command should do: chmod 700 ~/.ssh & chmod 600

~/.ssh/authorized_keys

On my Macintosh, I create a long, random SSH password and then save the password to my keychain.
Then I don’t have to worry about remembering it.

When you log into a server with an SSH key setup for the first time, your Mac should popup asking
for your key’s password. You’ll have the opportunity to save your password to the Keychain then.

Q If you run into issues SSHing in after this, see the chapter on SSH. Read about using the
config file to specify options per SSH connection.

Turn Off Password Access

Since our user can now log in using an SSH key, we no longer need (nor want) to allow users to log
in using a user password.

We can tell our server to only allow remote access via SSH keys. To do so, we’ll once again edit the
/var/ssh/sshd_config file within the server:

Use nano instead of vim if you want

sudo vim /etc/ssh/sshd_config

Once in the file, find or create the option PasswordAuthentication and set it to “no”:

Users and Access 26
PasswordAuthentication no
Save that change, and once again reload the SSH daemon:

sudo service ssh restart # Debian/Ubuntu
OR
sudo service sshd restart # RedHat,/CentOS/Fedora

Once that’s done, you’ll no longer be able to log in using a password! Now a remote attacker will
need your SSH private key, your SSH password and your user’s password to use sudo.

Test it out in a new terminal window to make sure it works! Don’t close your current or backup
connection, just in case you run into issues and need to revisit your changes.

Note that many providers allow you to access the servers directly in case you lock yourself out of
SSH, however many also do not.

In any case, thinking of servers as disposable or prone to fail is always a pertinent thing to do.

Backup important files, configurations and data somewhere else - off of the server. Amazon AWS’s
S3 service is an excellent, cheap place to put backups.

0 N O O b W N

Setting Up the Firewall: Iptables

The firewall offers some really important protections on your server. Firewalls will block network
traffic as defined by a set of rules.

While iptables is the defacto firewall used on most Linux distributions, it is a little hard to pick up
and use.

Configuring iptables involves setting up the list of rules that check network traffic. The rules are
checked whenever a piece of data enters or leaves the server over a network. If the iptables rules
allows the traffic type, it goes through. If traffic is not allowed, the data packet is dropped or rejected.

0 Rejecting data lets the other end know data was not allowed through. Dropping the data
behaves like a blackhole, where no response is made.

The following is a basic list of INPUT (inbound) rules we’ll be building in this chapter:

Results of command iptables -L -v

target prot opt in out source destination

ACCEPT all -- lo any anywhere anywhere

ACCEPT all -- any any anywhere anywhere ctstate RELATED,EST\
ABLISHED

ACCEPT tep -- any any anywhere anywhere tep dpt:ssh

ACCEPT tep -- any any anywhere anywhere tcp dpt:http

ACCEPT tcp -- any any anywhere anywhere tcp dpt:https

DROP all -- any any anywhere anywhere

This is some of the output from the command sudo iptables -L -v. This command lists the rules
with verbosity.

Let’s go over the columns we see above:

1. TARGET: What to do with the traffic and/or other chains of rules to test traffic against

2. PROT: Protocol, usually “tcp”, “udp” or “all”. TCP is the most used. SSH and HTTP are
protocols built on top of TCP.

3. OPT: Optional items, such as checking against fragmented packets of data
4. IN: Network interface accepting traffic, such as lo, etho, eth1. Check what interfaces exist
using the i fconfig command.

Setting Up the Firewall: Iptables 28

5. OUT: Network interface the traffic goes out
6. SOURCE: The source of some traffic, such an a hostname, ip address or range of addresses
7. DESTINATION: The destination address of the traffic

These rules are followed in order. The first rule that matches the traffic type will determine what
happens to the data.

Let’s go over the above list of rules we have for inbound traffic, in order of appearance:

1. Accept all traffic on “lo”, the “loopback” interface®. This is essentially saying “Allow all
internal traffic to pass through”

2. Accept all traffic from currently established (and related) connections. This is set so you don’t
accidentally block yourself from the server when in the middle of editing firewall rules

3. Accept TCP traffic over port 22 (which iptables labels “ssh” by default). The port defined as
the SSH port is defined in the /etc/services file.

4. Accept TCP traffic over port 80 (which iptables labels “http” by default)
5. Accept TCP traffic over port 443 (which iptables labels “https” by default)
6. Drop anything and everything else

See how the last rule says to DROP all from/to anywhere? If a packet has passed all other rules
without matching, it will reach this rule, which says to DROP any and all data.

The effect is that we’re only allowing current connection, SSH (tcp port 22), http (tcp port 80) and
https (tcp port 443) traffic into our server! The DROP statement blocks everything else.

o The first rule that matches the traffic type will decide how to handle the traffic. Rules below
a match are not applied.

“Traffic Type” includes protocol, interface, source/destination and other parameters.

If more than one rule match the traffic type, the 2nd rule is never reached.

We've effectively protected our server from external connections other than TCP port 22, 80 and
443.

Adding these rules

Now you need to know how to add these rules. First, check your current set of rules by running the
following:

®http://askubuntu.com/questions/247625/what-is-the-loopback-device-and-how-do-i-use-it

http://askubuntu.com/questions/247625/what-is-the-loopback-device-and-how-do-i-use-it
http://askubuntu.com/questions/247625/what-is-the-loopback-device-and-how-do-i-use-it

0w I O O b W N =

Setting Up the Firewall: Iptables 29
sudo iptables -L -v
If you have no firewalls rules setup, you’ll see something like this:

Chain INPUT (policy ACCEPT 35600 packets, 3504K bytes)
pkts bytes target prot opt in out source destination

Chain FORWARD (policy ACCEPT @ packets, @ bytes)
pkts bytes target prot opt in out source destination

Chain OUTPUT (policy ACCEPT 35477 packets, 3468K bytes)
pkts bytes target prot opt in out source destination

What we see above are the three default chains of the filter table:
1. INPUT chain - Traffic inbound to the server

2. FORWARD chain - Traffic forwarded (routed) to other locations
3. OUTPUT chain - Traffic outbound from the server

The ArchWiki has a great explanation on Tables vs Chains vs Rules’. There are other
tables/chains as well - see NAT, Mangle and Raw tables®

Let’s add to our Chain of rules by appending to the INPUT chain. First, we’ll add the rule to allow
all loopback traffic:

sudo iptables -A INPUT -i lo -j ACCEPT
The details of the above command:
« -A INPUT - Append to the INPUT chain

« -i lo - Apply the rule to the loopback interface

e -j ACCEPT - Jump the packet to the ACCEPT rule. Basically, accept the data packets. “ACCEPT”
is a built-in “target”, but you can jump to user-defined ones as well (more on that later)

Now let’s add the rule to accept current/established connections:

"https://wiki.archlinux.org/index.php/iptables
®http://www.thegeekstuff.com/2011/01/iptables-fundamentals/

https://wiki.archlinux.org/index.php/iptables
http://www.thegeekstuff.com/2011/01/iptables-fundamentals/
https://wiki.archlinux.org/index.php/iptables
http://www.thegeekstuff.com/2011/01/iptables-fundamentals/

Setting Up the Firewall: Iptables 30

sudo iptables -A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT
And the command explanation:

+ -A INPUT - Append to the INPUT chain

« -m conntrack - Match traffic using “connection tracking” module

« --ctstate RELATED,ESTABLISHED - Match traffic with the state “established” and “related”
« -j ACCEPT - Use the ACCEPT target; accept the traffic

This one’s a little on the complex side but I won’t focus on it here. If you’re curious about “conntrack”
and other modules, you can search for “iptables modules”.

Let’s start adding the more interesting rules. We’ll start by opening up our SSH port for remote
access:

sudo iptables -A INPUT -p tcp --dport 22 -j ACCEPT

And the command explanation:

-A INPUT - Append to the INPUT chain

« -p tcp - Apply to the tcp Protocol

+ --dport 22 - Apply to destination port 22 (Incoming traffic coming into port 22).
+ -j ACCEPT - Use (jump to) the ACCEPT target; accept the traffic

If you check your rules after this with another call to sudo iptables -L -v, you’ll see that “22” is
labeled “ssh” instead. If you don’t use port 22 for SSH, then you’ll see the port number listed.

We can add a very simlar rule for HTTP traffic:

sudo iptables -A INPUT -p tcp --dport 80 -j ACCEPT

And lastly, we’ll add the “catch all” to DROP any packets which made it this far down the rule chain:
sudo iptables -A INPUT -j DROP

And the command explanation:

« -A INPUT - Append to the INPUT chain
+ -j DROP - Use the DROP target; deny the traffic

o You could use - j REJECT as well. REJECT explicitly tells the client the data came from that
the data wasn’t accepted.

Using DROP yields no response to the client. When DROP is used, a client usually reaches a
connection timeout since it receives no response from the server.

O = W N =

Setting Up the Firewall: Iptables 31

Inserting Rules

So far we’ve seen how to Append rules (to the bottom of the chain). Let’s see how to Insert rules, so
we can add rules in the middle of a chain.

We haven’t yet added a firewall rule to allow HTTPS traffic (port 443). Let’s do that:
sudo iptables -I INPUT 5 -p tcp --dport 443 -j ACCEPT
And the command explanation:

« -1 INPUT 5 - Insert into the INPUT chain at the fifth position. This is just after the “http” rule
at the fourth position. Position count starts at 1 rather than 0.

« -p tcp - Apply the rule to the tcp protocol

--dport 443 - Apply to the destination port 443 (Incoming traffic coming into port 443).

e -j ACCEPT - Use the ACCEPT target; accept the traffic

Deleting Rules

Let’s say we want to change our SSH port from the non-standard port 22. We'd set that in
/etc/ssh/sshd_config as explained in the Users and Access chapter. Then we would need to change
the firewall rules to allow SSH traffic to our new port (port 1234 in this example).

First, we’ll delete the SSH rule:

Delete at position 3
sudo iptables -D INPUT 3

Or delete by specifying the rule to match:
sudo iptables -D INPUT -p tcp --dport 22 -j ACCEPT

We can see that -D will delete the firewall rule. We need to either match the position of the rule or
all the conditions set when creating the rule to delete it.

Then we can insert our new SSH rule at port 1234:

sudo iptables -I INPUT 3 -p tcp --dport 1234 -j ACCEPT

This chapter covers ipv4 IP addresses. Iptables can handle rules for both ipv4® and ipv6'’,
however.

Now check that we’ve accomplished all that we’ve wanted:

*http://en.wikipedia.org/wiki/TPv4
http://en.wikipedia.org/wiki/IPv6

http://en.wikipedia.org/wiki/IPv4
http://en.wikipedia.org/wiki/IPv6
http://en.wikipedia.org/wiki/IPv4
http://en.wikipedia.org/wiki/IPv6

© © 00 N O O b W N+~

[N

R O © 0 N O U b W N =~

NN

Setting Up the Firewall: Iptables 32
$ sudo iptables -L -v
The output:

Chain INPUT (policy ACCEPT @ packets, @ bytes)

pkts bytes target prot opt in out source destination

3226 315K ACCEPT all -- 1o any anywhere anywhere

712 37380 ACCEPT all -- any any anywhere anywhere ctstate REL\
ATED,ESTABLISHED

Q @ ACCEPT tcp -- any any anywhere anywhere tcp dpt:ssh

Q @ ACCEPT tecp -- any any anywhere anywhere tep dpt:http
Q © ACCEPT tep -- any any anywhere anywhere tcp dpt:htt\
ps

8 2176 DROP all -- any any anywhere anywhere

Perfect! It’s just like our desired list of rules from the beginning of the chapter.

Output Rules as Commands

We can use sudo iptables -S to get a list of the current rules given as commands. You can then
copy and paste a given rule output in order to match a rule for deletion or to use the rules elsewhere.

Let’s see an example:

$ sudo iptables -S

-P INPUT ACCEPT

-P FORWARD ACCEPT

-P OUTPUT ACCEPT

-A INPUT -i lo -j ACCEPT

-A INPUT -m conntrack --ctstate RELATED,ESTABLISHED -j ACCEPT
-A INPUT -p tcp -m tcp --dport 22 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 80 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 443 -j ACCEPT

-A INPUT -j DROP

This outputs our current rule set as the commands we can use to create the rules.

If we wanted to remove the SSH rule again, we could copy and paste it, change the -A (Append) to
-D (Delete) and be done with it:

O = W N =

O = W N =

Setting Up the Firewall: Iptables 33

$ sudo iptables -D INPUT -p tcp -m tep --dport 22 -j ACCEPT

Saving Firewall Rules

By default, iptables does not save firewall rules after a reboot, as the rules exist only in memory. We
therefore need a way to save the rules and re-apply them on reboot.

At any time, you can print out the current iptables rules:
sudo iptables-save
We can restore iptables rules using the iptables-restore command:

QOutput rules to a file called "iptables-backup.rules"
sudo iptables-save > iptables-backup.rules

Restore rules from our backup file

sudo iptables-restore < iptables-backup.rules

What we need is a way to automate the backing up and restoration of firewall rules, preferably on
system boot.

On Ubuntu, we can use the iptables-persistent package to do this:

Install the package
sudo apt-get install -y iptables-persistent

Start the service

sudo service iptables-persistent start

Once this is installed, we can output our rules to the /etc/iptables/rules.v4 file. Iptables-
persistent will read this file when the system starts.

We'll use the iptables-save command to output the rules. This output will be saved to the
/etc/iptables/rules.v4 file.

Save current rules to iptables rules file

sudo iptables-save | sudo tee /etc/iptables/rules.v4

Q If you are using ipv6, you can use sudo ip6tables-save | sudo tee
/etc/iptables/rules.v6 with the iptables-persistent package

When that’s done, restart iptables-persistent:

N O O B W N -

Setting Up the Firewall: Iptables 34

sudo service iptables-persistent restart

Now firewall rules will be re-applied on a server restart! Don’t forget to update your rules files after
any firewall changes.

The iptables-persistent package has a shortcut for the above. We can simply use sudo
service iptables-persistent save to save our current ruleset.

Defaulting to DROP Over ACCEPT

So far, we’ve seen one method of using iptables. The default for each chain is to ACCEPT traffic.
Notice that when we list the rules, we can see that - “policy ACCEPT”:

Chain INPUT (policy ACCEPT @ packets, 0 bytes)

Debian/Ubuntu servers usually start with the chains defaulting to ACCEPT. However, Redhat/Cen-
tOS servers may start with their chains defaulting to DROP traffic. Defaulting to DROP can often
be easier (and safer). Let’s see how we can do that.

Let’s change the INPUT chain to default to DROP:

sudo iptables -P INPUT DROP

Then we can remove the last line used above, which DROPs any remaining unmatched rules:
sudo iptables -D INPUT -j DROP

If we run iptables -L, we can see the INPUT chain now defaults to DROP:

Chain INPUT (policy DROP)

target prot opt source destination

ACCEPT all -- anywhere anywhere ctstate RELATED,ES\
TABLISHED

ACCEPT all -- anywhere anywhere

ACCEPT tcp -- anywhere anywhere tcp dpt:ssh

ACCEPT tcp -- anywhere anywhere tep dpt:http

Now everything is going to be dropped unless explicitly accepted.

Overall, some general rules of thumb for the three chains are to:

+ Drop traffic on the INPUT chain by default
+ Drop traffic on the FORWARD chain by default
« Allow traffic on the OUTPUT chain by default

O B W N =

N O O B~ W N

Setting Up the Firewall: Iptables 35

Logging Dropped Packets

You might find it useful to log dropped packets (traffic). To do this, we’ll actually create a new chain.
Here are the basic steps:

. Create a new chain

. Ensure any unmatched traffic ‘jumps’ to the new chain
. Log the packets with a searchable prefix

. Drop those packets

N W N

Let’s start!

Create new chain
sudo iptables -N LOGGING

Ensure unmatched packets jump to new chain
sudo iptables -A INPUT -j LOGGING

At this point, you should delete any DROP rule that might be at the end of the INPUT chain. That
might still be there if you followed along in the above sections.

sudo iptables -D INPUT -j DROP
Then continue on:

|og the packets with a prefix
sudo iptables -A LOGGING -m limit --limit 2/min -j LOG --log-prefix "IPTables Pa\

n

cket Dropped: --log-level 7

Drop those packets

Note this is added to the LOGGING chain
sudo iptables -A LOGGING -j DROP

Here’s what that’ll look like when we run iptables -L -v:

0 = O O b W N =

e
W N~ OO O

B W N -

Setting Up the Firewall: Iptables 36

Chain INPUT (policy DROP)

target prot opt source destination

ACCEPT all -- anywhere anywhere ctstate RELATED,ESTABLISHED
ACCEPT all -- anywhere anywhere

ACCEPT tcp -- anywhere anywhere tcp dpt:ssh

ACCEPT tcp -- anywhere anywhere tcp dpt:http

LOGGING all -- anywhere anywhere

Chain LOGGING (1 references)

target prot opt source destination

LOG all -- anywhere anywhere limit: avg 2/min burst 5 LOG level\
debug prefix "IPTables Packet Dropped: "

DROP all -- anywhere anywhere

Note that we DROP the data in the LOGGING chain. The INPUT chain is no longer responsible for
dropping data. Instead, any traffic that doesn’t match the rules in the INPUT chain “jumps” to the
LOGGING chain to be logged and then dropped.

By default, this will go to the kernel log. In Ubuntu, that means we can watch the log file
/var/log/kern.log:

sudo tail -f /var/log/kern.log

I see entries like this when attempting connections which get dropped. This is an example log for
HTTPS traffic which gets dropped on one of my servers, which blocks port 443:

Dec 5 02:27:51 preciseb64 kernel: [2101.687289] IPTables Packet Dropped: IN=eth\
1 OUT= MAC=08:00:27:4f:82:c9:02:00:27:00:00:00:08:00 SRC=192.168.33.1 DST=192.16\
8.33.10 LEN=64 TOS=0x00 PREC=0x00 TTL=64 ID=59982 DF PROTO=TCP SPT=51765 DPT=443\
WINDOW=65535 RES=0x0@ SYN URGP=0

If you set this up, don’t forget to save these rules as noted above, using the iptables-persistent
package:

sudo iptables-save | sudo tee /etc/iptables/rules.v4

Fail2Ban

There is one more important security tool we’ll cover: Fail2Ban.

Fail2Ban monitors for instrusion attempts on your server. It uses the iptables firewall to ban specific
hosts if they meet a configured threshold of invalid attempts.

Fail2Ban does this by monitoring the log files of certain services. For example, Fail2Ban will monitor
logs found at /var/log/auth.log and search for failed logins. If it detects a host has failed to login
too many times, it will ban that host for a configurable time period.

Here’s the explanation from the website'':

Fail2Ban scans log files (e.g. /var/log/apache/error_log) and bans IPs that show the
malicious signs — too many password failures, seeking for exploits, etc. Generally
Fail2Ban is then used to update firewall rules to reject the IP addresses for a specified
amount of time, although any arbitrary other action (e.g. sending an email) could also
be configured. Out of the box Fail2Ban comes with filters for various services (apache,
courier, ssh, etc).

Iptables Integration
When Fail2Ban bans a host, it will use the iptables firewall.

0 Some terminology: Each system Fail2Ban monitors is called a “jail”. For example, one jail
is called “SSH”, another is “mysqld-auth”.

To do this, Fail2Ban creates a new iptables chain per jail it monitors. For SSH, Fail2Ban will create
a chain called “Fail2Ban-ssh”. This chain (and others it creates) is used early in the iptables INPUT
chain, so it gets checked first. Let’s see what that looks like after Fail2Ban is configured:

http://www.fail2ban.org

http://www.fail2ban.org
http://www.fail2ban.org

© 00 N O U b W N =

N N B s sl s
, O O 00 9 0O O b W N~

1

Fail2Ban 38

$ sudo iptables -L -v

Chain INPUT (policy ACCEPT @ packets, 0 bytes)

pkts bytes target prot opt in out source destination

123K 128M Fail2Ban-ssh tcp -- any any anywhere anywhere multiport dports\
ssh

292K 169M ACCEPT tcp -- any any anywhere anywhere tcp dpt:http

. additional omitted ...

Chain FORWARD (policy ACCEPT @ packets, @ bytes)
. omitted ...

Chain OUTPUT (policy ACCEPT 939K packets, 2332M bytes)
. omitted ...

Chain Fail2Ban-ssh (1 references)
pkts bytes target prot opt in out source destination
1962K 1498M RETURN all -- any any anywhere anywhere

Here’s what’s happening. When traffic comes into the network, iptables checks it by going down
the list of rules. Since we’re talking about incoming traffic, this means iptables will check the INPUT
chain.

Fail2Ban adds the first rule in the above INPUT chain. It says to take all SSH traffic and send it to the
target chain Fail2Ban-ssh. The Fail2Ban-ssh chain then checks for any matching hosts and DROPs
the traffic if any match.

In the example above, there happens to be no hosts being blocked, so any traffic being checked will
meet the “RETURN” target. The “RETURN” target simply tells iptables to send the traffic back to
where it came from - the INPUT chain in this case. There it will be analyzed by the rest of rules in
the INPUT chain.

Now that we can see how Fail2Ban will use iptables, let’s see how to install and configure Fail2Ban!

Installation

We don’t need a repository for Fail2Ban, we can just install it straight away.

sudo apt-get install -y fail2ban

Fail2Ban 39

Fail2Ban’s configuration files are found in /etc/fail2ban. Fail2Ban comes with the default config-
uration file /etc/fail2ban/jail.conf. This file might get updated/overwritten on updates, so we
should copy it instead of editing it directly.

Fail2Ban will automatically check for a file named jail.local and load it, so let’s use that filename:
sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

This new file will serve as our main configuration.

You might also notice a /etc/fail2ban/jail.d directory. This is a directory into which we can add
configurations that will also be enabled automatically.

Configuration files added in /etc/fail2ban/jail.d can tweak or overwrite configuration found in
/etc/fail2ban/jail.local.

From the manual on Fail2Ban:
In addition to .local, for any .conf file there can be a corresponding .d/ directory to
contain additional .conf files that will be read after the appropriate .local file. Last parsed

file will take precedence over identical entries, parsed alphabetically...

Files in jail.d can overwrite existing configurations and add additional configurations. However,
we’ll simply use the jail.local file for our purposes.

Configuration

Once we’ve copied the jail.conf file to jail.local, we can take a look inside. We’ll review
interesting (not all!) configurations. Open up the /etc/Fail2Ban/jail.local file:

Here are some items under the [DEFAULT] section:

ignoreip

The ignoreip directive is usually set to 127.0.0.1/8, which will ignore local network connections.
You can define multiple hosts as well. Use a space to separate hosts. CIDR notation is supported.

bantime

The bantime directive defaults to 600 seconds, and is the amount of time a host will be banned.

findtime

This also defaults to 600 seconds. The findtime directive is the amount of time wherein a threshold
must be met in order to trigger a ban.

Fail2Ban 40

maxretry

The maxretry directive defaults to 3. It specifies the number of bad attempts before a ban is triggered.

This works in conjunction with findtime. Using the defaults, 3 incorrect attempts within 600 seconds
will trigger a ban.

Action Shortcuts

Fail2Ban sets up some pre-built actions to take when a ban is triggered. The default (“actions_”) is
used to simply ban the host. Other actions allow you to email a whois report (“actions_mw”), or a
whois report + relevant log lines (“actions_mwl”).

The action directive will set which action to use. The default actions_ looks like this:

Set the action to simply ban the host

1 action = %(action_)s"

Sending an email of the WHOIS record would look like this:

Set the action to ban the host and send an email

1 action = %(actions_mw)s

Q In order to have Fail2Ban email you when a ban occurs, the system can use the conventional
mail command or can use sendmail. The mta directive found in jail.local sets this.
Sendmail will need to be installed and setup separately for this to work.

Also set the destemail directive to the email address you want ban reports sent to.

I typically do NOT setup email reports. A bannings is common - many (most) servers on a
public network will have multiple unsuccessful login attempts daily.

Jails

The last part of the configuration file is setting up the jails. Each Jail specifies a service to be
monitored. By default, we will see only SSH is enabled:

N O O & W N =

Fail2Ban 41

[ssh]

enabled = true

port = ssh

filter = sshd

logpath = /var/log/auth.log
maxretry = 6

To quickly cover the directives above:

o It’s named “ssh”

It’s enabled

« It monitors services on the SSH port

« It monitors the logs at the logpath /var/log/auth.log

It over-rides the default max retries, increasing them to 6.

The filter directive refers to the filter used to scrum through the log file. The filter named
sshd correlates directly to the /etc/fail2ban/filter.d/sshd.conf filter file. The filter is used to
determine which lines in the log constitutes a login failure.

If you inspect that filter file, you’ll see some regex being used to determine which line in the inspected
log is a failed retry.

There are many Jails defined, but only the SSH jail is enabled by default - it’s one of the most
important and commonly used jails. There are, of course, others that you may want to enable, such
as:

+ ssh-ddos - Protection from SSH-based denial of service attacks, usually coming in the form
of connection attempts with no identities

« apache - If you’re using Apache, there is a suite of protections you can enable. These protect
against Apache basic-auth attempts ([apache]), attempts to run script files (such as php)
([apache-noscript]), and memory buffer overflow attacks ([apache-overflow]).

+ dovecot - Among other email protection filters, this one helps detect intrusion attempts
against the Dovecot SMTP server

« mysqld-auth - This helps protect against too many incorrect logins for MySQL.

Reading the filter file for a jail is a great way to ascertain what the jail is attempting to
protect against.

Nginx

There’s only one Nginx jail defined out of the box. It’s used to protect Nginx against HTTP basic-
auth attacks:

O O b W N -

Fail2Ban 42

[nginx-http-auth]

enabled true
filter = nginx-http-auth
http, https

logpath = /var/log/nginx/*error.log

port

This uses the “nginx-http-auth” filter which comes with Fail2Ban. For other Nginx jails and filters
to add yourself, check here'.

Once a jail is enabled or when a configuration is edited, you can reload Fail2Ban so the changes will
take affect:

sudo service fail2ban reload

Logs for Fail2Ban actions can be found at /var/log/fail2ban. Keep an eye on these logs to monitor
what intrusion attempts are made on your server(s)!

"http://snippets.aktagon.com/snippets/554-how-to-secure-an-nginx-server-with-fail2ban

http://snippets.aktagon.com/snippets/554-how-to-secure-an-nginx-server-with-fail2ban
http://snippets.aktagon.com/snippets/554-how-to-secure-an-nginx-server-with-fail2ban

B W N -

Automatic Security Updates

You may want your server to automatically update software. Most distributions of Linux allow you
to set this up.

Automated updates can be dangerous, however. We do not always want to update all software
without first testing the updates, as we never know what might cause issues.

This tip comes from hard experience. Before Ubuntu 14.04, the ppa:ondrej/php5
repository allowed us to install PHP 5.5 on Ubuntu 12.04. I was quick to upgrade when
this repository made PHP 5.5 available.

However, this also updated the version of Apache required. I inadvertently updated
Apache from version 2.2 to 2.4! The newer version of Apache had breaking configuration
changes, and so brought down my sites.

In Ubuntu, we can choose to enable only automatic security updates. This reduces the risk of non-
essential updates causing issues.

Whether you consider this a best practice is up to you. Perhaps security updates have potential to
break your applications. Use this as you see fit. I personally have it enabled on my own servers.

If you want to enabled security upgrades, first ensure the unattended-upgrades™ package is
installed:

sudo apt-get install -y unattended-upgrades

Then update /etc/apt/apt.conf.d/50unattended-upgrades. The number preceding the filename
might vary a bit. Make sure "Ubuntu trusty-security"; is enabled. The remaining “Allowed-
Origins” listed can be deleted or commented out:

File: /etc/apt/apt.conf.d/50unattended-upgrades

Unattended-Upgrade: :Allowed-Origins {
"Ubuntu trusty-security";
// "Ubuntu trusty-updates”;

b

My example says “trusty” since I'm using Ubuntu 14.04. You might have a different name for your
Ubuntu distribution there, such as “precise” (12.04).

Alternatively, you might see the following inside of the /etc/apt/apt.conf.d/5@unattended-
upgrades file:

https://help.ubuntu.com/14.04/serverguide/automatic-updates.html

https://help.ubuntu.com/14.04/serverguide/automatic-updates.html
https://help.ubuntu.com/14.04/serverguide/automatic-updates.html

O O B W N =~

D W N~

Automatic Security Updates 44

File: /etc/apt/apt.conf.d/50unattended-upgrades, Allowed-Origins

Unattended-Upgrade: :Allowed-Origins {

"${distro_id}:${distro_codename}-security";
// "${distro_id}:${distro_codename}-updates";
// "${distro_id}:${distro_codename}-proposed";
// "${distro_id}:${distro_codename}-backports";
1

If you see this you're all set. The above configuration handles changing for your distribution of
Ubuntu dynamically.

Some updates can trigger a server reboot; You should decide if you want upgrades to be able to do
s0:

File: /etc/apt/apt.conf.d/50unattended-upgrades

“Unattended-Upgrade: :Automatic-Reboot "false";

Be careful with allowing servers to restart automatically. Your applications or processes
may not be configured to restart when a server reboots. See the chapter “Monitoring
Processes” for more information.

Finally, create or edit the /etc/apt/apt.conf.d/@2periodic file and ensure these lines are present:

File: /etc/apt/apt.conf.d/02periodic

APT: :Periodic: :Update-Package-Lists "1";

APT: :Periodic: :Download-Upgradeable-Packages "1";
APT: :Periodic: :AutocleanInterval "7";

APT: :Periodic: :Unattended-Upgrade "1";

Once that’s complete, you're all set!

This will run once at set intervals. “Periodic” items are set to run once per day via the daily cron. If
you're curious, you can find that configured in the /etc/cron.daily/apt file.

Upgrade information is logged within the /var/log/unattended-upgrades directory.

Package Managers

We’ve installed quite a bit of software already. Before we continue on any further, let’s talk about
package managers more in depth.

Package Managers install software onto our servers. To do so successfully, they must serve three
important functions:

1. Install the software version appropriate for the distribution (operation system) and OS version

2. Manage dependencies required by software, including finding and attempting to fix depen-
dency issues

3. Add configurations to gracefully start and stop as the server restarts. This includes process
monitoring to keep them alive in case of errors.

On Debian/Ubuntu, we’ll be dealing with the APT package manager.

Apt

As previously stated, this book concentrates on Debian/Ubuntu. Therefore, we’ll installing software
with APT.

APT stands for Advanced Packaging Tool.

Installing

Apt keeps a list of sources on the server. Each source contains lists of repositories. The repositories
serve as indexes of available packages. Apt will check against this list when you search for packages
to install.

The sources, and their lists of repositories, are kept in two places:

o The /etc/apt/sources. list file
« Files inside of the /etc/apt/sources.list.d directory

We can update Apt’s knowledge of available package and versions by running the following
command:

sudo apt-get update

This will read the list of repositories and update the packages and versions available to install.

Run this before installing any software or after adding new repositories. This will ensure it installs
the most recent available version of a package.

Once the source lists are updated, we can install whatever software we’d like, based on their package
name.

sudo apt-get install some-package
Here are some useful flags to use with the install command:

+ -y/--yes - Skip prompts asking if you’re sure you want to install the package

+ --force-yes - Install even when there are potential issues. One such issue is the package not
being “trusted”

+ -qq - Quiets some output, except for errors and basic installation information. Implicitly means
both -y and - - force-yes

O = W N -

O O b W N =~

Apt 47

Repositories

In Ubuntu, there will be software and security updates within the two years between LTS releases.

These are often incorporated into minor updates (for example 14.04.1, 14.04.2, and so on). However,
if there are security or feature updates that we can’t wait on, how would we go about getting them?

One complex way is to download and build the software manually. This, however, circumvents all
the things we like about using a package manager. Configuration, process monitoring, starting on
boot, and dependency checking are skipped!

An easier way of getting updates is to add package repositories to our source list. This lets us get
software updates that wouldn’t normally be available on our server version.

We can add third-party repositories manually or use the add-apt-repository command.

The add-apt-repository command will add a source to /etc/apt/sources.list or /etc/apt/-
sources. list.d. The repository added will be appropriate for our server version.

Installs 'add-apt-repository', although it's likely already installed
sudo apt-get install software-properties-common

Add a repository
sudo add-apt-repository -y ppa:namespace-name/repo-name

Just like for apt-get, the -y flag is to answer “yes” to any “are you sure?” type prompts.

Examples

Let’s use installing Redis as an example.

On first glance, we can see that there is a Redis package available named “redis-server”:

Searching for a redis package

Search for a redis package:

sudo apt-cache -n search redis

redis-server
redis-tools

Let’s get some information about the redis-server package:

0 N O O & W N =

N N N S s s s s s
N »~ © © 0 O O b 0ON =~ O OO

<N O O & W N =

Apt 48

Showing information on the ‘redis-server’ package

$ apt-cache show redis-server

Package: redis-server

Priority: optional

Section: universe/misc

Installed-Size: 744

Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>
Original-Maintainer: Chris Lamb <lamby@debian.org>

Architecture: amd64

Source: redis

Version: 2:2.8.4-2

Depends: libc6 (>= 2.14), libjemallocl (>= 2.1.1), redis-tools (= 2:2.8.4-2), ad\
duser

Filename: pool/universe/r/redis/redis-server_2.8.4-2_amd64.deb

Size: 267446

MDS5sum: 066f3ce93331b876b691df69d11b7e36

SHA1: fT7ffbf228cc10aabff23ecc16£8c744928d7782e

SHA256: 2d273574£134dc0d8d10d41b5eab54114dfcf8b716bad4e6d04ad8452fe1627d
Description: Persistent key-value database with network interface
Description-md5: 9160ed1405585ab844£8750a9305d33f

Homepage: http://redis.io/

Bugs: https://bugs.launchpad.net/ubuntu/+filebug

Origin: Ubuntu

Here’s a bunch of information on the redis-server package. We can see the available version as well
as information on dependencies and the maintainer.

To check to see what versions are available to install, using the command apt-cache policy:

Checking the current policy for the ‘redis-server’ package

sudo apt-cache policy redis-server
redis-server:
Installed: (none)
Candidate: 2:2.8.4-2
Version table:
2:2.8.4-2 0
500 http://archive.ubuntu.com/ubuntu/ trusty/universe amd64 Packages

There’s only one version in the version table: 2.8.4.

Looking at the Redis official site, however, we can see that version 2.8.12 is available (as of the time
of this writing). How might we get a newer version?

© © 0 I O O b W N+~

N

Apt 49

Searching around the web, we can find the redis repository from Chris Lea'*. This repository has
version 2.8.12 available!

Let’s add this repository in to get the newer version of Redis:

sudo add-apt-repository ppa:chris-lea/redis-server

After adding this, you'll find a new source list file:
/etc/apt/sources.list.d/chris-lea-redis-server-trusty.list

Then we can update our local repository list:
sudo apt-get update
And re-check the available versions:

apt-cache policy redis-server
redis-server:
Installed: (none)
Candidate: 2:2.8.12-1chli~trustyl
Version table:
2:2.8.12-1chl1~trustyl 0
500 http://ppa.launchpad.net/chris-lea/redis-server/ubuntu/ trusty/main \
amd64 Packages
2:2.8.4-2 0
500 http://archive.ubuntu.com/ubuntu/ trusty/universe amd64 Packages

Great, 2.8.12 is now our candidate! Let’s install it:
sudo apt-get install -y redis-server

Now we have a more up-to-date repository for Redis, which will usually be ahead of the server’s
released (out of the box) version. This can help if and when there are vital security, bug fix or feature
updates we need.

Another popular redis repository is ppa:rwky/redis’> which may sometimes contain a
slightly newer version.

"https://launchpad.net/~chris-lea/+archive/redis-server
https://launchpad.net/~rwky/+archive/ubuntu/redis

https://launchpad.net/~chris-lea/+archive/redis-server
https://launchpad.net/~rwky/+archive/ubuntu/redis
https://launchpad.net/~chris-lea/+archive/redis-server
https://launchpad.net/~rwky/+archive/ubuntu/redis

Apt 50

Searching Packages

In the Basic Software chapter of the Getting Started section, we installed “Ack”. However, I used
“ack-grep” as the name of the package to install. How did I know its package name? I had to search
for it!

There are two methods of searching packages:

Google. This is usually the fastest way! For example, the query “ubuntu install ack” gets you the
answer straight-away:

ubuntu install ack \g, n

Web Videos Shopping Images News More - Search tools

About 171,000 results (0.29 seconds)

ack: Installation

beyondgrep.com/install/ ~

How to install ack ... You may install ack with any of these methods. ... to its proper
name "ack", see the section below on renaming ack-greg); Ubuntu: Package ...

linux - ack-grep to ack in ubuntu - Server Fault
serverfault.com/questions/97315/ack-grep-to-ack-in-ubuntu ~

Dec 25, 2009 - | was just wondering, i recently installed ack (ack-grep in ubuntu), and i
can't figure out how to just type in ack to get ack-grep (for some reason ...

Alternatively, we can use apt-cache to search for packages.

Search for a package to install ‘ack’

apt-cache search ack

That lists out a HUGE amount of possibilities. It’s actually searching package names and descrip-
tions. Let’s try to narrow that down by searching package names only.

-n flag searches only package names
apt-cache search -n ack

This output (still not shown here) is better, but still too large. Let’s try to get the results in alphabetical
order. We can “pipe” the output to the sort command and then search for “ack” using grep. Grep is
a tool for searching through text. It usually gives some color to text matches in the terminal output,
making “ack” easier to spot:

© 00 = O U b W N =

Apt 51
apt-cache search -n ack | sort | grep ack
The output:

ack-grep - grep-like program specifically for large source trees

aircrack-ng - wireless WEP/WPA cracking utilities

akonadi-backend-mysqgl - MySQL storage backend for Akonadi
akonadi-backend-postgresql - PostgreSQL storage backend for Akonadi
akonadi-backend-sqglite - SQLite storage backend for Akonadi

alsaplayer-jack - PCM player designed for ALSA (JACK output module)
apt-watch-backend - Applet that monitors apt sources for upgrades (backend slave\

) 1

There’s still a lot of output, but at least “ack-grep” is now on top! The package name is ack-grep,
and that’s what we can use to install it using the apt-get install command.

Permissions and User Management

Permissions

Permissions in Linux can be a bit confusing at first. Every directory and file have their own
permissions. Permissions inform the system who and how users can perform operations on a file or
directory.

Users can perform read (r), write (w) and execute (x) operations on files and directories. Here’s
how the three permission types breaks down when applied to directories and files:

« Directories
— read - ability to read contents of a directory
— write - ability to rename or create a new file/directory within a directory (or delete a
directory)
— execute - ability to cd into a directory (this is separate from being able to view the
contents of a directory)
« Files
— read - ability to read a file
— write - ability to edit/write to a file (or delete a file)
— execute - ability to execute a file (such as a bash command)

The other half of this is defining who (what users and groups) can perform these operations. For
any file and directory, we can define how users (u), groups (g) and others (o) can interact with the
file or directory. Here’s how that breaks down:

« User - The permission for owners of a file or directory

« Group - The permissions for users belonging to a group. A user can be part of one or more
groups. Groups permissions are the primary means for how multiple users can read, write or
execute the same sets of files

+ Other - The permissions for users who aren’t the user or part of a group assigned to a file or
directory

Checking Permissions

To illustrate this, let’s check the permissions of a directory, for example /var /www:

W N -

Permissions 54

$ 1s -la /var/www

drwxr-xr-x 2 root root 4096 May 3 19:52 . # Current Directory
drwxr-xr-x 12 root root 4096 May 3 19:46 .. # Containing Directory
-rw-r-xr-- 1 root root 13 May 3 19:52 index.html # File in this Directory

How do these columns of information break down? Let’s take the top line:

« drwxr-xr-x - User/Group/Other Permissions. The preceding “d” denotes this as a directory.
Lacking a “d” means it’s a file.

« 2 - This is the number of “hard links”*¢ to the file or directory

« root root - The User and Group assigned to the file or directory

+ 4096 - The size of the file/directory in bytes

e May 3 19:52 - last modified (or created) data/time

. - The file name. A period (.) is the current directory. Two periods (..) is the directory one
level up. Otherwise this column will show a file or directory name.

Let’s go over the permission attributes - that first column of information:

For any permission attribute set, the first slot denotes if it’s a directory (d), link (I) (as in symbolic
link) or file (-).

The next three sets of characters denote the read, write and execute permissions for users groups
and others, respectively.

Let’s take the permissions drwxr -xr -x.

d - denotes it’s a directory
« rwx - The user has read, write and execution permissions

 r-x - The group can read and execute (list contents and cd into the directory), but not write
to the directory

« r-x - The same for others. Since this is a directory, this means other users can read the directory
but not modify it or its containing files

Next, let’s analyze -rw-r-xr--:

o - - denotes it’s a file

« rw- - denotes users can read, write but not execute the file
« r-x - group members can read the file or execute it

« r-- - others can only read the file

Changing Permissions

We can change a file or directory permissions with the chmod command.

Here’s some chmod information and a breakdown:

http://superuser.com/a/443781

http://superuser.com/a/443781
http://superuser.com/a/443781

© © 00 1 O O b W N -~

-

Permissions
chmod [-R] guo[+-=]rwx /var/www
Flags:
+ -R - Change permissions recursively (if its a directory)
User types:

+ u - perform operation on the user permissions
« g - perform operation on the group permissions
« o - perform operation on the other permissions

Operations:

+ + - add permission

- remove permission

- set permission explicitly

Permission types to set

 r - add or remove read permissions
« w - add or remove write permissions
« x - add or remove execute permissions

So, for example, let’s create the /var/www directory as user root and set its permissions.

Create directory as root
sudo mkdir /var/www

Change to owner/group www-data:
sudo chown www-data:www-data /var/www

Set permissions so user and group has permissions, but not other:
sudo chmod ug+rwx /var/www # User and Group have all permissions (+rwx)
sudo chmod o-rwx /var/www # Other has no permissions (-rwx)

sudo chmod o+rx /var/www # Other can read and “cd’ into the directory (+rx)

These permissions could also be set a bit more succinctly using the = operator:

Permissions 56

sudo chmod ug=rwx /var/www

sudo chmod o=rx /var/www

Q This is useful if you have a user for deployment on your server. If a user is part of the group
www-data, that user will now have permissions to add/update files within the /var/www
directory.

Files created by a user belong to that user’s username and group. This means that after creating/de-
ploying files, we’ll likely need to set file permissions properly.

For example, after a deployment to /var/www, the deployment user should set the group and
permissions of the new and updated files. The files should be assigned the group www-data and
have group read/write abilities set to them.

1

User Management

We need to also manage users and what groups they belong to.

Every user created by default belongs to a user and group of the same name. Users can belong to
one primary group, and then can be added to many other secondary groups.

The primary group is usually what files/directories are assigned when a user creates a new file or
directory. (Their username is of course the user assigned to those same files/directories).

We can find a list of users created in the /etc/passwd file:

vim /etc/passwd

User Management 58

e 00 .| vagrant@vaprobash: fvar — ssh]

/etc/password

This will show us the following information in colon-separated columns:

o User

Password (“x” meaning the user has an encrypted password)
User ID (UID)

Group ID (GID)

User Information (extraneous notes)

« Home Directory

Command/Shell used by the user

For more information on this list, including some notes on the UID/GID’s, see this article on
understanding the /etc/passwd file format'’.

http://www.cyberciti.biz/faq/understanding-etcpasswd-file-format/

http://www.cyberciti.biz/faq/understanding-etcpasswd-file-format/
http://www.cyberciti.biz/faq/understanding-etcpasswd-file-format/
http://www.cyberciti.biz/faq/understanding-etcpasswd-file-format/

User Management 59

Creating Users

Let’s create a new user to use for deployments. We’ll name this user “deployer”.

sudo adduser deployer

Q Note that adduser is not the same as useradd, although both commands usually exist. The
adduser command does some work which we’d have to otherwise do manually. Use the
adduser command. You can remember which command to use by thinking of the word

order used if saying “I want to add a user” out loud.

This will do some setup and ask you for a password for this user. This might also ask you for the
user’s full name and some other information.

If we check out /etc/passwd again, we’ll see a new line similar to this:
deployer:x:1001:1003:, ,, : /home/deployer: /bin/bash

In the above example, our user “deployer” has a UID of 1001 and GID of 1003.

We can act as this user by running the command:
sudo su - deployer
Then we can type in groups to see what groups we are part of:

$ groups
deployer
If you’re following along, run the exit command to go back to your sudo user.

Let’s set our deployer user to have a secondary group of www-data.
sudo usermod -a -G www-data deployer

We use -a to “append” the group to the users current secondary groups. The -G (upper-case “G”)
assigns the user deployer the group www-data as a secondary group.

If a directory or file is part of the www-data group and has group read-write permissions set, our
user deployer can will be able to read and modify it. Our deployer user can deploy to www-data
directories!

Alternatively, you can make your deploy user’s primary group www-data. New files/directories
created will then be part of group www-data.

To do so, run:

User Management 60
sudo usermod -g www-data deployer

The -g (lower-case “g”) will assign the user deployer the group www-data as its primary group. Any
files/directories created by this user will then have the www-data group assigned to it. We can then
skip the step of changing the group permissions of files/directories after deployment.

Those steps, including creating a user and assigning it the primary group www-data, look like this:

sudo adduser deployer # Fill in user info and password
sudo usermod -g www-data deployer # Assign group www-data (primary)

Then we can make sure our web files are in group www-data and ensure group members have proper
permissions:

sudo chgrp -R www-data /var/www
sudo chmod -R g+rwx /var/www

Umask & Group ID Bit

I’ve mentioned user and group permissions used for deployment often. We can simplify the use of
group permissions by using umask and group id bits.

We’ll do two things:

1. We will tell users to create new files and directories with group read, write and execute
permissions.

2. We will ensure new files and directives created keep the group set by their parent directory

This will let us update files to our servers without having to reset permissions after each deployment.

Umask

First, we’ll use umask to inform the system that new files and directories should be created with
group read, write and execute permissions.

Many users have a umask of 022. These numbers follow the User, Group and Other scheme. The
series 022 means:

« 0 - User can read, write and execute
« 2 - Group can read, execute
« 2 - Other can read, execute

[N

S © 00 I O O b W N =

User Management 61

Here’s what octal values we can use for each of the three numbers:

« 0 - read, write and execute
e 1-read and write
« 2 -read and execute

3 - read only
4 - write and execute

5 - write only
+ 6 - execute only
7 - no permissions

In our setup, we want the group members to be able to write, not just read and execute. To do so,
we’ll set that to zero for user deployer:

sudo su - deployer
umask ©02

Then any new directory will then have g=rwx permissions. New files will have g=rw permissions.
Note this doesn’t give execute permission to files.

The umask needs to be set for each user. You can use sudo su - username to change into any user
and set their umask.

Ensure user deployer is also part of group www-data

sudo usermod -a -G www-data deployer

Set umask for user deployer
sudo su - deployer
umask ©02

Set umask for user www-data
sudo su - www-data
umask 002

You should also set this within the each user’s ~/.bashrc, ~/.profile, ~/.bash_profile or
similar file read in by the users shell. This will then set the umask for the user every time they
login.

O = W N =

User Management 62

File ~/.bashrc, the bash file read in Ubuntu for each user when logged into a shell

Other items above omitted
umask ©02

Then save and exit from that file. When you next login (or source ~/.bashrc) the umask will be
set automatically. This works for when automating scripts run by certain users a well.

Group ID Bit

We’ve made users create files and directories/files with group write and execute permissions as
applicable. Now we need new files/directories to take on the group of their parent directories. We
can do this with the “group id bit”.

We'll use a familiar command to do that:

sudo chgrp www-data /var/www # Change /var/www group to "www-data"
sudo chmod g+s /var/www # Set group id bit of directory /var/www

If you then inspect the /var /www directory, you’ll see that in place:

$ 1s -lah /var/www

total 12K
drwxrwsr-x 2 www-data www-data 4.0K Sep 13 17:58 .
drwxr-xr-x 14 root root 4.0K Sep 13 17:54 ..

-rwxrw-r-- 1 www-data www-data 6 Sep 13 17:58 index.html

New files created by user www-data or deployer will then be part of group www-data and maintain
the proper group permissions!

This is a great setup for automated deployments. We can worry less about file permissions when
automating deployments and other processes. You just need to remember to do the following:

+ Set the umask for EVERY user of group www-data that might do file operations in the
application files

« Set the correct group owner and add the +s group id bit for the proper directories

User Management 63

Running Processes

Processes (programs) are actually run as specific users and groups as well. This means we can
regulate what processes can do to the system using file and directory permissions.

Core processes which need system access are often run as user root. Some run as user root, but then

. [13 . » b
spawn processes as other users. This “"downgrading” of privileges is used for security - we don’t
want PHP-FPM processes running PHP code as user root in a production server!

For example, Apache is started as user root. The master process then downgrades spawned processes
to less privileged users. This lets Apache listen on port 80 (which requires root privileges) while
reducing the harm spawned processes can do.

Webservers

As this book is mainly about what we need to know as web programmers, the sections on web
servers are some of the most detailed.

First we’ll see an overview of how servers match incoming HTTP requests to a website. Then we’ll
discuss the finer topics of installing, configuring and using Apache and Nginx.

We'll see how to integrate our applications with these web servers. Finally, we’ll get in-depth with
PHP-FPM.

o I O O b W N =

HTTP, Web Servers and Web Sites

You likely know that a web server can handle serving more than one web site. In Apache, this is done
by defining Virtual Hosts. In Nginx, this is done by defining Servers within the Nginx configuration
(commonly also referred to Virtual Servers).

If a web server is hosting multiple web sites, how does the server route incoming requests to the
correct web site?

It reads the HTTP request’s Host header. If the Host header is not present or doesn’t match a defined
site, the web server routes the request to a default site.

We can see this in action using curl. For this example, we’ll use two of my websites, fideloper.com
and serversforhackers.com. These happen to exist on the same server as of this writing.

Let’s get the IP address of the server:

$ ping fideloper.com
PING fideloper.com (198.211.113.202): 56 data bytes

So we can see the IP address is 198.211.113.202. Let’s use curl to see what response we get when
using the IP address only.

$ curl -1 198.211.113.202

HTTP/1.1 301 Moved Permanently

Server: nginx

Date: Mon, 16 Jun 2014 ©2:07:47 GMT
Content-Type: text/html

Content-Length: 178

Connection: keep-alive

Location: http://serversforhackers.com/

We can see that I'm using Nginx. Nginx responds with a 301 redirect response, telling the client to
head to http://serversforhackers.com via the Location header. This means two things:

1. Serversforhackers.com is the default site, rather than fideloper.com

2. The Nginx configuration sends a 301 redirect to the domain serversforhackers.com. Some web
servers might just serve the default content. [happen to have a 301 Redirect configured so the
site is always accessed via a domain.

Let’s next see what happens when we add a Host header to the HTTP request:

, O © 0 9 O O b W N+~

[ENEN

o I O O P W N =

[N
W N~ O

HTTP, Web Servers and Web Sites 66

$ curl -1 -H "Host: fideloper.com" 198.211.113.202
HTTP/1.1 200 OK

Server: nginx

Content-Type: text/html; charset=UTF-8
Connection: keep-alive

Vary: Accept-Encoding

Cache-Control: max-age=86400, public

Date: Mon, 16 Jun 2014 02:10:34 GMT
Last-Modified: Fri, @9 May 2014 20:54:31 GMT
X-Frame-Options: SAMEORIGIN

Set-Cookie: laravel_session=somerandombits

We can see a Laravel session created on line 11. Fideloper.com happens to be a Laravel based web
application. We can infer that this request was routed to the fideloper.com site successfully!

Next, we'll request the Servers for Hackers site on the same server:

$ curl -1 -H "Host: serversforhackers.com” 198.211.113.202
HTTP/1.1 200 OK

Server: nginx

Date: Mon, 16 Jun 2014 ©2:13:10 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 5943

Last-Modified: Mon, 02 Jun 2014 23:32:32 GMT
Connection: keep-alive

Vary: Accept-Encoding

Expires: Mon, 16 Jun 2014 02:13:09 GMT
Cache-Control: no-cache

X-UA-Compatible: IE=Edge,chrome=1
Accept-Ranges: bytes

Here we see a different set of headers with no session created. We’ve reached serversforhackers.com!
This is a static site built with the site generator Sculpin.

So, we can see how the Host header is used by the web server to determine which website to direct
a request to. In the next chapters, we’ll cover installing and configuring Apache and Nginx for one
or more websites.

A Quick Note on DNS

We’ve seen that the Host header can inform our web server what website a client requested.
However, how does a domain used in a user’s browser reach our server in the first place?

HTTP, Web Servers and Web Sites 67

This is the job of DNS (Domain Name Service). When we purchase a domain from a registrar, we
often also need to add some domain name servers for the domain. These DN entries will often look
like ns1.somehost .com and ns2.somehost . com.

Many registrars setup their own domain name services for you. However, you can purchase a domain
from a registrar but control your domain name information on another service! Registrars will
allow you to set which Name Servers are used for your domain. You can set the Name Servers
(ns1.somehost . com for example) to those of another service of your choice.

Some third-party domain name services to consider:

« AWS Route 53

CloudFlare CDN (has DNS services)
« DynDNS

OpenDNS

EasyDNS

DNSMadeEasy

These should all work pretty well. The only recommendation I have is to not use a DNS provided
by your hosting. Some of the Name Servers of the popular cloud server providers have come under
attack before. In this situation, the DNS services for your domain won’t work even if your application
servers are up and running fine. Using a separate DNS service is an easy way to not put your eggs
all in one basket.

Once your Name Servers are set, you can head to your registrar or DNS service of choice and start
adding DNS records. This is where you can point your domain to your web server. Then once
someone uses your domain in the browser, it will be directed to your web server!

HOST NAME IP ADDRESS/ URL RECORD TYPE MXPREF TTL

@ 198.211.113.202 * A (Address) 2 n/a 1800
WWW serversforhackers.com. CNAME (Alias) : n/a 1800
book serversforhackers.com. CNAME (Alias) B n/a 1800

DNS entries for serversforhackers.com

DNS & Hosts File

Let’s say you want to use a domain for development on your local server. You have a virtual machine
(perhaps Vagrant) or some server on which you’ll be developing. If you want to reach this server by
using the domain project.dev, how would you accomplish that?

If use the URL http://project.dev in our browser, the browser won’t know what to do with it.
There’s no mechanism in place to tell the browser what IP address the domain should resolve to.

800 |_"|Oaps-!Gaag|eChrome cou X W e

&« C' [project.dev/ w A8

Oops! Google Chrome could not find
project.dev

Did you mean: project.net

Google Google Chrome Help

Why am | seeing this page?

project.dev before hosts file

What we need is a way to tell the browser that the domain project.dev points to some IP address.
Luckily, all computers (in all OSes), have a hosts file. This file lets us map domains to IP addresses.

What does a hosts file look like? Many just have a few entries pointing localhost to your local IP
address.

© 00 39 O O b W N -~

DNS & Hosts File 69

On my Macintosh, it looks like this:

File: /etc/hosts - localhost and ipv4 and ipvé addresses

Host Database

#
#

Jlocalhost is used to configure the loopback interface
when the system is booting. Do not change this entry.
#i#

127.0.0.1 localhost

255.255.255.255 broadcasthost

1 localhost

fe80::1%100 localhost

Q In Windows, the location of the hosts file is usually

%systemroot%\system32\drivers\etc\. %systemroot% is often C: \Windows.

Let’s say our development server is on the IP address192.168.22.10. If we want to use the hostname
project.dev to reach this server, then we can append this entry to the hosts file:

192.168.22.10 project.dev

We can add multiple domains to the same entry as well. This will point each domain to the same IP
address:

192.168.22.10 project.dev project2.dev codename-orange.dev another.domain.dev

After saving your hosts file, you'll find these domains start to work. You can enter them into your
browser or use them in SSH connections. The domains will resolve to the IP address you set!

These changes will only work on the computer whose hosts file you edited. It’s a local
modification only.

DNS & Hosts File 70

et oo s s s el i n

e 00 [project.dev * Y]
&« C [9 project.dev/ N PO W=
Hello, SFH!

project.dev after hosts file

Xip.io

So what is our hosts file doing for us here? It’s enabling us to circumvent the need to have any DNS
services enabled for our domain. In other words, we don’t need to setup our own DNS service. For
our each local computer, we can edit the hosts file and be done with it.

The hosts file is providing the service of telling our computer what IP address to resolve to
when the domain is used.

But there are services available which will let us skip having to edit our hosts file. Xip.io'® is such a
service; It can act like your hosts file. If you specify the IP address you'd like the xip.io domain to
resolve to, it will do that for you!

For example, if I skip editing my hosts file and instead use 192.168.22.10.xip. io in the browser,
that will reach the server as well!

Bhttp://xip.io

http://xip.io
http://xip.io

DNS & Hosts File 71

800 y [Apache2 Debian Default P % Ny 2
€« C [192.168.22.10.xip.ioc 77 # E,i]]

Apache2 Debian Default Page

lcome page used to test the carrect operation of the Apac
N systems. If you can read this page, it means that the Ap
s working properly. You should replace this file (located
=x.html) before continuing to operate your HTTP server.

ser of this web site and don't know what this page is abou
tly unavailable due to maintenance. If the problem persis

Configuration Overview

fault configuration is different from the upstream default ¢
mized for interaction with Debian tools. The configuration

sr/share/doc/apache2 /README.Debian.gz. Refer to

mentation for the web server itself can be found by acces
e was installed on this server.

xip.io
The xip.io service saw the IP address in the subdomain(s) of the xip. io address and resolved to it.

We can even use more subdomains withxip. io! For example,whatever.i.want.192.168.22.10.xip.io
will work just as well. This lets us use subdomains to differentiate between our projects, if they are
hosted on the same server.

9 Using xip.io does require internet access - something to keep in mind when developing on
the go.

Virtual Hosts

Perhaps you noticed that the xip.io address landed us on the default Apache site page, instead of
our project page. The second part of this is making sure the virtual hosts on our webserver know
what to do with the domain given.

O O b W N =

O O b W N~

DNS & Hosts File 72

Do you see what’s happening? Editing your hosts file points the domain to the correct server.
However, your web server at that IP address still needs to know what to do with that web request!

The other half of the equation is making sure our Apache or Nginx virtualhost routes to the right
site/webapp. It’s not enough just to point a domain to our web server’s IP address.

Web servers look for the Host header in an HTTP request to map the request to a configured website.
Using xip.io will provide a Host header - we just need our web servers to know what to do with
those requests.

On Apache, we can do that by editing our virtual host do something like this:

Fictitious virtual host file /etc/apache2/sites-available/project.dev.conf

<VirtualHost *:80>
ServerName project.dev
ServerAlias project.*.xip.io

DocumentRoot /vagrant/project
</VirtualHost>

What’s this doing? Well we set the site’s primary domain as project.dev, in case we want to use
that instead of xip.io. If we want to make use if xip.io, we can use a wildcard in place of the IP
address. We don’t need to update the virtual host if our server’s IP address changes. Note that we
must set that up in the ServerAlias, as Apache’s ServerName directive can’t use wildcards.

For example, to match the domain project.192.168.22.10.xip.io, We use project.*.xip. io.

If we later want to have another project on the same server, we can create another virtual host:

Fictitious virtual host file /etc/apache2/sites-available/project-two.dev.conf

<VirtualHost *:80>
ServerName project-two.dev
ServerAlias project-two.*.xip.io

DocumentRoot /vagrant/project-two
</VirtualHost>

In Nginx, we will do similarly:

W N O O & W N =~

[S
W N~ OO O

DNS & Hosts File 73

Fictitious virtual host file /etc/nginx/sites-available/project.dev

server {
listen: 80;

server_name project.dev ~'project\.(.*)\.xip\.io;

root /vagrant/project;

index index.html index.htm;

location / {
try_files $uri $uri/ /index.html;

Here we have a similar setup. Using the server_name directive, we can set up two domains. We have
told it to respond to project.dev, as well as project.*.xip.1io, using a regular expression.

DNS & Hosts File

® 0 B /M project.192.168.22.10.xip X -"\"L_\ -
€ © C [project.192.168.22.10xip.o 7¢ A £, & =

Hello, SFH!

wildcard xip.io

74

The most important point of the above steps is to know that simply pointing a domain to your
server is not enough. In order for your web application to work, your web server also needs to know

what to do with the incoming request.

Q You can use your hosts file to point real domains to another server. This is useful for testing

an application as if it’s “in production”.

Hosting Web Applications

In the following chapters, we’ll discuss configuring Apache and Nginx. Before we do, we should
discuss how hosting a modern web application works.

Web frameworks of all languages include a way to run an application in the browser during
development.

Things get more complicated when we want to host an application. We can’t just run python app.py
orphp -S ©.0.0.0:80 on a server used for real traffic and hope for the best!

A “real server” in this context is a production server. However it could be any remote server,
whether for development, staging, or production.

Three Actors

Hosting a web application requires the orchestration of three actors:

1. The Application
2. The Gateway
3. The Web Server

Here’s the general flow of a web request into an application. We'll discuss this flow going from right
to left.

HTTP HTTP
HTTP FastCGl WSsGl
uwsgi Rack
- —> E — —_— |=
Client Web Server Gateway Application

application gateway request flow

Hosting Web Applications 76

Applications & HTTP Interfaces
Web Applications are generally coded using a framework or suite of libraries. These typically have
tooling to handle HTTP requests.

Libraries created to accept and translate HTTP requests are referred to as HTTP Interfaces. These
accept requests and translate them for application code.

For example, Python has the WSGI specification. This specifies an interface between web servers
and Python applications.

A popular implementation of WSGI is Werkzeug. This is a Python library that can accept and parse
WSGI-compliant web requests.

Similarly, Ruby has Rack. Rack is a specification and library that can accept Rack-compliant web
requests.

Most languages have HTTP interfaces available. Python and Ruby have HTTP interfaces added on
via specifications and libraries. However, many newer languages include HTTP interfaces as part of
their standard library.

Node]S and Golang are two examples of languages that can listen for HTTP requests “out of the
box”. HTTP requests can be given and parsed without needing libraries or specifications.

O PHP, notably, is lacking such a specification. However, there are talks of PHP-FIG defining
such an interface in PSR-7".

In any case, web applications must incorporate a way to accept web requests and return valid
responses.

We've discussed how languages specify how to accept web requests. Next, we’ll discuss how
application gateways translate HTTP requests.

The application request flow and its interaction with a gateway is pictured here.

HTTP HTTP
HTTP FastCGl WSsGl
uwsgi Rack
- —> E — —_— |=
Client Web Server Gateway Application

application gateway request flow

https://github.com/php-fig/fig-standards/blob/master/proposed/http-message.md

https://github.com/php-fig/fig-standards/blob/master/proposed/http-message.md
https://github.com/php-fig/fig-standards/blob/master/proposed/http-message.md

Hosting Web Applications 77

The Gateway

Gateways sit between a web server (Apache, Nginx) and a web application. They accept requests
from a web server and translate them for a web application.

Unfortunately, gateways typically don’t label themselves as such. The exact definition of a gateway
is somewhat fluid.

Some call themselves HTTP servers. Some consider themselves process managers. Others are more
of a platform, supporting multiple use cases, protocols, and programming languages.

It might be useful to describe what gateways do rather than pin down an exact definition. Some
common functionality of gateways include:

Listen for requests (HTTP, FastCGI, uWSGI and more)
Translate requests to application code

Spawn multiple processes and/or threads of applications
Monitor spawned processes

Load balance requests between processes

AN I S A

Reporting/logging

A gateway’s main purpose is usually to translate requests. It’s also common for a gateway to control
application processes and threads.

We’ll concentrate on the translation of requests.

Consider a gateway receiving a request meant for a Python application. The gateway will translate
the request into a WSGI-compliant request.

It’s the same for a gateway receiving a request for a Rack application. The way gateway will translate
the request into a rack-compliant request.

Of course, in order for a gateway to translate a request, they must first receive one.

PHP-FPM, the gateway for PHP, is an implementation of FastCGI. It will listen for FastCGI requests
from a web server.

Many gateways can accept HTTP requests directly. uWSGI, Gunicorn, and Unicorn are examples of
such gateways.

Other protocols are also often supported. For example, uWSGI will accept HTTP, FastCGI and uwsgi
(lowercase, the protocol) requests.

Hosting Web Applications 78

9 Don’t confuse Python’s PEP 3333 (WSGI) specification® with uWSGI’s protocol “uwsgi**”.

WSGI is Python specification for handling web requests. uWSGI can translate a request to
be compatible with WSGI applications.

Similarly, uWSGI has it’s own specification called “uwsgi”. This specifies how other clients
(web servers) can communicate with uWSGI!

A web server such as Nginx can “speak” uwsgi in order to communicate with the gateway uWSGI.
uWSGI, in turn, can translate that request to WSGI in order to communicate with an application.
The application will accept the WSGI-compliant request for an application. The Werkzeug library
is capable of reading such a WSGI request.

No matter what protocol is used, gateways can accept a request and translate it to speak a web
application’s “language”.

The following gateways will translate requests for WSGI (Python) applications:

» Gunicorn

Tornado
« Gevent
Twisted Web
« uWSGI

The following gateways will translate requests to Rack (Ruby) applications:

Unicorn

Phusion Passenger
+ Thin
« Puma

A modern way to run PHP applications is to use the PHP-FPM gateway. PHP-FPM will listens for
FastCGI connections.

Users of HHVM can use the included FastCGI server to listen for web requests. It acts much like
PHP-FPM.

O Before PHP-FPM, PHP was commonly run directly in Apache. A Gateway was not used.
Instead, Apache’s PHP module loaded PHP directly, allowing PHP to be run inline of any
files processed.

This is still a common way to run PHP.

**http://legacy.python.org/dev/peps/pep-3333/
*Thttp://uwsgi-docs.readthedocs.org/en/latest/Protocol.html

http://legacy.python.org/dev/peps/pep-3333/
http://uwsgi-docs.readthedocs.org/en/latest/Protocol.html
http://legacy.python.org/dev/peps/pep-3333/
http://uwsgi-docs.readthedocs.org/en/latest/Protocol.html

Hosting Web Applications 79

Skipping Gateways

I mentioned above that some languages include HTTP interfaces in their standard library.

Applications built in such languages can skip the use of gateways. In that scenario, a web server will
send HTTP requests directly to the application.

Such applications can still benefit from the use of a gateway. For example, Node]S applications.
Node’s asynchronous model allows it to run efficiently as a single-process. However, you may want
to use multiple processes on multi-core servers.

A Node]S gateway such as PM2** could manage multiple processes. This would allow for more
concurrent application requests to be handled.

0 Gateways aren’t necessarily language-specific! For example, uWSGI, Gunicorn and Uni-
corn have all been used with applications of various languages.

You'll find that tutorials often match a gateway with applications of a specific language.
This isn’t a hard rule. In fact, uWSGI is written in C rather than Python!

This is why specifications exist. They allow for language-agnostic implementations.

The gateway request flow described is pictured here. We’ve discussed the flow from a web server
to the gateway and from the gateway to the application.

HTTP HTTP
HTTP FastCGl WSsGl
uwsgi Rack
- —> E — —_— |=
Client Web Server Gateway Application

application gateway request flow

The Web Server

Web servers excel at serving requested files, but usually serve other purposes as well.

Popular web-server features include:

« Hosting multiple sites
« Serving static files

*2https://github.com/Unitech/pm2

https://github.com/Unitech/pm2
https://github.com/Unitech/pm2

Hosting Web Applications 30

Proxying requests to other processes

Load balancing
« HTTP caching
Streaming media

Here we’re concerned with the web server’s ability to act as a (reverse) proxy.

The web server and the gateway are middlemen between the client and an application. The web
server accepts a request and relays it to a gateway, which in turn translates it to the application. The
response is relayed back, finally reaching the client.

We’ve briefly discussed how a gateway can accept a request and translate it for an application. We’ll
get in a little more detail here.

As mentioned, a web server will translate an HTTP request to something a gateway can understand.
Gateways listen for requests using various protocols.

Some gateways can listen for HTTP connections. In this case, the web server can relay the HTTP
request to the gateway directly.

Other gateways listen for FastCGI or uwsgi connections. Web servers which support these protocols
must translate an HTTP request to those protocols.

Nginx and Apache can both “speak” HTTP, uwsgi, and FastCGI. These web servers will accept an
HTTP request and relay them to a gateway in whichever protocol the gateway needs.

More specifically, the web server will translate a request into whatever you configure it to
use. It’s up to the developer/sysadmin to configure the web server correctly.

The web server request flow described is the flow from the client to the web server and from the
web server to the gateway.

HTTP HTTP
HTTP FastCGl WSGl
uwsgi Rack
- —> E — —_— |=
Client Web Server Gateway Application

application gateway request flow

Hosting Web Applications 31

PHP is Special

PHP is unique in that it’s a language built specifically for the web.

Most other languages are either general purpose or do not concentrate on the web. As a result, PHP
is fairly different in how it handles HTTP requests.

PHP was originally built under the assumption that it is run during an HTTP request. It contained
no process for converting the bytes of an HTTP request into something for code to handle. By the
time the code was run, that was dealt with.

0 PHP is no longer limited to being run within context of an HTTP request. However, running
PHP outside of a web request was an evolution of PHP, not a starting point.

Conversely, other languages have a process of translating an HTTP request into code. This usually
means parsing the bytes constituting HTTP request data.

Many libraries have been created as a language add-on to handle HTTP requests. Some newer
languages can handle HTTP requests directly. These languages don’t assume code is always run
in the context of an HTTP request, however.

This process in PHP is roughly equivalent to using cURL (or perhaps the Guzzle package) to accept
web requests.

On a practical level, this means that PHP’s super globals ($_SERVER, $_GET, $_POST, $_SESSION,
$_COOKIE and so on) are already populated by the time your PHP code is run. PHP doesn’t need to
do work to get this data.

PHP-FPM, the gateway for PHP, takes a web request’s data and fills in the PHP super globals. It sets
up the state of the request (the environment) before running code.

PHP never needed a specification or library for accepting bytes of data and converting it to a request.
It’s already done by the time PHP code is run! This is great for simplicity.

Modern applications, however, are not simple. More structured applications (“Enterprise”) often need
to deal with HTTP in great detail. Perhaps we want to encrypt cookies or set cache headers.

This often requires us to write objects describing HTTP. These objects are populated by PHP’s
environment/state. These objects then adjust HTTP-related state, applying correct HTTP business
logic and constraints.

Under the hood, such libraries use PHP’s built in HTTP-related functions to read in a request and
create a response.

Popular examples of these libraries includes Symfony’s HTTP libraries, and the possible PSR-7
standard.

An HTTP interface can help standardize and encapsulate HTTP concerns as well. This is
great for testing. Accessing and modifying super globals (global state) can often lead to
issues in testing and code quality.

Hosting Web Applications 82

For the end-user (developer), that’s a hidden difference between PHP and other languages.

Languages like Python and Ruby have a specification for how raw HTTP information should be sent.
It’s up to frameworks and libraries to handle HTTP concerns. Code manipulating HTTP response
data must be written to send responses in the proper HTTP format.

PHP frameworks simply manipulate HTTP request state given. For HTTP responses, PHP has built-
in methods to let you adjust HTTP headers and data.

PHP developers don’t need to concern themselves with how data gets translated into a HTTP
response. Instead, that’s a concern for the internals team.

O I

Apache

First we’ll cover the venerable Apache web server. Apache was, until very recently, considered the
most popular web server used. By some counts, Nginx has recently taken the crown. In any case,
Apache is still very widely used, making it worth learning about.

In this chapter, we’ll look at using Apache as a basic web server, including setting up virtual hosts.
Then we’ll see a few ways to use it with some modern application languages, including (but not
limited to) PHP and Python.

Installing
Before you install Apache, log into your server and try this command:

Send an http request to "localhost"

-] flag shows response headers only

$ curl -1 localhost

curl: (7) Failed connect to localhost:80; Connection

If you don’t have any web server installed, you should receive the error show above. That means
there’s nothing listening on the localhost network on port 80. Let’s make this work!

On Debian/Ubuntu servers, the Apache package is called “apache2”. Installing it is generally as
simple as this:

sudo apt-get install apache2

I recommend using the ondrej/apache2* repository to keep up with the latest stable releases of
Apache:

sudo add-apt-repository -y ppa:ondrej/apache2
sudo apt-get update
sudo apt-get install -y apache2

After installation, if you re-run the curl command, you should see a 200 OK Response in the headers
sent back from Apache:

Zhttps://launchpad.net/~ondrej/+archive/apache2

https://launchpad.net/~ondrej/+archive/apache2
https://launchpad.net/~ondrej/+archive/apache2

Y

© © 0 I O O b W N+~

Apache 84

$ curl -1 localhost

HTTP/1.1 200 OK

Date: Sun, 22 Jun 2014 13:22:43 GMT

Server: Apache/2.4.10 (Ubuntu)
Last-Modified: Sun, 22 Jun 2014 13:22:14 GMT
ETag: "2cf6-4fc6c9d7068b7"

Accept-Ranges: bytes

Content-Length: 11510

Vary: Accept-Encoding

Content-Type: text/html

Great, Apache is installed! The latest stable release is version 2.4.10 as of this writing. Let’s move
onto configuring some websites.

Configuration

In Ubuntu, Apache follows a common configuration scheme of available and enabled directories.
Let’s look at some Apache configuration directories:

* /etc/apache2/conf-available
e /etc/apache2/conf-enabled

* /etc/apache2/mods-available
e /etc/apache2/mods-enabled

e /etc/apache2/sites-available

e /etc/apache2/sites-enabled

We have available configuration files in the “available” directories. To enable an available configu-
ration just place them in the corresponding “enabled” directory.

In practice, these configurations are enabled by creating a symlink (“symbolic link” aka an alias).
That way we don’t have to copy real files to the “enabled” directories - we can just create and destroy
symlinks.

For example, if we have a site configured in /etc/apache2/sites-available/001-mysite.conf,
we’ll enable it by symlinking that to /etc/apache2/sites-enabled/@01-mysite.conf. Then we can
tell Apache to reload its configuration to read that new site in.

W N O O & W N =~

Y Y
<N O O b WO N =~ OO O

=N O Ol & W N =

Apache 85

Checking the sites-available and sites-enabled directories

Sites configured in sites-available

$ cd /etc/apache2

$ 1s -la sites-available/

root root Jun 22 18:28 .

root root Jun 22 13:33 ..

root root Jan 7 13:23 000-default.conf
root root Jun 22 18:28 001-mysite.conf
root root Jan 7 13:23 default-ssl.conf

Sites enabled in sites-enabled

Note how the enabled sites are "pointing" to the ones we want enabled

from the sites-available directory

$ 1s -la sites-enabled/

root root Jun 22 18:29 .

root root Jun 22 13:33 ..

root root Jun 22 13:22 000-default.conf -> ../sites-available/000-default.conf
root root Jun 22 18:29 001-example.conf -> ../sites-available/001-mysite.conf

To enable a site configuration, create a symlink between an “available” and “enabled” directory:

Enabling a virtual host by creating a symlink in the sites-enabled directory

Create a symlink between the actual conf in sites-available to the

glias inside of sites-enabled:

sudo 1ln -s /etc/apache2/sites-available/001-mysite.conf \
/etc/apache2/sites-enabled/001-mysite.conf

Then reload Apache's configuration:
sudo service apache2 reload

o Why the numbers in the filenames?

Virtual Hosts are processed in the order they appear in configuration. The first matching
ServerName or ServerAlias determines the Virtual Host that is used. This is regardless of
any wildcard domains defined.

The files are loaded in alpha-numeric order based on their filename. Because the first
matching virtual host is used to serve a request, there are situations where we can use
that to our advantage.

Alternatively, we can use the Apache tools a2ensite and a2dissite to enable a configuration:

~N O O B W N -

0 N O O & W N~

Bl N s s
O O b W N~ OO O

Apache 86

Fnable a site
sudo aZensite 001-mysite
sudo service apache2 reload

Disable a site
sudo aZ2dissite Q01-mysite
sudo service apache2 reload

q& Apache2 Tools

The following tools exist on Debian/Ubuntu to help with managing Apache configuration:

+ a2ensite / a2dissite - Enable and disable virtualhosts by symlinking between
sites-available and sites-enabled

» a2enmod / a2dismod - Enable and disable modules by symlinking between
mods-available and mods-enabled

» a2enconf / a2disconf - Enable and disable modules by symlinking between
conf-available and conf-enabled

These are not necessarily available on other Linux distributions.

To see how the configurations are loaded, let’s inspect the main configuration file, /etc/a-
pache2/apache2.conf:

Selections from /etc/apache2/apache2.conf

Include module configuration:
IncludeOptional mods-enabled/*.load
IncludeOptional mods-enabled/*.conf

Include list of ports to listen on
Include ports.conf

Include generic snippets of statements
IncludeOptional conf-enabled/*.conf

Include the virtual host configurations:
IncludeOptional sites-enabled/*.conf

Apache 87

This will load any configuration from the “*-enabled” directories. The configurations should end in
“.conf” (or “load” in the case of some modules).

The Include and IncludeOptional directives use wildcards. These will load files in alpha-numeric
order. We can use filenames to ensure load order.

A specific load order will usually not be required. However, it may be useful when defining
many virtual hosts. Complex configurations may depend on load order to load the correct
site.

The enabled/available configuration convention is very useful. We can enable and disable of
configuration without having to delete files!

We'll find this convention used commonly in the Debian/Ubuntu world. For example, it’s used in
Apache, Nginx and PHP!

Virtual Hosts

Apache uses “Virtual Hosts” to setup and configure multiple websites. Each website hosted on a web
server can and should have their own Virtual Host configuration.

Virtual Hosts can be matched based on IP address or hostname.

The phrase “Virtual Hosts” is used a lot. They’ll be referred to as a “vhost” from here on,
just like in the official Apache documentation.

IP-Based Virtual Hosts

[P-based vhosts are configured per unique IP address and port combination. If a server has multiple
public IP addresses assigned to it, we can set up a site per IP address on the same ports.

Let’s say our server has these three fictitious IP addresses assigned to it: 123.123.123.111 through
123.123.123.113. In order to setup vhosts for all three IP addresses, we need to setup Apache to listen
on them.

Most servers will only have one public IP address assigned to them. That’s not always the case,
however. One common reason to add extra IP addresses is when using an SSL certificate. In some
situations, an IP address must be unique per domain under an SSL certificate. If a server has multiple
sites using their own SSL certificates, they’ll need more than one IP address.

0 You can get around the requirement for unique IP addresses per domain when using an
SSL certificate. In fact this might be installed by default using Debian/Ubuntu’s Apache2
package. Read more here®*.

**https://wiki.apache.org/httpd/NameBasedSSLVHostsWithSNI

https://wiki.apache.org/httpd/NameBasedSSLVHostsWithSNI
https://wiki.apache.org/httpd/NameBasedSSLVHostsWithSNI

©O© 00 9 O O & W N =

O O B W N -

Apache 88

To make Apache listen on our three IP addresses, edit the main configuration file /etc/a-
pache2/ports.conf. Upon opening that file, you’ll likely see something like this:

File: /etc/apache2/ports.conf

Listen 80

<IfModule ssl_module>
Listen 443
</IfModule>

<IfModule mod_gnutls.c>
Listen 443
</IfModule>

This sets Apache to listen on port 80 and 443 on all network interfaces the server is connected to. If
you have reason to only listen on specific IP addresses, you can manually add Listen directives:

Listen 123.123.123.111:80
Listen 123.123.123.111:443
Listen 123.123.123.112:80
Listen 123.123.123.112:443
Listen 123.123.123.113:80
Listen 123.123.123.113:443

This will listen on both port 80 (http) and 443 (https) ports for the three example IP addresses.

9 This is not necessarily a common setup. Your webserver will likely need no such addition
unless you want Apache to only listen on specific networks.

If you have made changes to the ports.conf file, close it and restart Apache:
sudo service apache2 restart

Once we have Apache listening on our IP addresses, we can setup a vhost for any of them as we
need. The following shows a vhost declaration for a website at IP address 123.123.123.111 listening
on port 30.

We might find this in file /etc/apache/sites-available/example.com.conf:

O &= W N =

Apache 89

<VirtualHost 123.123.123.111:80>
DocumentRoot /var/www/example.com/public
</VirtualHost>

IP-based vhosts are unique per IP address and port combination. If we need to listen to another IP
address, we’ll create another vhost:

<VirtualHost 123.123.123.112:80>
DocumentRoot /var/www/another.example.com/public
</VirtualHost>

Note that the DocumentRoot directive tells Apache where the files for this website are.

Named-Based Virtual Hosts

[P-based vhosts are limited. Apache cannot have more than one vhost per IP address/port combina-
tion! Additionally, server hosts often charges for extra IP addresses.

Because of this, named-based vhosts are far more common.

Named-based vhosts work off of the hostname to match to a vhost. This hostname is taken from the
Host header of an HTTP request. Let’s see our example.com website based off of the hostname:

HTTP/1.0 does not include a Host header. An IP-based virtualhost may be required for the
rare client which does not “speak” the newer HTTP/1.1.

File: /etc/apache2/sites-available/001-example.com.conf

<VirtualHost *:80>

ServerName example.com

ServerAlias www.example.com

DocumentRoot /var/www/example.com/public
</VirtualHost>

In this case, we have some new/different directives:

« *:80 - Tells Apache that the vhost listens on any IP address (any network interface) on port
80. Apache treats it as a named-based vhost when used with ServerName.

+ ServerName example.com - Tell Apache what host to use to match to this website.

e ServerAlias www.example.com - Use the defined domains/hosts to also match these aliases.
Often this can be the popular www subdomain. Multiple, space-separated hostnames can be

defined.
+ DocumentRoot - Tell Apache where the web files for this website are located on the file system.

W N O O & W N =

N N N F S s s sl
N ,~, © © 0 0O O b W N~ OO ©

Apache 90

Other Virtual Host Directives

Let’s look at a common vhost setup for Apache and cover what each directive means. Again,
this will be for example.com, with an example configuration file found at /etc/apache2/sites-
available/001-example.com.conf.

File: /etc/apache2/sites-available/001-example.com.conf

<VirtualHost *:80>
ServerName example.com
ServerAlias www.example.com

ServerAlias example.*.xip.1io
DocumentRoot /var/www/example.com/public
<Directory /var/www/example.com/public>
Options -Indexes +FollowSymLinks +MultiViews
AllowOverride All
Require all granted
</Directory>
ErrorLog ${APACHE_LOG_DIR}/example.com-error.log
Possible values include: debug, info, notice, warn, error, crit,

glert, emerg.

LoglLevel warn

CustomLog ${APACHE_LOG_DIR}/example.com-access.log combined

</VirtualHost>

We’ll go over the options we see here:

Directive Explanation

<VirtualHost *:80> Listen on any network interface on port 80

ServerName The hostname used to match an HTTP request’s Host
header to the vhost

ServerAlias Alternate hostnames to use to match a request to a

vhost. This can contain wildcards, and multiple
hostnames can be used (space separated). Multiple
ServerAlias directives can be used as well.

DocumentRoot The directory path from where Apache should serve
files
<Directory /file/path> Apply given directives only for files (and

sub-directories/files) in the given path.

Apache

Directive

91

Explanation

Options

Option: -Indexes

Option: +FollowSymLinks
Option: +MultiViews

AllowOverride All

Require all granted

ErrorLog
LogLevel

CustomLog

« 5

Set available features within the server path. The “+

and “-“ can enable or disable a feature.
Do not display a directory listing of files in a directory

if there’s no index file (such as index.html, index.php).
Removing this ability is more secure as users can’t
attempt to find files on your server by attempting to
direct their browsers to directories. Use “+” instead of

« <«

-“ to add the ability to see a directory index.
Do follow symbolic links (aliases) if present.

Use mod_negotiation®® to handle HTTP content

negotiation.
Setting this to “ALL” allows the use of . htaccess files.

Set this to None for .htaccess files to be ignored.
Apache 2.4+ changed access control to

mod_authz_host*. This allows access to the web files
to all. This used to be handled by a mix of “Allow” and

“Deny” directives.
Define an error log specifically for this vhost.

Define the verbosity of error log messages. Here, all
“« » . .) « »
messages of “warn” or of higher significance (“error”,

“crit”, “alert”, “emerg”) are logged.
Part of mod_log_config®, this lets you set an access

log and optionally set a format. Above we use the
“combined” log format.

Note that I added a second ServerAlias directive that matches the wild-carded hostname exam-
ple.*.xip.io. This is useful for testing the virtualhost before making a site live.

In the above example, we didn’t need to specify our servers IPs address within the vhost. This makes
it easier if our server’s IP address changes, as it may in development. We won’t need to change our

virtual host!

These are enough to get you up and running. In fact, they are just about all I use in most cases.
Of course, your needs may vary. There are many more options to explore found in Apache’s Core

Features documentation?®.

Apache and Web Applications

Apache wouldn’t be nearly so useful if we couldn’t use it to send requests to web applications.

*http://httpd.apache.org/docs/current/mod/mod_negotiation.html
*Shttp://httpd.apache.org/docs/2.4/mod/mod_authz_host.html
*"http://httpd.apache.org/docs/current/mod/mod_log_confightml
**http://httpd.apache.org/docs/current/mod/core. html

http://httpd.apache.org/docs/current/mod/mod_negotiation.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_host.html
http://httpd.apache.org/docs/current/mod/mod_log_config.html
http://httpd.apache.org/docs/current/mod/core.html
http://httpd.apache.org/docs/current/mod/core.html
http://httpd.apache.org/docs/current/mod/mod_negotiation.html
http://httpd.apache.org/docs/2.4/mod/mod_authz_host.html
http://httpd.apache.org/docs/current/mod/mod_log_config.html
http://httpd.apache.org/docs/current/mod/core.html

Apache 92

To host a web application, a web server can accept an HTTP request and pass it (proxy it) off
to a “gateway”. The gateway handles converting the request into something an application can
understand.

These gateways are various implementations and flavors of a “CGI”’s - a Common Gateway
Interfaces™.

For example, many Python applications use the uWSGI*° gateway. Apache will “proxy” a request to
the gateway. In turn, the uWSGI gateway passes the request to the Python application.

PHP, when not directly loaded by Apache, can use the PHP-FPM gateway. FPM is an implementation
of the FastCGI’* gateway, which is a very common protocol.

Apache can also proxy to web applications over HTTP. This is popular when proxying requests to
applications listening on HTTP. NodeJS and Golang are two languages that can listen for HTTP
connections directly.

Gunicorn and Unicorn are two popular gateways which can communicate over HTTP as well. These
can be used to serve Python and Ruby applications, respectively.

In the next sections, we’ll discuss how Apache can talk to applications using HTTP, FastCGI and
WSGI gateways.

Q Note that gateways are commonly tied to specific languages, but some are not!

Apache mod_php

Before we talk about commonly used gateways, let’s discuss the glaring exception to the rule. PHP
pages and applications are commonly loaded and parsed directly by Apache.

In this setup, Apache does not send PHP requests off to a gateway. Instead, Apache uses a PHP
module to parse PHP requests directly. This allows PHP files to be used seamlessly alongside static
web files.

Apache’s mod_php makes using PHP extremely easy. It’s commonly believed that this ease-
of-use made PHP so successful. It is still commonly used.

Running the PHP module in Apache is as simple as installing Apache’s mod_php. In Ubuntu, the
package for that is “libapache2-mod-php5”:

*http://en.wikipedia.org/wiki/Common_Gateway_Interface
*%http://wsgi.readthedocs.org/en/latest/
*"http://www.fastcgi.com/drupal/

http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://wsgi.readthedocs.org/en/latest/
http://www.fastcgi.com/drupal/
http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://wsgi.readthedocs.org/en/latest/
http://www.fastcgi.com/drupal/

O &= W N =

<N O O B W N =

Apache 93
sudo apt-get install -y libapache2-mod-php5

It’s likely automatically enabled. However, you can ensure it’s enabled by using the Debian/Ubuntu
specific tool “a2enmod”:

Enable mod_phpb
sudo a2enmod php5

Restart Apache to load in the module

sudo service apache2 restart

What does “a2enmod” do? It simply creates the symlink for files php5.1load and php5-conf files
between the mods-available and mods-enabled directories. We could just as easily create the
symlinks ourselves manually:

sudo 1ln -s /etc/apache2/mods-available/php5.load \
/etc/apache2/mods-enabled/php5. load

sudo 1ln -s /etc/apache2/mods-available/php5.conf \
/etc/apache2/mods-enabled/php5.conf

Then restart Apache
sudo service apache2 restart

You can also use “a2dismod” to disable a module. Don’t forget to restart Apache after
disabling a module as well.

Apache should be restarted rather than reloaded after enabling/disabling modules.

Once the module is enabled and loaded, you can run PHP files in your websites without further
configuration!

As we'll see, this is NOT actually a standard way to run a web application!

Going forward we’ll see how to use Apache to send (“proxy”) requests from Apache to various
applications gateways.

Apache with HTTP

Apache can proxy requests to gateways or programs using HTTP. Some languages can speak HTTP
directly while some gateways prefer to use HTTP.

Technically this means we could skip using a web server altogether and serve HTTP requests to
them directly.

O 00 9 O O b W N =~

N = U
B W N r, O

Apache 94

A more typical setup, however, is to put a web server such as Apache “in front of” an application.
In such a setup, Apache would handle all HTTP requests. It would either handle the request itself
or “proxy” the request to the application gateway.

This has certain benefits:

+ Apache can handle requests for static assets. This frees the application from wasting resources
on static assets.

» Apache can send requests to pools of resources of the application. Instead of one running
Node]JS process, picture 3-4 running! Apache can send requests to each of them. This would
substantially increase the number of requests the application could simultaneously handle.
This essentially is load balancing.

« Some gateways monitor and manage multiple application processes for us. A gateway will
expose one HTTP listener for Apache to send requests to. The gateway would then be
responsible for sending requests to each running process. Some gateways can dynamically
spin up and destroy running application processes.

Let’s see how Apache can proxy requests off to an application listening for HTTP requests.

Here’s an example Node]JS application. It will accept any HTTP request and respond with “Hello,
World!”.

File: /srv/http.js

#1 /usr/bin/env node
var http = require('http');

function serve(ip, port)

{
http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
res.end("Hello, World!\n");
}).listen(port, ip);
console.log('Server running at http://'+ip+':'+port+'/"');
}

// Create a server listening on all networks
serve('0.0.0.0', 9000);

We can run this node “application” with the simple command: nodejs /srv/http.js. This
application will listen on all network interfaces on port 9000. We can test this once it’s running.
You may need to open a new terminal window to test this while the NodeJS process is running:

O &= W N =

0 N O O B W N -

N B 1 | s s sl
© ©W 0O 1 O O b WO N~ O O

Apache 95

From within the server
$ curl localhost:9000
Hello, World!

Once that application is working, we need to configure Apache to send requests to it.

We’re proxying requests directly to a test application. This NodeJS application is not a
gateway. We’ll see how to proxy requests to a gateway such as uWSGI or PHP-FPM in this
chapter.

First we need to ensure the proxy and proxy_http modules are enabled. These allow Apache to
proxy requests off to another process (application or gateway) over HTTP.

Enable modules
sudo a2enmod proxy proxy_http

Restart Apache
sudo service apache2 restart

Then we can adjust our vhost file to proxy requests off to our Node]JS application.

<VirtualHost *:80>
ServerName example.com
ServerAlias www.example.com
ServerAlias example.*.xip.io

DocumentRoot /var/www/example.com/public

<Directory /var/www/example.com/public>
Options -Indexes +FollowSymLinks +MultiViews
AllowOverride All
Require all granted

</Directory>

<Proxy *>
Require all granted
</Proxy>
<Location />
ProxyPass http://localhost:9000/
ProxyPassReverse http://localhost:9000/
</Location>

21
22
23
24
25
26
27
28
29
30
31
32
33

B W N -

Apache 96

<Location /static>»
ProxyPass !
</Location>

ErrorLog ${APACHE_LOG_DIR}/example.com-error.log

Possible values include: debug, info, notice, warn, error, crit,
glert, emerg.

LoglLevel warn
CustomLog ${APACHE_LOG_DIR}/example.com-access.log combined

</VirtualHost>

This vhost file is just like what we used earlier in this chapter. However there are some additions
within the vhost. Let’s cover those:

<Proxy *>
Require all granted
</Proxy>

The Proxy®? directive let’s you configure all matched proxies. In this case, we're adding settings for

€k

for all configured proxies, as denoted by the wildcard .

With the Proxy directive, we simply repeat Require all granted. This authorizes the request to
be proxied from any host. This can be used to restrict what clients can use the proxy. In this case,
we want the whole world to reach our application, and so we’ll have Apache send requests to our
application from any host.

Next we have a <Location ...> directive:

<Location />
ProxyPass http://localhost:9000/
ProxyPassReverse http://localhost:9000/
</Location>

The “location” represents a URI (and any sub-directory URIs) used. In this case, / effectively means
“any URI”. This will proxy all requests to the application by directing it to localhost:9000. Using
http in the socket location tells Apache to proxy this as an HTTP request.

ProxyPass does the actual proxying while ProxyPassReverse tells Apache to adjust the Location
and similar headers sent back from the proxy. For example if our application accidentally returns a
header Location: localhost:8080, Apache can change that to the public-facing domain and port,
perhaps mysite.com:80. The documentation® has some examples.

*?http://httpd.apache.org/docs/current/mod/mod_proxy.html#proxy
**http://httpd.apache.org/docs/current/mod/mod_proxy.html#proxypassreverse

http://httpd.apache.org/docs/current/mod/mod_proxy.html#proxy
http://httpd.apache.org/docs/current/mod/mod_proxy.html#proxypassreverse
http://httpd.apache.org/docs/current/mod/mod_proxy.html#proxy
http://httpd.apache.org/docs/current/mod/mod_proxy.html#proxypassreverse

Apache 97

Lastly, we have a <Location ...> directive for the /static URI:

<Location /static>
ProxyPass !

</Location>

We want Apache to handle requests for static assets. This is easy with PHP, whose files typically
end in the .php. This allows us to pass requests ending in .php off to an application. We can say
“Only send files ending in . php to the application”.

Ths becomes an issue with other languages. Application of other languages typically don’t run
through a specific file.

One popular solution for informing Apache when to serve static assets is to put all static assets a
specific directory. The above configuration does just that. Any URI which starts with /static will
not be passed to the application. The ProxyPass ! directive tells Apache not to proxy the request.

Apache will automatically add X-Forwarded-* headers* to servers when ProxyPass
is used. More information about these headers and their use is in the Multi-Server
Environments section of this book.

Multiple back-ends

We can proxy between multiple back-ends.

For example, let’s pretend our application spawns multiple processes to listen on. This might be done
to increase the number of concurrent requests it can handle. We’ll simulate that by adjusting the
last line of our Node]JS script to listen on three addresses:

File: /srv/http.js, bottom of file

serve('0.0.0.0', 9000);
serve('0.0.0.0', 9001);
serve('0.0.0.0', 9002);

Once edited, we can restart this process running nodejs /srv/http. js. It will then be listening on
all network interfaces at port 9000, 9001 and 9002.

Next we can adjust our Apache configuration. We’re essentially load balancing between the three
back-end servers. To do so, we can use Apache’s proxy_balancer module.

We also need to enable 1bmethod_byrequests. This is the default method used by proxy_balancer
to determine how Apache will balance between the back-ends.

**http://httpd.apache.org/docs/current/mod/mod_proxy.html#x-headers

http://httpd.apache.org/docs/current/mod/mod_proxy.html#x-headers
http://httpd.apache.org/docs/current/mod/mod_proxy.html#x-headers

O = W N -

0 N O O B~ W N -

NN NN N N P S s s s s
O b= O N~ O O 0N O O kb O N~ O O

Apache 98

o You can find information on Apache’s various Load Balancing algorithms in the proxy_-
balancer documentation®. “By Requests™® attempts to distribute traffic evenly amongst

Apache workers.

We’ll cover load balancing in depth in the Multi-Server Environments section. However
we won’t cover load balancing in Apache, as there are better and simpler tools.

Enable the needed modules
sudo aZenmod proxy_balancer lbmethod_byrequests

Restart Apache
sudo service apache2 restart

Then we can adjust the vhost file:

<VirtualHost *:80>
ServerName example.com
ServerAlias www.example.com
ServerAlias example.*.xip.io

DocumentRoot /var/www/example.com/public

<Directory /var/www/example.com/public>
Options -Indexes +FollowSymLinks +MultiViews
AllowOverride All
Require all granted

</Directory>

<Proxy balancer://mycluster>
BalancerMember http://localhost:9000/
BalancerMember http://localhost:9001/
BalancerMember http://localhost:9002/

</Proxy>

<Location />
ProxyPass balancer://mycluster/
ProxyPassReverse balancer://mycluster/

</Location>

<Location /static>
ProxyPass !

</Location>

*Shttp://httpd.apache.org/docs/2.4/mod/mod_proxy_balancer.html
*http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_byrequests.html

http://httpd.apache.org/docs/2.4/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_byrequests.html
http://httpd.apache.org/docs/2.4/mod/mod_proxy_balancer.html
http://httpd.apache.org/docs/2.4/mod/mod_lbmethod_byrequests.html

26
27
28
29
30
31
32
33
34
35

O = W N -

B W N -

Apache 99

ErrorLog ${APACHE_LOG_DIR}/example.com-error.log

Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.
LoglLevel warn

CustomLog ${APACHE_LOG_DIR}/example.com-access.log combined

</VirtualHost>
This setup is fairly similar. Let’s go over the edited directives.

<Proxy balancer://mycluster>
BalancerMember http://localhost:9000/
BalancerMember http://localhost:9001/
BalancerMember http://localhost:9002/
</Proxy>

This defines a balancer cluster named ‘mycluster’. The name can be anything. Then we define our
three back-ends. In this case, the back-ends are the three Node HTTP listeners that we defined above.

Then our <Location. . .> directive needs tweaking to proxy requests to this balancer cluster rather
than to the HTTP listener directly:

<Location />
ProxyPass balancer://mycluster/
ProxyPassReverse balancer://mycluster/
</Location>

That’s it! This will distribute traffic amongst the three defined members of the balance cluster.

Our <Location. . .> directive for the /static directory is the same. It will continue to serve static
assets.

The proxy module is handy for proxying to HTTP listeners. It can proxy requests to applications
written in NodeJS or Golang. It’s also commonly used to communicate with gateways listening
on HTTP. Unicorn, Gunicorn and uWSGI are three common gateways which may create HTTP
listeners.

O O 0 N O O b W N =

RN

© 00 39 O Ol b W N =~

Apache 100

Apache with FastCGI

Before Apache 2.4, we had to use mod_fcgi to send requests to a FastCGI gateway such as PHP-FPM.
The fcgi module was nice in that once it was configured, you didn’t have to worry about it again.
However the configuration was needlessly complex.

As of Apache 2.4, we can use the proxy_fcgi module, which is much simpler!
In this section, we’ll look at using proxy_fcgi via the ProxyPassMatch directive.

Then we’ll look at how replacing ProxyPassMatch with FilesMatch can further simplify the
configuration.

ProxyPassMatch

Let’s see how to use proxy_fcgi to send PHP requests to the FastCGI gateway PHP-FPM.

First, we need to ensure the proper modules are enabled:

|et's disable mod PHP first:
sudo a2dismod php5

Then ensure mod_profyx_fcgi is enabled:

sudo aZ2enmod proxy proxy_fcgi

Install PHP-FPM:
sudo apt-get install -y php5-fpm

Restart Apache:

sudo service apache2 restart

Then we can edit our vhost to “proxy” to PHP-FPM FastCGI gateway, using the ProxyPassMatch
directive. We’ll edit the example configuration from the Virtual Host section above:

File: /etc/apache2/sites-available/001-example.conf

<VirtualHost *:80>
ServerName example.com
ServerAlias www.example.com
ServerAlias example.*.xip.io

DocumentRoot /var/www/example.com/public

<Directory /var/www/example.com/public>
Options -Indexes +FollowSymLinks +MultiViews

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Apache 101

AllowOverride All
Require all granted
</Directory>

THIS IS NEW!
ProxyPassMatch A/(.*\.php(/.*)?)$ \
fcgi://127.0.0.1:9000/var /www/example/public/$1
ErrorLog ${APACHE_LOG_DIR}/example.com-error.log
Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.
LogLevel warn

CustomLog ${APACHE_LOG_DIR}/example.com-access.log combined

</VirtualHost>

We added the following line:
ProxyPassMatch A/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/var /www/example/$1

The proxy_fcgi module allows us to use ProxyPassMatch to match any request ending in .php.
It then passes off the request to a Fast CGI process. In this case, that’ll be PHP-FPM, which we’ll
configure to listen on the socket 127.0.0.1:9000. Note that we also pass it the file path where our PHP
files are found. This is the same path as the DocumentRoot. Finally, we end it with $1, the matched
PHP filename.

ﬁ With Apache’s traditional setup of usingmod_php, we never had to worry about configuring
Apache to serve PHP. Now we do - so any additional Virtual Host that may serve PHP files
will need configuration for PHP.

Note that in proxying requests to PHP-FPM, we had to set the path to the PHP files. Unlike
Nginx, Apache doesn’t provide a DocumentRoot variable to pass to the ProxyPassMatch
directive. This is unfortunate as it would have allowed for a more dynamic configuration
with ProxyPassMatch.

Lastly we will reload Apache to read in the latest configuration changes:

sudo service apache2 reload

The last thing to do is edit PHP-FPM a bit. This will be covered fully in the PHP chapter, but we’ll

cover it briefly here. By default on Debian/Ubuntu, PHP-FPM listens on a Unix socket. We can see
that in PHP-FPM’s configuration file /etc/php5/fpm/pool.d/www.conf:

© 00 N O U b W N =

Apache 102

; The address on which to accept FastCGI requests.

7

; Valid syntaxes are:

; 'ip.add.re.ss:port’ - to listen on a TCP socket to a specific address on
; a specific port;
; "port’ - to listen on a TCP socket to all addresses on a
; specific port;

; '/path/to/unix/socket' - to listen on a unix socket.
; Note: This value is mandatory.

’

listen = /var/run/php5-fpm.sock

We need to change this to listen on a TCP socket rather than a Unix one. Unfortunately mod_proxy_-
fcgi and the ProxyPass/ProxyPassMatch directives do not support Unix sockets.

Change this from "listen = /var/run/php5-fpm.sock"” to this:
listen = 127.0.0.1:9000

You can actually do this in this one-liner find and replace method:

sudo sed -i "s/listen =.*/listen = 127.0.0.1:9000/" /etc/php5/fpm/pool.d/www.conf
Lastly, as usual with any configuration change, we need to restart PHP-FPM:

sudo service php5-fpm restart

Once these are setup, files in that virtualhost ending in . php should work great!
Let’s go over some pros and cons:

Pro:
« Works well out of the box with only minor configuration
Con:

+ No Unix socket support. Unix sockets are slightly faster than TCP sockets, and are the default
used in Debian/Ubuntu for PHP-FPM. Less configuration would be nice.

+ ProxyPassMatch requires the document root set and maintained in the vhost configuration

« Matching non .php files takes more work. It’s not so uncommon to see PHP inside of an . html
file! This is also an issue when not using PHP - we need to pass in all URLs except for those
of static files in that case.

0 = O O b W N =~

(AN
N O O

0 = O O b W N =~

(AN
N =~ O O

Apache 103

FilesMatch

As of Apache 2.4.10, we can handle PHP requests with FilesMatch and SetHandler. This is a simpler
but more solid configuration.

Apache 2.4.10 is recently released as of this writing. You can install version 2.4.10+ in
Ubuntu by using the ppa:ondre j/apache2 repository as described in the beginning of this
chapter.

This still uses the proxy_fcgi module, so we need to ensure it’s enabled once again:

|et's disable mod PHP first,
in case it's still on:

sudo a2dismod php5

Then ensure mod_profyx_fcgi 1s enabled:
sudo a2enmod proxy_fcgi

Install PHP-FPM if necessary:
sudo apt-get install -y php5-fpm

Restart Apache:
sudo service apache2 restart

Then we can edit our Apache configuration. If you have a ProxyPassMatch line in there, comment
it out or delete it.

Then, still in our example file:

File: /etc/apache?2/sites-available/001-example.conf

<VirtualHost *:80>
ServerName example.com
ServerAlias www.example.com

ServerAlias example.*.xip.io

DocumentRoot /var/www/example.com/public

<Directory /var/www/example.com/public>
Options -Indexes +FollowSymLinks +MultiViews
AllowOverride All
Require all granted

</Directory>

13
14
15
16
17
18
19
20
21
22
23
24
25
26

Apache 104

<FilesMatch \.php$>
SetHandler "proxy:fcgi://127.0.0.1:9000"
</FilesMatch>
ErrorLog ${APACHE_LOG_DIR}/example.com-error.log
Possible values include: debug, info, notice, warn, error, crit,
glert, emerg.
LoglLevel warn

CustomLog ${APACHE_LOG_DIR}/example.com-access.log combined

</VirtualHost>

The new directive here is:

<FilesMatch \.php$>
SetHandler "proxy:fcgi://127.0.0.1:9000"
</FilesMatch>

This matches any file ending in .php and then proxies the request off to PHP-FPM, using a TCP
socket. If we elect to keep PHP-FPM on its default Unix socket, this directive now supports that as
well:

<FilesMatch \.php$>
SetHandler "proxy:unix:/var/run/php5-fpm.sock|fcgi:"
</FilesMatch>

We can use this for proxying requests to any FastCGI gateway.
Let’s cover what’s different here from ProxyPassMatch:

First and foremost, we don’t need to tell the handler where the PHP files are - this is agnostic of
what the document root of a website is. This means the configuration is a bit more dynamic.

In fact, we could make this a global configuration. To do so, create a new file in /etc/apache2. I'll
call it php- fpm.conf:

O b W N =

0 N O O & W N =~

NN NN N S B B 1 |l s s s
B WO N A, O O© 03O0 O b WO N O O

Apache 105

File: /etc/apache2/php-fpm.conf

<FilesMatch \.php$>
If using a Unix socket
Change this "proxy:unix:/path/to/fpm.socket|fcgi:"
SetHandler "proxy:fcgi://127.0.0.1:9000"
</FilesMatch>

Once that file is created, you can include it within any Virtual Host configuration you’d like to use
PHP:

File: /etc/apache2/sites-available/001-example.conf

<VirtualHost *:80>
ServerName example.com
ServerAlias www.example.com

ServerAlias example.*.xip.1io
DocumentRoot /var/www/example.com/public
<Directory /var/www/example.com/public>
Options -Indexes +FollowSymLinks +MultiViews
AllowOverride All
Require all granted
</Directory>
Include php-fpm.conf
ErrorLog ${APACHE_LOG_DIR}/example.com-error.log
Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.
LogLevel warn

CustomLog ${APACHE_LOG_DIR}/example.com-access.log combined

</VirtualHost>

The line Include php-fpm.conf simply includes the php- fpm.conf file we created. We now have a
configuration file we can selectively include into any vhost to pass requests to the FastCGI gateway
PHP-FPM.

=N O O B W N -

=N O Ol & W N =

Apache 106

Note that this still uses RegEx to match files ending in .php. If we want to parse HTML files with
php in it, we need RegEx to match PHP or HTML file extensions for the FilesMatch directive to
proxy pass the request to PHP-FPM.

Lastly, note that I include the php- fpm.conf file “out in the open” of the vhost file. To add some
security, we can apply this to only function within the DocumentRoot and its sub-directories. To do
so, move the Include line inside of the Directory block.

Instead of:

<Directory /var/www/example.com/public>
Options -Indexes +FollowSymLinks +MultiViews
AllowOverride All
Require all granted

</Directory>

Include php-fpm.conf
We would instead have:

<Directory /var/www/example.com/public>
Options -Indexes +FollowSymLinks +MultiViews
AllowOverride All
Require all granted

Include php-fpm.conf
</Directory>

o We can include the php- fpm. conf file within the Directory block only because FilesMatch
works within a Directory block. This is not the case for all configurations.

For example, Proxy and Location blocks cannot be places inside of a Directory block.

The Apache documentation will let us know what “context” a directive can be used. For
example, we can see here that FilesMatch works in context of a Directory block®.

So, in summary, using FilesMatch gives us these benefits:

+ Not needing to define the DocumentRoot allows us to create a re-usable configuration
+ We can use both Unix and TCP sockets

*"http://httpd.apache.org/docs/2.4/mod/core.html#filesmatch

http://httpd.apache.org/docs/2.4/mod/core.html#filesmatch
http://httpd.apache.org/docs/2.4/mod/core.html#filesmatch

O = W N =

© 00 39 O Ol b W N =~

[N
(]

Apache 107
And these cons:

» We still need to do extra work to parse PHP in files not ending in . php
« If we're not using PHP-FPM, we need to capture all requests but those for static files

This is the method I use if using Apache with PHP-FPM.

Location

If we're not using PHP, then we can’t really use FilesMatch, as we don’t have a file to match
most URD’s to. PHP applications typically route all requests to an index.php file. However, most
applications of other languages don’t have any such file.

In these cases, we need to match against a directory-style URI instead of a file. We can do this exactly
like we did with the HTTP proxy described above, using the Location block.

We still require the proxy and proxy_fcgi modules to proxy to FastCGI.

Q Enabling only the proxy_fcgi module will implicitly enable the proxy module.

Enabling the proxy_fcgi module and, implicitly, the proxy module

Then ensure mod_profyx_fcgi is enabled:
sudo a2enmod proxy_fcgi

Restart Apache:
sudo service apache2 restart

The Apache configuration is very similar to proxying to an HTTP listener as well - we just use the
fegi protocol instead!

<VirtualHost *:80>
ServerName example.com
ServerAlias www.example.com
ServerAlias example.*.xip.io

DocumentRoot /var/www/example.com/public
<Directory /var/www/example.com/public>

Options -Indexes +FollowSymLinks +MultiViews
AllowOverride All

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

B W N -

Apache 108

Require all granted
</Directory>

<Proxy *>
Require all granted
</Proxy>
<Location />
ProxyPass fcgi://127.0.0.1:9000/
ProxyPassReverse fcgi://127.0.0.1:9000/
</Location>
<Location /static>
ProxyPass !
</Location>

ErrorLog ${APACHE_LOG_DIR}/example.com-error.log

Possible values include: debug, info, notice, warn, error, crit,
glert, emerg.

LogLevel warn
CustomLog ${APACHE_LOG_DIR}/example.com-access.log combined

</VirtualHost>

I'll cover the relevant portions quickly as they are basically the same as proxying to an HTTP listener.
The <Proxy *> blocks allows access to the proxy from all hosts (all web visitors to our site).

The <Location /> blockis used to accept all requests and proxy them to the FastCGI process listening
at 127.0.0.1:9000.

If we used a Unix socket over a TCP socket, this would look the following:

<Location />
ProxyPass unix:/path/to/socket.sock]| fegi:
ProxyPassReverse unix:/path/to/socket.sock| fcgi:
</Location>

Finally the <Location /static> block is what we’ll use to serve static content. This configuration
assumes there’s a directory named /static. It informs Apache that URI which starts with /static
will be served directly rather than proxied. The ProxyPass ! directive tells Apache not to proxy the
request.

Multiple back-ends We may have multiple FastCGI back-ends as well. Again, just like with
proxying to HTTP listeners, we can use Apache’s balancing modules:

O b W N =~

0 N O O & W N =

W W W W W WNDNDDNDNDNDNNDMNDNDDNDDNDDNDES =S s
Oa & O N 0 © 00 O Ok NSO © 0 N0 Ol d W N~ OO ©

Apache

Fnable the modules

sudo aZ2enmod proxy_balancer lbmethod_byrequests

Restart Apache
sudo service apache2 restart

Then we can adjust the vhost file:

<VirtualHost *:80>
ServerName example.com
ServerAlias www.example.com
ServerAlias example.*.xip.io

DocumentRoot /var/www/example.com/public

<Directory /var/www/example.com/public>
Options -Indexes +FollowSymLinks +MultiViews
AllowOverride All
Require all granted

</Directory>

<Proxy balancer://mycluster>
BalancerMember fcgi://127.0.0.1:9000/
BalancerMember fcgi://127.0.0.1:9001/
BalancerMember fcgi://127.0.0.1:9002/

</Proxy>

<Location />
ProxyPass balancer://mycluster/
ProxyPassReverse balancer://mycluster/

</Location>

<Location /static>
ProxyPass !

</Location>

ErrorLog ${APACHE_LOG_DIR}/example.com-error.log

Possible values include: debug, info, notice, warn, error, crit,
alert, emerg.

LogLevel warn

CustomLog ${APACHE_LOG_DIR}/example.com-access.log combined

</VirtualHost>

109

Apache 110

This defines a balancer cluster named ‘mycluster’. The name can be anything. Then we define our
three back-ends. In this case, the back-ends are the three FastCGI listeners.

Then the <Location. . .> directive needs tweaking. We proxy to the cluster named mycluster rather
than than to the FastCGI process directly. The directive balancer://mycluster uses the balancer
module to proxy to the cluster.

Using Location blocks won’t currently (as of this writing) work for PHP-FPM due to some bugs.
Apache has issues passing the script name when attempting to communicate with PHP-FPM. This
stops us from using multiple PHP-FPM back-ends within the same Apache vhost. That’s a less
common setup in any case.

The Location block “style” of proxying requests is best used for applications built in Python, Ruby
or others which commonly use FastCGI gateways. These don’t have a file-based point of entry like
PHP applications do.

Apache with uwsGl

WSGI is a gateway interface originally defined by Python’s PEP 333 and updated in PEP 3333°®. Not
surprisingly, this protocol is popular for serving Python applications.

A common implementation of the WSGI protocol is the uWSGI tool. In fact, uWSGI can handle
HTTP and FastCGI as well as WSGI, but it’s popularly used as a WSGI gateway.

Apache has long worked with uWSGI via a uwsgi module available. The uwsgi module can work
great, however it is complex to configure. A newer and simpler way to use Apache with uWSGI is
the proxy_uwsgi module. As this makes use of Apache’s proxy module, the configuration for this
will be extremely familiar to you at this point.

0 There is a “plain” wsgi module, but it has been dormant for a while. Supposedly it will be
developed on again this year (2014). However uWSGl is a solid, well-developed and current
tool. It is what we’ll be using here.

A command to use uWSGI with a Flask application found at myapp/__init__.py
might look something like this: uwsgi --socket 127.0.0.1:9000 --module myapp
--callable=app --stats 127.0.0.1:9191 --master --processes 4 --threads 2

Let’s pretend we have a Python application and are using uWSGI to listen on TCP socket
127.0.0.1:9000. We'll use Apache to proxy to this uWSGI socket using the WSGI gateway protocol.

How to setup a Python application with uWSGI will be the subject of another section or
case study of this book. For now, we’ll concentrate on Apache’s configuration.

First we need to install Apache’s dependencies. These includes proxy_uwsgi, a module that may not
come with Apache out of the box.

*®http://legacy.python.org/dev/peps/pep-3333/

http://legacy.python.org/dev/peps/pep-3333/
http://legacy.python.org/dev/peps/pep-3333/

O N O O & W N~

0 N O O & W N =

W W N DNDNDDNDDNDMNDNDDNDNDNNDNDNNRAS-A B B B 2> 2 22
O O 0 N O O b W N O O 00 N O O b W N- O O

Apache

Install proxy_uwsgi:

sudo apt-get install -y libapache2-mod-proxy-uwsgi

Enable required modules
sudo a2enmod proxy proxy_uwsgi

Restart Apache
sudo service apache2 restart

Then we can configure an Apache vhost:

<VirtualHost *:80>
ServerName example.com
ServerAlias www.example.com
ServerAlias example.*.xip.io

DocumentRoot /var/www/example.com/public

<Directory /var/www/example.com/public>
Options -Indexes +FollowSymLinks +MultiViews
AllowOverride All
Require all granted

</Directory>

<Proxy *>
Require all granted
</Proxy>
<Location />
ProxyPass uwsgi://127.0.0.1:9000/
ProxyPassReverse uwsgi://127.0.0.1:9000/
</Location>
<Location /static>
ProxyPass !
</Location>

ErrorLog ${APACHE_LOG_DIR}/example.com-error.log
Possible values include: debug, info, notice, warn, error, crit,
aglert, emerg.

LogLevel warn

CustomLog ${APACHE_LOG_DIR}/example.com-access.log combined

111

32
33

W N -

O = W N =

Apache 112

</VirtualHost>

By now this should all be very familiar to you.
The <Proxy *> blocks allows access to the proxy from all hosts (all web visitors to our site).

The <Location /> blockis used to accept all requests and proxy them to our uWSGI process listening
at 127.0.0.1:9000.

If uWSGI listens on a Unix socket instead of a TCP socket, this would look the following:

<Location />
ProxyPass unix:/path/to/uwsgi.sock|uwsgi:
ProxyPassReverse unix:/path/to/uwsgi.sock|uwsgi:
</Location>

Finally the <Location /static> block is what we’ll use to serve static content. This configuration
assumes there’s a directory named /static. Any URI which starts with /static will be served
directly rather than proxied. The ProxyPass ! directive tells Apache not to proxy the request.

Multiple back-ends

As you may have suspected, we can possibly have multiple uWSGI back-ends as well.

First we need to ensure our needed modules are enabled:

Enable the modules

sudo aZenmod proxy_balancer lbmethod_byrequests

Restart Apache
sudo service apache2 restart

Then we can adjust the vhost file:

Apache 113

<VirtualHost *:80>
ServerName example.com
ServerAlias www.example.com
ServerAlias example.*.xip.io

DocumentRoot /var/www/example.com/public

<Directory /var/www/example.com/public>
Options -Indexes +FollowSymLinks +MultiViews
AllowOverride All
Require all granted

</Directory>

<Proxy balancer://mycluster>
BalancerMember uwsgi://127.0.0.1:9000/
BalancerMember uwsgi://127.0.0.1:9001/
BalancerMember uwsgi://127.0.0.1:9002/

</Proxy>

<Location />
ProxyPass balancer://mycluster/
ProxyPassReverse balancer://mycluster/

</Location>

<Location /static>
ProxyPass !

</Location>

ErrorLog ${APACHE_LOG_DIR}/example.com-error.log

Possible values include: debug, info, notice, warn, error, crit,
glert, emerg.

LoglLevel warn
CustomLog ${APACHE_LOG_DIR}/example.com-access.log combined
</VirtualHost>

This defines a balancer cluster named ‘mycluster’. The name can be anything. Then we define our
three back-ends. In this case, the back-ends are the three uWSGI listeners.

Then the <Location. . .> directive needs tweaking. We proxy to the cluster named mycluster rather
than than to the uWSGI process directly. The directive balancer://mycluster uses the balancer
module to proxy to the cluster.

Most often, uWSGI will create separate processes and threads for your Python application. This

Apache 114

means you're more likely to use Apache to proxy requests off to one back-end instead of multiple.
Then uWSGI will managing balancing traffic between multiple processes.

However, there are cases where you’ll want to run multiple application instances yourself. This
might be useful if you use a gateway interface which may not manage multiple processes, such as
WSGI with Python’s Tornado.

MPM Configuration

At this point, we know enough Apache to get by. However, we have some additional configurations
to consider.

Apache has a module system that can determine how requests are processed. These are called Multi-
Processing Modules (MPM). They are responsible for communicating over a network, accepting
requests, and dispatching child processes/threads to handle requests.

There are three MPM modules to consider:

« MPM Prefork
« MPM Worker
« MPM Event

Before diving in, let’s cover some vocabulary.

Processes are “instances” of an application being run. They are isolated and separate from other
processes.

A thread is something created and owned by a process. Like a process, a thread can execute code.
However, a process can have multiple threads. Threads are not isolated from each other - they share
some state and memory. This is why you may have heard the term “thread safe”. Programs might
modify state in one thread, causing errors in code running in another thread.

Threads are smaller than processes as they aren’t whole instances of an application. Threads take up
less memory, allowing for more concurrent requests. They can also be created and destroyed more
quickly than a process. Overall, they are an efficient way to handle web requests, if the code used
to handle them is thread safe.

When Apache is started, a master process is created. This process can create more processes. In some
instances, those processes spawn threads. While Apache’s master process is run as root, processes
and threads are created as the configured user and group. These users and groups are usually www-
data or apache.

With that in mind, let’s talk about how the three MPM modules use processes and threads to handle
requests.

Apache 115

MPM Prefork

MPM Prefork is usually the default MPM used in Apache. It does not use threads. An entire process
is dedicated to each HTTP request.

The default may change depending on how you install Apache. For example, the
repository we use, ppa:ondrej/apache2, enables Event as the default MPM.

If you install the php5 module, this is automatically changed to MPM Prefork. You can
see which is installed on Debian/Ubuntu servers at /etc/apache/mods-enabled/ and
see which mpm_* . conf file is present.

Because each process handles only one request, Prefork is slightly quicker than a threaded module.
There’s no processing time spent creating and tracking threads.

While using processes is a little faster, they can eat up CPU and memory in a situation where there
is lots of simultaneous requests. A threaded module will be able to handle more concurrent requests.

MPM Worker

MPM Worker uses threading. Each process can spawn multiple threads. Threads are much cheaper
to create than processes, and so fewer expensive processes need to be created and managed. This
helps Apache handle more concurrent requests by reducing the overall memory needed to handle
each request.

With MPM Worker, the processes spawn threads to handle incoming HTTP requests. To be precise,
Worker uses one thread per HTTP connection. Multiple HTTP requests can be made per connection.

A thread will handle multiple requests until a connection is closed. As a request is completed and a
connection closed, the thread opens up to accept the next connection and handle its requests.

MPM Event

MPM Event is the newest processing module. It works just like Worker, except it dedicates a thread
to each HTTP request. A thread is created per HTTP request, rather than per connection.

This means that a thread will free up when the HTTP request is complete, rather than when the
connection is closed. Connections are managed within the parent process rather than the threads.

MPM Event is better for applications with relatively long-lasting requests (long Keep-Alive time-
outs). With MPM Worker, each long-running connection would use a whole thread. With Event,
threads don’t need to be taken up by connections which may or may not be sending any data at the
moment. A process can use a thread only when a new request comes from the connection.

An application using server-push, long-polling® or web sockets are good use cases for employing
MPM Event.

**http://en.wikipedia.org/wiki/Push_technology

http://en.wikipedia.org/wiki/Push_technology
http://en.wikipedia.org/wiki/Push_technology

o I O O P W N =

Apache 116

0 If a connection is made using SSL or TLS, MPM Event defaults back to working just like
MPM Worker. It will handle a connection per thread.

MPM Event is stable as of Apache 2.4.

Apache + PHP-FPM Revisited

In Apache, prefork is always used with mod_php as the PHP5 module is not thread safe.

There have been efforts to make PHP common thread safe, so you can use other MPM’s
that use threads. However it’s not “proven” yet. If you're curious, check out building PHP
yourself and including php-zts/pthreads.

PHP-FPM gets around the issue of thread-safety by running separately from Apache. This means
that we can safely ditch Apache’s default MPM Prefork for handling requests!

Let’s see an example using MPM Worker.
First, we can install the other MPM modules:

Install both MPMs
sudo apt-get install -y apacheZ-mpm-event apache2-mpm-worker
sudo service apache2 restart

Then we can enable the one we want to use. First, we’ll disable the default MPM Prefork, as well as
mod_php5, in case it was previously installed/enabled. Then we can enable MPM Worker:

Disable MPM Prefork and php5 so we can enable MPM Event
sudo a2dismod php5 mpm_prefork

Fnable MPM Event
sudo aZ2enmod mpm_worker

Restart Apache to load modules
sudo service apache2 restart

Now Apache will be using MPM Worker and get all the benefits!

W N~

Apache 117

Security Configuration

In Debian/Ubuntu, there’s a configuration file for Apache security. This is worth knowing about if

you find yourself managing a production system. It’s located at /etc/apache2/conf-available/security.conf.

The security features are fairly simple. They allow you to control what information is displayed
about the server.

This information is visible within the response headers of any HTTP request:

$ curl -1 localhost
Date: Thu, 26 Jun 2014 19:25:01 GMT
Server: Apache/2.4.7 (Ubuntu)

. other headers. ..

Let’s cover some of the options:

ServerTokens

By default, the ServerTokens directive is likely set to 0S. This shows that the web server version
and operating system used. On Ubuntu, that might look like “Apache/2.4.7 (Ubuntu)”.

[always set this to Prod, which shows the least amount of information - simply that the web server
is “Apache”.

The Apache documentation says not to worry about showing this information. The general theory
is that “Security through obscurity” is not real protection. However, I like hiding the exact Apache
version and the Linux distribution used. A specific version may have a security issue. While hiding
the version doesn’t mean an attacker won'’t try anyway, you never know!

ServerSignature

The ServerSignature directive does what ServerTokens does. However this displays server
information on generated error pages, such as 404 pages. We can turn this to Off to hide the server
information.

Here it what the server information looks like on an error page. When we turn server signatures off,
thats last line of information is no longer displayed.

Apache 118

® OO /' 1404 Not Found x Y. e

€ - C [192.168.33.10/some-random-page... 3¢

Not Found

The requested URL /some-random-page-that-doesnt-exist was not found on this
server.

Apache/2 4.6 (Ubuntu) Server at 192.168.33.10 Port 80

Other

There are some other directives in here which I won’t cover, but they are worth looking if only to
explore your options.

One useful one is an example of preventing access to your version control directories:

<DirectoryMatch "/\.svn">
Require all denied
</DirectoryMatch>

You can change that “.svn” to “.git” if you need. That rule will be applied server-wide.

Envvars

In Debian/Ubuntu, there’s a configuration file for the environment variables. These are read when
Apache is started. This is the envvars file, located at /etc/apache2/envvars.

We’ll cover some of the important configurations found within this file.

Apache 119

APACHE_RUN_USER and APACHE_RUN_GROUP

These are the user and group Apache processes and threads will run as.

The master Apache process is run as user root. That’s why we use sudo when we control
Apache. However, Apache’s child processes and threads will be run as the user and groups
specified here.

This is important to know if you have code which performs operations needing permission, such
as writing to files. Apache defaults to running as group www-data. Consider making the directories
written to by your web applications writable via group permissions. This saves you from having to
make directories or files “‘world-writable’.

For the most part, this is only applicable to PHP run with mod_php. Most applications do not run
code loaded within Apache. Web applications usually run as a separate process which will have its
own user and group settings.

PHP-FPM is one example of such an application. While it is PHP, it’s not using Apache’s mod_php.
PHP-FPM has its own user/group configuration. If your PHP application is run using PHP-FPM,
then the FPM processes will need permission to write to files/directories. Apache won’t need these
permissions.

It’s worth noting that many web application gateways run as user/group www-data. This means your
Apache user/group may be the same as your PHP-FPM user/group!

APACHE_LOG_DIR

I don’t suggest changing this, but it’s good to know that you can change the Apache log directory,
and have a place to check to see where it is set.

An example of when you may wish to change this path is if running Apache in a Docker
container. This depends on how you choose to handle log files generated processes in
Docker containers.

There are other directives in the envvars configuration. Adjusting them is less commonly needed.
One is performance related: APACHE_ULIMIT_MAX_FILES. You may want to increase this if fine-tuning
Apache performance. Each process is treated like an open file, so you may max-out the Apache or
operating system limit on the maximum number of open files.

MPM Configuration

The envvars configuration also has settings to fine-tune the Multi Processing Modules (MPM). We
can define how MPM manages processes and threads.

Apache 120

0 Everything discussed here is also found in Apache’s MPM documentation®.

A In some packages/newer versions of Apache, MPM configuration may be found in

/etc/apache2/mods-available/mpm_%*.conf rather than the envvars file. You can tell

which MPM is enabled by checking to see which mpm_*.conf file is present in the
mods-enabled directory.

Many of these settings are related to how Apache will handle spawning processes and threads. These
are worth looking at when attempting to get more performance out of your server.

Remember that the default MPM Prefork only creates child processes. Other MPM’s (Worker and
Event) spawn processes which create threads.

Here are worthwhile directives to know about. Keep in mind the difference between processes and
threads!

MaxConnectionsPerChild - Limits the number of HTTP connections per child process. When the
limit is reached, the process dies, to be replaced with a new one. This works regardless of if threading
is used (MPM Event/Worker) or not.

MaxRequestWorkers - This limits the number of simultaneous requests being served. Any new
request received after this limit is reached is put in a queue.

For MPM Prefork, this means the max number of processes launched to handle requests. The default
is 256. To increase this, you must also increase the ServerLimit directive.

For MPM Worker/Event, this means the max number of threads available to serve requests. The
default is 400, reached by the following calculation:

16 processes (default ServerLimit) * 25 (default ThreadsPerChild) = 400 requests.

To increase this passed 16 processes and 25 threads per process, you may need to raise the
ServerLimit and ThreadsPerChild directives.

MaxSpareThreads - The maximum number of idle threads.
Prefork has no threads, so this relates only to threaded MPM’s

For MPM Worker/Event, the default is 250. The setting is server-wide, meaning both idle threads
and their processes will be killed to reach this number.

Each process/thread takes up a small about of memory, so having a maximum number of idle threads
can help save memory usage.

However, idle threads can handle requests more quickly as they don’t need to be created before
handling a request. Having a fair number of idle workers can help performance, especially for
handling request spikes.

“*http://httpd.apache.org/docs/2.4/mod/mpm_common.html

http://httpd.apache.org/docs/2.4/mod/mpm_common.html
http://httpd.apache.org/docs/2.4/mod/mpm_common.html

Apache 121

MinSpareThreads - This is the minimum number of idle threads that can exist. Naturally the
minimum shouldn’t be higher than the maximum.

Prefork has no threads, so this relates only to threaded MPM’s.

For MPM Worker/Event, the default is 75. The setting is server-wide, meaning both idle threads and
processes are created until the number is met.

ServerLimit - This is an overall setting which limits other settings we’ve discussed previously. This
is the upper limit on configurable number of processes. All other configurations cannot create more
processes than this setting allows.

For MPM Prefork, this simply limits the number of processes set by MaxRequestWorkers. Set
ServerLimit higher if you need to se MaxRequestWorkers above the default of 250.

For MPM Worker/Event, this works in conjunction with ThreadLimit to set the maximum value for
MaxRequestWorkers.

Increase ServerLimit if you wish to increase the number of processes available. Remember that
each process will create new threads until it reaches the ThreadLimit. Under MPM Worker/Event,
the default is 16 processes.

Apache will try to allocate memory to meet possible values of ServerLimit, so it should not be set
too high. Otherwise memory will be allocated but not used - a waste of resources.

StartServers - This is the number of child processes created at startup. Idle processes and threads
allow Apache to quickly respond to new requests. More processes are created as needed on the fly,
so this setting may only need adjusting in special cases.

MPM Prefork defaults to 6, while MPM Worker defaults to 3.

StartThreads - The number of idle threads to create on startup. Only relates to threaded MPMs
(Worker/Event). Like processes, threads are also created dynamically as needed.

ThreadLimit - Similar to ServerLimit, this sets an overall maximum for the server. In this case, it’s
limiting the number of threads per process, rather than the total number of processes.

The default is 64 threads. Be careful not to set this too much higher than ThreadsPerChild due to
its potential in wasting unused allocated memory.

ThreadsPerChild - This is the number of threads created by each process. The process creates these
threads at startup and never creates more.

The default value is 25 threads. Multiply this by the number of processes in existence to find your
total number of threads.

The preceding configurations can all be tweaked to match what your server can handle.
The number of configured processes and threads should depend on the CPU cores and
RAM available for Apache.

Nginx

“Apache is like Microsoft Word, it has a million options but you only need six. Nginx
does those six things, and it does five of them 50 times faster than Apache.” - Chris Lea

Nginx is a lightweight alternative to Apache. Actually, by some metrics, it has overtaken Apache in
popularity. Calling it an “alternative” is doing it a disservice.

Nginx is similar to Node]S, HAProxy, and other “web scale” technologies (put in quotes, only a tad
sarcastisically). Nginx runs as an evented, single process. It manages requests asynchronously. This
helps Nginx work with a large number of concurrent connections while using a stable and relatively
low amount of memory.

Actually Nginx typically uses a few processes. A typical setup with Nginx will spawn as
many processes as there are CPU cores on the server.

Apache, as we learned, spawns processes or threads for each connection. Its synchronous manner
means that processes and threads pause (“block”) while performing slower tasks.

Examples of such tasks are reading from the file system or performing network operations. This
means that Apache processes are “blocking”; We must wait for them to finish their task before
moving onto the next one.

While Apache spawns many processes and threads, Nginx spawns very few processes (“workers”).
Each process is single-threaded. Nginx workers accept requests from a shared socket and execute
them inside of an efficient run-loop. Nginx is asynchronous, evented and non-blocking. It is free to
accomplish other tasks while waiting for slow tasks such as file I/O or network operations to finish.

Each Nginx worker can process thousands of simultaneous connections. It avoids the overhead of
constantly creating, tracking and destroying new processes/threads. This is much more memory and
CPU efficient.

Features

Nginx has grown an impressive feature set, most of which is pretty easy to use and setup. Nginx can
act as a:

+ Web Server
« Reverse Proxy (“Application Proxy”)

0 = O O b W N =~

Nginx 123
« Content Caching (“Web Cache”)

« Load Balancer
o SSL Terminator

Nginx also has a commercial (paid) version. Notable Nginx Plus features include:

Advanced load balancing, including dynamically adjusting available servers/nodes
+ Advanced caching

« Streaming media abilities

+ Monitoring capabilities

Just like in the Apache chapter, we’ll cover over the Web Server and Reverse Proxy functionality.

Installation

We’'ll use Nginx’s “stable” repository for installation. It allows us to get the latest stable versions
which can include bug fixes and security updates.

A If you have Apache installed on the same server, you’ll run into issues starting Nginx,
as they both attempt to bind to port 80. You’ll need to stop Apache with sudo service
apache2 stop. I recommend, however, creating a new server if you're following along

here on a local virtual machine.

Here’s how to install Nginx:

sudo add-apt-repository -y ppa:nginx/stable
sudo apt-get update

sudo apt-get install -y nginx

sudo service nginx start

Set Nginx to start on boot.

| ikely is already set.
sudo update-rc.d nginx defaults

Now we can see if this is indeed installed on our server. Let’s see if we get an HTTP response:

Y

© © 0 I O O b W N+~

O b W N =

Nginx 124

$ curl -1 localhost

HTTP/1.1 200 OK

Server: nginx/1.6.1

Date: Thu, 03 Jul 2014 00:49:14 GMT
Content-Type: text/html

Content-Length: 612

Last-Modified: Thu, 24 Apr 2014 12:52:24 GMT
Connection: keep-alive

ETag: "53590908-264"

Accept-Ranges: bytes

Great! We get a response. Nginx is on and working!

Web Server Configuration

In Ubuntu, Nginx follows the usual scheme for configuration. Let’s look at some files and directories
in the /etc/nginx directory:

e /etc/nginx/conf.d
e /etc/nginx/sites-available
e /etc/nginx/sites-enabled

e /etc/nginx/nginx.conf

First we have the sites-available and sites-enabled directories. These work exactly the same
way as Apache. Configured servers (aka vhosts) reside in the sites-available directory. Configu-
rations can be enabled by symlinking a file from sites-available to the sites-enabled directory.

Content of the sites-available directory

$ cd /etc/nginx

$ 1s -la sites-available

[...] root root 4096 Jul 3 01:25 .

[...] root root 4096 Jul 3 01:34 ..

[...] root root 2593 Apr 24 16:23 default

We can see this default configuration is symlinked to the sites-enabled directory after installation:

B W N -

© © 00 N O U b W N =~

-

Nginx 125

Content of the sites-enabled directory

$ 1s -la sites-enabled/

[...] root root 4096 Jul 3 01:25 .

[...] root root 4096 Jul 3 01:34 ..

[...] root root 34 Jul 3 01:25 default -> /etc/nginx/sites-available/default

o Unlike Apache, Ubuntu’s package of Nginx doesn’t include equivalents to a2ensite and
a2dissite. We need to enable/disable site configurations manually.

Inside of /etc/nginx, we also can see the main Nginx configuration filenginx.conf. Let’s see what’s
interesting in /etc/nginx/nginx.conf:

Selections from nginx.conf

include /etc/nginx/mime.types;

HH#

Virtual Host Configs
#it

include /etc/nginx/conf.d/*.conf;
include /etc/nginx/sites-enabled/*;

We can see that themimes . types configuration is loaded. This configuration simply helps match file
extensions to proper mime types.

We can also see that Nginx will attempt to load any file ending in . conf in /etc/nginx/conf.d. This
is similar, but not exactly, like Apache’s conf-available and conf-enabled directory. Apache uses
symlinked between the “available” and “enabled” directories. Nginx does not. Instead, any .conf
file included in /etc/nginx/conf.d will be included and enabled.

The last thing I'll note here are these files:

. /etc/nginx/fastcgi.conf(ﬂnﬂnerbf/etc/nginx/fastcgi_params)
¢ /etc/nginx/proxy_params

e /etc/nginx/uwscgi_params

These files contain configurations for using Nginx’s reverse proxy abilities. This includes passing
requests to FastCGI, uWSGI, or HTTP listeners.

W N O O & W N =

SR R s
O b WO N =~ O O

Nginx 126

Q After any configuration change, you can reload Nginx configuration using sudo service
nginx reload.

You can restart Nginx using sudo service nginx restart.

Finally, you can test configuration changes using sudo service nginx configtest. This
is useful to run after making configuration changes but before reloading/restarting Nginx.

Servers (virtual hosts)

Like Apache, Nginx has the concept of Virtual Hosts, which we’ll just call “servers” in context of
Nginx.

Unlike Apache, Nginx doesn’t make a distinction between IP versus name based virtual hosts.
Instead, everything acts as a named-based virtual host.

The following is the default site configuration that comes with Nginx:

File: /etc/nginx/sites-available/default, with comments stripped out

server {
listen 80 default_server;
listen [::]:80 default_server ipv6only=on;

root /usr/share/nginx/html;
index index.html index.htm;

server_name localhost

charset utf-8;

location / {
try_files $uri $uri/ =404;

This is a basic server. Let’s cover what we’re seeing here:

Nginx 127

Directive Explanation

Listen First we can see that it listens on port 80, and also defines itself as
the default server for requests on port 80. If no Host HTTP header
matches a configured server, then Nginx will default back to this

default site.
You can define multiple defaults. For example a default_server on

port 8080: listen 8080 default_server is different from the

default site on port 80: listen 80 default_server
We also listen on port 80 of an ipv6 interface, if it is enabled on the

server
root Here we define the document root. This is where the web files are

pulled from. This is equivalent to Apache’s DocumentRoot directive
index The index directive defines which files are to be attempted to be

read if no file is specified & is equivalent to Apache’s

DirectorylIndex directive.
server_name The hostname that Nginx should use to match the Host header with

to match to this server. Since this is a default server (via
default_server), currently this site will load if no other host is

matched.
You can use multiple names, such as server_name

www.example.com example.com
You can define wildcards on a server names beginning or end, such

as server_name *.example.com
You can use regex to match more complex needs as well. For

example ~(.*)\.example\.com$ matches any subdomain of
example.com. We can assign regex capture groups to a variable to be

used later in the configuration.
You can use regex to match more complex needs as well, such as

~"(.*)\.example\.com$, which has the benefit of letting us
capture and use the matched portion of the regex.

charset Always use utf-8. If you ever start creating a web application using
another character set, you’ll be shooting yourself in the foot.
location Nginx can use the location block along with a file path or regex

pattern to match URL’s or files and handle them differently.

Here we see any location is grabbed. Then the try_files directive
will attempt to find a file in the order of the given patterns. By
default, this tries to use the explicit URL to find a file, followed by a
directory name, and lastly responds with a 404 if no matching file
or directory is found.

Location Block

The location directive is very important. It helps determine how files and URI’s are handled by
Nginx.

For example, we saw our default block:

O &= W N =

Nginx 128

location / {
try_files $uri $uri/ =404;
}

This captures the URI “/” and any sub-URI (sub-directory). In other words, this location block applies
to all URIs.

The use of try_files is good for handling static content. It tries to find the URI as a file or directory
in the order of the defined variables. The order we see here will tell Nginx to find files in this order:

« First try the URI given to see if a matching file can be found on the server. This is relative to
the root path.

« Failing to find a file, try the URI as a directory on the server. This is relative to the root path.

« Failing to find a file or a directory, respond with a 404 error.

Let’s see some other example location blocks.
“Boring” files:

First, we might want to handle favicons and robots.txt files differently. They are frequently missing
and often requested by browsers and site crawlers. These can eat up our server logs with unimportant
404 errors.

location = /favicon.ico { log_not_found off; access_log off; }
location = /robots.txt { log_not_found off; access_log off; }

The above two directives will turn off 404 error logging and any access log information on these
two files.

Blocking Access to Files

Next, let’s see how to block access to some files. Normally we don’t want to serve files or directories
beginning with a period. These include .git, .htaccess, svn and others:

location ~ /\. {
deny all;
access_log off;
log_not_found off;

}

This turns off the access log and 404 error logging for “dot files”. If the files or directories exist on
the server, Nginx will deny access to them.

Handling Files by Extension

Next, let’s see how to handle files with specific extensions:

Nginx 129

location ~ \.(jslcssl|pngljpglgiflswf|icolpdfimov|flalziplrar)$ {
try_files $uri =404;

This uses regular expressions to match files . js, .css and the others listed above. The above uses
try_files for the exact file name but doesn’t attempt to match them as a directory.

This is useful for setting cache expiration headers for static assets. See H5BP’s Nginx
configuration repository*' for examples.

Matching by extension in this manner is similar to how we will handle PHP file requests in an
upcoming section:

location ~ \.php {
...magic here...

As we’ll see later, this will be used to set any file ending in .php to being processed by the PHP
interpreter. We can reduce the risk of unwanted PHP files being processed by explicitly specifying
which PHP files can be run:

location ~ */(applapp_dev|config)\.php(/1$) {
...magic here...

This only allows app.php, app_dev.php, and config.php files. These happen to be used by the
Symfony PHP framework.

Pretty URL's (Hiding ‘index.php’)

PHP developers often want to hide the index.php file from the URL. In Apache, this is done with
the Rewrite module. With Nginx, we can use the try_files directive:

“Thttps://github.com/h5bp/nginx-server-configuration

https://github.com/h5bp/nginx-server-configuration
https://github.com/h5bp/nginx-server-configuration
https://github.com/h5bp/nginx-server-configuration

O = W N =

© 00 39 O O b W N~

Nginx 130

With a PHP application, this
becomes our default “location {} block
location / {

try_files $uri $uri/ /index.php$is_args$args;

This will use try_files to find a file or directory based on the URI given. Finally, it will try to use
index.php and pass it the arguments. In this way, all not-found files or directories will fall back to
our application’s index.php file. Nginx won’t respond with a 404 error directly.

The location block handling all PHP files will then pick up from there and handle the request.

Redirects and Other Tricks

Similar to Apache, Nginx does have a rewrite ability. However the use of RegEx is generally
considered inefficient*’. Instead, we can often use the server directive along with server_name
and redirect as needed. Let’s see some examples of that.

Redirect www to non-www

While there are some good reasons to use the www subdomain®’, there may be times when you wish to
force the use of the root domain. To accomplish that, we’ll add in a server block to detect a non-www
url being used, and redirect to a www version of it:

server {

server_name *.example.com;

return 301 $scheme://example.com$request_uri;
server {

server_name example.com;

The above will capture any subdomain of example.com and redirect it to the root domain.

If your server handles requests for other subdomains, you may instead wish to only redirect the www
subdomain to the non-www subdomain for your main site:

“’http://wiki.nginx.org/Pitfalls#Taxing_Rewrites

“Shttp://www.yes-www.org/why-use-www/

http://wiki.nginx.org/Pitfalls#Taxing_Rewrites
http://www.yes-www.org/why-use-www/
http://wiki.nginx.org/Pitfalls#Taxing_Rewrites
http://www.yes-www.org/why-use-www/

[ENEN

[EEY

, O O 0 9 O O b W N =~

O O 0 9 O O b W N =

Nginx 131

server {
listen 80;
server_name www.example.com;
return 301 $scheme://example.com$request_uri;
}
server {
listen 80;
server_name example.com;
}

The top server block listens for requests made to www.example.com and redirects to the non-www
version of the URL.

Redirect non-www to www

If you fall into the “yes-www” camp, you can do the inverse to ensure the “www” is used:

server {
listen 80;
server_name example.com;
return 301 http://www.example.com$request_uri;
}
server {
listen 80;
server_name www.example.com;
}
Forcing SSL

If you need your site URLs to use HTTPS, you can use a similar technique. The following listens on
port 80 for any “http” requests and redirects them to the its “https” version.

O N O O & W N~

©

[N
(]

Y
-

RN
wWw N

=
N

-

© © 00 N O O b W N =~

Nginx 132

server {
listen 80;
server_name example.com www.example.com;
return 301 https://example.com$request_uri;
}
server {
listen 443 ssl;
server_name example.com;
ssl on;
Other SSL directives, covered later
}

The above also redirects to the non-www domain. Which you redirect to is up to you.

Wildcard Subdomains and Document Root

For development, it might be useful to have a setup where each directory you create in a folder maps
to a separate website.

Imagine if a url project-a.local.dev mapped to document root ~/Sites/project-a/public.
Then, a url project-b.local.dev mapped to document root ~/Sites/project-b/public. That
might be really useful if you didn’t want to change server settings for each of the sites you worked
on!

Above, we noted that server_name can take wildcards, and regular expressions. We’ll make use of
regular expressions to map a subdomain to a document root. Let’s see what that looks like:

server {
listen 80 default_server;

server_name ~"(.*)\.local\.dev$;
set $file_path $1;

root /var/www/$file_path/public
location / { ... }
We're using regular expressions in the server_name directive. This matches any subdomain and

captures the subdomain. The subdomain is available via the $1 variable. The $1 variable is the result
of the first capture group found in the regular expression ~~(.*)\.local\.dev$.

Nginx 133

We then use the $1 variable and map it to a variable called $file_path. Lastly, we append $file_-
path to the root directive to make up part of our document root. This will dynamically change the
document root based on the subdomain used.

Each subdomain will automatically map to our project directories!

Note that I assume the domain local.dev and any of its subdomains will point to your
web server. This might not be the case unless you edit your computer’s hosts file.

Integration with Web Applications

Nginx wouldn’t be nearly so useful if we couldn’t use it to send requests to our web applications.

Typically a web server will accept a request and pass it off to a “gateway”. Gateways then translate
and pass the request off to a coded application. Gateways are various implementations and flavors
of a “CGI”s - a Common Gateway Interfaces*.

For Python applications, communication is often accomplished with a WSGI** gateway. Nginx sends
requests off to a WSGI gateway, which in turns passes a request to the Python application.

For PHP, this means Nginx sends a request off to PHP-FPM. PHP-FPM is a FastCGI*° gateway. Nginx
will convert request information to FastCGI. PHP-FPM accepts that FastCGI request and sends it to
our application.

Nginx can also proxy requests to web applications over HTTP. This is popular when sending requests
to applications directly, without a gateway. Node]JS or Golang are two languages which can natively
“speak” HTTP.

Some gateways prefer to speak HTTP as well. Unicorn and Gunicorn are two gateways which accept
HTTP requests before sending them off to Ruby or Python applications.

Here we’ll discuss how Nginx can talk to applications using HTTP, FastCGI and WSGI gateways.

Nginx isn’t limisted to those three protocols, however. It can act as a reverse proxy for the following
protocols:

« HTTP - Other web servers or perhaps Node]S, Go apps or HTTP gateways such as Unicorn/-
Gunicorn (Ruby, Python)

+ FastCGI - Many application gateways can also FastCGI from Unicorn/Gunicorn to PHP-FPM
(Ruby, Python, PHP)

« uWSGI - Primarily used for Python applications with uWSGI

“*http://en.wikipedia.org/wiki/Common_Gateway_Interface
“*http://wsgi.readthedocs.org/en/latest/
““http://www.fastcgi.com/drupal/

http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://wsgi.readthedocs.org/en/latest/
http://www.fastcgi.com/drupal/
http://en.wikipedia.org/wiki/Common_Gateway_Interface
http://wsgi.readthedocs.org/en/latest/
http://www.fastcgi.com/drupal/

D W N~

Nginx 134

+ SCGI - Another CGI implementation
« Memcached - Proxying requests to Memcached

Nginx is a “reverse” proxy because it dispatches a single request off to (potentially) multiple services.
A regular (forward) proxy does the inverse. A load balancer is another example of a reverse proxy.

Sockets

It’s worth taking a second for a reminder that Nginx, like Apache, can proxy to both TCP and Unix
sockets. What is a socket? A socket itself is just a “thing” a process can use to send and receive data.
It’s a connection used for communication. There are two main kinds of sockets:

A TCP socket is the combination of an IP address and a port number. HTTP uses tcp sockets to
make HTTP requests. TCP sockets work over your servers network, and can reach across networks
to remote servers.

A Unix socket is a pseudo file which acts as a socket. These work a bit faster then TCP sockets, but
are limited to the local filesystem of a server. Because they work on the filesystem, you can use the
usual permissions to control access to them.

HTTP Proxy

We'll start by seeing what Nginx can do when passing a request off to a process which happens to
also be listening over HTTP. Let’s pretend any request sent to the /api route (or any subdirectories
of it) should go to an application listening on localhost port 9000:

location /api {
include proxy_params;
proxy_pass http://127.0.0.1:9000;

What did we do here?

We included the /etc/nginx/proxy_parms file. This file contains some sensible defaults to use when
proxying requests for another service. Here’s what that file does:

It sets the Host header to the requests original Host

« It adds a X-Read-IP header to the IP address of the original request
« It adds a X-Forwarded-For header

o It adds a X-Forwared-Proto header

W N -

© 00 39 O O b W N =~

N B 1l s s s
© ©W 00 1 O O » WO N -~ O

Nginx 135

These headers are all commonly used for web applications behind a load balancer or other reverse
proxy. A web application can use these to know the information about the origin request. If these
directives were not available, every request would look like it came from Nginx!

Nginx then proxies the request off to the server via the proxy_pass directive. Nginx will return to
the client whatever the backend server returns.

A Unix socket version of the same proxy pass might look like this:

location /api {
include proxy_params;
proxy_pass unix:/path/to/socketfile.sock;

Here’s a more complete virtual host configuration:

server {
listen 80 default_server;
listen [::]:80 default_server ipv6only=on;

root /usr/share/nginx/html;
index index.html index.htm;

server_name localhost
charset utf-8;

location / {
try_files $uri $uri/ =404;

location /api {
include proxy_params;
proxy_pass http://127.0.0.1:9000;

Multiple Backends

Nginx can proxy off to multiple HTTP backends. In fact, this is Nginx’s load balancing!

A quick example of proxying to multiple HTTP backends would look like this. Note that this will be
covered in more detail in the Load Balancing chapter.

O N O O & W N~

NN NN NN NN B B 1 b 1 s s
N O O b WO NP O © 03O0 O b WO N O O

Nginx 136

upstream my_app {
zone backend 64k;
least_conn; # Discussion on LB algorithms in the LB chapter!
server 127.0.0.1:9000 max_fails=3 fail_timeout=30s;
server 127.0.0.1:9001 max_fails=3 fail_timeout=380s;

server {
listen 80 default_server;
listen [::]:80 default_server ipv6only=on;

root /usr/share/nginx/html;
index index.html index.htm;

server_name localhost
charset utf-8;

location /static {
try_files $uri $uri/ =404;

location / {
include proxy_params;
proxy_pass http://my_app/;

We can also see here that I'm telling Nginx to serve static files if they are in the /static directory
(or a subdirectory of it). All other URLSs are passed to the proxy.

FastCGl

Another common way to proxy pass a request to an application gateway is using the FastCGI
protocol. This is how we use Nginx to talk to PHP-FPM, which is a FastCGI gateway implementation
for PHP.

Nginx can, of course, speak to any FastCGI process. You might find this used with uWSGI,
Unicorn or Gunicorn gateway interfaces, all of which can “speak” FastCGIL.

Here’s a PHP-FPM example. Where earlier we listened for any url or sub-url of the /api uri, here
we’ll listen for any request ending in . php:

Nginx 137

location ~ \.php$ {

fastegi_split_path_info *(.+\.php)(/.+)$;

fastcgi_pass 127.0.0.1:9000;
fastegi_index index.php;

include fastcgi.conf; # fastcgi_params for nginx < 1.6.1
fastcgi_param PATH_INFO $fastcegi_path_info;
fastcgi_param ENV development;

Let’s cover these:

» fastcgi_split_path_info - Helps get the path after the PHP file in the URL This is helpful

since we are commonly hiding the index.php file from the URL in our applications.
— Given the URL /subdirectory/index.php/some/uri, the PATH INFO will becomes
/some/uri. Our application likely expects this path for routing purposes.
— We then can set the PATH_INFO variable parameter with the path information created.

+ fastcgi_pass - Pass the request off to a socket
+ fastcgi_index - Set the filename to be appended to the end of directory. This is similar to

setting the index directive for static files in Nginx.

+ include fastcgi.conf - Similar to proxy_pass, Nginx has some sane defaults to pass to any

FastCGI process. There are many. I highly suggest you check out the parameters being passed
within /etc/nginx/fastcgi_params.

« fastcgi_param - Pass any arbitrary parameter to the FastCGI process. These will be made

available as an environmental variable. With PHP, they are in the $_ENV and $_SERVER globals.
— These work in the format fastcgi_param KEY VALUE.

A more complete virtual host for PHP-FPM might look like this:

server {

listen 80 default_server;
listen [::]:80 default_server ipv6only=on;

root /usr/share/nginx/html;
index index.html index.htm;

server_name localhost

charset utf-8;

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Nginx 138

location / {
try_files $uri $uri/ /index.php$is_args$args;

location ~ \.php$ {
fastegi_split_path_info *(.+\.php)(/.+)$;

fastcgi_pass 127.0.0.1:9000;
fastcgi_index index.php;

include fastcgi.conf; # fastcgi_params for nginx < 1.6.1
fastcgi_param PATH_INFO $fastegi_path_info;
fastcgi_param ENV development;

The try_files $uri $uri/ /index.php$is_args$args; portion will pass requests off to PHP last
if no directory or static file is found to serve the request.

Not PHP

If we have an application that is not PHP, then we likely don’t have a file extension to match a request
against. URD’s in such applications are almost always directories. However, PHP almost always uses
an index.php file, even if it’s hidden from the URL.

Applications written in pretty much anything that isn’t PHP usually base routes on directory URIs.
PHP is in fact the outlier in its behavior; It’s treated more like a static file that happens to have code
in it.

In such a situation, we need a way to pass all requests off to our application unless they are a static

file. A typical setup is to reserve a directory to use for static assets. This lets us make Nginx behave
as follows:

« Serve any static file directory from the /static directory or subdirectories
« Send all other requests to our application

We can do that using two location blocks:

© 00 9 O O b W N =

©O© 00 N O O & W N =

Nginx 139

location /static {
try_files $uri $uri/ =404;

location / {
include fastcgi.conf; # fastcgi_params for nginx < 1.6.1
fastcgi_pass 127.0.0.1:9000;
fastcgi_param ENV development;

This passes a request off to our FastCGI listener if a file or directory from the /static directory is
not requested. Note that the FastCGI parameters are simplified. We don’t need to take the file path
before and after a . php file into account. We just pass the whole URI and query off to our application
via FastCGL

A consequence of this method is that Nginx handles the 404 response. In our previous setup, we
passed that responsibility to the proxied application.

The Nginx Pitfalls wiki*” page also has an interesting way of handling static vs non-static files. This
is more elegant than a reserved “static” directory:

location / {
try_files $uri $uri/ @proxy;

location @proxy
include fastcgi.conf; # fastcgi_params for nginx < 1.6.1
fastcgi_pass 127.0.0.1:9000;
fastcgi_param ENV development;

This attempts to find the URI as an existing file or directory. If they don’t exist, it jumps the request
to the @proxy location block. This will then proxy the request to the back-end server (application)
configured.

Multiple Backends

Nginx can proxy off to multiple FastCGI backends.
A quick example of proxying to multiple FastCGI backends would look like this:

“"http://wiki.nginx.org/Pitfalls#Proxy_Everything

http://wiki.nginx.org/Pitfalls#Proxy_Everything
http://wiki.nginx.org/Pitfalls#Proxy_Everything

O N O O & W N~

NN NN NDNDDNDNDDN A B 1 s |y
0 3 O O b W N~ O O 00 O O b WD~ O O

Nginx 140

upstream my_app {
zone backend 64k;
least_conn;
server 127.0.0.1:9000 max_fails=3 fail_timeout=30s;
server 127.0.0.1:9001 max_fails=3 fail_timeout=380s;

server {
listen 80 default_server;
listen [::]:80 default_server ipv6only=on;

root /usr/share/nginx/html;
index index.html index.htm;

server_name localhost;
charset utf-8;

location / {
try_files $uri $uri/ @proxy;

location @proxy
include fastcgi.conf; # fastcgi_params for nginx < 1.6.1
fastcgi_pass my_app;
fastegi_param ENV development;

We simply tell Nginx to fastcgi_pass to the my_app upstream backend.

uwsal

As covered in the Apache chapter, Python often uses WSGI as a gateway interface for web servers
to communicate to Python applications. The uWSGI gateway is a common implementation of the
WSGI specification.

Nginx, luckily, can “speak” (u)WSGI natively. Let’s take a look at a setup we can use for that:

© 00 9 O O b W N =

0 N O O & W N~

T S S G i G Ui G G
© © 0O 1 O O b W N~ O O

Nginx 141

location / {
try_files $uri $uri/ @Gproxy;

location @proxy
include uwsgi_params;
uwsgi_pass 127.0.0.1:9000;
uwsgi_param ENV productionmaybe;

This is exactly like our FastCGI implementation, except we switch out FastCGI for uWSGI!

Note that we also include Nginx’s uwsgi_params* file. This is similar to the FastCGI parameters
configuration file. It passes information used by uWSGI and potentially by our applications to fulfill
HTTP requests.

Multiple Backends

Nginx can proxy off to multiple uWSGI backends.
A quick example of proxying to multiple uWSGI backends would look like this:

upstream my_app {
zone backend 64k;
least_conn;
server 127.0.0.1:9000 max_fails=3 fail_timeout=380s;
server 127.0.0.1:9001 max_fails=3 fail_timeout=380s;

server {
listen 80 default_server;
listen [::]:80 default_server ipv6only=on;

root /usr/share/nginx/html;
index index.html index.htm;

server_name localhost
charset utf-8;

location /static {
try_files $uri $uri/ @proxy;

“*http://uwsgi-docs.readthedocs.org/en/latest/Nginx.html#what-is-the-uwsgi- params-file

http://uwsgi-docs.readthedocs.org/en/latest/Nginx.html#what-is-the-uwsgi-params-file
http://uwsgi-docs.readthedocs.org/en/latest/Nginx.html#what-is-the-uwsgi-params-file

21
22
23
24
25
26
27
28

Nginx

location @proxy {
include uwsgi_params;
uwsgi_pass my_app;
uwsgi_param ENV productionmaybe;

142

O = W N =

© 00 39 O Ol b W N =~

PHP

PHP is still the most-used language in the web and is therefore well worth discussing. PHP
traditionally has been used with Apache by embedding PHP into it. However more modern PHP
can be used with PHP-FPM, an implementation of FastCGL

Let’s go over PHP and make some notes about its configuration and the various ways it is used.

Installation

Like much of the software we discuss in this book, there’s a good repository available to use. The
ppa:ondrej/php5 repository will allow us to install the latest stable version of PHP:

Add the repository
sudo add-apt-repository -y ppa:ondrej/php5

Update the repositories
sudo apt-get update

Then we can install the latest PHP:

Install PHP and PHP CLI

sudo apt-get install -y php5 php5-cli

PHP has quite a few modules - there are quite a few common ones to install. Here are the ones I
most often install.

Install common PHP modules

A good base-line PHP install

PHP "common" along with CLI php and other common modules:
sudo apt-get install -y php5 php-cli php5-curl php5-mcrypt php5-intl php5-gmp

Some database (and cache) specific modules (will also install PDO)
sudo apt-get install -y php5-mysql php5-pgsql php5-sqlite php5-memcached

Image processing

10
11
12
13

PHP 144

sudo apt-get install -y php5-gd php5-imagick

Debugging, likely not to be installed in production
sudo apt-get install -y php5-xdebug

You can install these all in one shot:

sudo apt-get install -qq phpS php5-cli php5-mysql php5-pgsql \
php5-sqlite php5-curl php5-gd php5-gmp php5-mcrypt php5-xdebug \
php5-memcached php5-imagick php5-intl

These packages enable the modules once installed, so you shouldn’t need to enable them yourself.

Configuration

The configuration files for PHP are located in /etc/php5. The following directories are commonly
found within the PHP configuration:

/etc/php5/apache2 - If Apache is installed, this directory controls PHP configuration for
Apache

/etc/php5/fpm - If PHP-FPM is installed, this directory controls PHP configuratoin for PHP-
FPM

/etc/php5/cli - Controls PHP configuration for CLI-based PHP
/etc/php5/mods-available - All PHP modules available for use

PHP can be configured separately for each context in which it’s used. We can have a different
php.ini configuration and load separate modules when PHP is used with Apache2’smod_php, when
used with PHP-FPM, and when used on the command line.

Q This is often a source of confusion. Sometimes we’ll see PHP that works fine in context of
a web browser suddenly not work when the same code is called on the command line.

This is usually because the configurations are different for command-line PHP than for
PHP run in Apache or FPM. For example, if the Mcrypt module could be loaded for use in
Apache but not for use in CLI.

Let’s take a closer look inside of /etc/php5/apache2:

« php.ini - The INI file for PHP used within Apache’s mod_php

© 00 N O U b W N =

O = W N -

PHP 145

« conf.d - A directory of symlinks pointing to loaded modules from /etc/php5/mods-available
for use within Apache. This is how we control what modules are loaded when using PHP with
Apache.

As stated, this lets us control how PHP is configured depending on the contex it is used (cli, apache,

php-fpm). For PHP, this is both run-time configuration, via the php.ini file, as well as the modules
loaded.

For each context, modules are loaded in alpha-numeric order from the conf.d directory. Let’s see
the conf.d directory for Apache:

An abbreviated list of files found in Apache’s ‘conf.d’ directory

$ cd /etc/php5/apache2/conf.d

$ 1s -1la

root root Jun 24 01:07 .

root root Jun 24 01:32 ..

root root Jun 24 01:07 0@5-opcache.ini -> ../../mods-available/opcache.ini

root root Jun 24 01:07 10-pdo.ini -> ../../mods-available/pdo.ini

root root Jun 24 01:07 20-json.ini -> ../../mods-available/json.ini

root root Jun 24 01:07 20-readline.ini -> ../../mods-available/readline.ini
. More unlisted here. ..

The modules listed here are all symlinks (aliases) to modules in the /etc/php5/mods-available
directory. Modules inside of /etc/php5/mods-available are the pool of available modules - we
decide which are loaded when PHP is used with Apache by creating the symlinks to files the
/etc/php5/apache2/conf.d directory.

We can see the modules loaded when Apache uses PHP. Note the file names of the symlinks are
preceded with a number so that the order they are loaded can be set.

Helper Commands

The Debian/Ubuntu packages for PHP provide some helper tools to enable and disable PHP modules:

Fnable PHP's mcrypt for apacheZ
sudo phpSenmod apache2Z mcrypt

Or disable it:

sudo phpb5dismod apache2 mcrypt

Here we can replace “apache2” with “fpm” or “cli” to affect the desired context. The second argument
is the name of any module listed in the /etc/php5/mods-available/ directory.

PHP 146

PHP-FPM

PHP-FPM provides another popular way to use PHP. Rather than embedding PHP within Apache,
PHP-FPM allows us to run PHP as a separate process.

PHP-FPM is a FastCGI implementation for PHP. When the web server detects a PHP script is called,
it can hand that request off (proxy it) to PHP-FPM using the FastCGI protocol.

Some benefits of PHP-FPM:

« PHP-FPM runs separately from the web server, reducing memory used for requests that are
not PHP-related

« Web servers can do what they do best - simply serve static content
« PHP-FPM can be run on multiple servers, distributing server load
« PHP-FPM can run different “resource pools”, allowing for separate configurations per pool

Q This is how most web applications are run, whether they are coded in PHP, Python, Ruby

or other web-languages. The application will run as a separate process, which a web server

can proxy requests off to. PHP developers might be more used to Apache and PHP “just
working” together without having to think about it.

Apache

When Apache uses mod_php, it actually loads PHP on each request! By eliminating mod_php, we
reduce the overall memory used. The result is that web servers can handle more (concurrent)
requests!

PHP-FPM isn’t necessarily faster than Apache’s mod_php. Instead, FPM’s efficient use of
memory gives us the ability to handle more traffic per server.

I recommend leaving mod_php behind for good. The benefits of ditching mod_php in favor of PHP-
FPM are too high!

Nginx

Nginx, on the other hand, requires the use of PHP-FPM if you want to run a PHP application. It
doesn’t have a module to load in PHP like Apache can. I always use Nginx, as it does everything I
need with a simpler configuration, and better overall performance.

1

PHP 147

Process Management
PHP-FPM’s master process creates child processes to handle all PHP requests. Processes are
expensive to create and manage. How we treat them is important.

PHP-FPM is an implementation of FastCGI, which uses “persistent processes”. Rather than killing
and re-creating a process on each request, FPM will re-use processes.

This is much more efficient than Apache’s mod_php, which requires Apache to create and destroy a
process on every request.

Install PHP-FPM

To install PHP-FPM, we’ll use the package “php5-fpm™:
sudo apt-get install -y php5-fpm

As we mentioned, PHP-FPM runs outside of Apache, so we have another service we can start, stop,
reload and restart:

sudo service php5-fpm start

0 It’s important to note that generally you will always use PHP-FPM in conjunction with a
web server “in front” of it. This is because PHP-FPM doesn’t handle web requests directly
(using HTTP).

Instead, it communicates with the FastCGI protocol. In order to process a web request, we
need a web server capable of accepting an HTTP request and handing it off to a FastCGI
process.

Configuring PHP-FPM

Configuration for PHP-FPM is all contained within the /etc/php5/fpm directory:

0 = O O b W N =

PHP 148

$ cd /etc/php5/fpm
$ 1s -la
drwxr-xr-x 4 root root 4096 Jun 24 15:34 .
drwxr-xr-x 6 root root 4096 Jun 24 15:34 ..
drwxr-xr-x 2 root root 4096 Jun 24 15:34 conf.d
-rw-T--1-- 1 root root 4555 Apr 9 17:26 php-fpm.conf
1 root root 69891 Apr 9 17:25 php.ini
2

root root 4096 Jun 24 15:34 pool.d

-YW-T--T--

drwxr-xr-x

As you can see, the FPM configuration includes the usual php.ini file and conf.d directory.
FPM also includes a global configuration file php- fpm.conf and the pool.d directory. The pool.d
directory contains configurations for FPM’s resource pools. The default www.conf file defines the
default pool.

Here are some information on PHP-FPM configuration:
Global Configuration

The first thing we’ll look at is FPM’s global configuration, found at /etc/php5/php-fpm.conf.
Unless making specific performance tweaks, I leave this file alone. There’s still some interesting
information we can gleam from this.

error_log = /var/log/php5-fpm.Jog We can see the error log for FPM is located at /var/log/php5-
fpm.log.

log_level = notice The log level of reporting to the error log. By default this is set to notice, but
can be alert, error, warning, notice or debug. Set these to more verbose logging (debug or notice)
and restart FPM for debugging purposes only.

emergency_restart_threshold = 0 This is an integer representing the number of child processes
to exit with errors that will trigger a graceful restart of FPM. By default, this is disabled (value of
Z€ero).

emergency_restart_interval=0 Interval of time used to determine when a graceful restart will be
initiated. By default, this is an integer in seconds, but you can also define minutes, hours and days.
This works in conjunction with emergency_restart_threshold.

daemonize = yes Run PHP-FPM as a daemon, in the background. Setting this to ‘no’ would be a
less common use case. Uses for not daemonizing may include:

1. Debugging
2. Use within a Docker container
3. Monitoring FPM with a monitor which prefers processes are not run as a daemon

PHP 149

include=/etc/php5/fpm/pool.d/*.conf Include any configuration files found in /etc/php5/ fpm/pool .d
which end in the .conf extension. By default, there is a www.conf pool, but we can create more if
needed. More on that next.

Resource Pools

Here’s where PHP-FPM configuration gets a little more interesting. We can define separate resource
“pools” for PHP-FPM. Each pool represents an “instance” of PHP-FPM, which we can use to send
PHP requests to.

Each resource pool is configured separately. This has several advantages.

1. Each resource pool will listen on its own socket. They do not share memory space, a boon for
security.

2. Each resource pool can run as a different user and group. This allows for security between
files associated with each resource pool.

3. Each resource pool can have different styles of process management, allowing us to give more
or less power to each pool.

The default www pool is typically all that is needed. However, you might create extra pools to run
PHP application as a different Linux user. This is useful in shared hosting environments.

If you want to make a new pool, you can add a new .conf file to the /etc/php5/fpm/pool.d
directory. It will get included automatically when you restart PHP-FPM.

Let’s go over some of the interesting configurations in a pool file. You’ll see the following in the
default www. conf file. In addition to tweaking the www pool, you can create new pools by copying
the www. conf file and adjusting it as needed.

Pool name: www At the top of the config file, we define the name of the pool in brackets: [www].
This one is named “www”. The pool name needs to be unique per pool defined.

Conveniently, the pool name is set to the variable $pool. This can be used anywhere within the
configuration file after it is defined.

user=www-data & group=www-data If they don’t already exist, the php5-fpm package will
create a www-data user and group. This user and group is assigned as the run-as user/group for
PHP-FPM’s processes.

It’s worth noting that PHP-FPM runs as user root. However, when it receive a new request to parse
some PHP, it spawns child processes which run as this set user and group.

This is important in terms of Linux user and group permissions. This www-data user and group lets
you use Linux permissions to lock down what the PHP process can do to your server.

PHP 150

This setting is one of the reasons why you might create a new resource pool. In a multi-site
environment, or perhaps in a shared hosting environment, you can create a new pool per user.
So if each Linux user (say Chris, Bob and Joe all are users on this server) wants to run their own
sites, a new pool can be created for each user. Their pools won’t interact with each other as they are
configured separately. This will ensure that PHP run as user Bob won’t be able to read, write to or
execute files owned by Joe.

The user and group setting should always be set to an already existing server user/group. You can
read more on user and group permissions in the Permissions and User Management chapter.

listen = /var/run/php5-fpm.sock By default, PHP-FPM listens on a Unix socket.

A “socket” is merely a means of communication. Unix sockets are faux-files which work to pass
data back and forth. A TCP socket is the combination of an IP address and a port, used for the same
purpose.

A Unix socket is a little faster than a TCP socket, but it is limited in use to the local file system.

If you know your PHP-FPM process will always live on the same server as your web server, then
you can leave it as a Unix socket. If you need to communicate to PHP-FPM on a remote server, then
you’ll need to use the network by using a TCP socket.

Changing this to a TCP socket might look like this:
listen = 127.0.0.1:9000

This listens on the loopback network interface (localhost) on port 9000. If you need to enable PHP-
FPM to listen for remote connections you will need to bind this to other network interfaces:

Binding to network 192.168.12.%*
listen = 192.168.12.12:9000

You can have PHP-FPM listen on all networks. This is the least secure, as it may end up listening on
a publicly-accessible network:

If you are binding to network 192.168.12.%*
listen = 0.0.0.0:9000

ﬂ For each resource pool created, the listen directive needs to be set to a unique socket.

PHP 151

listen.owner / listen.group & listen.mode If you use a Unix socket instead of a TCP socket, then
you need to set the user/group permissions of the socket file.

Since Unix sockets are faux-files, they (in most cases) follow the same permission rules of Linux
files. The socket file usually needs to have read/write permissions open to the file owner.

Using a Unix socket should “just work” by default. The user/group is set to www-data by default,
with its permissions set to @60@. Only the file owner can read and write to it.

If you change the user/group setting of a resource pool, you should also change this to the same
user/group.

listen.allowed_clients = 127.0.0.1 If you are using a TCP socket, then this setting is good for
security. It will only allow connections from the listed addresses. By default, this is set to “all”, but
you should lock this down as appropriate.

This only applies to TCP sockets as Unix sockets can only be used locally and are not related to the
network.

A good set of firewall rules will block external connections to the PHP-FPM processes. This
provides some redundancy in limiting who can connect to the FPM processes.

You can define multiple addresses. If you need your loopback (127.0.0.1) network AND another
server to connect, you can do both:

Multiple addresses are comma-separated
listen.allowed_clients = 127.0.0.1, 192.168.12.12

This setting pairs with the listen directive described above. If you listen on any network interface
other than the loopback (localhost, 127.0.0.1), you should also adjust this directive.

0 Currently, only ipv4 addresses can be defined. You cannot use hostnames or ipvé addresses.

pm = dynamic Process management is set to dynamic by default. The dynamic setting will start
FPM with at least 1 child process waiting to accept a connection. It will dynamically decide how
many child processes are active or waiting on a request. This uses other settings we’ll discuss next
to manage processes.

The pm directive can also be set to static. This sets a specific number of child processes. This number
of processes is alway present regardless of other settings.

Lastly, the pm directive can be set to ondemand. This is the same as dynamic, except there’s no
minimum number of child processing created.

PHP 152

pm.max_children =5 The maximum number of child processes to exist at any point. This sets the
overall maximum number of simultaneous requests PHP-FPM will handle.

Increasing this will allow for more requests to be processed concurrently. However there are
diminishing returns on overall performance due to memory and processor constraints.

Nginx starts with a low number (5), since Ubuntu packages tend to optimize for low-powered servers.
A rule of thumb for figuring out how many to use is:

pm.max_children = (total RAM - RAM used by other process) / (average amount of R\
AM used by a PHP process)

For example, if:

« The server has 1GB of ram (1024mb)
+ The server has an average baseline of 500mb of memory used
«» Each PHP process takes 18mb of memory

Then our max_children can be set to 29, much higher than the default of 5!
That math was: ((1024-500)/18 = 29.111). I rounded down to be conservative.

You’ll need some investigation to figure these numbers out. Pay special attention to what else you
run on your server (Nginx, MySQL and other software).

Using a database or cache on the same server especially makes this a tricky calculation. Memory
usage can spike, resulting in PHP-FPM competing for resources. This will likely cause the server to

start “swapping” (using hard drive space as overflow for RAM), which can slow a server down to a
halt.

If you have more than one resource pool defined, you need to take process management settings
into account. Each pool has a separate set of processes that will compete for resources.

In any case, on a server with 1GB of RAM, your number of max_children should be higher than the
default 5. However, this depends on what else is installed.

pm.start_servers =2 The number of processes created by PHP-FPM on startup. Because processes
are expensive to create, having some created at startup will get requests handled more quickly.
This is especially useful for reducing startup time on busy servers. This only applies when process
management is set to “dynamic”.

pm.min_spare_servers = 1 The minimum number of processes PHP-FPM will keep when there
are no requests to process (when idle). Because processes are expensive to create, having some “idle”
will get requests processed quickly after a period of idleness.

PHP 153

pm.max_spare_servers = 3 This is the number of “desired” spare servers. PHP-FPM will attempt
to have this many idle processes ready, but will not go over the maximum set by pm.max_children.
If pm.max_children is set to 5, and there are 4 processes in use, then only one spare (idle) process
will be created. This only applies when process management is set to “dynamic”.

pm.process_idle_timeout = 10s The number of seconds a process will remain idle before being
killed. This only applies when process management is set to “ondemand”. Dynamic process
management uses the spare server settings to determine when/how to kill processes.

pm.max_requests = 500 The number of request to handle before a child process is killed and
respawned. By default, this is set to 0, meaning unlimited.

You may want a child process to have a limited lifetime. This is useful if you’re worried about
memory leaks created by your application.

’ That was a lot about process management! It’s important to know, however. In most cases,
J the default settings are likely too low relative to what your server can handle!

pm.status_path = /status This is off (not set) by default, but you can configure an end-point to
get the status of FPM. This example will set a URI end point to /status. Once configured, you can
use the following URL parameters (assuming you keep it at /status) to determine what is output:

/status - Show basic status information

/status?full - Show basic status information + information on each child process
/status?full&html - In HTML format

/status?full&xml- In XML format

/status?full&json - in JSON format

This requires some extra setup. You can’t directly query FPM’s status via a web request as it “speaks”
FastCGlI rather than HTTP. We still need a web server to handle the request. In Nginx, this is fairly
simple - we can create a “location” block for our server, and limit access for security:

© 00 9 O O b W N =

PHP 154

Inside of a Nginx virtual host "server":
location ~ "/(status|ping)$ {
access_log off;
allow 127.0.0.1;
allow 172.17.42.1; # A local-only network IP address
deny all;
include fastcgi.conf;
fastcgi_pass 127.0.0.1:9000; # Assumes using a TCP socket

The same can be done for Apache:

ProxyPass /status fcgi://127.0.0.1:9000/status
ProxyPass /ping fcgi://127.0.0.1:9000/ping

If the above configuration looks foreign, it will make more sense after reading the Apache and Nginx
chapters.

The above assumes we’ve set FPM to listen on a TCP socket. You can use the following with Nginx
if you are listening on a Unix socket:

Nginx

fastcgi_pass unix:/var/run/php5-fpm.sock;

Apache’s ProxyPass directive is best used with a TCP socket rather than a Unix socket for this use
case.

You may have noticed the above configurations also handles a “ping” check. Let’s look at that as
well:

ping.path = /ping By default, this is not enabled either. This can be used for health checks in a
high availability setup. You can have a process periodically ping the FPM pool and ensure it’s still
functioning. If it’s not functioning, the health checker can remove the pool from being used.

ping.response = pong This is simply the text response (“pong”) the pool will respond with when
pinged. It will respond with a 200 HTTP response code along with the text/plain mime type.

access.Jog The access log for the pool. The default is to not set a log. Usually access logs are set
within Nginx or Apache and so it might be redundant for FPM to have them as well.

There are other log options you can set as well, such as the slow log and its time threshold. I suggest
checking out the default pool file to find these, I won’t cover them in depth here.

PHP 155

chroot Disabled by default, the chroot directive is a file path which becomes the relative file path
for all of PHP. This includes php. ini settings. Chroot is sort of like running PHP-FPM in a jail - the
child process can’t access other parts of the system. This is a boon for security!

However the downside is ensuring your configuration and application will work with this. Every-
thing works relative to this defined file path. This includes paths used for include/require functions
and file upload paths.

By default this is not set, but you should consider using it for security.

If you do use chroot in production, mirror this setting in development. Making your
development machine match production can be important. You don’t want to run into
snags due to settings like this when deploying a site to production.

security.limit_extensions = .php By default, Nginx will only parse files with the . php extension.
If you need PHP-FPM to also process html files which may include PHP, you’ll need to uncomment
this directive. You can include a .html and .htm extension here.

Note that this is for directly requested files (usually index.php). This is not for files included within
other PHP calls. For example, an included/required . phtml view file will still work without changing
this setting.

You’ll also need to adjust the Apache or Nginx configuration to pass off requests for .html and .htm
files to PHP-FPM.

Additional INI directives In Debian/Ubuntu, the same /etc/php5/fpm/php.ini file will be used
for all resource pools.

Since we can setup separate resource pools per web application, it would be nice to also have separate
php.ini configurations.

Luckily, we can do that by adding them within our resource pool configuration! The syntax is a little
different than a regular php.ini file. We can use php_value for directives which have a value, or
php_flag for boolean flags.

For example, the php. ini file equivalent to post_max_size = 16m would be:
php_value[post_max_size] = 16m

The php. ini equivalent to display_errors = On would be:
php_flag[display_errors] = On

We can also use php_admin_value and php_admin_flag directives within the FPM pool configu-
ration. The “admin” version of the flags make it so we can’t over-ride them in code using PHP’s
ini_set method. This can be useful for security purposes. For example, if you want to ensure your
code cannot turn on error reporting or allow the inclusion of remote files.

PHP 156

Everything Else I've covered most of the available PHP-FPM resource pool configuration. There’s
still a few you can dig further into.

Server Setup for Multi-Tenancy Apps

For those of you making an application which supports multi-tenancy, here’s some web server
configurations you might find handy.

A multi-tenancy application is an application which has one code base but supports many
organizations/tenants.

This is typical of many SaaS applications where there are tenants under which multiple users can
login. A tenant might be a group, company or organization. Each user can be a unique user and log
in under one or more tenants.

One common way to divide up tenants within an application is to use subdomains. Beanstalkapp.com*
uses subdomains in such a way. For example, users of organization “FooBar”, would login and
operate under the subdomain http://foobar.beanstalkapp.com®°.

To accomplish such a setup, we likely want to use the same code base for the entire application.
From a web server point of view, this means we need two things:

1. All subdomains of our application should resolve to our servers
2. A virtual host configured to match any subdomain and pass requests off to our application

DNS

Before we get to web server configuration, we need to know how this works at a DNS level.

Domains and subdomains can all point to separate servers. Usually we define a root domain, which
points to an IP address of a server. Then we can set a subdomain, such as “www” and point it to
either the root domain (which in turn points to the server’s IP address) or even to another address
altogether.

Each subdomain is usually individually specified within the DNS record of a domain. However, we
don’t want to create an application where we need to go into our domain records and manually enter
in a subdomain for every new customer! Instead, we want a wildcard subdomain which matches
any subdomain.

“’http://beanstalkapp.com
*°http://foobar.beanstalkapp.com

http://beanstalkapp.com
http://foobar.beanstalkapp.com
http://beanstalkapp.com
http://foobar.beanstalkapp.com

Server Setup for Multi-Tenancy Apps

158

HOST NAME IP ADDRESS/ URL RECORD TYPE MXPREF TTL

@ 198.211.113.202 * A (Address) B n/a 1800
WWWwW serversforhackers.com. CNAME (Alias) 3 n/a 1800
book serversforhackers.com. CNAME (Alias) v n/a 1800

Typical DNS setup. WWW subdomain points to the root domain, which in turn points to a servers IP address.

In the above screenshot, we see the A record for the root domain serversforhackers.com. Then we
have a “www” subdomain, defined as a CNAME. This points to the root domain, meaning “resolve
to the same IP address as the A record for the root domain”

Then we see another subdomain “book”, which also points to the root domain as it is hosted on the

same SErver.

Now we need a DNS record to match any subdomain to our server. On DNS providers which support
it, we can add a * to denote a wildcard. I use NameCheap:

HOST NAME IP ADDRESS/ URL RECORD TYPE MXPREF TTL

@ 198.211.113.202 * A (Address) ¥ n/a 1800
WWW serversforhackers.com. CNAME (Alias) s n/a 1800
book serversforhackers.com. CNAME (Alias) s n/a 1800
* serversforhackers.com CNAME (Alias) s n/a 1800|

Any undefined subdomain will get pointed to the application server.

0 An “A” (Address) record is generally used to point to an IP address. This is always used to
define where a root domain points to. We would use an A record for a subdomain if the
subdomain needed to point to a different server.

A “CNAME” (Canonical Name) record is generally used to point to a hostname, which in
turn will resolve to the IP address of the hostname. This is generally used to point to either
the root domain (and thus the same server) or if we want to point to a different server but
had a domain/hostname rather than an IP address to use.

Some providers which allow you to set wildcard subdomains include:

NameCheap

DNSSimple

AWS Route53

Many Others, but not GoDaddy :D

© 00 3 O Ol b W N -~

© 00 39 O O b W N -~

Server Setup for Multi-Tenancy Apps 159

Multi-Tenancy in Apache

Apache lets you create a wildcard subdomain for its ServerAlias directive, but not for its
ServerName directive. As a result, I will typically either create one virtual host for the root domain
and “www” subdomain marketing site (assuming it’s not part of your main application code) and
one virtual host for the application.

Marketing Site
<VirtualHost *:80>

ServerName myapp.io;
ServerAlias www.myapp.io;

DocumentRoot /var/www/marketing-site

</VirtualHost>

The above is just a virtual host like any other. It handles myapp.io and www.myapp.io requests via
the ServerName and ServerAlias directives respectively.

The above virtual host isn’t complete, you may need to add in some extra directives as
defined in the Apache chapter.

Then we can create a virtual host for the application site:

App Site
<VirtualHost *:80>

ServerName app.myapp.io;
ServerAlias *.myapp.io;

DocumentRoot /var/www/app-site

</VirtualHost>

This virtual host handles a base ServerName of app.myapp.io and then uses ServerAlias to match
a wildcard subdomain. This directs to a separate DocumentRoot than the marketing site.

If your home page (which I'm just assuming might be a marketing page) is part of your application
code, than you can use one virtual host:

O N O O & W N~

©O© 00 N O O & W N =

Server Setup for Multi-Tenancy Apps 160

<VirtualHost *:80>

ServerName myapp.io;
ServerAlias *.myapp.io;

DocumentRoot /var/www/myapp

</VirtualHost>

You may wish to also use a rewrite rule or a redirect so that people who enter the site via the
“‘www” subdomain get redirected to the root domain. This will prevent confusion if your application
attempts to find an organization called “www”.

Multi-Tenancy in Nginx

Nginx can have a similar setup with a slightly simpler setup than Apache.

An Nginx virtual host file for the marketing site.

Marketing Site
server {
listen 80;

server_name www.myapp.io myapp.io

root /var/www/marketing-site

The above server block can be used for a marketing home page. Again, it’s just a regular old virtual
host for Nginx. Nothing special here - it’s setup for www.myapp.io and myapp.io domains.

This isn’t a complete virtual host setup. You likely want to use more directives, which you’ll
find in the Nginx chapter.

W N O O & W N =~

U S YN
0 3 0 O b ON =~ O

Server Setup for Multi-Tenancy Apps 161

An Nginx virtual host file for the application site.

App Site
server
listen 80;

Match *.myapp.io
server_nhame ~"(?<user>.+)\.myapp\.io$;

root /var/www/app-site

Optionally pass the subdomain to the app via

fastcgi_param, so it's available as an

environment variable

location / {
include fastcgi.conf; # fastcgi_params for nginx < 1.6.1
fastcgi_param USER $user; # Passing the user to our app!
fastcgi_pass 127.0.0.1:9000;

In this server block, we match a wildcard subdomain. As a bonus, we use the RegEx to capture the
variable $user, which can be passed off to our application using a fastcgi_pass directive. This will
then become available as an environment variable in our application!

SSL Certificates

SSL Overview

Asyou’re likely aware, being able to send data securely over a network (especially a public network)
is of growing importance. To that end, many web applications employ the use of SSL certificates to
encrypt traffic between a client (often your web browser) and a server (often a web server).

If you’re interested in learning more about SSL certificates®* and the various mechanisms (such as
“key certificates”, “root certificates”, “intermediate certificates” and more), jump to about ~51 : 45 of
this edition of Tech Snap Misconceptions of Linux Security*.

Using SSL in Your Application

In production, you will have to purchase an SSL certificate. When you purchase an SSL certificate,
you are paying for recognized and trusted-third parties (root or intermediate authorities) to say that
your SSL certificate is both valid and legitimately used by you, the owner of the certificate. See how
PayPal’s SSL certificate was verified by VeriSign.

*thttp://en.wikipedia.org/wiki/Secure_Sockets_Layer
>http://www.jupiterbroadcasting.com/54142/misconceptions-of-linux-security-techsnap- 155/

http://en.wikipedia.org/wiki/Secure_Sockets_Layer
http://www.jupiterbroadcasting.com/54142/misconceptions-of-linux-security-techsnap-155/
http://en.wikipedia.org/wiki/Secure_Sockets_Layer
http://www.jupiterbroadcasting.com/54142/misconceptions-of-linux-security-techsnap-155/

SSL Overview 164

p

= (& E’| PayPal, Inc. [US]| https:/ /www.paypal.com B AE W

800 / ﬂ&end Money, Pay Online o %

PayPal, Inc.

Pay Identity verified ess

Permissicns Cennection
-) | -

ﬂ The identity of PayPal, Inc. at San Jose,
California US has been verified by
VeriSign Class 3 Extended Validation S5L
CA but does not have public audit
records.

Certificate Information

ﬂ Your connection to www.paypal.com is
encrypted with 128-bit encryption.

The connection uses TLS 1.2,

The connection is encrypted using
RC4_128, with SHAL for message
authentication and R5A as the key
exchange mechanism.

ﬂ Site information
You first visited this site on Jan 26, 2014,

What do these mean?

PayPal SSL Certificate

SSL certificates affect your application. When a site is visited using “https”, browsers expect all
resources (images, javascript, css and other static assets) to also be linked to and downloaded using
“https” as well. Otherwise browsers either don’t load the assets and show scary warning messages
to your users. This means you need to be able to serve your assets and any third party assets with
“https”. Third party assets are any not directly on your web server (images hosted on your CDN of
choice, for example).

That means it is useful to have a way to test your applications with an SSL certificate in
development, instead of waiting for your site to launch to find issues.

O O b W N~

Creating Self-Signed Certificates

Unless there are some extenuating circumstances, you shouldn’t need to buy an SSL certificate for
use in development. Instead, you can create a “self-signed” certificate, which will work in your local
computer. Your browsers will initially give you a warning for using an un-trusted certificate, but
you can click passed that and test your web application with your own SSL certificate.

The basic steps to create a self-signed certificate are:

1. Create a Private Key
2. Create a Certificate Signing Request (CSR)
3. Create a Self-Sign certificate using the Private Key and the CSR
« Alternatively, if you purchased an SSL, the last step is accomplished by the certificate
signing authority
4. Install the certificate for use on your web server

To start, first make sure you have OpenSSL installed. Most flavors of Linux have this “out of the
box”, but you should be able to easily install it if not:

Check 1f openssl is installed
$ which openssl
/usr/bin/openssl

Or, if no output from command “which’:
sudo apt-get install openssl

Heartbleed
(i

There was a nasty OpenSSL vulnerability you may have heard about: The Heartbleed
Bug®. OpenSSL 1.0.1 through 1.0.1f (inclusive) are vulnerable. This means 1.0.1g and
greater are fixed. You should see if any of your servers need updating. You can use
http://filippo.io/Heartbleed/** to test if your site is vulnerable.

Note that you may have OpenSSL version 1.0.1f installed which contains the Heartbleed
fix. Ubuntu, like other distributions, often backports security fixes rather than update the
actual software. Run apt-cache show openssl | grep Version to ensure you have
1.0.1f-1ubuntu2 or 1.0.1f-1ubuntu2.5, both of which contain the fix to Heartbleed.
Ubuntu 14.04 should not be vulnerable.

>http://heartbleed.com/
>*http://filippo.io/Heartbleed/

http://heartbleed.com/
http://heartbleed.com/
http://filippo.io/Heartbleed/
http://heartbleed.com/
http://filippo.io/Heartbleed/

B W N -

W N O O & W N =~

RN
N »~ O O

Creating Self-Signed Certificates 166

We need a place to put our certificates. I usually put them in the /etc/ss1 directory, which contains
other system certificates. For any new certificate, I create a new directory. If we’re creating an SSL
for example.com, create the directory /etc/ssl/example.

Once we have a directory created, we can begin creating our certificate. First, we need a private key:

Create a 2048 bit private key

Change your -out filepath as needed

sudo mkdir -p /etc/ssl/example

sudo openssl genrsa -out "/etc/ssl/example/example.key" 2048

The private key is used to generate our Certificate Signing Request (CSR) and is needed to properly
sign/create our certificate. It’s also used to properly decrypt SSL traffic.

Next we need to create the CSR. The CSR holds information used to generate the SSL certificate.
The information provided also contains information about the company or entity owning the SSL.

Generating a CSR uses the Private Key we previously created:

sudo openssl req -new -key "/etc/ssl/example/example.key" \

-out "/etc/ssl/example/example.csr”

This will ask you the following series of question:

CSR generating questions and my responses

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:Connecticut

Locality Name (eg, city) []:New Haven

Organization Name (eg, company) [Internet Widgets Pty Ltd]:Fideloper
Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:example.local

Email Address []:

Please enter the following 'extra' attributes
to be sent with your certificate request

A challenge password []:

An optional company name []:

The Common Name option is the most important, as your domain used with the certificate
needs to match it. If you use the “www” subdomain for your site, this means specifying
the “www” subdomain in the Common Name field as well!

Creating Self-Signed Certificates 167

I left some fields blank. You can skip Organizational Unit Name and Email Address for a self-
signed certificate. I also choose to leave the “optional company name” field blank. Finally, I elected
NOT to add in a challenge password®. This is something used by the certificate authority (if you’re
purchasing a certificate) in the case you need to regenerate a certificate. Your web server may also
require this password when restarting as well.

So, we now have example.key and example.csr files created. Let’s finish this up by creating the
self-signed certificate.

sudo openssl x509 -req -days 365 -in "/etc/ssl/example/example.csr"” \
-signkey "/etc/ssl/example/example.key" \
-out "/etc/ssl/example/example.crt”

Here’s what we did:

+ sudo openssl x509 - Create an SSL certificate following x509 specification®®
+ -req - State that we’re generating a certificate

« -days 365 - This certificate is valid for one year

« -in "/etc/ssl/example.csr" - The CSR generated for this certificate

« -signkey "/etc/ssl/example.key" - The Private Key used for this certificate

-out "/etc/ssl/example.crt” - Where to put the new certificate file

Great, our self-signed certificate for example.com is created! We’ll cover installing it into our web
servers in just a bit.

Creating a Wildcard Self-Signed Certificate

I use the Xip.io service so that I can avoid editing my hosts file for local development servers. I've
found it useful to automate the process of creating a self-signed wildcard xip.io certificate for my
local servers to test my local sites under SSL.

Here we’ll see how to create a wildcard subdomain SSL certificate. I'll also show you how to do it
in a way that can be automated, eliminating the need for human interaction.

Let’s begin! Create a new shell script and call it generate-ssl.sh:

>*http://serverfault.com/questions/266232/what-is-a-challenge- password
*Shttp://en.wikipedia.org/wiki/X.509

http://serverfault.com/questions/266232/what-is-a-challenge-password
http://en.wikipedia.org/wiki/X.509
http://serverfault.com/questions/266232/what-is-a-challenge-password
http://en.wikipedia.org/wiki/X.509

0 N O Ol & W N =

W W W W W W W WwwNDNDNNDNDNDDNDNDNDDNDDNDNNDDNASAPr PSP
0 N 0O Ok WOWN~AOO © 00 30 0l d WN-OO © 03O0 Gl W N~ O ©

Creating Self-Signed Certificates

Automating the creation of a self-signed certificate

168

#|/usr/bin/env bash

Specify where we will install
the xip.io certificate
SSL_DIR="/etc/ssl/xip.i0"

Set the wildcarded domain
we want to use
DOMAIN="* xip.io"

A blank passphrase
PASSPHRASE=""

Set our CSR variables
SUBJ="

C=US

ST=Connecticut

0=

localityName=New Haven
commonName=$DOMAIN
organizationalUnitName=

emailAddress=

Create our SSL directory
in case it doesn't exist
sudo mkdir -p "$SSL_DIR"

Generate our Private Key, CSR and Certificate

sudo openssl genrsa -out "$SSL_DIR/xip.

sudo openssl req -new -subj "$(echo -n
-key "$SSL_DIR/xip.1io.
-out "$SSL_DIR/xip.1io.

io.key" 2048

"$SUBJ" | tr u\nu n/n)u \
key" \
csr" -passin pass:$PASSPHRASE

sudo openssl x509 -req -days 365 -in "$SSL_DIR/xip.io.csr" \

-signkey "$SSL_DIR/xi

p.io.key" \

-out "$SSL_DIR/xip.io.crt"

The above script follows all of our previous steps, except it does some fancy bash scripting so we
can automate passing in the CSR generating variables using the -subj flag and some string parsing.

W N -

N O O & W N =

Creating Self-Signed Certificates 169
Once that’s saved, you can run script with the following command:
sudo bash generate-ssl.sh

Then you can see those generated files in /etc/ssl/xip.io/.

Note that we defined the domain as *.xip.io.. We signified the use of a wildcard subdomain with
the * character. This will let us use any subdomain. Otherwise this mirrors the process we did above
when “manually” creating our SSL certificate for the example.com domain.

Now that we’'ve generated some certificates, let’s see how to use them in our favorite web servers.

Apache Setup

The first thing to do in Apache is to make sure mod_ss1 is enabled. On Debian/Ubuntu, you can do
this via:

Enable SSL module
sudo aZ2enmod ssl
Then restart:

sudo service apache2 restart

Next, we need to modify our vhost to accept https traffic on port 443.

Up until now, we've create a vhost to listen on port 80, the default http port. That might look like
this:

File: /etc/apache2/sites-available/example.conf

<VirtualHost *:80>
ServerName example.local

DocumentRoot /var/www/example.local

. and the rest ...
</VirtualHost>

To enable SSL for this site, we can create another vhost file, or add another block to our example.conf
file. For example, the following new vhost file will listen on port 443, the default https port:

Creating Self-Signed Certificates 170

File: /etc/apache2/sites-available/example-ssl.conf

<VirtualHost *:443>

ServerName example.local

DocumentRoot /var/www/example.local

SSLEngine on

SSLCertificateFile /etc/ssl/example/example.crt
SSLCertificateKeyFile /etc/ssl/example/example.key

And some extras, copied from Apache's default SSL conf virtualhost
<FilesMatch "\.(cgil|shtml|phtml|php)$">

SSLOptions +StdEnvVars
</FilesMatch>

BrowserMatch "MSIE [2-6]" \
nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0
MSIE 7 and newer should be able to use keepalive
BrowserMatch "MSIE [7-9]" ssl-unclean-shutdown

. and the rest ...

</VirtualHost>

Note that the above vhost’s were not complete - you’ll need to fill in some extra parameters and
directives from the Apache chapter. The above examples are simply for setting up the SSL certificates.

9 By default, Debian/Ubuntu installs of Apache use BrowserMatch "MSIE [17-9]" in their
example SSL file. This is a “bug”’, the value should be: BrowserMatch "MSIE [7-9]".

And that’s it! Once you have that in place and enabled, you can reload Apache’s config (sudo
service apache2 reload) and try it out!

% If you are using a self-signed certificate, you’ll still need to click through the browser
warning saying the Certificate is not trusted.

*"https://bugs.launchpad.net/ubuntu/+source/apache2/+bug/626728

https://bugs.launchpad.net/ubuntu/+source/apache2/+bug/626728
https://bugs.launchpad.net/ubuntu/+source/apache2/+bug/626728

0 N O O &~ W N -

NN N N P S s s s s
W N, O © 03O0 O b W NN~ OO ©

Creating Self-Signed Certificates 171

Apache & Xip.io

Let’s see what that looks like for the wildcard xip.io setup. The following virtualhost is for a web app
located at project-a.192.168.33.10.xip.io, where “192.168.33.10” is the IP address of the server.

File: /etc/apache2/sites-available/example-ssl.conf

<VirtualHost *:443>
ServerName project-a.192.168.33.10.xip.1io

DocumentRoot /var/www/example.local

SSLEngine on

SSLCertificateFile /etc/ssl/xip.io/xip.io.crt
SSLCertificateKeyFile /etc/ssl/xip.io/xip.io.key

And some extras, copied from Apache's default SSL conf virtualhost
<FilesMatch "\.(cgil|shtml|phtml|php)$">

SSLOptions +StdEnvVars
</FilesMatch>

BrowserMatch "MSIE [2-6]" \
nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0
MSIE 7 and newer should be able to use keepalive
BrowserMatch "MSIE [7-9]" ssl-unclean-shutdown

. and the rest ...
</VirtualHost>

After that’s setup, you can reload your Apache config (Debian/Ubuntu: sudo service apache?2
reload) and test it out!

Here we can see the SSL certificate working, but of course our browser doesn’t trust it since it’s not
certified by a trusted third party. That’s fine though, we can still test our application’s use of SSL by
clicking through the warnings.

Creating Self-Signed Certificates

800 y [) Apache2 Debian Default P %

R |

mll

This is tt
installati
installed
/var /ww

If you ar
that the ﬂ
site's ad

Debian's
into sevt
docume
documel
apache2 ﬂ
The cont

| fetc/a
--ap
i |
|-- ma
R

g‘

Permissicns

= (& | % https:/ /project-a.192.168.33.10.xip.io

project-a.192.168.33.10.xip.io
Identity not verified

Ceonnection
| =

The identity of this website has not been

verified.

= Server's certificate does not match the

URL.
= Server's certificate is not trusted.

Certificate Information

Your connection to project-a.
152.168.33.10.xip.io is encrypted with
128-bit encryption.

The connection uses TLS 1.2,

The connection is encrypted and
authenticated using AES_128_GCM and
uses ECOHE_RSA as the key exchange
mechanism.

Site information

You have never visited this site before
today.

What do these mean?

LA

n Default Pa¢

correct operation of the #
is page, it means that the
d replace this file (loca
) operate your HTTP serv

know what this page is ¢
znance. If the problem pe

{ from the upstream defa
bian toals. The configurat
i{ADME.Debian.gz. Refel
ritself can be found by at

ar installation on Debian ¢

Xip.io wildcard subdomain via self-signed certificate

o “Server’'s certificate does not match the URL.”

You might see this error message when viewing your site under a self-signed certifi-
cate with our Xip.io address. It turns out that matching wildcards isn’t supported the
same across implementations/browsers, especially the “sub-sub-sub-domains” we use with

xip.io.

It will still function fine for development purposes, however. Read here®® for some more

information.

*®http://www.hanselman.com/blog/SomeTroubleWithWildcardSSLCertificatesFireFox AndRFC2818.aspx

172

http://www.hanselman.com/blog/SomeTroubleWithWildcardSSLCertificatesFireFoxAndRFC2818.aspx
http://www.hanselman.com/blog/SomeTroubleWithWildcardSSLCertificatesFireFoxAndRFC2818.aspx

0 N O O B~ W N -

O O B W N -

0 N O O &~ W N -

Creating Self-Signed Certificates 173

Nginx Setup

For Nginx, we typically have a server “block” listening on port 80 (the default port for http). This
will look something like this:

File: /etc/nginx/sites-available/example

server {

listen 80 default_server;

server_name example.local;
root /var/www/example.com;

. and the rest ...

For setting up an SSL, we want to listen on port 443 (a default port for https) instead:

File: /etc/nginx/sites-available/example-ssl

server {
listen 443;
root /var/www/example.com;

. and the rest ...

These server blocks can be in the same configuration file or in separate ones. That’s completely up to
you. Just remember to symlink any configuration files to the /etc/nginx/sites-enabled directory
if they need to be enabled.

To setup the https server block with our SSL certificate, we just need to add a few lines:

File: /etc/nginx/sites-available/example-ssl

server {
listen 443 ssl;

server_name example.local;
root /var/www/example.com;

ssl_certificate /etc/ssl/example/example.crt;
ssl_certificate_key /etc/ssl/example/example.key;

10
11

© 00 = O U b W N =

AN
= o

Creating Self-Signed Certificates 174

. and the rest ...

And that’s it! Once you have that in place and enabled, you can reload Nginx (sudo service nginx
reload) and try it out!

If you are using a self-signed certificate, you’ll still need to click through the browser
warning saying the Certificate is not trusted.

Nginx & Xip.io

Similar to the Apache setup, for using xip.io you can adjust the server_name and certificate paths
and be on your way:

File: /etc/nginx/sites-available/xipio

server
listen 443 ssl;

server_name project-a.192.168.33.10.xip.io;
root /var/www/projecta;

ssl_certificate /etc/ssl/xip.io/xip.io.crt;
ssl_certificate_key /etc/ssl/xip.io/xip.io.key;

. and the rest ...

Once Nginx is reloaded, this will work as well! Don’t forget to fill in the rest of the virtual host
configuration as per the Nginx web server chapter..

One Server Block

As per the Nginx Admin Guide®, you can define both http and https in one server block:

>*http://nginx.com/admin-guide/nginx-ssl-termination

http://nginx.com/admin-guide/nginx-ssl-termination
http://nginx.com/admin-guide/nginx-ssl-termination

W N O O & W N =~

(AN
N -~ O O

Creating Self-Signed Certificates

File: /etc/nginx/sites-available/xipio

175

server
listen 80;
listen 443 ssl;

server_name project-a.192.168.33.10.xip.1i0;
root /var/www/projecta;

ssl_certificate /etc/ssl/xip.io/xip.io.crt;
ssl_certificate_key /etc/ssl/xip.io/xip.io.key;

. and the rest

B W N -

Extra SSL Tricks

Here’s a one-liner for generating an self-signed certificate in one go:

sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
-keyout /etc/ssl/example/example.key \
-out /etc/ssl/example/example.crt

This will ask you for the same options as about to generate the CSR and then generate the certificate
automatically.

Some explanation of the command:

« sudo openssl req - Req says we’re generating a certificate
« -x509 - Using the x509 specification®

+ -nodes - Since we’re doing this in one step, don’t encrypt the Private Key (since it may require
a password). Read more here®’.

+ -days 365 - Create a certificate valid for 1 year

+ rsa:2048 - Use a 2048 bit Private Key

+ -keyout /etc/apache2/ssl/example.key - Where to put the Private Key

« -out /etc/apache2/ssl/example.crt - Where to put the generated Certificate

To use curl with your site when using a self-signed certificate, you need to tell it not to verify the
SSL connection. Here’s how to use curl with a self-signed certificate:

curl --insecure https://myapp.local

-K 1s equivalent to --insecure:
curl -K https://myapp.local

We need to do the same when using wget with a self-signed certificate:

wget --no-check-certificate https://myapp.local/somefile

**http://en.wikipedia.org/wiki/X.509

"http://stackoverflow.com/questions/5051655/what-is-the-purpose-of-the-nodes-argument-in-openssl

http://en.wikipedia.org/wiki/X.509
http://stackoverflow.com/questions/5051655/what-is-the-purpose-of-the-nodes-argument-in-openssl
http://en.wikipedia.org/wiki/X.509
http://stackoverflow.com/questions/5051655/what-is-the-purpose-of-the-nodes-argument-in-openssl

Multi-Server Environments

As servers become more and more a commodity, they are both cheaper and easier to get. As a result,
we often see setups where we create and use multiple servers.

This is often born from necessity. Many cloud hosting providers provide many, smaller servers
rather than fewer, powerful ones. In these cases, we're essentially forced into creating distributed
architectures to keep our sites fast.

Building in reliability also requires multi-server environments. High Availability is accomplished
through distributed systems, monitoring and automation.

We've covered some of the knowledge needed to accomplish a high availability setup, such as the
need to manage firewalls so the servers can communicate to each other. However we still need to
know some more!

In the following chapters, we’ll get in depth on multi-server environments, with a focus on load
balancing.

Implications of Multi-Server
Environments

When you put your web application behind a load balancer, or any type of reverse proxy®, you
immediately need to take some important factors into consideration.

This chapter will cover those considerations, as well as discuss common solutions.

Asset Management

Using a load balancer implies that you have more than one server processing requests. In this
situation, how you manage your static assets (images, JS, CSS files) becomes important.

Imagine a scenario where an image lives on one web server, but not the other. In this situation, a
user of your application will see a 404 response when the load balancer tries to pull the image from
the web server which does not have the image.

This is a common issue when your application accepts user uploads (perhaps with a CMS). User-
uploaded files can’t simply live on the web server they were uploaded to. When an uploaded jpg
file only lives on one web server, a request for that image will result in a 404 response when the load
balancer attempts to find it on web server which does not have the image!

In a distributed environment, one often (somewhat ironically) needs to centralize! In this case, the
web servers need to have a common file store they can access.

One way this is done is via a shared network drive (NAS®, for example). This, however, gets slow
when there are many files or high levels of traffic. Furthermore, if your architecture is distributed
across several data centers, then a shared network drive can become too slow; Your web servers
would be too far away from them and the network latency too high.

Central File Store

A common (and better) solution is to host all static assets (user-uploaded and otherwise) in a separate,
central location, such as Amazon’s S3.

Within Amazon, this can be taken a step further. An S3 bucket can be integrated with
their CDN CloudFront. Your files can then be served via a true CDN. You may also wish
to use other CDN’s such as CloudFlare or MaxCDN directly.

“*http://en.wikipedia.org/wiki/Reverse_proxy
http://en.wikipedia.org/wiki/Network-attached_storage

http://en.wikipedia.org/wiki/Reverse_proxy
http://en.wikipedia.org/wiki/Network-attached_storage
http://en.wikipedia.org/wiki/Reverse_proxy
http://en.wikipedia.org/wiki/Network-attached_storage

Implications of Multi-Server Environments 179

For your static assets, you can use automated tools such as Grunt or Gulp to automate these tasks
for you. For example, you can have Grunt watch your files for changes, minify and concatenate CSS,
JS and images, generate production-ready files, and then upload them to a central location.

For user-uploaded content, you’ll likely need to do some coding around uploading files to a
temporary location, and then sending them off to S3 via AWS’s APL

Environment-Based URLs

You often don’t use central file stores in development. This means you likely have local static assets
rather than remote assets stored in S3, a CDN or similar. This means in development, you need to
be able to serve your static files locally.

One thing I do on projects is to change the URL of assets based on the environment. Using a helper
function of some sort, I'll have code output the development machine’s URL to HTML so the static
assets are loaded locally.

In production, this helper will output URLs for your file-store or CDN of choice. Combined with
some automation (perhaps with Grunt or Gulp), this gives you a fairly seamless workflow between
development and production.

Sessions

Similarly to the issue of Asset Management, how you handle sessions becomes an important
consideration. Session information is often saved on a temporary location within a web server’s
file system. A user may log in, creating a session on one web server. On a subsequent request,
however, the load balancer may bounce that user to another web server which doesn’t have that
session information. The client would think they were forcefully logged out.

There are two common fixes for this session scenario.

Sticky Sessions

The first is to set your load balancer to use “sticky sessions”, often also called “session affinity”. This
will take one client and always route their request to the same web server. This let’s the web server
keep its default behavior of saving the session locally, leaving it up to the load balancer to get a client
back to that server. This can skew the sharing of work load around your web servers a bit.

Shared Storage

The second fix for this is to use a central session store. Typical storage used for sessions are fast in-
memory stores such as Redis or Memcached. Persistent stores such as a database are also commonly
used, but aren’t recommended for high-volume sites.

Implications of Multi-Server Environments 180

Since session data does not necessarily need to be persistent, and can have lots of traffic, a central
in-memory data store may be preferred. In this architecture, all the web servers connect to a server
working as the central session store, growing your infrastructure a bit, but letting your work load
be truly distributed.

Lost Client Information

Closely related to the session issue is detecting who the client is. If the load balancer is a proxy
between a client and your web application, it might appear to your web servers and application that
every request is coming from the load balancer! Your application wouldn’t be able to tell one client
from the other.

Luckily, most load balancers provide a mechanism for giving your application this information. If
you inspect the headers of a request received from a load balancer, you might see some of these
included:

¢ X-Real-Ip

e X-Forwarded-For

¢ X-Forwarded-Proto
¢ X-Forwarded-Port

e X-Forwarded-Scheme

These headers can tell you the client’s IP address, the schema used (http vs https) and which port
the client made the request on. If these are present, your application’s job is to sniff these headers
out and use them in place of the usual client information.

IP Addresses & Ports

Having an accurate IP address of a client may be important to your application. Some applications
use the client’s IP address to perform functions such as rate limiting or metric gathering. Further-
more, having a client’s IP address can help identify malicious traffic patterns when inspecting logs.

The X-Forwarded-For (or X-Real-1Ip) header, which should include the client’s IP address, can be
used by your application if the header is found in the HTTP request. This is assuming the source of
the proxied web request is trusted - some measure should be taken to ensure all requests come from
your load balancer instead of from external sources which may have malicious intent.

Protocol/Schema and Port

Knowing the protocol (http, https) and port used by the client is also important. If the client is
connecting over an SSL (with a https url), that encrypted connection might end at the load balancer.

Implications of Multi-Server Environments 181

The load balancer would then send an “http” request to the web servers. This means the web servers
will receive the traffic over “http” instead of “https”.

Many frameworks attempt to guess the site address based on the request information. If your web
application is receiving a “http” request over port 80, then any URLs it generates or redirects it sends
will likely be on the same protocol. This means that a user might get redirected to a page with the
wrong protocol or port when behind a load balancer!

Sniffing out the X-Forwarded-Proto, X-Forwarded-Scheme and/or X-Forwarded-Port header then
becomes important so that the web application can generate correct URLSs for redirects or for printing
out URLs in templates (think form actions, links to other site pages and links to static assets).

Trusted Proxies

Many frameworks, including Symfony and Laravel, can handle sniffing out the X-Forwarded-*
headers for you. However, they may ask you to configure a “trusted proxy®*”. If the request comes
from a proxy who’s IP address is trusted, then the framework will seek out and use the X-Forwarded-
* headers in place of the usual mechanisms for gathering that information.

This provides a very nice abstraction over this HTTP mechanism, allowing you to forget this is a
potential issue while coding!

However, you may not always know the IP address of your load balancers. This is the situation
when using some Cloud-provided load balancers, such as Rackspace’s load balancer or AWS’s Elastic
Load Balancer. In these situations, you must set your application to trust all proxies and their X-
Forwarded-* headers.

SSL Traffic

In a load balanced environment, SSL traffic is typically decrypted at the load balancer. Web traffic
is then sent to the web servers as “http” rather than “https”. This is the most common approach.

However, there’s actually a few ways to handle SSL traffic in a distributed environment.

SSL Termination

When the load balancer is responsible for decrypting SSL traffic before passing the request on, it’s
referred to as “SSL Termination”. In this scenario, the load balancer alleviates the web servers of the
extra CPU processing needed to decrypt SSL traffic. It also gives the load balancer the opportunity
to append the X-Forwarded-* headers to the request before passing it onward.

The downside of SSL Termination is that the traffic between the load balancers and the web servers is
not encrypted. This leaves the application open to possible man-in-the-middle attacks. However, this

*https://github.com/fideloper/TrustedProxy

https://github.com/fideloper/TrustedProxy
https://github.com/fideloper/TrustedProxy

Implications of Multi-Server Environments 182

is a risk usually mitigated by the fact that the load balancers are often within the same infrastructure
(data center) as the web servers. Someone would have to get access to traffic between the load
balancers and web servers by being within the data-centers internal network (possible, but less
likely), or by gaining access to a server within the infrastructure.

SSL Pass-Through

Alternatively, there is “SSL Pass-Through”. In this scenario, the load balancer does not decrypt the
request, but instead passes the request through to a web server. The web server then must decrypt
it.

This solution costs the web servers more CPU cycles, but this load is distributed amongst the web
servers rather than centralized at the load balancer(s).

You also may lose some extra functionality that load-balancing proxies can provide, such as DDoS
protection. However, this option is often used when security is an important concern, as the traffic
is encrypted until it reaches its final destination.

SSL Pass-Through prevents the addition of the X-Forwarded-* headers. Load balancers implement-
ing SSL Passthru need to operate at the TCP level rather than HTTP, as they can’t unencrypt the
traffic to inspect and identity the traffic as a HTTP request.

This means applications which need to know the client’s IP address or port will not receive it.
Therefore, the needs of your application may determine where an SSL connection is terminated.

Both

A third, less common, option is to use both styles of SSL encryption. In this scenario, the load balancer
unencrypts the SSL traffic and then adjusts the HTTP request, adding in the X-Forwarded- headers
or applying any other rules. It then sends the request oft to the web servers as a new HTTP request!

Amazon AWS load balancers give you the option of generating a (self-signed) SSL for use between
the load balancer and the web servers, giving you a secure connection all around. This, of course,
means more CPU power being used, but if you need the extra security due to the nature of your
application, this is an great option.

Note that when communicating between your load balancer and web servers, it’s perfectly OK to
use self-signed certificates. Only the public-facing SSL certificates need be purchased. You may want
to set up your own private certificate authority when doing so, however, so that your applications
don’t bulk at sending traffic to untrusted SSL certificates. This will allow you to make your code
trust your self-signed certificates.

Logs

So, now you have multiple web servers, but each one generates their own log files! Going through
each servers’ logs is tedious and slow. Centralizing your logs can be very beneficial.

Implications of Multi-Server Environments 183

The simplest ways I've done this is to combine Logrotate’s functionality with an uploaded to an S3
bucket. This at least puts all the log files in one place that you can look into. This covered in the
Logging chapter.

However, there’s plenty of centralized logging servers that you can install in your infrastructure
or purchase. The SaaS offerings in this arena are often easily integrated, and usually provide extra
services such as alerting, search and analysis.

Some popular self-install loggers:

LogStash®
Graylog2°®¢
+ Splunk®’
+ Syslog-ng®®
Rsyslog®

Some popular SaaS loggers:

« Loggly”™
Splunk Storm™

« Paper Trail”
+ logentries™

BugSnag’ - Captures errors, not necessarily all logs

“http://logstash.net/

“Shttp://graylog2.org

"http://www.splunk.com
https://wiki.archlinux.org/index.php/Syslog-ng
*https://wiki.archlinux.org/index.php/rsyslog
"https://www.loggly.com
"https://www.splunkstorm.com
"?https://papertrailapp.com
"https://logentries.com

"*https://bugsnag.com

http://logstash.net/
http://graylog2.org
http://www.splunk.com
https://wiki.archlinux.org/index.php/Syslog-ng
https://wiki.archlinux.org/index.php/rsyslog
https://www.loggly.com
https://www.splunkstorm.com
https://papertrailapp.com
https://logentries.com
https://bugsnag.com
http://logstash.net/
http://graylog2.org
http://www.splunk.com
https://wiki.archlinux.org/index.php/Syslog-ng
https://wiki.archlinux.org/index.php/rsyslog
https://www.loggly.com
https://www.splunkstorm.com
https://papertrailapp.com
https://logentries.com
https://bugsnag.com

Load Balancing with Nginx

Nginx can do more things than act as a web server. One of its other popular uses is to act as an
HTTP load balancer.

Here we’ll cover how to use Nginx as a Load Balancer before moving onto the more fully-featured
HAProxy.

Balancing Algorithms

One consideration when load balancing is configuring how you’d like the traffic to be distributed.
Load balancers often provide a variety of algorithms for load balancing. Nginx offers the following
strategies:

« Round Robin - Nginx chooses which server will fulfill a request in order they are defined.
This is the default, which is used if no strategy is explicitly defined. Round Robin is a good
“default” if you’re unsure which suits your needs.

+ Least Connections - Request is assigned to the server with the least connections (and
presumably the lowest load). This is best for applications with relatively long connections,
perhaps those using web sockets, server push, long-polling or HTTP request with long keep-
alive parameters.

« Ip-Hash - The Client’s IP address is hashed. The resulting hash is used to determine which
server to send the request to. This also effectively makes user sessions “sticky”. Subsequent
requests from a specific user always get routed to the same server. This is one way to get
around the issue of user sessions behaving as expected in a distributed environment. Hashes
are common if the load balancer is used as a cache server - if there are multiple cache servers,
this can result in a higher cache hit rate.

+ Generic Hash - A user-defined key can be used to distribute requests across upstream servers.

IP-Hash is not the only way to accomplish session stickiness (“session affinity”). You can also use a
sticky directive, which will tell Nginx what cookie to read to determine which server to use. That
will be covered below.

Weights

With all but Round Robin algorithm, you can assign weights to a server. Heavier-weighted servers
are more likely to be selected to serve a request. This is good if your stack has servers with uneven
amounts of resources - you can assign more requests to powerful servers. Another use case might
be to test application or server functionality - you can send small amounts of traffic to the server
with the experimental software and gauge its effectiveness before pushing it fully into production.

0 N O O & W N =

W W W W W WNDNDDNDNDNDNNDMNDNDDNDDNDDNDES =S s
Oa & O N 0 © 00 O Ok NSO © 0 N0 Ol d W N~ OO ©

Load Balancing with Nginx 185

Configuration

Let’s say we have three Node]S processes running, each listening for HTTP requests. If we want
to distribute requests amongst them. We can configure our Nginx to proxy HTTP requests to the
defined upstream servers (the NodeJS processes) like so:

File: /etc/nginx/sites-available/example - Example load balancing configuration

Define your "upstream" servers - the

servers request will be sent to

upstream app_example {
least_conn;
server 127.0.0.1:9000 max_fails=3 fail_timeout=30s;
server 127.0.0.1:9001 max_fails=3 fail_timeout=30s;
server 127.0.0.1:9002 max_fails=3 fail_timeout=380s;

Define the Nginx server
This will proxy any non-static directory
server

listen 80;

listen 443 ssli;

server_name example.com www.example.com;

access_log /var/log/nginx/example.com-access.log;
error_log /var/log/nginx/example.com-error.log error;

Browser and robot always look for these

Turn off logging for them

location = /favicon.ico { log_not_found off; access_log off; }
location = /robots.txt { log_not_found off; access_log off; }

You'll need to have your own certificate and key files
This is not something to blindly copy and paste

ssl_certificate /etc/ssl/example.com/example.com.crt;
ssl_certificate_key /etc/ssl/example.com/example.com.key;

Handle static files so they are not proxied to NodeJS
You may want to also hand these requests to another upstream
set of servers, as you can define more than one!
location / {
try_files $uri $uri/ @proxy;

36
37
38
39
40
41
42
43
44
45
46
47
48
49
90
o1

O O B W N~

Load Balancing with Nginx 186

pass the request to the node. js server
with some correct headers for proxy-awareness
location @proxy ({

include proxy_params;

proxy_set_header X-Forwarded-Port $server_port;

proxy_pass http://app_example/;
proxy_redirect off;

Handle Web Socket connections
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";

There’s quite a bit going on here! We’ll go over each section next.

Upstream

First, we defined the “upstream” block. This setup will proxy requests to the three Node]JS processes
which are setup to accept HTTP requests and respond to them.

upstream app_example {
least_conn;
server 127.0.0.1:9000 max_fails=3 fail_timeout=30s;
server 127.0.0.1:9001 max_fails=3 fail_timeout=30s;
server 127.0.0.1:9002 max_fails=3 fail_timeout=380s;

Here we use the least_conn balancing strategy. Generally I choose this or round-robin. Defining
no balancing algorithm will default to round-robin.

Then our three Node]JS servers are defined. Thse happen to be listening on localhost (127.0.01), but
in production, these will not necessarily be locally running listeners.

A typical setup would be to have other applications/servers listening for connections on their own
servers, usually over a private (not exposed to the public internet) network. Note that you can use
hostnames as well as unix sockets (e.g. unix: /path/to/socket) as well, instead of IP addresses.

© 00 39 O Ol b W N =~

B | s s s
O N O O b= W N~

Load Balancing with Nginx 187

Passive Health Checks

The above configuration uses some basic (“passive”) health checks. We set the max_fails directive,
which is the maximum number of times a server can be unresponsive before Nginx stops sending
traffic to that server. We also define fail_timeout, which is the amount of time a server will be
considered “failed” before trying to send traffic to it again. The fail_timeout directive will also
determine within how many seconds the max_files can be reached before the count is reset. This
is double duty, always set to the same number of seconds.

Active Health Checks

Nginx also has an “active” health check. Within the not-yet-discussed location block, we can add
the health_check directive to the location block. This will check the base url “/” for each of our
servers every 5 seconds. If a communication error occurs, a timeout is reached, or an HTTP response
of 400 and greater occurs, the health check will fail the proxied server, taking it out of the rotation.

Setting the passes parameter will tell Nginx that it needs to pass that many consecutive times before
being considered healthy again. You can also optionally set a URL to check via the uri parameter.

The health_check parameter requires the use of the zone backend 64k; directive in the upstream
block. This configuration sets 64k bits of shared memory for Nginx’s processes to use to track the
status of defined upstream servers.

An abbreviated look at how an active health check would look:

upstream app_example {
zone backend 64k;
least_conn;
server 127.0.0.1:9000 max_fails=3 fail_timeout=380s;

server 127.0.0.1:9001 max_fails=3 fail_timeout=30s;
server 127.0.0.1:9002 max_fails=3 fail_timeout=30s;

server
Other items omitted. ..
location @proxy {
health_check interval=5 fails=3 passes=2 uri=/some/path;

include proxy_params;

Other items omitted. ..

0 I O O & W N =~

Load Balancing with Nginx 188

Session Affinity

I always suggest writing your applications so they don’t require session affinity. This can usually be
accomplished by using cookie-based sessions storage or by using a central store that can be used to
store sessions, such as redis or memcached. This is discussed in a previous chapter which outlines
what to be aware of under a distributed environment.

If you need or prefer to have your load balancer send users to the save server in all cases (using
session affinity), you can! To do so, we can use the sticky directive:

upstream app_example {
zone backend 64k;
least_conn;
sticky cookie srv_id expires=ih;
server 127.0.0.1:9000 max_fails=3 fail_timeout=380s;
server 127.0.0.1:9001 max_fails=3 fail_timeout=30s;
server 127.0.0.1:9002 max_fails=3 fail_timeout=30s;

With this directive, Nginx will first select a server to send the traffic to when it receives a connection
without a set cookie. It will then insert a cookie into the response from that server. A client (such as
a browser) will save that cookie and return it in subsequent requests, which Nginx will use to map
the request to the same server as the original request.

Our applications can safely ignore the existence of this cookie, which I've named srv_id above.

Server

Next let’s look at the server block. A lot of this is simple boiler plate explained in the Nginx chapter.
The interesting things are the two location blocks.

The first block, as explained in the Nginx chapter, will attempt to find a matching static file or
directory. Failing that, it will send requests to the location block labeled @proxy, for the load
balancer to proxy.

9 This is a decision used just for demonstration. This example happens to proxy application
requests only. We can, and often will want to, have requests for static assets also proxied
to load balanced (upstream) servers.

Then we get to our more interesting location block - the one used to proxy requests for load
balancing:

Load Balancing with Nginx 189

location @proxy {
health_check;
include proxy_params;
proxy_set_header X-Forwarded-Port $server_port;

proxy_pass http://app_example/;

Handle Web Socket connections
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection "upgrade";

Proxy Params

We’ve discussed the health_check directive already. Let’s go onto include proxy_params. This
includes the file /etc/nginx/proxy_params, which has some proxy boiler plate we might want:

Sets the Host header to the original request

Sets the X-Real -Ip header to the client’s IP address

Sets the X-Forwarded-For header to the client IP’s address (same as above, but the two headers
are often used differently)

Sets the X-Forwarded-Proto header to the scheme used by the client (http or https)

In addition to the above, I like to add the X-Forwarded-Port header, so our web applications can
redirect to the proper port, if a non-standard one is used. I set this to $server_port, so it adjusts
based on if the request is received from an HTTP (port 443) connection or not.

Since 80 and 443 are standard ports, the X-Forwarded-Scheme header is usually enough for any
backend application to use to send redirect responses, but if a non-standard port was ever listened
on by Nginx, we can have the application rely on X-Forwarded-Port instead.

Proxy Pass

We have two proxy_* settings here. First, proxy_pass simply says to pass the request to our defined
backend app_example.

One option to explore (and left to its defaults here) is proxy_redirect. This can do some interesting

things.

Note above that we inject some headers into each request to our proxied servers (client IP address and
port). This is done so our application can do things like redirect to correct ones. The proxy_redirect
directive can help here as well, especially in cases where our application doesn’t properly redirect
for us.

© 00 39 O O b W N =~

U S YN
0 N 0O O b W N~

Load Balancing with Nginx 190

SSL Support

This setup uses SSL Termination. In this setup, we’ve setup the server block to listen on SSL’s port
443 in addition to port 80. The SSL request is decrypted at the Nginx server before the request is sent
(unencrypted at port 80) to the proxied servers. This is why it’s called “SSL Termination” - the SSL
connection is terminated at the Load Balancer.

The opposite is SSL Pass-Thru, in which the SSL connection is passed onto the proxied servers
without being unencrypted. Unlike HAProxy, which we’ll discuss in an upcoming chapter, Nginx
cannot do SSL Pass-Thru. SSL Pass-Thru must be done at the lower TCP layer, however Nginx only
operates on the higher-level HTTP.

How to setup an SSL connection within Nginx and Apache is the subject of the previous chapter,
but in terms of Nginx configuration, you can see that it’s fairly simply a matter of just pointing the
configuration in the direction of the SSL certificate and key file for the website domain:

ssl on;
ssl_certificate /etc/ssl/example.com/example.com.crt;
ssl_certificate_key /etc/ssl/example.com/example.com.key;

The NodeJS Application

If you want to see the test Node.js server’s, they are as follows. You can use the following in a
server. js file

File: /srv/server.js

var http = require('http');

function serve(ip, port)
{
http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'}); // Return a 200 resp)\
onse
res.write(JSON.stringify(req.headers)); // Respond with requ\
est headers
res.end("\nServer Address: "+ip+":"+port+"\n"); // Let us know the s\
erver that responded
}).listen(port, ip);
console.log('Server running at http://'+ip+':'+port+'/");

serve('127.0.0.1', 9000);
serve('127.0.0.1", 9001);
serve('127.0.0.1', 9002);

Load Balancing with Nginx 191

This listens for HTTP requests on 3 sockets, simulating three web servers for the Nginx load balancer
to use.

This “application” simply prints out the request headers received in the HTTP request, allowing us
to inspect the headers and other information the load balancer sends.

Load Balancing with HAProxy

While there are quite a few good options for load balancers, HAProxy has become a go-to Open
Source solution.

It’s used by many large companies, including GitHub, Stack Overflow, Reddit, Tumblr and Twitter.

HAProxy (High Availability Proxy) is able to handle a lot of traffic. Similar to Nginx, it uses a single-
process, event-driven model. This uses a low (and stable) amount of memory, enabling HAProxy to
handle a large number of concurrent requests.

Setting it up is pretty easy as well! We’ll cover installing and setting up HAProxy to load balance
between three sample NodeJS HTTP servers., just like we did in the Nginx chapter.

Common Setups

In a typical (production) setup, web servers such as Apache or Nginx will stand between HAProxy
and a web application. These web servers will typically either respond with static files or proxy
requests they receive off to a Node, PHP, Ruby, Python, Go, Java or other dynamic application that
might be in place.

Unlike Nginx, HAProxy can balance requests between any application that can handle HTTP or
even TCP requests. In this example, setting up three NodeJS web servers is just a convenient way to
show load balancing between three web servers. How HAProxy sends requests to a web server or
TCP end point doesn’t end up changing how HAProxy works!

0 If you’ve purchased the case studies as well, you can read one which covers TCP load
balancing to distribute traffic amongst MySQL read-servers in a replica setup.

Installation

We’ll install the latest HAProxy, 1.5.4 as of this writing. To do so, we can use the ppa : vbernat /haproxy -
1.5 repository, which will get us a recent stable release:

0 N O O & W N -

(]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Load Balancing with HAProxy 193

sudo add-apt-repository -y ppa:vbernat/haproxy-1.5
sudo apt-get update
sudo apt-get install -y haproxy

HAProxy Configuration

HAProxy configuration can be found at /etc/haproxy/haproxy.cfg. Here’s what we’ll likely see
by default:

global
log /dev/log localo@
log /dev/log locall notice
chroot /var/lib/haproxy
stats socket /run/haproxy/admin.sock mode 660 level admin
stats timeout 30s
user haproxy
group haproxy
daemon

Default SSL material locations
ca-base /etc/ssl/certs
crt-base /etc/ssl/private

Default ciphers to use on SSL-enabled listening sockets.

For more information, see ciphers(1SSL).

ssl-default-bind-ciphers kEECDH+aRSA+AES:kRSA+AES:+AES256:RC4-SHA: 'kEDH: 'LOW\
:TEXP: IMD5: IaNULL: 'eNULL

defaults
log global
mode http

option httplog

option dontlognull

timeout connect 5000

timeout client 50000

timeout server 50000

errorfile 400 /etc/haproxy/errors/400.http
errorfile 403 /etc/haproxy/errors/403.http
errorfile 408 /etc/haproxy/errors/408.http
errorfile 500 /etc/haproxy/errors/500.http
errorfile 502 /etc/haproxy/errors/502.http

33
34

Load Balancing with HAProxy 194

errorfile 503 /etc/haproxy/errors/503.http
errorfile 504 /etc/haproxy/errors/504.http

Here we have some global configuration, and then some defaults (which we can override as needed
for each server setup).

Within the global section, we likely won’t need to make any changes. Here we see that HAProxy
is run as the user/group haproxy, which is created during install. Running as a separate system
user/group provides some extra avenues for increasing security through user/group permissions.

Furthermore, the master process is run as root - that process then uses chroot to separate HAProxy
from other system areas, almost like running within its own container.

HAProxy also setes itself as running as a daemon (in the background).

The 1og directives don’t actually log to specific files. Instead, HAProxy uses rsyslog, which is
covered in the Log section of this book. This sends logs to the system logger, which is then responsible
for routing logs to the appropriate place.

We’ll cover HAProxy stats later, but this sets up some defaults for HAProxy to send statistics, useful
for monitoring,.

Within defaults section, we see some logging and timeout options. HAProxy can log all web
requests, giving you the option to turn off access logs in each web node, or conversely, turning logs
off at the load balancer while having them on within each web server (or any combination thereof).
Where you want your logs to be generated/saved/aggregated is a decision you should make based
on your needs.

If you want to turn off logging regular (successful) HTTP requests within HAProxy, add the
line option dontlog-normal. The dontlog-normal directive” will tell HAProxy to only log error
responses from the web nodes. Alternatively, you can simply separate error logs from the regular
access logs via the option log-separate-errors’® option.

Note that this puts HAProxy in http mode, which means it will operate as if received requests are
HTTP requests. HAProxy can also handle TCP requests, in which case a mode of tcp will be used.
These defaults can usually stay as they are, as they will be over-ridden as needed in the individual
server sections.

Load Balancing Configuration

To get started balancing traffic between our three HTTP listeners, we need to set some options within
HAProxy:

« frontend - where HAProxy listens for incoming connections

"*http://cbonte.github.io/haproxy-dconv/configuration- 1.5 html#4-option%20dontlog-normal
"Shttp://cbonte.github.io/haproxy-dconv/configuration- 1.5.html#4.2-option%20log-separate-errors

http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#4-option%20dontlog-normal
http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#4.2-option%20log-separate-errors
http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#4-option%20dontlog-normal
http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#4.2-option%20log-separate-errors

W N -

Load Balancing with HAProxy 195

+ backend - Where HAPoxy sends incoming connections to
« stats - Optionally, setup HAProxy web tool for monitoring the load balancer and its nodes

Here’s an example frontend:

frontend localnodes
bind *:80
mode http
default_backend nodes

This is a frontend, which I have arbitrarily named ‘localnodes’, since I'm running NodeJS processes
locally.

+ bind *:80 - I've bound this frontend to all network interfaces on port 80. HAProxy will listen
on port 80 on each available network for new HTTP connections

« mode http - This is listening for HTTP connections. HAProxy can handle lower-level TCP
connections as well, which is useful for load balancing things like MySQL read databases if
you setup database replication

o default_backend nodes - This frontend should use the backend named nodes, which we’ll
see next.

TCP is “lower level” than HTTP. HTTP is actually built on top of TCP, so every HTTP
connection is a TCP connection, but not every TCP connection is an HTTP request.

Next let’s see an example backend configuration:

backend nodes
mode http
balance roundrobin
option forwardfor
http-request set-header X-Forwarded-Port %[dst_port]
http-request add-header X-Forwarded-Proto https if { ssl_fc }
option httpchk HEAD / HTTP/1.1\r\nHost:localhost
server web®1l 172.0.0.1:9000 check
server web02 172.0.0.1:9001 check
server web@3 172.0.0.1:9002 check

This is where we configure the servers to distribute traffic between. I've named the backend “nodes”.
Similar to the frontend, the name is arbitrary. Let’s go through the options seen there:

+ mode http - This will pass HTTP requests to the servers listed

Load Balancing with HAProxy 196

+ balance roundrobin - Use the roundrobin’’ strategy for distributing load amongst the servers

« option forwardfor - Adds the X-Forwarded-For header so our applications can get the client’s
actual IP address. Without this, our application would instead see every incoming request as
coming from the load balancer’s IP address

+ http-request set-header X-Forwarded-Port %[dst_port] - We manually add the X-
Forwarded-Port header so that our applications knows what port to use when redirecting/-
generating URLs.

- Note that we use the dst_port’® “destination port” variable, which is the destination
port of the client’s HTTP request, not of the upstream (NodeJS in this example) servers.

e http-request add-header X-Forwarded-Proto https if { ssl_fc } - We add the X-
Forwarded-Proto header and set it to “https” if an SSL connection is used. Similar to the
forwarded-port header, this can help our web applications determine which scheme to use
when building URL’s and sending redirects (Location headers).

« option httpchk HEAD / HTTP/1.1\r\nHost:localhost - Set the health check URI which
HAProxy uses to test if the web servers are still responding. If these fail to respond, the server
is removed from HAProxy as one to load balance between. This sends a HEAD request with
the HTTP/1 .1 and Host header set, which might be needed if your web server uses virtualhosts
to detect which site to send traffic to.

e server web[01-03] 172.0.0.0:[9000-9002] check - These three lines add the web servers
for HAProxy to balance traffic between. It arbitrarily names each one webo1-web@3, then set’s
their IP address and port, and adds the check directive to tell HAProxy to health check the
server as directed by option httpchk.

Load Balancing Algorithms

Let’s take a quick minute to go over something important to load balancing - deciding how to
distribute traffic amongst the upstream servers. The following are a few of the options HAProxy
offers in version 1.5+:

Roundrobin: In the above configuration, we used the pretty basic roundrobin algorithm to distribute
traffic amongst our three servers. With roundrobin, each server is used in turn (although you can
add weights to each server). It is limited by design to “only” 4095 servers.

Weights™ default to 1, and can be as high as 256. Since we didn’t set one above, all have a
weight of 1, and roundrobin simply goes from one server to the next.

We can use sticky sessions with this algorithms. Sticky sessions are user sessions, usually identified
by a cookie, which helps HAProxy to always send requests to the same server for a particular client.

""http://cbonte.github.io/haproxy-dconv/configuration- 1.5.html#4.2-balance
"®http://cbonte.github.io/haproxy-dconv/configuration-1.5. html#7.3.3-dst_port
"http://cbonte.github.io/haproxy-dconv/configuration- 1.5 html#weight

http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#4.2-balance
http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#7.3.3-dst_port
http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#weight
http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#4.2-balance
http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#7.3.3-dst_port
http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#weight

O O b W N =~

Load Balancing with HAProxy 197

This is useful for web applications that use default session handling, which likely saves session data
on the server, rather than within a browser cookie or in a centralized session store such as redis or
memcached.

In that scenario, users must be returned to the same server on which they created their session
(“logged in”) in order to remain in that session.

To use sticky sessions, you can add a cookie SOME-COOKIE-NAME prefix directive into the backend
section. Then simply add the cookie parameter within each server. HAProxy will then append a
new cookie identifier for each server. This cookie will be sent back in subsequent requests from the
client, letting HAProxy know which server to send the request to. This looks like the following:

backend nodes
Other options above omitted for brevity
cookie SRV_ID prefix
server web@1 172.0.0.1:9000 check cookie web@1
server web02 172.0.0.1:9001 check cookie web@2
server web@3 172.0.0.1:9002 check cookie web@3

Q I suggest using cookie-based sessions or a central session store rather than default server
sessions if you have the option to do so within your web applications. Don’t rely on
requiring clients to always connect to the same web server to stay logged into your
application, as the mechanism can fail if cookies are modified in the browser and this

setup can distribute traffic unevenly.

static-rr: This is similar to the round-robin method, except you can’t adjust server weights on the
fly. In return, it has no design limitation on the number of servers, like standard round-robin does.

leastconn: The server with the lowest number of connections receives the connection. This is better
for servers with long-running connections (LDAP, SQL, TSE, web sockets, long polling), but not
necessarily for short-lived connections (regular HTTP).

uri: This takes a set portion of the URI used in a request, hashes it, divides it by the total weights
of the running servers and uses the result to decide which server to send traffic to. This effectively
makes it so the same server handles the same URI end points.

This is often used with proxy caches in order to maximize the cache hit rate.

Not mentioned, but worth checking out in the documentation are the remaining balancing
algorithms:

« rdp-cookie - Session stickiness for the RDP protocol
o first

+ source

« url_param

o hdr

0 N O O & W N -~

(o]

10
1
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

Load Balancing with HAProxy 198

Test the Load Balancer

Putting all those directives inside of the /etc/haproxy/haproxy.cfg file gives us a load balancer!

Here’s the complete configuration file at /etc/haproxy/haproxy.cfg:

global
log /dev/log local®
log /dev/log locall notice
chroot /var/lib/haproxy
stats socket /run/haproxy/admin.sock mode 660 level admin
stats timeout 30s
user haproxy
group haproxy
daemon

Default SSL material locations
ca-base /etc/ssl/certs
crt-base /etc/ssl/private

Default ciphers to use on SSL-enabled listening sockets.

For more information, see ciphers(1SSL).

ssl-default-bind-ciphers kEECDH+aRSA+AES:kRSA+AES:+AES256:RC4-SHA: 'kEDH:\
ILOW: !EXP: !MD5: 'aNULL : 'eNULL

defaults
log global
mode http
option httplog
option dontlognull
timeout connect 5000
timeout client 50000
timeout server 50000
errorfile 400 /etc/haproxy/errors/400.http
errorfile 403 /etc/haproxy/errors/403.http
errorfile 408 /etc/haproxy/errors/408.http
errorfile 500 /etc/haproxy/errors/500.http
errorfile 502 /etc/haproxy/errors/502.http
errorfile 503 /etc/haproxy/errors/503.http
errorfile 504 /etc/haproxy/errors/504.http

frontend localnodes
bind *:80

38
39
40
41
42
43
44
45
46
47
48
49
50
o1
52
53
54
29
56

Load Balancing with HAProxy 199

mode http
default_backend nodes

backend nodes
mode http
balance roundrobin
option forwardfor
http-request set-header X-Forwarded-Port %[dst_port]
http-request add-header X-Forwarded-Proto https if { ssl_fc }
option httpchk HEAD / HTTP/1.1\r\nHost:localhost
server web@1 172.0.0.1:9000 check
server web@2 172.0.0.1:9001 check
server web@3 172.0.0.1:9002 check

listen stats *:1936
stats enable
stats uri /
stats hide-version
stats auth someuser:password

You start/restart/reload start HAProxy with these settings. Below I restart HAProxy just because if
you’ve been following line by line, you may not have started HAProxy yet:

You can reload if HAProxy is already started
$ sudo service haproxy restart

Then start the Node server:

Example node server seen below

node /srv/server. js

O I’'m assuming the Node server is being run on the same server has HAProxy for this example
- that’s why all the IP addresses used are referencing localhost 127.0.0.1.

Then head to your server’s IP address or hostname and see it balance traffic between the three Node
servers. I broke out the first request’s headers a bit so we can see the added X-Forwarded-* headers:

O N O O & W N~

S =Y
<N O O WD r OO O

O = W N =

Load Balancing with HAProxy 200

{"host":"192.169.22.10",

"cache-control": "max-age=0",

"accept":"text/html ,application/xhtml+xml,application/xml;q=0.9, image/webp, */*;qg\
=0.8",

"user-agent":"Mozilla/5.@ (Macintosh; Intel Mac OS X 10_9_4) AppleWebKit/537.36 \
(KHTML, like Gecko) Chrome/35.0.1916.153 Safari/537.36",
"accept-encoding":"gzip,deflate,

sdch", "accept-language":"en-US,en;q=0.8",

"x-forwarded-port":"80", // Look, our x-forwarded-port header!
"x-forwarded-for":"172.17.42.1"} // Look, our x-forwarded-for header!

There's no place like ©0.0.0.0:9000 // Our first server, on port 9000

{"host":"192.169.22.10", ... }
There's no place like 0.0.0.0:9001 // Our second server, on port 9001

{"host":"192.169.22.10", ... }
There's no place like ©.0.0.0:9002 // Our third server, on port 9002

See how it round-robins between the three servers in the order they are defined! We also have the
x- forwarded- for and x- forwarded-port headers available to us, which our application can use

Monitoring HAProxy

You may have noticed the following directives which I haven’t discussed yet:

listen stats *:1936
stats enable
stats uri /
stats hide-version
stats auth someuser:password

HAProxy comes with a web interface for monitoring the load balancer and the upstream server
statuses. Let’s go over the above options:

« listen stats *:1936 - Use the listen directive, name it stats and have it listen on port
1936 for all network interfaces.

+ stats enable - Enable the stats monitoring dashboard
« stats uri / - The URI to reach it is just / (on port 1936)
« stats hide-version - Hide the version of HAProxy used

Load Balancing with HAProxy 201

« stats auth someuser :password - This uses HTTP basic authentication, with the set username
and password. In this example, the username is someuser and the password is just password.
Don’t use those in production - in fact, make sure your firewall blocks public, external HTTP
access to your configured port

When you head to your server and port in your web browser, here’s what the dashboard will look

like:

HAProxy
Statistics Report for pid 235

> General process information

active UP backup UP Display option: External resources:
pid = 235 (process #1, nbproc = 1) active UP, going down backup UP, going down + Scope: * Primary site
uptime = 0d 0h42m28s active DOWN, going up | | backup DOWN, going up + Undates (v1.5)
system limits: memmax = unlimited; ulimit-n = 4035) . g « Hide 'DOWN servers « Online manual
maxsock = 4035; maxconn = 2000; maxpipes = 0 active or backup DOWN | |not checked * Refrash now

current conns = 1; curent pipes = 0/0; conn rate = 1/sec active or backup DOWN for maintenance (MAINT)
Running tasks: 1/9; idle = 100 %

+ CSV export
active or backup SOFT STOPPED for maintenance

Note: "NOLB"/"DRAIN" = UP with load-balancing disabled.

Frontend 0 3 - 2 2000 29 13 553 23 470 0 0 1 OPEN

web01 o] o of 3 of 1 - 23| 6ms7s| 5685| 9455 0 0 of o o| 33ms7sUP L70K/200 in Oms 1 Y] - 3 1 10s
web02 o] o of 3 o 1 - 14| 6ms7s| 3104 5376 0 0 of o 0| 33ms8s UP 1Y [- 3| 1 8s
web03 o] o of 3 o 1 - 23| 6mses| 4764| 8451 0 0 of o 0| 33ms8s UP Y[- 3l 1 8s
Backend | 0| 0 of o o 1] 200 60| 6ms7s| 13553 23282] 0O 0 0 of o o| 33ms8s UP 3 3]0 1 8s
Frontend 1 2 - 1] 2] 2000 8 4864 219272| 0 of 1 OPEN
| Backend | o] of [o] o | o] o] 200] o] o os| 4864 219272] o0 of [of of of o] 42m8sUP | [o ToJ o] [o] [|
HAProxy Stats

0 The TP address 192.168.22.10 happened to be the IP address of my test server.

We can see the Frontend we defined under localhost (actually named localnodes in the configu-
ration above). This section shows the status of incoming requests.

There is also the nodes section (the name I chose for the defined backend section), our defined
backend servers. Each server here is green, which shows that they are “healthy”. If a health check
fails on any of the three servers, then it will display as red and it won’t be included in the rotation
of the servers.

Finally there is the stats section, which just gives information about the stats page that shows this
very information.

Sample NodeJS Web Server

To keep this example simple, we’ve use a previously mentioned Node]JS application, which just opens
up three HTTP listeners on separate ports:

W N O O & W N =~

U S YN
0 3 0 O b ON =~ O

Load Balancing with HAProxy 202

File: /srv/server.js

var http = require('http');

function serve(ip, port)

{
http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
res.write(JSON.stringify(req.headers));
res.end("\nThere's no place like "+ip+":"+port+"\n");
}).listen(port, ip);
console.log('Server running at http://'+ip+': '+port+'/");
}

// Create three servers for

// the load balancer, listening on any
// network on the following three ports
serve('0.0.0.0', 9000);
serve('0.0.0.0', 9001);
serve('0.0.0.0', 9002);

We bounced traffic between these three web servers with HAProxy. This “application” simply
responds to any HTTP request with the IP address/port of the server, along with the request headers
received in the HTTP request.

SSL with HAProxy

If your application makes use of SSL certificates, then some decisions need to be made about how
to use them with the a load balancer.

A simple setup of one web server usually sees a client’s SSL connection being unencrypted by the
server receiving the request. However, a load balancer will usually be a “gateway” into an application
- it is a central point into which all (most) traffic goes, before being distributed to upstream servers.
Because of this, where an SSL connection is unencrypted becomes a concern.

As previously discussed, there are a few strategies for handling SSL connections with load balancers:

SSL Termination is the practice of terminating/decrypting an SSL connection at the load balancer,
and sending unencrypted connections to the backend servers.

This is the opposite of SSL Pass-Through, which sends SSL connections directly to the proxied
servers. The SSL connection is terminated at each proxied server.

This means your application servers will lose the ability to get the X-Forwarded-* headers, which
may include the client’s IP address, port and scheme used.

Lastly, you can use a combination of both strategies, where SSL connections are terminated at
the load balancer, adjusted as needed, and then proxied off to the backend servers as a new SSL
connection.

Which strategy you choose is up to you and your application needs. SSL Termination is the most
typical.

HAProxy with SSL Termination

We'll cover the most typical use case first - SSL Termination. As stated, we need to have the load
balancer handle the SSL connection. This means having the SSL Certificate live on the load balancer
server.

We saw how to create an SSL certificate in a previous chapter. We’ll re-use that information for
setting up a self-signed SSL certificate for HAProxy to use.

A Keep in mind that for a production SSL Certificate (not a self-signed one), you won’t
need to generate or sign the certificate yourself - you’ll just need to create a Certificate
Signing Request (CSR) and pass that to whomever you purchase a certificate from. After a
verification process, you’ll receive a valid SSL certificate which you can install in the same

way we’ll do in this chapter.

0 N O O b W N =

I G S G G G Wi G G
© © 0O 1 O O b W N~ O O

SSL with HAProxy 204

In this chapter, we’ll create a self-signed certificate for *.xip. io, which is handy for demonstration
purposes, and lets use one the same certificate when our server IP addresses might change while
testing locally. For example, if our local server exists at 192.168.33.10, but our server’s IP changes to
192.168.33.11, then we don’t need to re-create the self-signed certificate.

I use the xip. io service as it allows us to use a hostname rather than directly accessing
the servers via an IP address, all without having to edit my computers’ Host file. See
chapter “DNS & Hosts File” for more information.

The process of creating an SSL certificate is covered in a previous chapter, so I'll just show the
commands to create the self-signed SSL certificate:

$ sudo mkdir /etc/ssl/xip.io

$ sudo openssl genrsa -out /etc/ssl/xip.io/xip.io.key 2048

$ sudo openssl req -new -key /etc/ssl/xip.io/xip.io.key \
-out /etc/ssl/xip.io/xip.io.csr

Country Name (2 letter code) [AU]:US

State or Province Name (full name) [Some-State]:Connecticut
Locality Name (eg, city) []:New Haven

Organization Name (eg, company) [Internet Widgets Pty Ltd]:SFH
Organizational Unit Name (eg, section) []:

Common Name (e.g. server FQDN or YOUR name) []:*.xip.io

Email Address []:

Please enter the following 'extra' attributes to be sent with your certificate r\
equest
A challenge password []:
An optional company name []:
$ sudo openssl x509 -req -days 365 -in /etc/ssl/xip.io/xip.io.csr \
-signkey /etc/ssl/xip.io/xip.io.key \
-out /etc/ssl/xip.io/xip.io.crt

This leaves us with axip.io.csr, xip.io.key and xip.io.crt files in the /etc/ss1/sfh directory.

Q If you’re purchasing an SSL certificate, skip the last step, as you’ll receive certificate files
from the registrar of your purchased SSL certificate.

After the certificates are created, we need to create a .pem file. A .penm file is essentially just the
certificate, the key and optionally the root and any intermediary certificate authorities concatenated
into one file. Because we are generating a self-signed certificate, there are no certificate authorities

B W N -

O = W N =

SSL with HAProxy 205

in play, and so we’ll simply concatenate the certificate and key files together (in that order) to create
axip.io.pen file.

Using one concatenated file for the SSL certificate information is HAProxy’s preferred way to read
an SSL certificate:

$ sudo cat /etc/ssl/xip.io/xip.io.crt /etc/ssl/xip.io/xip.io.key \
> /etc/ssl/xip.io/xip.1i0.pem

Q When purchasing a real certificate, you might get a concatenated “bundle” file. If you do, it
might not be a pem file, but instead be a bundle, cert, cert, key file or some similar name
for the same concept. You’ll need t inspect the files or follow instructions provided for you

to find out which you receive.

If you do not receive a bundled file, you may have to concatenate them yourself in the
order of certificate, private key, any intermediaries certificate authority (CA) certificates
and lastly the root CA certificate.

This Stack Overflow answer® explains some certificate file-formats nicely.

In any case, once we have a .pen file for HAproxy to use, we can adjust our configuration just a bit
to handle SSL connections.

We’ll setup our application to accept both http and https connections. In the previous section, we
defined this frontend:

File: /etc/haproxy/haproxy.cfg

frontend localnodes
bind *:80
mode http
default_backend nodes

To terminate an SSL connection in HAProxy, we can now add a binding to the standard SSL port
443, and let HAProxy know where the SSL certificates are:

frontend localhost
bind *:80
bind *:443 ssl crt /etc/ssl/xip.io/xip.io.pem
mode http
default_backend nodes

In the above example, we're using the backend “nodes”. The backend, luckily, doesn’t really need to
be configured in any particular way. We can configure a backend as we normally would:

http://serverfault.com/questions/9708/what-is-a-pem-file-and-how-does-it- differ-from-other-openssl- generated-key-file

http://serverfault.com/questions/9708/what-is-a-pem-file-and-how-does-it-differ-from-other-openssl-generated-key-file
http://serverfault.com/questions/9708/what-is-a-pem-file-and-how-does-it-differ-from-other-openssl-generated-key-file

O O b W N =~

SSL with HAProxy 206

backend nodes
mode http
balance roundrobin
option forwardfor
option httpchk HEAD / HTTP/1.1\r\nHost:localhost
http-request set-header X-Forwarded-Port %[dst_port]
http-request add-header X-Forwarded-Proto https if { ssl_fc }
server web®1 172.17.0.3:9000 check
server web02 172.17.0.3:9001 check
server web03 172.17.0.3:9002 check

Because the SSL connection is terminated at the Load Balancer, we're still sending regular HTTP
requests to the backend servers. We don’t need to change this configuration, as it works the same!

SSL Only
If you’d like the site to be SSL-only, you can add a redirect directive to the frontend configuration:

frontend localhost
bind *:80
bind *:443 ssl crt /etc/ssl/xip.io/xip.io.pem
redirect scheme https if !{ ssl_fc }
mode http
default_backend nodes

Above, we added the redirect directive, which will redirect from “http” to “https” if the connection
was not made with an SSL connection. More information on ss1_fc is available in the documenta-
tion®'.

HAProxy with SSL Pass-Through

With SSL Pass-Through, we’ll have our backend servers handle the SSL connection, rather than the
load balancer.

The job of the load balancer then is simply to proxy a request off to its configured backend servers.
Because the connection remains encrypted, HAProxy can’t do anything with it other than redirect
a request to another server.

In this setup, we need to use TCP mode over HTTP mode in both the frontend and backend
configurations. HAProxy will treat the connection as just a stream of information to proxy to a
server, rather than use its functions available for HTTP requests.

First, we’ll tweak the frontend configuration:

#http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#7.3.4-ssl_fc

http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#7.3.4-ssl_fc
http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#7.3.4-ssl_fc
http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#7.3.4-ssl_fc

O O b W N -

N O O B W N =

SSL with HAProxy 207

frontend localhost
bind *:80
bind *:443
option tcplog
mode tcp
default_backend nodes

This still binds to both port 80 and port 443, giving the opportunity to use both regular and SSL
connections.

As mentioned, to pass a secure connection off to a backend server without encrypting it, we need to
use TCP mode (mode tcp) instead. This also means we need to set the logging to tcp instead of the
default http (via option tcplog). There is more information about the difference between teplog
and httplog log formats in the documentation®.

Next we need to tweak our backend configuration. we once again need to change this to TCP mode,
and we remove some directives to reflect the loss of ability to edit/add HTTP headers:

backend nodes
mode tcp
balance roundrobin
option ssl-hello-chk
server web@1 127.0.0.1:9000 check
server web@2 127.0.0.1:9001 check
server web02 127.0.0.1:9002 check

As you can see, this is set to mode tcp - Both frontend and backend configurations need to be set to
this mode.

We also remove option forwardfor and the http-request options - these can’t be used in TCP
mode as we're not reading it as an HTTP request. We can’t read or inject headers into a request
that’s encrypted.

Q Keep in mind the pitfalls of using SSL Pass-Thru as discussed in previous chapters. Your

application may require the actual client information (IP address) for certain functionality,

but instead receive the load balancer’s information when using SSL Pass-Thru. We can’t

inject the X-Forwarded-* headers using this method, so any client-specific logging and
functionality (perhaps throttling) would need to be done at the load-balancer.

For health checks, we can use ss1-hello-chk which checks the connection as well as its ability to
handle SSL (SSLv3 specifically by default) connections.

#?http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#8.2

http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#8.2
http://cbonte.github.io/haproxy-dconv/configuration-1.5.html#8.2

© 00 39 O O b W N =~

NN NN N S 1 |l s s s
B WO N A, O © 03O0 O b W NN~

SSL with HAProxy 208

In this example, I have three fictitious server backend that accept SSL certificates. If you’ve read
the chapter “SSL Certificates”, you can see how to integrate them with Apache or Nginx in order to
create a web server backend which handles SSL traffic. In this example, I use a Node]S server, which
listens for SSL traffic on ports 9000-9002.

With SSL Pass-Through, no SSL certificates need to be created or used within HAProxy. The backend
servers can handle SSL connections just as they would if there was only one server used in the stack
without a load balancer.

Sample NodeJS Web Server

If you want to test SSL Pass-Thru with a sample Node]S server, we can do that as well. I tested the
SSL Pass-Thru section with the following Node]S server, and ran it on the same server as HaProxy.
Note that you don’t need to listen on port 443 to use SSL certificates:

File: /srv/server.js

var https = require('https');
var fs = require('fs');

var options = {
key: fs.readFileSync('/etc/ssl/xip.io/xip.io.key'),
cert: fs.readFileSync('/etc/ssl/xip.io/xip.io.crt')

b

function serve(ip, port)

{
https.createServer(options, function (req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
res.write(JSON.stringify(req.headers));
res.end("\nThere's no place like "+ip+":"+port+"\n");
}).listen(port, ip);
console.log('Server running at http://'+ip+':'+port+'/"');
}

// Create three servers for

// the load balancer, listening on any
// network on the following three ports
serve('0.0.0.0', 9000);
serve('0.0.0.0', 9001);
serve('0.0.0.0', 9002);

SSL with HAProxy 209

We bounced traffic between these three web servers with HAProxy. This “application” simply
responds to any HTTPS request with the IP address/port of the server, along with the request headers
received in the HTTPS request.

Web Cache

A large portion of the HTTP protocol RFC2616*° defines various cache mechanisms available to us.
Knowing these mechanisms and how to implement them is a valuable asset to web programming.

If you are not familiar with HTTP cache mechanisms, Mark Nottingham has written a great primer
on web caching®*.

In the following chapters, we’ll briefly cover some caching “theory”. Then we’ll concentrate on how
to make use of HTTP caching in Nginx and Varnish.

Shttp://www.w3.org/Protocols/rfc2616/rfc2616.html
84https://www.mnot.net/cache_docs/

http://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.mnot.net/cache_docs/
https://www.mnot.net/cache_docs/
http://www.w3.org/Protocols/rfc2616/rfc2616.html
https://www.mnot.net/cache_docs/

Nuts and Bolts of HTTP Caching

In the world of web application development, we generally talk about two types of caches:

1. Object (in-memory) Cache
2. Web (HTTP) Cache

Object Caches

Applications use an object cache to store the result of expensive operations. Object caches can store
the results of slow database queries or expensive calculations.

Two of the most popular object caches are Memcached and Redis.

We will not be discussing object caches in this section.

Web Caches

Web caching is built into the HTTP protocol. Any HTTP client and server can implement all or part
of the HTTP caching specification.

Interestingly, HTTP clients (your browser, the curl cli command, code consuming an API) are
responsible for a good portion of caching.

The clients are responsible for implementing caching rules set by an origin server. The origin server
is responsible for setting the rules.

There are three main types of web caches:

 Proxy - A proxy cache is a public, shared cache often employed by an ISP or large corporation.
Because they are employed at a high-level, they can (and do) cache thousands of various
websites.

« Gateway (reverse-proxy) - Similar to in-app caches, Gateway caches are part of your
infrastructure. They sit in front of your web-server and act much in the same way of proxy
cache. Private caches, however, are for your application(s) only. Similar to a load balancer,
they are technically a reverse proxy. Varnish is a gateway cache.

« Private - Private caches are unique to a specific user. They live on the client-end. Your browser
is a private cache; it will cache responses unique to the sites you visit based on the rules set
by the origin server.

Nuts and Bolts of HTTP Caching 212

In this book, we’ll be discussing the installation and use of Gateway caches. These are also called
reverse-proxy caches.

0 A resource is a URL The URI may point to a file, a directory, or to a dynamic application.
Any URI, with or without query parameters, is a resource.

An origin server is the server which contains the resource requested. These may be
images, css files, javascript, or the results of dynamic requests.

The origin server typically defines how the resource is to be cached via HTTP response
headers.

Types of HTTP Caches

The HTTP specification defines 2 methods of HTTP caching.

Validation Caching

Validation caching requires that clients validate if a resource has changed before serving it. This
potentially saves bandwidth, but still requires an HTTP request be sent all the way to the origin
server.

Validation Caching is often used by our browsers without us meaning to. ETags or
similar headers may be turned on for files handled by your web server after a default
installation with no configuration. We web developers often want to use Expiration
Caching instead.

They do this by sending an HTTP request to the origin server asking if the resource was modified
since it last checked.

If the resource has not changed, the origin server does not need to reply with a full message body
(with the full resource). A bodyless HTTP response with only headers is sent back. This let’s the
client know to use the last version of the resource downloaded. This of course assumes the client
has saved the resource the last time it received it.

Accomplished with if-* headers (If-None-Match, If-Modified-Since, etc), validation caching is
primarily used for 2 things:

1. Conditional GET - A server can tell the request ‘nothing has changed since you last checked’.
This is great for mobile APIs where the bandwidth of re-sending a message body can be
expensive.

Nuts and Bolts of HTTP Caching 213

2. Concurrency Control - In a POST or PUT request, a server can check if the resource was
changed since the requester last checked. This helps solve the “Lost Update Problem” where
the last write may overwrite a previous write to a resource. Think of two people opening the
same Word document. The last person to hit save will overwrite the previous person. This is
good for APIs with a lot of writes (updates) to resources.

With validation caching, a request is always sent to the origin server. The origin server can determine
if the resource has changed and either send a full response or a 304 Not Modi fied response in return.

This saves in bandwidth rather than server processing.

Expiration Caching

This is the caching we're most familiar with. Expiration headers tell HTTP clients how long a
resource (file) can be considered “fresh”.

After this time period, a resource is considered “stale”. The client keeps track of this and therefore
knows it must re-download the resource from the origin server. The resource can be re-cached for
the time defined by the returned HTTP headers.

Rather than just bandwidth, this saves any HTTP requests from having to be made to the origin
server. A cache (or client private cache) can serve a response directly. This saves the origin server
from processing extra requests.

Expiration rules are set with the Age, Expires, Cache-Control, Date and related headers.

An Origin Server

In the remaining chapters, we’ll see how to install and configure HTTP cache servers.

Before we do, let’s explore setting up an origin server to properly serve static assets. An origin server
can be any old web server.

We’ll use Nginx to to see how to configure a web server to support validation and expiration cache
mechanisms.

Cache servers sit between a client and the origin servers. Origin servers are responsible for setting
cache policy. They return validation and expiration cache information via HTTP response headers.

Cache servers will use this policy to determine when and how to cache files.

For validation caching, the cache server will send a request to the origin server to check if the
resource has changed. If it has not, the cache server will respond with its cached copy of the resource.

For expiration caching, the cache server will store files for as long as it’s permitted. It will respond
with its cached version of a resource until that resource becomes stale (expires).

Testing Caching Mechanisms

We'll test out our origin server which, as stated, happens to be Nginx. Note that the following
examples are showing caching mechanisms between a client (curl requests I'll make on the command
line) and the origin server (Nginx).

Our goal is to configure the origin server, which must be configured properly before we add in a
proxy cache such as Varnish.

We'll send requests for a CSS file as an example.

Validation Caching

Valiation caching mechanisms are easy to test with a tool such as curl.

Here we’ll request a CSS file and view the response.

© © 00 N O O b W N =~

N

O© 00 9 O O b W N =

An Origin Server 215

Making requests on fresh install of Nginx - no extra configuration

$ curl -1 http://localhost/static/css/styles.css
HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Fri, 24 Oct 2014 00:30:59 GMT

Content-Type: text/css

Content-Length: 11767

Last-Modified: Tue, 24 Dec 2013 16:37:55 GMT
Connection: keep-alive

ETag: "52b9b863-2dfT7"

Accept-Ranges: bytes

The response contains an ETag. ETags are generated based on the contents of a file. If a file changes,
the ETag returned by the origin server will be changed.

Let’s play with Validation Caching mechanisms and see if Nginx implements them.

Using Etags and If-None-Match to test Validation Caching

$ curl -1 \
-H 'If-None-Match: "52b9b863-2df7""' \
http://localhost/static/css/styles.css
HTTP/1.1 304 Not Modified
Server: nginx/1.6.2
Date: Fri, 24 Oct 2014 00:31:44 GMT
Last-Modified: Tue, 24 Dec 2013 16:37:55 GMT
Connection: keep-alive
ETag: "52b9b863-2dfT7"

We asked Nginx to return the CSS file if it is not modified. We supplied an ETag, which is the string
given to use when we first requested the CSS file.

Since the ETag we gave still matches the one Nginx generates for the file, Nginx can say that the
requested CSS file has not been modified since the last time the client asked for it.

We can see that Nginx responded with a 304 Not Modified response as expected!

Next we’ll test date-based Validation Caching:

©O© 00 N O O & W N =

0 = O O b W N =~

_ e o
W N =~ OO O

14
15

An Origin Server 216

Validation caching with dates over ETags

$ curl -1 \
-H 'If-Modified-Since: Tue, 24 Dec 2013 16:37:55 GMT' \
http://localhost/static/css/styles.css

HTTP/1.1 304 Not Modified

Server: nginx/1.6.2

Date: Fri, 24 Oct 2014 00:37:06 GMT

Last-Modified: Tue, 24 Dec 2013 16:37:55 GMT

Connection: keep-alive

ETag: "52b9b863-2df7"

Rather than use an ETag, we asked if the file has been modified since a given date. Once again, we
get a 304 Not Modified response. The file was not modified since the given date!

Expiration Caching

We can’t test Expiration Caching in exactly the same way, as it’s up to the client to handle the
expiration cache policy. The origin server only gives resource expiration information.

We can, however, ensure that the origin server is sending us proper cache headers.

By default, Nginx won’t set cache expiration headers. This is something we need to define ourselves.

I take the following expiration configuration from H5BP’s Nginx Server Configuration® repository:

Adding cache headers for static assets in Nginx configuration

cache.appcache, your document html and data
location ~* \.(?:manifest|appcachelhtml?|xml|json)$ {
expires -1;

Feed

location ~* \.(?:rss|latom)$ {
expires 1h;
add_header Cache-Control "public";

Media: images, icons, video, audio, HTC

location ~* \.(?:jpgljpeglgiflpnglicolcurlgzl|svglsvgz|mp4|ogglogv|webm|htc)$ {
expires 1M;
access_log off;

85https://github.com/h5bp/server-configs-nginx

https://github.com/h5bp/server-configs-nginx
https://github.com/h5bp/server-configs-nginx

16
17
18
19
20
21
22
23
24

0 N O O & W N =

[N
W N~ O

An Origin Server 217

add_header Cache-Control "public";

CSS and Javascript
location ~* \.(?:cssljs)$ {
expires 1y;
access_log off;
add_header Cache-Control "public";

You can add the above to your Nginx site configuration.

Note that we’re telling the server that files ending in . xm1, . json, .html and other extensions aren’t
to be cached. You're free to change this for your needs.

Other files have their cache-control set to public, effectively meaning any cache is allowed to
store the file. The expiration time is then set separately per resource type. Some files expire in one
month, while others expires in one year.

H5BP tends to cache static assets for a long time, assuming you’ll use some kind of cache
busting mechanism, such as appending a query string at the end of the file. For example
styles.css?1234567890 is cached as a separate file from styles.css?09876543221.

Once the configuration is added and we reload Nginx, we can test the responses we get:

Testing for expiration cache headers

$ curl -1 http://localhost/static/css/styles.css
HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Fri, 24 Oct 2014 ©1:13:43 GMT
Content-Type: text/css

Content-Length: 11767

Last-Modified: Tue, 24 Dec 2013 16:37:55 GMT
Connection: keep-alive

ETag: "52b9b863-2dfT7"

Expires: Sat, 24 Oct 2015 01:13:43 GMT
Cache-Control: max-age=31536000
Cache-Control: public

Accept-Ranges: bytes

Now we have cache expiration headers along with our Etag. Our Cache-Control header informs us
that this file can be cached by public caches, and it has a max-age of 31536000 seconds (1 year).

An Origin Server 218

Now that we have both cache methods enabled, our web server is setup enough to use with HTTP
cache servers.

Q Modern browsers will prefer expiration caching. Validation caching is typically used if no
expiration information is present. If you wish to have clients use validation caching mecha-
nisms, the Cache-Control: no-cache header should be set and the Etag or Last-Modi fied

headers should be present in responses.

Nginx Web Caching

Nginx is a very capable web cache. There are two things to know about Nginx:

+ Nginx can serve static content (directly) very, very efficiently
« Nginx can also act as a “true” cache server when placed in front of application servers, just
like you might with another cache server, such as Varnish

Many administrators reach for Varnish before it’s really needed. While Varnish is a pure web cache
with more cache features, Nginx may still be a perfect match for you.

If your traffic warrants adding a layer of infrastructure for caching, but not the overhead of
introducing new technologies, Nginx might be a better fit.

This is especially true if you happen to use Nginx Plus, which comes with support and extra features.

Use Cases

Nginx handles static content well on it’s own. This is a typical use case of a web server, rather than
a cache server. However, since Nginx can proxy requests to other web servers or to applications (via
HTTP, FastCGI and uWSGI), it’s commonly used to increase performance for serving static files
while proxying application requests to other processes.

Nginx can act as a static file server, a reverse proxy for web application and a load balancer. In
addition to this, it can act as an HTTP cache server.

A benefit of Nginx is that these features are not necessarily mutually exclusive.

The following use-cases are popular for Nginx caching:

« Nginx can act as a “classic” HTTP cache server, sitting in front of another web server. It can
intercept all requests, and then pass requests to the origin server if needed.

- Nginx caching can be used in conjunction with a load balancer. In other words, Nginx
can act as the load balancer and cache server all at once.

+ Nginx can also cache the results of requests proxied to FastCGI and uWSGI processes! This
usually means caching the results of application requests. A good use case is to cache the
results of requests made to a CMS. The frontend seen by the public is typically “static” while
the administrative area is typically dynamic.

In the example here, we’ll put an Nginx cache server in front of another nginx web server. To be
clear: there will be two instances of Nginx running, rather than one instance performing double
duty.

Nginx Web Caching 220

How It Will Work

Origin Servers are the servers that have the actual static files or dynamically generated HTML. They
have two responsibilities:

« Serve the dynamic and static content when requested

+ Decide how files (and potentially dynamic content) should be cached, via the HTTP cache
headers

Conversely, the Cache Server is the “frontman”. It receives the intial HTTP request from a client. It
then either returns a cached copy of the resource or passes the request off to the Origin server.

If the request is sent to the origin server, the origin’s resonse headers are read by the cache server
to determine if the response should be cached or simply passed through.

0 Some larger web applications use load balancers in addition to cache servers, resulting in
a highly layered infrastructure. For example, a load balancer may get the original request
from a client, then pass it to the web cache, where it may or may not finally reach an origin

server.

Responsibilities of the Cache Server:

Determine if HTTP request will accept a cached response

Determine if there is a fresh item in the cache to respond with

Send HTTP request to the origin server if a stale resource is requested

Respond to a request from its cache or from the origin server as approprtiate

Our last actor here is the Client. Clients can have their own local (private) cache.

A client which implements a local cache has the following responsibilities:

+ Sending requests
+ Caching responses
+ Deciding to pull requests from local cache or making HTTP request to retrieve them

Origin Server

The origin server is ultimately responsible for serving files and controlling how files are to be cached.

In the previous chapter, we covered setting up Nginx to act as an origin server. We’ll pretend this
server is up an running, listening on port 9000. Its configuration might look something like this:

1
2
3
4
S
6
7
8

9
10
1
12
13
14
15
16
17
18
19
20
21
22

Nginx Web Caching 221

server {
listen 9000 default_server;
root /var/www/;

index index.html index.htm;
server_name example.com www.example.com;
charset utf-8;

Include H5BP cache expiration
headers for static assets

include h5bp/basic.conf;

location / {
try_files $uri $uri/ @proxy;

location @proxy {
include proxy_params;
proxy_pass http://127.0.0.1:8080;

}

This origin server will serve static files and proxy to a web application listening on port 8080.

Next we’ll setup another instance of Nginx to act as a cache server. This cache server will receive
requests before the origin server. It will decide whether or not to pass them off to the origin server.

Cache Server

The origin server is setup, but we need to implement a cache server to sit “in front of” the origin
server.

In the scenario here, the Cache Server will be the web server receiving requests. It will pass HTTP
requests off to the origin server if caching rules dictate so.

The following Nginx configuration is not implementing any caching yet. It will simply proxy
requests to the origin server:

© 00 39 O O & W N =~

Nginx Web Caching 222

server {
Note that it's listening on port 80
listen 80 default_server;

server_name example.com www.example.com;
charset utf-8;

location / {
include proxy_params;
proxy_pass http://172.17.0.18:9000;

This will listen for requests on port 80, and proxy all of them to the origin server listening on port
9000.

The Cache server I setup for testing is listening on 172.17.0.13:80. The origin server
as listening on 172.17.0.18:9000.

If we make a request on our cache server, we’ll see exactly what we’d see as if we hit the origin server
itself. This is because the cache server is currently not caching. It’s just passing requests through:

$ curl -X GET -1 172.17.0.13/css/style.css
HTTP/1.1 200 OK

Server: nginx/1.4.6 (Ubuntu)

Date: Fri, 05 Sep 2014 23:30:07 GMT
Content-Type: text/css

Last-Modified: Fri, @5 Sep 2014 22:46:39 GMT
Expires: Sat, 05 Sep 2015 23:30:07 GMT
Cache-Control: max-age=31536000
Cache-Control: public

Now let’s add the necessary items to have Nginx cache responses from the origin server. The
following is the same virtual host we saw above, defined on the cache server. However I've added
the cache directives needed by Nginx to act as a cache server:

O N O O & W N~

U U S G
0 90 O b WON -~ O

Nginx Web Caching 223

proxy_cache_path /tmp/nginx levels=1:2 keys_zone=my_zone:10m inactive=60m;
proxy_cache_key "$scheme$request_method$host$request_uri";

server {
listen 80 default_server;

server_name example.com www.example.com;
charset utf-8;

location / {
proxy_cache my_zone;

add_header X-Proxy-Cache $upstream_cache_status;

include proxy_params;
proxy_pass http://172.17.0.18:9000;

Let’s cover the new items here.
proxy_cache_path

This first sets the path to where cache files are saved. The /tmp is usually world-writable, so that
makes for an obvious location. The more security concious may create and specify a location that
only Nginx can read and write to, however. In Debian/Ubuntu, this involves making a directory
writable by user or group www-data.

The levels directive sets how cache files are saved to the file system. If this is not defined, cache
file are saved directly in the path defined. If it is defined as such (1:2), cache files are saved in
sub-directories of the cache path based on their md5 hashes.

The keys_zone is simply an arbitrary name of the “zone” which we refer to for this cache. Here it’s
named my_zone and is given 10MB of storage for cache keys and other meta data.

Note that this doesn’t limit the amount of files that can be cached! It’s just for meta data.
The documentation claims that a 1MB zone can store ~8000 keys and meta data.

Finally we set the inactive directive. This tells Nginx to clear the cache of any asset that’s not
accessed within 60 minutes. The inactive directive defaults to 10 minutes if it is not explicitly set.

9 Note that 60m for inactive is 60 minutes, while 1@m for keys_zone is 10 megabytes.

©O© 00 N O U b W N =

Nginx Web Caching 224

Using inactive gives Nginx the opportunity to “forget” about cached assets which are not commonly
requested. This way Nginx caching gives the most bang for your buck. The most requested resources
stay in the cache and follow HTTP cache rules as directed by the Origin Server.

proxy_cache_key

This is the key we use to differentiate cached files. The default is $scheme$proxy_hosturiis_-
args$args, but we can change it if needed.

This can be set to something like "$host$request_uri $cookie_user" (with quotes) as well to
incorporate cookies.

Cookies do affect caching, so be careful of your treatment with them! You may accidentally end up
with a file being cached in duplicate per indivisual cookie (effectively per site visitor).

This means that incorporating cookies into the cache key does reduce the effectiveness of the cache.
A cache per user is the purpose of a private cache (a web browser) rather than the “public” cache
server we're building here. However there may be use cases in which you want to incorporate
cookies. The option is available to you.

proxy_cache

Inside of the location block, we're telling Nginx to use the cache zone defined via the proxy_cache
my_zone directive.

We also add a useful header which will inform us if the resource was served from cache or not. This
is done via the add_header X-Proxy-Cache $upstream_cache_status directive. This sets a response
header named X-Proxy-Cache with a value of either HIT, MISS, or BYPASS

Testing the Configuration

Once this is saved, we can reload the Nginx’s configuration (sudo service nginx reload) and try
some HTTP requests.

Here we attempt to get a CSS file for the first time:

GET curl request and selected headers

$ curl -X GET -1 172.17.0.13/css/style.css
Date: Fri, ©5 Sep 2014 23:50:12 GMT
Content-Type: text/css

Last-Modified: Fri, @5 Sep 2014 22:46:39 GMT
Expires: Sat, 05 Sep 2015 23:50:12 GMT
Cache-Control: max-age=31536000
Cache-Control: public

X-Proxy-Cache: MISS

This is a cache MISS because the file has not been requested before. Therefore the Cache server
needed to proxy the request to the Origin Server to get the resource.

Let’s try it again:

© 00 9 O O b W N =

W N O Ol & W N =

Nginx Web Caching 225

GET curl request and selected headers

$ curl -X GET -I 172.17.0.13/css/style.css
Date: Fri, ©5 Sep 2014 23:50:48 GMT
Content-Type: text/css

Last-Modified: Fri, @5 Sep 2014 22:46:39 GMT
Expires: Sat, 05 Sep 2015 23:50:12 GMT
Cache-Control: max-age=31536000
Cache-Control: public

X-Proxy-Cache: HIT

We can see that I requested this within ~30 seconds of the first request. It was a cache HIT! This file
was served from the Nginx cache server.

The Expires header remains unchanged, as Nginx simply returned the resource from it’s cache.
Those headers will update the next time the Cache Server goes back to the Origin Server to get a
fresh copy of the file.

Cache Control

As this stands now, the Nginx cache server will ignore a client’s Cache-Control request header.
This means that if our curl command said “Return me an uncached version”, Nginx would ignore it.

However, we want our Cache Server to account for web clients which specify that they don’t want
a cached item.

For example if use our browser and hold down SHIFT while clicking the reload button, our browser
will send a Cache-Control: no-cache request header. This asks the Cache Server to NOT serve a
cached version of the resource. Our setup right now will ignore that.

In order to properly bypass the cache when requested to, we can add the proxy_cache_bypass
$http_cache_control directive to our Cache Server in the location block:

location / {
proxy_cache my_zone;
proxy_cache_bypass $http_cache_control;
add_header X-Proxy-Cache $upstream_cache_status;

include proxy_params;
proxy_pass http://172.17.0.18:9000;

After saving and reloading Nginx’s configuration, we can test that this works:

~N O O B W N -

O N O O & W N~

B s sy
©O© 00 9 O O » WO NN~ O O

Nginx Web Caching 226

$ curl -X GET -1 172.17.0.13/css/style.css
X-Proxy-Cache: HIT # A regular request which is normally a cache HIT ...
$ curl -X GET -I -H "Cache-Control: no-cache" 172.17.0.13/css/style.css

X-Proxy-Cache: BYPASS # ... is now bypassed when told to

The proxy_cache_bypass directive will inform Nginx to honor the Cache-Control header in HTTP
requests.

Proxy Caching

Nginx can also cache the results of FastCGI and uWSGI proxied requests and even the results of load
balanced requests (requests sent “upstream”). This means we can cache responses from dynamic
applications.

If we use Nginx to cache the results of a FastCGI process, we can think of the FastCGI process as the
Origin Server and Nginx as the Cache Server. For example, on fideloper.com I cache the HTML
results given back from PHP-FPM.

Here’s an example of using fastcgi_cache, with some new additions:

fastcgi_cache_path /tmp/cache levels=1:2 keys_zone=fideloper:100m inactive=60m;
fastcgi_cache_key "$scheme$request_method$host$request_uri";

server {
Boilerplay omitted, such as root, server_name, etc
set $no_cache 0;

Example: Don't cache admin area
if ($request_uri ~* "/(admin/)")
{

set $no_cache 1;

In Nginx 1.6.3+ you may edit this PHP

block in snippets/fastcgi-php.conf

location ~ "/(index)\.php(/1$) {
fastcgi_cache fideloper;

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

Nginx Web Caching 227

Only cache 200 responses
Cache for 60 minutes
fastcgi_cache_valid 200 60m;

Only GET and HEAD methods apply
fastcgi_cache_methods GET HEAD;

add_header X-Fastcgi-Cache $upstream_cache_status;

Don't pull from cache based on $no_cache
fastcgi_cache_bypass $no_cache;

Don't save to cache based on $no_cache
fastegi_no_cache $no_cache;

Regular PHP-FPM stuff

include fastcgi_params for nginx < 1.6.1
include fastcgi.conf;
fastegi_split_path_info *(.+\.php)(/.+)$;
fastcgi_pass unix:/var/run/php5-fpm.sock;
fastcgi_index index.php;

For using caching with FastCGI cache, I did the following:

« Replaced all instances of proxy_cache with fastcgi_cache

» Used fastcgi_cache_valid 200 6@m to set the expiration times on 200 OK responses received
from PHP requests sent to PHP-FPM

You can see this in action:

© 00 N O U b W N =

e
wWw N -~

Nginx Web Caching 228

$ curl -X GET -I fideloper.com/index.php

Cache-Control: max-age=86400, public
X-Fastcgi-Cache: MISS

$ curl -X GET -I fideloper.com/index.php
X-Fastcgi-Cache: HIT

If this URL existed, you'd see a BYPASS
$ curl -X GET -I fideloper.com/admin

X-Fastcgi-Cache: BYPASS

We can do the same for caching uWSGI responses by simply switching proxy_cache or fastcgi_-
cache with uwsgi_cache directives!

We also did a few intersting things above.

fastcgi_cache_valid

This sets how long the cache is valid for certain HTTP responses. fastcgi_cache_valid 200 60m;
sets the cache for 200 HTTP responses to 60 minutes.

We set multiple HTTP response codes. Setting it to fastcgi_cache_valid 200 302 10m; will save
the result of 200 and 302 HTTP responses for 10 minutes.

fastcgi_cache_methods

This allows us to set which HTTP methods are valid for caching. Using fastcgi_cache_methods
GET HEAD; says to only cache results of GET or HEAD http requests.

fastcgi_cache_bypass and $no_cache

We set a $no_cache variable for URLs in the /admin area. We use this in conjunction with the
fastcgi_cache_bypass to tell Nginx to not cache responses from admin-area requests.

fastcgi_no_cache
While fastcgi_cache_bypass tells Nginx to bypass the cache, the fastcgi_no_cache directive can
tell Nginx to not cache the result of the response.

Here we use the $no_cache variable for both directives. We want Nginx to never cache the result of
requests to /admin URIs, and to bypass checking the cache for such requests.

W N O O & W N =

NN NN N S B R 1 |l s s s
B WO, OO O© 03O0 0 b W NN~ O O

Nginx Web Caching 229

Example: Caching Specific URIs

The greatest gains from caching may come from caching dynamic content, rather than static content.
This is because dynamic content is more expensive - it may do network operations, talk to databases,
run calculations, and more.

Attempting to cache the results of a dynamic request may result in unwanted behavior. If your site
allows users to login, they may need to be presented different data, for example. Caching the results
of URIs may end up showing User A the dashboard of User B if User B’s was cached.

Making this possible requires a more sophisticated caching technique - perhaps using an object
cache (memcache, redis), or using something like Varnish which supports caching only portions of
the returned HTML (via ESI - Edge Server Includes).

Let’s cover one use case that may be of interest - caching one specific URL. We can tell Nginx to
cache one URI that is normally proxied to dynamic application. All other URI’s will be proxied as
normal, rather than cached.

Let’s adjust our example to do this:

fastcgi_cache_path /tmp/cache levels=1:2 keys_zone=fideloper:100m inactive=60m;
fastegi_cache_key "$scheme$request_method$host$request_uri";

server {
Boilerplay omitted, root, server_name, try_files, etc

location /expensive-widget {
fastcgi_cache fideloper;
fastcgi_cache_valid 200 60m; # Cache 200 responses, for 60 minutes
fastcgi_cache_methods GET HEAD; # Only GET and HEAD methods apply
add_header X-Fastcgi-Cache $upstream_cache_status;

Here we ignore headers that may cause issues in caching
1f we want to cache this content no matter what
fastcgi_ignore_headers Set-Cookie Cache-Control Expires;

fastegi_pass unix:/var/run/php5-fpm.sock;
fastegi_index index.php;

include fastcgi_params;

Path to the php file to be used

fastcgi_param SCRIPT_FILENAME /var/www/index.php;
Hardcode our URI

fastcgi_param PATH_INFO /widget/v1/faq;

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

Nginx Web Caching 230

We can pass other PHP requests to
PHP-FPM as normal

In Nginx 1.6.3+ you may edit this PHP

block in snippets/fastcgi-php.conf

location ~ "/(index)\.php(/I$) {

Regular PHP-FPM stuff

include fastcgi_params for nginx < 1.6.1

#
#
#
#
#

include fastcgi.conf;
fastegi_split_path_info *(.+\.php)(/.+)$;
fastcgi_pass unix:/var/run/php5-fpm.sock;
fastcgi_index index.php;

Here we cached only URI’s starting with /expensive-widget. The way this is defined, it may
also cache /expensive-widget/doodad or something like /expensive-widget/search?q=phrase-
to-search. In order to match an exact URI, use the following location block - note the = sign:

location = /expensive-widget {
cache and proxy items omitted

Varnish

Varnish is a fully-featured cache server with a good range of utility. It can act as a web cache and
even as a load balancer.

It’s a great tool, but has one large limitation: It can’t handle SSL connections. This means if your
site is behind SSL, then you need something in front of Varnish to terminate the HTTPS connection.
This is often a reverse proxy (and/or load balancer) such as Nginx, HAProxy, or Pound.

Nginx can handle SSL and does HTTP caching. Nginx can also cache the results of requests proxied
over FastCGI and uWSGI. On top of this, Varnish has been found to only be marginally faster at
serving static files than Nginx.

I may be biased against Varnish (apologies for letting my bias show through!) but I don’t usually
reach for Varnish first. You may wonder when, if the choice is mine to make (a luxury we're no
always given), I would use Varnish over Nginx.

Varnish is much more configurable than Nginx. You can get very granular with how, when and what
gets cached. It also has some caching features Nginx lacks.

I like to use Varnish for these use cases:

 Nginx is not available or inappropriate to introduce into infrastructure (lack of support or
in-house knowledge on it for example)

+ You want or need to use ESI*® to cache portions of your dynamically generated HTML

« Special cases, such as caching API requests made from within your application (perhaps for
pinging an API that has a rate limit, or saving Github tarballs for faster dependency gathering
or when GitHub goes down)

+ You need to ignore cache rules from badly behaving origin servers you can’t configure nor
control

+ You need a very fine-grain of control over how items are cached. Wordpress and other CMSes,
for example, may output static files through a dynamic script. Varnish can handle caching
those files, even if they aren’t served with cache headers.

Origin Server

In the Origin Server chapter, we setup the server that will be serving files. We’ll use this same server
as a base for testing with Varnish.

In this chapter we’ll have Varnish act as the HTTP cache and Nginx act as the origin server. Nginx
will not be doing any caching.

8https://www.varnish-cache.org/trac/wiki/ESIfeatures

https://www.varnish-cache.org/trac/wiki/ESIfeatures
https://www.varnish-cache.org/trac/wiki/ESIfeatures

o I O O P W N =

Ui
W N~ O

O b W N =

Varnish 232

Install Varnish
First, we’ll install Varnish on a server.

$ sudo apt-get install apt-transport-https

$ curl https://repo.varnish-cache.org/GPG-key.txt | apt-key add -

For ubuntu 14.04 Precise!

$ echo "deb https://repo.varnish-cache.org/ubuntu/ precise varnish-4.0" | sudo t\
ee /etc/apt/sources.list.d/varnish-cache.list

$ sudo apt-get update

$ sudo apt-get install -y varnish

Check version installed

$ varnishd -V

varnishd (varnish-4.0.3 revision b8c4a34)
Copyright (c) 2006 Verdens Gang AS
Copyright (c) 2006-2014 Varnish Software AS

We'll setup Varnish to run on port 80. If Nginx is on the same server, we need to set it to listen on
another port. Edit your Nginx server configuration to listen on port 8080 instead:

File: /etc/nginx/sites-available/your-server-config

server
listen 8080;

// Other boilerplate

Then run sudo service nginx reload to reload that configuration.

Assuming both Nginx and Varnish are now running, head to http://your-server:6081 and you
should see a result!

This takes advantage of Varnish’s defaults. Varnish will listen for connections on port 6081 and
expects an origin server at 127.0.0.1:8080, where Nginx is listening.

Basic Configuration

We want Varnish to listen on port 80. To do so, we’ll edit it’s configuration at /etc/defaults/var-
nish. This file contains configuration used for running Varnish when the system boots.

Change the default 6081 to port 80. It will look like so:

O = W N =

B oW N -

©O© 00 N O O & W N

Varnish 233

File: /etc/defaults/varnish

DAEMON_OPTS="-a :80 \
-T localhost:6082 \
-f /etc/varnish/default.vecl \
-S /etc/varnish/secret \
-s malloc,256m"

When that’s saved, restart Varnish via sudo service varnish restart.

If our Nginx server was not listening on port 8080, we would need to adjust Varnish to send requests
to its location. We can define the backends (origin servers) that Varnish sends requests to within file
/etc/varnish/default.vel.

For example, if Nginx is on another server, listening on port 80, we can change the defaults to
something like the following:

backend default {
.host = "192.168.33.10";
.port = "80";

Note that the backend is named default. You can actually define multiple backends:

backend marketingsite {
.host = "192.168.33.10";
.port = "8080";

backend appsite {
.host = "192.168.33.12";
.port = "8080";

Then later in the same file, we can edit the vcl_recv parameters to decide which backend to send
requests to. In this case, we’ll decide based on the hostname used:

N O O & W N =

Varnish 234

sub vecl_recv {
if (req.http.host == "www.example.com") {
set req.backend_hint = marketingsite;
} else {
set req.backend_hint = appsite;

There’s more information on backend configuration available here®.

You can use Varnish as a load balancer. To do so, set multiple backends, add health checks®
and use directors to decide how to direct traffic between the backends!

The documentation linked above explains how to do that.

I won’t use any load balancing for this example, but that’s a useful feature to keep in mind!

Varnish Configuration: VCL

VCL stands for Varnish Configuration Language. This is a DSL (domain-specific language) created
by Varnish.

VCL lets you interact with HTTP requests and caching at different stages of the request/response
life-cycle. There are different sub-routines that are called in various stages of this life-cycle.

While there are quite a few built-in sub-routines®, the main ones you’ll see in the /etc/varnish/de-
fault.vcl file are:

« vcl_recv - Called at the beginning of a received request. It’s good for deciding if it should serve
the request, pass off the request, and/or which backend (origin server) will fulfill a request.
We saw this in the example above.

« vcl_backend_response - Called after a response has been receivd by a backend (origin server).
This is a good place to do things like strip server-set cookies or modify the response from the
origin server in other ways.

« vcl_deliver - Called before a cached object is delivered to the client. Here Varnish can do
things like set a header to inform us if the response came from the cache or not.

8 https://www.varnish-cache.org/docs/trunk/users- guide/vcl-backends.html
8https://www.varnish-cache.org/docs/trunk/users- guide/vcl-backends. html#health-checks
#https://www.varnish-cache.org/docs/4.0/users-guide/vcl-built-in-subs.html

https://www.varnish-cache.org/docs/trunk/users-guide/vcl-backends.html
https://www.varnish-cache.org/docs/trunk/users-guide/vcl-backends.html#health-checks
https://www.varnish-cache.org/docs/4.0/users-guide/vcl-built-in-subs.html
https://www.varnish-cache.org/docs/trunk/users-guide/vcl-backends.html
https://www.varnish-cache.org/docs/trunk/users-guide/vcl-backends.html#health-checks
https://www.varnish-cache.org/docs/4.0/users-guide/vcl-built-in-subs.html

0 I O O P W N =

NN NN N N B B | s sy
O & O N~ OO0 O 0N O O b W N~ ©

Varnish 235

Varnish Headers and Caching

Without any configuration, if you inspect some requests, we’ll see some extra Varnish information
added to the response headers.

You may see a X-Varnish header. The value of this header is the ID of the current request and the
value of the request that populated the cache. If you see one number here, you can assume a cache
miss.

We can use cURL to test this out:

$ curl -1 http://192.168.22.10.xip.io/static/css/styles.css
HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Thu, 23 Oct 2014 ©1:27:48 GMT
Content-Type: text/css

Last-Modified: Tue, 24 Dec 2013 16:37:55 GMT
ETag: "52b9b863-2dfT7"

X-Varnish: 131096

Age: 0

Via: 1.1 varnish-v4

Content-Length: 11767

Connection: keep-alive

$ curl -1 http://192.168.22.10.xip.io/static/css/styles.css
HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Thu, 23 Oct 2014 ©1:27:48 GMT
Content-Type: text/css

Last-Modified: Tue, 24 Dec 2013 16:37:55 GMT
ETag: "52b9b863-2dfT7"

X-Varnish: 131099 131097

Age: 3

Via: 1.1 varnish-v4

Content-Length: 11767

Connection: keep-alive

Note that on the second request, we get a cache hit. The X-Varnish header has both a request ID
and the ID of the request that filled the cache.

Similar to how we tested Nginx, let’s next see if Varnish will handle Etags (validation caching):

O N O O & W N~

[e
a » W N =~ O O

0 = O O b W N =~

[G
g & WO N =~ O O

Varnish 236

curl -1 \
-H 'If-None-Match: "52b9b863-24f7"' \
192.168.22.10.xip.io/static/css/styles.css
HTTP/1.1 304 Not Modified
Server: nginx/1.6.2
Date: Fri, 24 Oct 2014 01:35:04 GMT
Content-Type: text/css
Last-Modified: Tue, 24 Dec 2013 16:37:55 GMT
ETag: "52b9b863-2df7"
Expires: Sat, 24 Oct 2015 01:35:04 GMT
Cache-Control: max-age=31536000, public
X-Varnish: 65548 65540
Age: 45
Via: 1.1 varnish-v4
Connection: keep-alive

Yep! We received a Not Modified response. Let’s try that with a I f-Modified-Since date:

$ curl -1\
-H 'If-Modified-Since: Tue, 24 Dec 2013 16:37:55 GMT' \
192.168.22.10.xip.io/static/css/styles.css
HTTP/1.1 304 Not Modified
Server: nginx/1.6.2
Date: Fri, 24 Oct 2014 ©1:35:04 GMT
Content-Type: text/css
Last-Modified: Tue, 24 Dec 2013 16:37:55 GMT
ETag: "52b9b863-2dfT7"
Expires: Sat, 24 Oct 2015 ©1:35:04 GMT
Cache-Control: max-age=31536000, public
X-Varnish: 65554 65540
Age: 470
Via: 1.1 varnish-v4
Connection: keep-alive

That works too, great! We can use Varnish for both expiration and validation caching.

Some Debugging Utilities

Let’s have Varnish tell us directly if we have a cache HIT or MISS. A HIT means Varnish found that
the resource is cachable, the resource was previously cached, and Varnish returned the cached copy
to you instead of asking for it from the origin server. A MISS means any of those three possibilities
were not met and the resource was returned from the origin server.

=N O Ol & W N =

O N O O & W N~

NN N N N S S S L sy s
B WON P, O © 03O0 O b WO N O O

Varnish 237

To add this information, edit /etc/varnish/default.vlc. Modify the vcl_deliver section to add
the X-Cache header:

sub vecl_deliver {
if (obj.hits > @) {
set resp.http.X-Cache = "HIT";
} else {
set resp.http.X-Cache = "MISS";

The obj.hits variable is the number of hits a cached object has made. You can see more about what
variables are available in which VCL section here™.

After restarting Varnish, we’ll see whether the resource came from the cache or not in the response
headers.

$ curl -1 http://192.168.22.10.xip.io/static/css/styles.css
HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Thu, 283 Oct 2014 01:27:48 GMT
Content-Type: text/css

Last-Modified: Tue, 24 Dec 2013 16:37:55 GMT
ETag: "52b9b863-2dfT7"

X-Varnish: 131096

X-Cache: MISS

Age: 0

Via: 1.1 varnish-v4

Content-Length: 11767

Connection: keep-alive

$ curl -1 http://192.168.22.10.xip.io/static/css/styles.css
HTTP/1.1 200 OK

Server: nginx/1.6.2

Date: Thu, 23 Oct 2014 ©1:27:48 GMT

Content-Type: text/css

Last-Modified: Tue, 24 Dec 2013 16:37:55 GMT

ETag: "52b9b863-2dfT7"

X-Varnish: 131099 131097

X-Cache: HIT

Age: 3

**https://www.varnish-software.com/static/book/VCL_functions.html

https://www.varnish-software.com/static/book/VCL_functions.html
https://www.varnish-software.com/static/book/VCL_functions.html

25
26
27

N O O b W N -

Varnish 238

Via: 1.1 varnish-v4
Content-Length: 11767
Connection: keep-alive

Note that in our first request, the styles.css file was not fulfilled from the cache. In the subsequent
request, it was.

X-Forwarded

Since Varnish is a proxy sitting between the client and origin server, let’s make sure that the origin
server knows the client’s true IP address. For more information on why this is important, see chapter
“Implications of Multi-Server Environments”.

We can add the client’s true IP address by adding the following to the vel_recv block:

set (if not already present)

or append the client.ip to X-Forwarded-For header

if (req.http.X-Forwarded-For) {
set req.http.X-Forwarded-For

req.http.X-Forwarded-For + ", " + client.ip;
} else {

set req.http.X-Forwarded-For = client.ip;

This will set the X-Forwarded-For header sent to Nginx. If we have a web application, we can use
that IP address to know who the client actually is, which may be needed within the application.

Increasing Cache Hit Rate

Our goal in using Varnish is (usually) to cache as much as possible. This means configuring Varnish
to get as many cache hits as possible.

You may be interested in the following blog and its article discussing if it’s worth
caching static files”'.

Cookies

Cookies are unique per user visiting your site. However, just like appending query strings to a URI
(styles.css?1234), a different cookie makes a resource unique.

*https://ma.ttias.be/stop-caching-static-files/

https://ma.ttias.be/stop-caching-static-files/
https://ma.ttias.be/stop-caching-static-files/
https://ma.ttias.be/stop-caching-static-files/

0 N O O B W N~

N N B | s sl
, O O 0 O O b W N~ O

Varnish

That means Allison with one cookie is not getting the same cached file back from Varnish as Bob
with another cookie, even if it’s just a CSS file that should be the exact same for everyone. Resources

with cookies are typically not cached or are cached uniquely per user!

We want Varnish to strip cookies from our static assets so that our origin server doesn’t see it.

First, let’s remove some headers commonly added by javascript snippets, such as Google Analytics
and various ad trackers. Our servers typically ignore these, but our browsers will still send them in

HTTP requests since they are set by these services.

sub vecl_recv {

Other items already

Remove the
set req.http

Remove any
set req.http.
set req.http.
set req.http
set reqg.http
set reqg.http.

Remove cookies from

DoubleClick
set reqg.http.
Quant Capit
set reqg.http.
AddThis

set req.http.

These will be removed on all requests to the origin server, whether for dynamic content or static.

Next, let’s get rid of all cookies set in requests for common static files. While the above configuration
removed only certain cookies, the below will remove all cookies set in requests for these static assets.

"has_js" cookie

.Cookie

Google
Cookie
Cookie

.Cookie
.Cookie

Cookie

Cookie
al

Cookie

Cookie

= regsuball(req.

Analytics based

= regsuball(req.
= regsuball(req.
= regsuball(req.
= regsuball(req.
regsuball(req.

= regsuball(req.

common ad trackers

= regsuball(req.

= regsuball(req.

added here omitted

http.Cookie,

cookies

http.Cookie,
http.Cookie,
http.Cookie,
http.Cookie,
http.Cookie,

http.Cookie,

http.Cookie,

http.Cookie,

'IhaSJS:[A;]+(/‘)?", nn);

"_utm =[]+)?, ")
;)

MG,)
MG o)

MG,

or services

"_gads=[";1+(;)?", ");

"_qge.=[M]G,)

"_atuv.=[";14()2,),

[N

S © 00 I O O b W N =

S © 00 I O O b W N =

Varnish 240

sub vecl_recv {
Other items already added here omitted

Remove all cookies for static files

Other candidates: bmp, bz2, flv, gz, doc, docx, rtf, swf, txt,

xml, eot, pdf, woff, less, gif

if (req.url ~ "A[A?2]*\.(csslgiflicoljpegljpgljsipng)(\?2.%¥)?2$") {
unset req.http.Cookie;

So far we’ve used vcl_recv for requests coming into Varnish. Let’s also unset cookies coming back
from the origin server, using the vcl_backend_response block. This is good just in case the origin
server returns cookies to be set for these static assets:

sub vcl_backend_response {
Other items already added here omitted

Remove all cookies for static files

Other candidates: bmp, bz2, flv, gz, doc, docx, rtf, swf, txt,

xml, eot, pdf, woff, less, gif

if (beresp.url ~ "A[A?2]%\.(css|giflicoljpegljpgljslpng)(\?2.*%)?28") {
unset beresp.http.set-cookie;

Most dynamic applications create cookies. Some sites, perhaps a Wordpress site, don’t need the
average user to have a cookie. CMSes for example, often don’t need or want public users to log in
or track any information for them. They therefore don’t need to set any cookies for that user. Even
so, some CMSes do set cookies as default behavior, “just in case you need them”.

If that is your use case as well, the following is useful for stripping cookies from all requests that
aren’t at the /admin url. This assumes you want cookies set in the /admin area so you, the site
administrator, can login!

You can change this to whatever you need - perhaps to wp-admin for a Wordpress site:

0 = O O b W N =

0 N O O & W N =

Varnish 241

vel_recv {

Other items already added here omitted

Unset cookie unless in /admin area
if (!(req.url ~ "A/admin/")) {
unset req.http.Cookie;

}

Note that this is a bit of a sledge-hammer approach, since it disregards the rules we set previously.
It unsets any cookie from incoming requests that’s not in the /admin uri!

Force Caching

If you have assets that refuse to be cached (no cache headers sent, or poorly configured headers),
you can tell Varnish to do it.

Let’s say we have an image resizer script used at /images . php?path=/path/to/file. jpg&width=200.
This will find the image set in the path GET variable, load the image, resize it, and return it. That’s
an expensive server operation!

The following will cache the result of that request for 5 days, regardless of the returned cache-
control header (if even set) from the origin server. We use the vcl_backend_resposne block to
capture/set that from the response returned from the origin server:

vcl_backend_response {
Other items here omitted

if (bereq.url ~ "A/images\.php(\?.*)?$") {
Cache for 5 days
set beresp.ttl = 5d;

Varnish Tools

Here are some tools and other things you can do that might be helpful!
Purge

You may want to force a purge of a resource from cache. Varnish lets you do this via a PURGE http
verb.

First, if you want, you can set an ACL (access control) so that purging can only be done from the
localhost network:

O O B W N~

0 N O O B~ W N -

_R
W N~ O

=N O O b W N =~

Varnish 242

acl purge {
ACL we'll use later to allow purges
"localhost";
"127.0.0.1";
R

Then we can use vcl_reve to match against the acl rule we named purge:

sub vecl_recv {
Other items omitted

if (req.method == "PURGE") {
purge is the ACL defined at the begining
if (!client.ip ~ purge) {
If not from allowed IP
return (synth(405, "This IP is not allowed to send PURGE requests."));
}
Purge if ACL allows:
return (purge);

Finally we can use the vcl_purge block to only purge when http verb “PURGE” is used:

sub vel_purge {
Only handle http PURGE verb
if (req.method != "PURGE") {
set req.http.X-Purge = "Yes";
return(restart);

You can test this out with a curl request made on the Varnish server (since the ACL defines that you
must make a request from localhost):

© 00 N O U b W N =

O O b W N =~

Varnish 243

$ curl -X PURGE -i localhost:80/styles.css
HTTP/1.1 200 Purged

Date: Sat, 25 Apr 2015 19:25:55 GMT
Server: Varnish

X-Varnish: 9

Content-Type: text/html; charset=utf-8
Retry-After: 5

Content-Length: 236

Connection: keep-alive

Grace Periods

If your origin server becomes unavailable, Varnish will receive no response when attempting to
refresh a stale resource from it. Normally Varnish will pass the HTTP error from the origin server
through to the client.

However we can set a “grace” period where Varnish will keep serving the stale resource for a
configured amount of time, which may keep your site (or portions of it) up while you fix the true
issue.

This can be done in the vel_backend_response block.

sub vcl_backend_response {
Other items already here omitted

Set the grace period to 6 hours
set beresp.grace = 6h;

You can get a bit more granular with how grace periods behaves - see the documentation®” on setting
the grace period.

“Security”

If you prefer, we can unset some more headers to mask information about the origin server. We’ll
use the vcl_deliver to strip some headers before delivering the request to the client:

https://www.varnish-cache.org/docs/trunk/users- guide/vcl-grace.html

https://www.varnish-cache.org/docs/trunk/users-guide/vcl-grace.html
https://www.varnish-cache.org/docs/trunk/users-guide/vcl-grace.html

© 00 9 O O b W N =

Varnish

sub vecl_deliver {
Other items here omitted

Unset some headers

unset resp.http.X-Powered-By;
unset resp.http.Server;

unset resp.http.X-Varnish;
unset resp.http.Via;

Extra Resources

244

php version
server type (Nginx, Apache, IIS)
varnish brag

more varnish brag

« Many good examples of what you can do in Varnish configuration here®.
« Achieving High Hitrate’* docs from Varnish

+ Turning off ETags in Nginx”® to prevent Validation caching with ETags

https://github.com/mattiasgeniar/varnish-4.0-configuration-templates/

“*https://www.varnish-cache.org/docs/4.0/users-guide/increasing-your- hitrate.html

“http://nginx.org/en/docs/http/ngx_http_core_module.html#etag

https://github.com/mattiasgeniar/varnish-4.0-configuration-templates/
https://www.varnish-cache.org/docs/4.0/users-guide/increasing-your-hitrate.html
http://nginx.org/en/docs/http/ngx_http_core_module.html#etag
https://github.com/mattiasgeniar/varnish-4.0-configuration-templates/
https://www.varnish-cache.org/docs/4.0/users-guide/increasing-your-hitrate.html
http://nginx.org/en/docs/http/ngx_http_core_module.html#etag

Logs

Almost all application services and processes create logs. Logs can slowly eat away at your servers’
hard-drive space, and so it’s important to keep them under control.

This section will cover some ways of managing server logs.

Logrotate

Server software often logs events and errors to log files. For the most part, systems typically can
take care of managing log files so they do not eventually eat up available hard drive space. Not all
software is configured to do this, however.

Compounding this, many application frameworks have their own logging in place. Few manage the
deletion or compression of their log files.

Log management primarily consists of:

« Rotating log files
+ Backing up log files
 Aggregating logs in multiple-servers environments

In all cases where log files are not actively managed, you should at least set up log rotation and
backup.

Logrotate is there to do that for you. It is available and used on most linux distributions by default.

What does Logrotate do?

Logrotate helps to manage your log files. It can periodically read, minimize, back up, create new log
files, and run custom scripts. This is usually used to to help prevent any single log file from getting
unwieldy in size, as well as delete old log files.

Many applications setup Logrotate for you. For instance, installing Apache in Ubuntu adds the file
/etc/logrotate.d/apache2, which is a configuration files used by Logrotate to rotate all apache
access and error logs.

Configuring Logrotate

In stock Debian/Ubuntu, any config file you put into /etc/logrotate.d is going to run once per
day. Logrotate configuration files can specify how often logs should be rotated (at a period of 1 day
or more by default). Apache’s default in Ubuntu is set to run weekly, as we’ll see shortly.

Logrotate’s main configuration file is found in /etc/logrotate.conf.

W N O O & W N =~

W W W W W W W WNDNDNDNDNDDNDNDNDNDNNDDNAP-AS PP R e
~N O Ol & WO N~ O © 03O0 O b OO O 00 N O O b WN -~ O O

Logrotate 247

File: /etc/logrotate.conf

see "man logrotate" for details
rotate log files weekly
weekly

Perform actions as user ‘root and group “syslog® by default
This is the user/group of /var/log/syslog.
su root syslog

keep 4 weeks worth of backlogs
rotate 4

create new (empty) log files after rotating old ones
create

uncomment this if you want your log files compressed
#compress

packages drop log rotation information into this directory
by including any file found in this directory
include /etc/logrotate.d

no packages own wtmp, or btmp -- we'll rotate them here
/var/log/wtmp {

missingok

monthly

create 0664 root utmp

rotate 1

/var/log/btmp {
missingok
monthly
create 0660 root utmp
rotate 1

system-specific logs may be configured here

These are global defaults. We can see that logrotate will rotate log files weekly, keeping 4 weeks of
log files before deleting any via the rotate 4 directive.

O© 00 9 O O P W N =~

N B s s s s s
© O© 0 3 O O b W N~

Logrotate 248

We can also see it includes configuration files found in /etc/logrotate.d.

We’ll cover more options below by analyzing the default for Apache and then modifying it.

For Example: Apache

Let’s look over Apache’s default logrotate file in Debian/Ubuntu:

/var/log/apache2/*.log {
weekly
missingok
rotate 52
compress
delaycompress
notifempty
create 640 root adm
sharedscripts
postrotate
if /etc/init.d/apache2 status > /dev/null ; then \
/etc/init.d/apache2 reload > /dev/null; \
fi;
endscript
prerotate
if [-d /etc/logrotate.d/httpd-prerotate]; then \
run-parts /etc/logrotate.d/httpd-prerotate; \
fi; \
endscript

This will rotate any files in the /var/log/apache2 directory that end in .1log. This is why, when
we create a new virtual host, we typically put the logs in /var/log/apache2. Logrotate will
automatically manage the log files!

Let’s go through the options above:

weekly
This tells Logrotate to rotate these logs once per week. There are other times you can specify as well:
+ daily

» weekly
« monthly

Logrotate 249

« yearly

Since Logrotate runs once per day by default, there’s no option for rotating logs more than once per
day. You can see the CRON task for Logrotate at /etc/cron.daily/logrotate. If you need to run
Logrotate more than once per day, you can add a cron task on the cron.hourly directory which
calls logrotate on a specific configuration file:

CRON task calling ficticious logrotate configuration /etc/logrotate.hourly.conf

file '/Jetc/cron.hourly/logrotate’
/usr/bin/env logrotate /etc/logrotate.hourly.conf

missingok

If no *. 1og files are found, don’t raise an error.

rotate 52

Keep 52 archived log file before deleting old log files (If rotating weekly, that’s 52 weeks, or one
years worth of logs!)

compress

Compress (gzip) rotated log files. There are some related directives you can use as well:

delaycompress

Delays compression until 2nd time around rotating. As a result, you’ll have one current log file, one
older log file which remains uncompressed, and then a series of compressed logs.

This is useful if a process (such as Apache) cannot be told to immediately close the log file for writing.
It makes the old file available for writing until the next rotation.

If used, you’ll see log files like this:
« access.log
« access.log.1
« access.log.1.gzip

You can see that access. log.1 has been rotated out but is not yet compressed.

compresscmd

Set which command to used to compress. Defaults to gzip. An example usage: compresscmd gunzip.

Logrotate 250

uncompresscmd

Set the command to use to uncompress. Defaults to gunzip. An example usage: uncompresscmd
gunzip.

notifempty

Don’t rotate empty log files.

create 640 root adm
Create new log files with set permissions/owner/group, This example creates file with user root and
group adm. In many systems, it will be root for owner and group.

The file mode will be set to 640, which is u=rw, g=r, o-rwx. Refer to the chapter on “Permission and
User Management” for more information on setting file permissions.

postrotate

Specify scripts to run after rotating is done. In this case, Apache is reloaded so it writes to the newly
created log files. Reloading Apache (gracefully) lets any current connection finish before reloading
and setting the new log file to be written to.

The end of the script is denoted with the endscript directive.

sharedscripts

Run a postrotate script after all logs are rotated. If this directive is not set, it will run postrotate
scripts after each matching file is rotated.

prerotate

Run scripts before log rotating begins. Just like with postrotate, the end of the script is denoted
with the endscript directive.

Not here that the pre-rotate script called is run-parts /etc/logrotate.d/httpd-prerotate;. The
run-parts command attempts to run any scripts within the given directory.

This prerotate directive is saying to find any executable scripts within /etc/logrotate.d/httpd-
prerotate (if the directory exists) and run them, giving us an avenue to run any scripts prior to
rotation simply by putting them into the /etc/logrotate.d/httpd-prerotate directory.

Q This directory may not exist. To use it, we can simply create the directory and add in any

scripts we may need. Just make sure the script is owned and executable by user “root”: sudo

chown root /etc/logrotate.d/httpd-prerotate/some-script.sh && sudo chmod u+x
/etc/logrotate.d/httpd-prerotate/some-script.sh.

© 00 = O U b W N =

N N B s s s s
, O O 00 3 0O O b W N =~ O

Logrotate 251

For Example: Application Logs

Here’s the Logrotate configuration I have for an application in production, which has a verbose
application logger in place.

File: /etc/logrotate.d/some-app

/var /www/some-app/app/storage/logs/*.log {
daily
missingok
rotate 7
compress
delaycompress
notifempty
create 660 www-data www-data
sharedscripts
dateext
dateformat -web@1-%Y-%m-%d-%s
postrotate
/usr/bin/aws s3 sync /var/www/some-app/app/storage/logs/*.gz s3://app_Ilo\

gs
endscript
prerotate
if [-d /etc/logrotate.d/httpd-prerotate]; then \
run-parts /etc/logrotate.d/httpd-prerotate; \
fi; \
endscript
}

As usual, we specify the configuration based on the location of the log files. In this case, we configure
it to search for logs within the log directory of the application.

The other items to note in the above Logrotate configuration:

daily

As this application expects a large amount of traffic, the configuration rotates logs daily. The
application logs are likely to grow quickly.

rotate 7

Keep only the last 7 days of logs in the server. We can keep this small because we’ll move the logs
off of the server as backup.

Logrotate 252

create 660 appuser www-data

Logs for this application are not being written to the /var/log directory. Additionally, new log files
in this example are owned by user www-data. Assuming the application is run as user www-data as
well, this setting ensures that the application can continue to write to the log files which logrotate
manages.

We set the file permissions to 660, which lets the user and group read and write to the log files. This
is best if you rely on group permissions so multiple users (perhaps a deployment user and the web
application user of group www-data) can write to files as needed.

dateext

Logs by default get a number appended to their filename. This option appends a date instead.

Some related directives:

dateformat This is the format of the date appended to the log filename.

In this example - dateformat -web@1-%Y-%m-%d-%s, Logrotate will also add “web01”, “web02” (and
so on) to the log file name so we know which webserver the log came from. This is recommended
if you are logging on multiple web servers, likely behind a load balancer. Knowing what server the
logs came from may be useful.

This naming scheme isn’t dynamic but instead is hardcoded as “web01” and so forth - naming them
correctly would be a exercise left to you (to do via automation or manually). Note that with log
aggregators, this may not be a needed addition.

postrotate
Here we’re simply backing up the log files to an Amazon S3 bucket. This uses AWS’s command line
tool’®, which is fairly easy to setup and use (install via Python’s package manager Pip).

This script simply calls the S3 tool and “syncs” the log directory to the give S3 bucket. The “sync”
command will keep the directories in sync, similar to the rsync utility.

This way we can allow Logrotate to delete old log files without losing any logs, as they are backed
up to S3.

Going Further

That’s it for Logrotate. It’s a fairly simple utility overall. It’s well-worth using in any application in
production. If you are writing any applications, whether for utility or otherwise, it’s good practive
to prepare a Logrotate configuration for it.

*®http://aws.amazon.com/cli/

http://aws.amazon.com/cli/
http://aws.amazon.com/cli/
http://aws.amazon.com/cli/

Logrotate 253

Taking this to the next level, we can look into automatically moving log files to a central location.
This can be done with rsyslog, a utility to centralize log locations, or with the plethora of open source
and paid services used for managing and analyzing server and application log files.

Rsyslog

Debian and Ubuntu servers (among others) run the rsyslog service, which is primarily responsible
for collecting log output and writing it to the right place, usually somewhere within the /var/log
directory, but also to remote locations over the network.

Other distributions use syslog-ng rather than rsyslog, but the general idea is similar for all logs.

Not all applications and processes use rsyslog. Some applications write their own log files,
notably Apache and Nginx. One application which does use rsyslog is Haproxy.

Configuration

Rsyslog’s configuration can be found at /etc/rsyslog.conf. In Debian-based systems, this file is
responsible for enabling modules (such as UDP/TCP & local system listeners, along with writers).
It also sets some baseline global settings, such as the user and group rsyslog creates log files as.

Here’s some configuration:

$ModLoad imuxsock

This loads in the imuxsock module, which creates a Unix socket for receiving log messages locally.
This is always enabled.

$ModLoad imklog

This provides support for kernel logging. Again, this is always enabled.

$ModLoad imudp

Disabled by default on Debian/Ubuntu, this sets up UDP-based logging. This is over the network
rather than being limited to local connections like with imuxsock.

This works in conjunction with the $UDPServerRun 514 directive, which sets the UDP port to listen
on to port 514.

<N O O B W N =

Rsyslog 255

$ModLoad imtcp

Disabled by default on Debian/Ubuntu, this sets up TCP-based logging. This is also over the network
rather than being limited to local connections like with imuxsock.

This works in conjunction with the $InputTCPServerRun 514 directive, which sets the TCP port to
listen on to port 514.

$ActionFileDefaultTemplate RSYSLOG_TraditionalFileFormat

This sets the log format to use when writing out logs. By default the Traditional format has precision
down to the second. If you need more precision, you can just comment out this line, which defaults
back to a more verbose log format.

$RepeatedMsgReduction on

Ignore duplicate log messages. I (and the documentation) recommend turning this off unless you
are concerned with log file size. Many log aggregators duplicate this functionality as well, so it may
not be necessary at this level.

“Off” is the default, so you can simply comment this line out to turn it off.

User/Group

Next we see this block of configuration:

$FileOwner syslog
$FileGroup adm
$FileCreateMode 0640
$DirCreateMode 0755
$Umask 0022
$PrivDropToUser syslog
$PrivDropToGroup syslog

This sets the file owner/group/permissions of the log files and directories created by rsyslog.
Rsyslog’s starts running as user root to get started, but then it will drop down to user syslog and
group adm after launching. These permissions are suitable for writing to /var/log, without being a
security concern by running as user root.

$WorkDirectory /var/spool/rsyslog

This is where working files are added, which are used in various ways such as a temporary location
for files queued up to be sent out over a network.

Rsyslog

$IncludeConfig /etc/rsyslog.d/*.conf

Rsyslog will include any configuration file found in the /etc/rsyslog.d directory which end in

.conf.

Debian/Ubuntu servers will have a /etc/rsyslog.d/50-default.config file which we’ll dive into

next.

Facilities and Priorities (Log Levels)

After we talk configuration, we’ll see how we can send logs into Rsyslog. Rsyslog has “categories” of
logs, all of which you can use. These are called “facilities”. Furthermore, each facility can be divided

up by priority.

Facilities

The available facilities are:

Facility Number Facility Description

0 kern kernel messages

1 user user-level messages

2 mail mail system

3 daemon system daemons

4 auth security/authorization messages
5 syslog messages generated internally by syslogd
6 lpr line printer subsystem

7 news network news subsystem

8 uucp UUCP subsystem

9 clock daemon

10 authpriv security/authorization messages (old)
11 ftp FTP daemon

12 NTP subsystem

13 log audit

14 log alert

15 cron cron daemon

16 localo local use 0 (local0)

17 local1 local use 1 (local1)

18 local2 local use 2 (local2)

19 local3 local use 3 (local3)

20 local4 local use 4 (local4)

21 local5 local use 5 (local5)

22 local6 local use 6 (local6)

23 local7 local use 7 (local?)

D W N -

Rsyslog 257

Which of these you use is actually up to you. For your own applications, you should use any of the
local* facilities.

You don’t need to use a different facility per application. Rsyslog can filter log messages
based on a keyword and send it to the correct log file or network location.

Priorities

Facilities can be divvied by priorities. The available priorities are likely already familiar to you:

Numerical Code Severity Description

0 emerg system is unusable

1 alert action required immediately

2 crit critical condition

3 error error conditions

4 warning warning conditions

5 notice normal but significant conditions
6 info informational message

7 debug debug-level message

Default Configuration

Now we’re ready to see the default configuration file found at /etc/rsyslog.d/50-default.conf.
We'll see a bunch of facilities, priorities and we’ll see the configuration for what to do with log
messages sent to them.

Let’s start at the top:

auth,authpriv.* /var/log/auth.log
*.%;auth,authpriv.none -/var/log/syslog

kern.* -/var/log/kern.log
mail.* -/var/log/mail.log

Auth and authpriv facilities with any priority (denoted with the *) will go to the /var/log/auth. log
file. If no priority is given, they’ll go to the /var/log/syslog.

Note the use of a command with auth, authpriv.none. This assigns “auth” and “authpriv”
with priority “none” (no priority set).

The *.*; parameter says that this will capture any non-defined facility and priority combination
and send it to /var/log/syslog.

Kern and Mail logs of any priority go to their /var/log/kern.log and mail.log files respectively.

Rsyslog 258
mail.err /var/log/mail .err

Mail facility messages of the error priority will go to the /var/log/mail.err file.

news.crit /var/log/news/news.crit
news.err /var/log/news/news.err
news.notice -/var/log/news/news.notice

We see some news facilities getting explicitly defined as well for the critical, error and notice
priorities.

* . emerg ;omusrmsg: *

Emergency priority message from any facility get sent to all logged-in users, via omusrmsg, the User
Message Output Module.

Usage

Let’s try testing these out what we’ve learned. We’ll also learn some details about the configurations
along the way:.

Logging Messages From the Command Line

We can use the logger command to send a log message and see if it gets logged to the appropriate

log file.
Let’s log to the mail facility with a notice:

logger -p mail.notice 'this is my mail-related message'

We can see that any mail notice (except for those of priority “error”) will get logged to /var/log/-
mail.log. Let’s check that out:

$ sudo tail -f /var/log/mail.log
Aug 5 00:33:38 vagrant-ubuntu-trusty-64 vagrant: this is my mail-related message

Great, we can see that the message was logged! Next let’s add a “tag”, which will add some text in
each message. Perhaps we can use this for filtering later:

W N -

Rsyslog 259

$ logger -p mail.notice -t SFH 'testing another message'

$ sudo tail -f /var/log/mail.log

Aug 5 00:33:38 vagrant-ubuntu-trusty-64 vagrant: this is my mail-related message
Aug 5 00:35:47 vagrant-ubuntu-trusty-64 SFH: testing another message

We can see both messages are in the log, and the 2nd one contains the tag “SFH”.

Lastly, let’s send a logger message to the localo facility:
logger -p local@.debug -t SFH 'like, whatever dude'

Since we didn’t define where local0 facilities or any facility with a debug priority should go, we
know that these log messages will default to the /var/log/syslog file.

$ sudo tail -f /var/log/syslog
...other messages. ..
Aug 5 ©00:37:42 vagrant-ubuntu-trusty-64 SFH: like, whatever dude

Our message made it to the syslog!

Setting Up Custom Loggers

Finally we’re ready to create a custom logger to handle logs sent to it from a specific application.

Let’s create a rsyslog configuration file at /etc/rsyslog.d/22-example.conf for an application
named “example”.

Configuration files are read in alphabetical order - you'll often see a numbering convention
in times like this so the order of the files are ready in can be set. We want our log definitions
to be loaded before the default 50-default.config file, and so we prepend it with 22.

Inside of /etc/rsyslog.d/22-example.conf, we can add the following:

File: /etc/rsyslog.d/22-example.conf

local@.* /var/log/example. log
local@.err /var/log/example.err.log

This will log any facility’s “local0” messages to /var/log/example. log or error messages (and more
critical) to /var/log/example.err.log.

We need to restart rsyslog after adding the configuration file:

© 00 = O U b W N =

[EEY
= o

Rsyslog 260
sudo service rsyslog restart
Then test it out:

$ logger -p local@.debug -t SFH[1234] 'a debug message'

$ logger -p local@.err -t SFH[1234] 'a err message'

$ logger -p local@.crit -t SFH[1234] 'a crit message'

$ sudo cat /var/log/example.log

Aug 5 ©00:53:54 vagrant-ubuntu-trusty-64 SFH[1234]: a debug message
Aug 5 00:53:57 vagrant-ubuntu-trusty-64 SFH[1234]: a err message
Aug 5 00:54:01 vagrant-ubuntu-trusty-64 SFH[1234]: a crit message

$ sudo cat /var/log/example.err.log
Aug 5 ©00:53:57 vagrant-ubuntu-trusty-64 SFH[1234]: a err message
Aug 5 00:54:01 vagrant-ubuntu-trusty-64 SFH[1234]: a crit message

We can see that all logs went to the example. log file while error and above priorities went to the
example.err.log file. You can divide these up so error messages don’t go to the regular log like so:

File: /etc/rsyslog.d/22-example.conf

local@.*;local®. !err, !crit, lalert, lemerg /var/log/example.log
local@.err /var/log/example.err.log

Here we send all messages except error, critical alert and emergency to the /var/log/example. log
file. Error priority messages and higher go to the /var/log/example.err.log file.

Remember to restart the rsyslog service after any change.

Sending Logs to Remote Servers

One thing rsyslog can do is send logs to a remote server. This is helpful for log aggregation - the
receiving server can save the logs to a central location.

To do so, you must enable either your UDP or TCP based modules. TCP is “slower” because the
protocol takes measure to ensure each data packet sent to a remote server is received, and re-sends
them if not. UDP, however, is faster as it’s a “fire and forget” protocol. If it’s not important to get
every single log in every case, using the UDP method may be preferred.

I’ll use the TCP module. Let’s say we have a receiving server at 192.168.33.10. Inside of that server,
we need to enable TCP reception. We can do that in /etc/rsyslog.conf by enabling TCP and setting
it to listen on port 514:

Rsyslog 261

File: /etc/rsyslog.conf on receiving server

provides TCP syslog reception
$ModLoad imtcp
$InputTCPServerRun 1025

Q Because rsyslog is set to drop privileges from root on startup, we can’t bind to ports under
1024 (all of which require sudo privileges). I have set the port number to 1025. You'll find
an error in /var/log/syslog if you use a port number lower than 1024.

Save that configuration and restart rsyslog with sudo service rsyslog restart.

You can verify that something is listening on TCP port 1025:

$ netstat -a | grep 1025
tep %] 0 *:1025 * ok LISTEN
tcpb 0 @ [::]:1025 [o:]:* LISTEN

This shows that rsyslog is listening on all ipv4 and ipv6 networks on TCP port 1025.

Finally, on our server creating the logs, we can configure rsyslog to capture certain logs and send it
to the receiving server:

File: /etc/rsyslog.d/22-example.conf

local@.*;local®. !err, !crit, lalert, lemerg ©0192.168.33.10:1025
local@.err ©0192.168.33.10:1025

Q Using @@ denotes to send as TCP, while a single @ will send over UDP.

Save that and restart rsyslog using sudo service rsyslog restart.

On the sending server, we can test this:

logger -p local@.info 'this is an info message'
logger -p local@.err 'this is an error message'

On the receiving server, if we tail the syslog, we’ll see them:

Rsyslog 262

$ sudo tail -f /var/log/syslog
Aug 5 20:49:52 vagrant-ubuntu-trusty-64 vagrant: this is an info message
Aug 5 20:50:17 vagrant-ubuntu-trusty-64 vagrant: this is an error message

On the receiving server, we can also configure a redirect of these logs to a specific log file rather
than the syslog.

This is a way of getting some basic log aggregation started!

If you’re interested in finding out more, consider investigating how you can filter logs per application
and (using $syslogtag or $programname) or using file watching®’, so that applications creating their
own log files can also use rsyslog.

Should | Use Rsyslog?

I suggest using a third party log aggregator if you can. These usually come with search, analytics
and even alerting capabilities. There are free (open source) alternatives as well some paid ones.

Some of these use rsyslog (they’ll configure it for you), while others skip it entirely. It’s good to know
what rsyslog can do in general, but I don’t necessarily think it’s the best way to manage your logs.

Sending To Rsyslog From An Application

While you can set up rsyslog to watch log files, the following libraries can also get you started
sending logs to rsyslog directly:

« PHP - Monolog + syslog handler®® will be able to send logs to syslog and rsyslog.
Python - The standard library®® can send to syslog

« Ruby - Use the SysLogLogger'® or syslog-logger
Nodejs - The logger Winston has support for syslog'®

101 gems

*"https://logtrust.atlassian.net/wiki/display/LD/File+monitoring +via+rsyslog
*®https://github.com/Seldaek/monolog

*’https://docs.python.org/2/library/logging handlers.html#sysloghandler
1%https://rubygems.org/gems/SyslogLogger
1https://rubygems.org/gems/syslog-logger
1%%https://www.npmjs.org/package/winston-rsyslog

https://logtrust.atlassian.net/wiki/display/LD/File+monitoring+via+rsyslog
https://github.com/Seldaek/monolog
https://docs.python.org/2/library/logging.handlers.html#sysloghandler
https://rubygems.org/gems/SyslogLogger
https://rubygems.org/gems/syslog-logger
https://www.npmjs.org/package/winston-rsyslog
https://logtrust.atlassian.net/wiki/display/LD/File+monitoring+via+rsyslog
https://github.com/Seldaek/monolog
https://docs.python.org/2/library/logging.handlers.html#sysloghandler
https://rubygems.org/gems/SyslogLogger
https://rubygems.org/gems/syslog-logger
https://www.npmjs.org/package/winston-rsyslog

File Management, Deployment &
Configuration Management

W N -

O = W N =

Managing Files

There’s quite a few ways of copying files using the command line. Of course we can copy files inside
of our own computer, but often we need to copy files over a network to other servers. There’s a few
strategies for doing so, which we’ll cover here in a little more detail.

Copying Files Locally

If we only need to copy files locally, we can use the cp command:

Copy a file:

cp /path/to/source/file.ext /path/to/destination/

To rename the file while copying it

cp /path/to/source/file.ext /path/to/destination/new-filename.ext
To copy a directory, we must copy recursively with the -r flag:

cp -r /path/to/source/dir /path/to/destination
Result: /path/to/destination/dir exists!

SCP: Secure Copy

Secure Copy is just like the cp command, but it uses SSH, which is a secure method of sending data.
To copy a file to a remote server:

Copy a file:
scp /path/to/source/file.ext username@hostname.com:/path/to/destination/file.ext

To copy a directory, use the recursive flag:

scp -r /path/to/source/dir username@server-host.com:/path/to/destination

This will attempt to connect to hostname.com as user username. It will ask you for a password if
there’s no SSH key setup. If the connection is authenticated successfully, the file will be copied to
the remote server.

Since this works just like SSH (using SSH, in fact), we can add flags normally used with the SSH
command as well. For example, you can add the -v and/or -vvv to get various levels of verbosity in
output about the connection attempt and file transfer.

You can also use the -i (identity file) flag to specify an SSH identity file to use:

1

2

O O b W N =~

Managing Files 265

scp -1 ~/.ssh/some_identity.pem \
/path/to/source/file.ext \
username@hostname: /path/to/destination/file.ext

Other common options for scp:

+ -p (lowercase) - Show estimated time and connection speed while copying
+ -P - Choose an alternate port
+ -c (lowercase) - Choose another cypher other than the default AES-128 for encryption

+ -C - Compress files before copying, for faster upload speeds (already compressed files are not
compressed further)

+ -1 - Limit bandwidth used in kilobits per second (8 bits to a byte!).
— e.g. Limit to 50 KB/s: scp -1 400 ~/file.ext user@host.com:~/file.ext
+ -q - Quiet output

% -1 is an important flag, as scp can eat a lot of bandwidth if not controlled

Rsync: Sync Files Across Hosts

Rsync is another secure way to transfer files. Rsync has the ability to detect file differences, giving it
the opportunity to save bandwidth and time when transferring files by only sending the difference.

Just like scp, rsync uses SSH to connect to remote hosts and send/receive files from them. For the
most part, the same rules and SSH-related flags apply for rsync as well.

Copy files to a remote server:

Copy a file
rsync /path/to/source/file.ext username@hostname.com:/path/to/destination/file.e\
xt

To copy a directory, use the recursive flag:

rsync -r /path/to/source/dir username@hostname.com:/path/to/destination/dir

To use a specific SSH identity file and/or SSH port, we need to do a little more work than we did
with scp. We'll use the -e flag, which lets us choose/modify the remote shell program (SSH and its
options) used to send files.

D W N -

=N O O b W N =

Managing Files 266

Send files over SSH on port 8888 using a specific identity file:

rsync -e 'ssh -p 8888 -i /home/username/.ssh/some_identity.pem' \
/source/file.ext \
username@hostname:/destination/file.ext

Other common options for rsync:

+ -v - Verbose output
+ -z - Compress files
+ -c - Compare files based on checksum instead of mod-time (create/modified timestamp) and
size
« -r - Recursive
+ -S - Handle sparse files'® efficiently
 Symlinks:
— -1 - Copy symlinks as symlinks
— -L - Transform symlink into referent file/dir (copy the actual file)
+ -p - Preserve permissions
+ -h - Output numbers in a human-readable format
--exclude="" - Files to exclude
- e.g. Exclude the .git directory: - -exclude=".git"

There are many other options'** as well - you can do a LOT with rsync!

Doing a Dry-Run:

I often do a dry-run of rsync to preview what files will be copied over. This is useful for making sure
your flags are correct and you won'’t overwrite files you don’t wish to:

For this, we can use the -n or --dry-run flag:

Copy the current directory
$ rsync -vzerSLhp --dry-run \
AR

username@hostname.com: /var/www/some-site.com

building file list ... done
list of directories/files and some meta data here ...

1%http://gergap.wordpress.com/2013/08/10/rsync-and-sparse-files/
1%*http://linux.die.net/man/1/rsync

http://gergap.wordpress.com/2013/08/10/rsync-and-sparse-files/
http://linux.die.net/man/1/rsync
http://gergap.wordpress.com/2013/08/10/rsync-and-sparse-files/
http://linux.die.net/man/1/rsync

1

Managing Files 267

Resuming a Stalled Transfer:

Once in a while a large file transfer might stall or fail (while either using scp or rsync). We can use
rsync to finish a file transfer!

For this, we can use the --partial flag, which tells rsync to not delete partially transferred files but
keep them and attempt to complete the file’s transfer:

rsync --partial --progress \
largefile.ext \
username@hostname: /path/to/largefile.ext

The Archive Option:

There’s also a -a or --archive option, which is a handy shortcut for the options -r1ptgoD:

« -r - Copy recursively

+ -1 - Copy symlinks as symlinks (don’t copy the actual file)

+ -p - Preserve permissions

+ -t - Preserve modification times

+ -g - Preserve group

+ -o - Preserve owner (User needs to have permission to change owner)

+ -D - Preserve special/device files'®. Same as - -devices --specials. (User needs permissions
to do so)

For example (note the use of --stats as well):

Copy using the archive option and print some stats
rsync -a --stats /source/dir/path username@hostname:/destination/dir/path

Smartly Merge between Directories

Rsync can be used to smartly merge two directories:
rsync -abviuzP src/ dest/

« -i - turns on the itemized format, which shows more information than the default format

+ -b - makes rsync backup files that exist in both folders, appending ~ to the old file. You can
control this suffix with —suffix .suf

1%http://en.wikipedia.org/wiki/Device_file

http://en.wikipedia.org/wiki/Device_file
http://en.wikipedia.org/wiki/Device_file

O O b W N =~

Managing Files 268

« -u - makes rsync transfer skip files which are newer in dest than in src

+ -z - turns on compression, which is useful when transferring easily-compressible files over
slow links

+ -P - turns on —partial and —progress
+ --partial - makes rsync keep partially transferred files if the transfer is interrupted
+ --progress - shows a progress bar for each transfer, useful if you transfer big files

Deployment

SCP and Rsync make for good but basic tools for deploying files to servers.

Currently the serversforhackers.com site is built with static files. I use a static site generator (Sculpin)
to create the files, and simply use rsync to copy them to the production server. The script to do so
looks something like this:

Generate production files
php sculpin.phar generate --env=prod

Upload files via rsync
rsync -vzrS output_prod/ \

username@serversforhackers.com: /var/www/serversforhackers.com/public

We can do the same with SCP as well, however Rsync provides the benefit of only sending files that
have changed.

This is good for basic sites, however sites that need further done to it on deployment (perhaps
updating packages or reload web servers) deserve a more automated method of deployment.

Auto-deploy with GitHub

In the past, I've needed to automate deploying new code without being able to install Git on the
production server. The project was hosted on GitHub, so I had GitHub’s WebHooks available to me.

Node makes creating HTTP listeners very easy. Because of that, and the strength of the Node
community, I first checked out what Node projects were available for receiving Github WebHooks.

I chose gith'*®, which is a simple package for responding to WebHooks. Its last commit was in 2013,
so you may want to find an updated library, but it will work for our example here.

How it Works

When a commit is pushed to GitHub, a POST request will be sent to a URL of our choosing. That URL
is set in the “settings” page of any GitHub repository. This POST request will include a “payload”
variable with information about the repository and the latest commit(s).

Our code will then take action on this - in this case, if the push was to the master branch, it will run
a shell script to download the latest zip file of the repo, unzip it and move it to where it needs to
be on the server. This avoids using git directly on the server, although you can do so if it fits your
needs.

Node will create the web server to listen for the WebHook. It can then execute the shell script which
does the heavy lifting.

Node Listener

Assuming Node and NPM are installed, we can do the following:

cd /path/to/node/app
npm install gith

Gith is now installed at /path/to/node/app, so let’s write our node script using it. The node script:

Create the file /path/to/node/app/hook. js and edit it:

1%https://github.com/danheberden/gith

https://github.com/danheberden/gith
https://github.com/danheberden/gith

W N O O & W N =~

U S YN
0 3 0 O b ON =~ O

Auto-deploy with GitHub 270

File: /path/to/node/app/hook.js

// Listen on port 9001

var gith = require('gith').create(9001);

// Import execFile, to run our bash script

var execFile = require('child_process').execFile;

gith({
repo: 'fideloper/example'’
}).on('all', function(payload) {
if(payload.branch === 'master')
{
// Exec a shell script
execFile('/path/to/hook.sh', function(error, stdout, stderr) {
// Log success or error in some manner
console.log('exec complete');

1)

This will run the file as the user that starts/owns the Node process. You’ll want the Node
process to be a user with permission to run these operations, likely your deploy user.

Buffer Size

If your shell script outputs a lot of data to stdout, then you may max out Node’s “maxBuffer” setting.
If this is reached, then the child process is killed! In the example above, this means that the hook . sh
script will stop mid-process.

In order to increase the default buffer size limit, you can pass in some options to the execFile'"’

function:

107http:/ /nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback

http://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback
http://nodejs.org/api/child_process.html#child_process_child_process_execfile_file_args_options_callback

O N O O & W N~

0 N O O & W N =

T S - G i G Ui G G
© © 0O 1 O O b W N~ O O

Auto-deploy with GitHub 271

// Increase maxBuffer from 200*%1024 to 1024*1024
var execOptions = {
maxBuffer: 1024 * 1024 // 1mb

// Pass execOptions
execFile('/path/to/hook.sh', execOptions,
function(error, stdout, stderr) { ... }

Shell Script

We use a shell script to get the files from the master branch of the repository and replace the latest
files with them.

Install unzip if you don’t already have it. On Ubuntu, you can run:

sudo apt-get install unzip

Now, create the hook . sh shell script:

File: /path/to/node/app/hook.sh

#!/usr/bin/env bash

First, get the zip file
cd /path/to/put/zip/file && wget \
-0 projectmaster.zip \
-q https://github.com/fideloper/example/archive/master.zip

Second, unzip it, i1f the zip file exists

if [-f /path/to/put/zip/file/projectmaster.zip |; then
Unzip the zip file
unzip -q /path/to/put/zip/file/projectmaster.zip

Delete zip file
rm /path/to/put/zip/file/projectmaster.zip

Rename project directory to desired name
mv Project-master somesite.com

Delete current directory
rm -rf /var/www/somesite.com

21
22
23
24
25
26
27
28

O b W N =

1
2

Auto-deploy with GitHub 272

Replace with new files
mv somesite.com /var/www/
Perhaps call any other scripts you need to rebuild assets here
or set owner/permissions
or confirm that the old site was replaced correctly
fi

Putting it together

So, we have a GitHub Webhook sending POST data tohttp: //somesite.com:9001, as set in GitHub
project settings and in our Node script. When that hook is received, we check if it’s the master
branch. If so, we run the shell script hook . sh.

Lastly, We need to keep the Node script running. If it stops running without us knowing about
it, then GitHub WebHook’s will do nothing and we’ll be running out-of-date code. This is where
forever'®® comes in - It will watch a Node process and turn it back on if the Node app errors out or
otherwise stops running.

To install globally, run as a priviledged user (use sudo)
sudo npm install -g forever

Start our Node app .. FOREVER!
forever start /path/to/node/app/hook. js

0 I suggest using Supervisord or PM2 in production, as Forever isn’t built to reload processes
through a system restart. The Monitoring Processes chapter covers this.

Firewall

If you’re using a firewall such as iptables , you will likely need to open your chosen port to receive
web traffic. Here’s how you can do it with iptables:

(I)nserts this rule after the 4th iptables firewall rule
sudo iptables -I INPUT 4 -p tcp --dport 9001 -j ACCEPT

1%%https://github.com/nodejitsu/forever

https://github.com/nodejitsu/forever
https://github.com/nodejitsu/forever

Auto-deploy with GitHub 273

Note that I use -I to insert a new rule in with existing ones. This will add it after the 4th rule.
The order is important in iptables rules, since the firewall will stop and apply at the first rule that
matches the incoming request.

Adding a new rule instead of inserting one can be added in this manner:

iptables -A INPUT -p tcp --dport 9001 -j ACCEPT

Configuration Management with
Ansible

Ansible is a configuration management and provisioning tool, similar to Chef, Puppet or Salt.

I've found it to be one of the simplest and the easiest to get started with. A lot of this is because it’s
“just SSH”; It uses SSH to connect to servers and run the configured Tasks.

One nice thing about Ansible is that it’s very easy to convert bash scripts (still a popular way to
accomplish configuration management) into Ansible Tasks. Since it’s primarily SSH based, it’s not
hard to see why this might be the case - Ansible ends up running the same commands.

We could just script our own provisioners, but Ansible is much cleaner because it automates the
process of getting context before running Tasks. With this context, Ansible is able to handle most
edge cases - the kind we usually take care of with longer and increasingly complex scripts.

Ansible Tasks are idempotent, meaning we can run the same set of tasks over and over again without
worrying about negative consequences. Without a lot of extra coding, bash scripts are usually not
safely run again and again.

To accomplish idempotence, Ansible uses “Facts”, which is system and environment information it
gathers (“context”) before running Tasks. These facts are used to check system state and see if it
needs to change anything in order to get the desired outcome.

Here I'll show how easy it is to get started with Ansible. We'll start at a basic level and then add in
more features as we improve upon our configurations.

Install

Of course we need to start by installing Ansible. Tasks can be run off of any machine Ansible is
installed on.

This means there’s usually a “central” server running Ansible commands, although there’s nothing
particularly special about what server Ansible is installed on. Ansible is “agentless” - there’s no
central agent(s) running on the servers that are being provisioned. We can even run Ansible from
any server; [often run Tasks from my laptop.

Here’s how to install Ansible on Ubuntu 14.04. We’ll use the easy-to-remember ppa:ansible/ansible
repository as per the official docs'®’.

1%http://docs.ansible.com/intro_installation.html#latest-releases-via-apt-ubuntu

http://docs.ansible.com/intro_installation.html#latest-releases-via-apt-ubuntu
http://docs.ansible.com/intro_installation.html#latest-releases-via-apt-ubuntu

Configuration Management with Ansible 275

Installing Ansible from official repository

sudo apt-add-repository -y ppa:ansible/ansible
sudo apt-get update
sudo apt-get install -y ansible

Managing Servers

Ansible has a default inventory file used to define which servers it will be managing. After
installation, there’s an example one you can reference at /etc/ansible/hosts.

[usually move (rather than delete) the default one so I can reference it later:

sudo mv /etc/ansible/hosts /etc/ansible/hosts.orig

Then I create my own inventory file from scratch. After moving the example inventory file, create
a new /etc/ansible/hosts file, and define some servers to manage. Here we’ll define two servers

under the “web” label:

File: /etc/ansible/hosts

[web]
192.168.22.10
192.168.22.11

That’s good enough for now. If needed, we can define ranges of hosts, multiple groups, reusable
variables, and use other fancy setups'*®, including creating a dynamic inventory***.

For testing this chapter, I created a virtual machine, installed Ansible, and then ran Ansible Tasks
directly on that server. To do this, my hosts inventory file simply looked like this:

[local]
127.0.0.1

This makes testing pretty easy - I don’t need to setup multiple servers or virtual machines. A
consequence of this is that I need to tell Ansible to run Tasks as user “vagrant” and use password-
based (rather than key-based) authentication.

ﬁ Note what we’re doing here - 'm installing Ansible on the same server I want to provision.
This is not a typical setup, but is useful for testing Ansible yourself within a Virtual
Machine.

"%http://docs.ansible.com/intro_inventory.html
"http://docs.ansible.com/intro_dynamic_inventory.html

http://docs.ansible.com/intro_inventory.html
http://docs.ansible.com/intro_dynamic_inventory.html
http://docs.ansible.com/intro_inventory.html
http://docs.ansible.com/intro_dynamic_inventory.html

O b W N =

Configuration Management with Ansible 276

Basic: Running Commands

Once we have an inventory configured, we can start running Tasks against the defined servers.

Ansible will assume you have SSH access available to your servers, usually based on SSH-Key.
Because Ansible uses SSH, the server it’s on needs to be able to SSH into the inventory servers. It
will attempt to connect as the current user it is being run as. If 'm running Ansible as user vagrant,
it will attempt to connect as user vagrant on the other servers.

If Ansible can directly SSH into the managed servers, we can run commands without too much fuss:

Using the ping module

$ ansible all -m ping
127.0.0.1 | success >> {

"changed": false,

"ping": "pong"

We can see the output we get from Ansible is some JSON which tells us if the Task made any changes
and the result.

If we need to define the user and perhaps some other settings in order to connect to our server, we
can. When testing locally on Vagrant, I use the following:

using the ping module while using sudo, asking for user password and defining the user

ansible all -m ping -s -k -u vagrant

Let’s cover these commands:

« all - Use all defined servers from the inventory file

« -m ping - Use the “ping” module, which simply runs the ping command and returns the results
+ -s - Use “sudo” to run the commands

+ -k - Ask for a password rather than use key-based authentication

+ -u vagrant - Log into servers using user vagrant

Modules
Ansible uses “modules” to accomplish most of its Tasks. Modules can do things like install software,
copy files, use templates and much more'*?.

Modules are the way to use Ansible, as they can use available context (“Facts”) in order to determine
what actions, if any need to be done to accomplish a Task.

If we didn’t have modules, we’d be left running arbitrary shell commands like this:

"2http://docs.ansible.com/modules_by_category.html

http://docs.ansible.com/modules_by_category.html
http://docs.ansible.com/modules_by_category.html

W N -

Configuration Management with Ansible 277

Installing Nginx with an arbitrary shell command

ansible all -s -m shell -a 'apt-get install nginx'

Here, the sudo apt-get install nginx command will be run using the “shell” module. The -a flag
is used to pass any arguments to the module. I use -s to run this command using sudo.

However this isn’t particularly powerful. While it’s handy to be able to run these commands on all
of our servers at once, we still only accomplish what any bash script might do.

If we used a more appropriate module instead, we can run commands with an assurance of the
result. Ansible modules ensure indempotence - we can run the same Tasks over and over without
affecting the final result.

For installing software on Debian/Ubuntu servers, the “apt” module will run the same command,
but ensure idempotence.

Installing Nginx with the pkg module

ansible all -s -m apt -a 'pkg=nginx state=installed update_cache=true'
127.0.0.1 | success >> {
"changed": false

This will use the apt module'” to update the repository cache and install Nginx (if not installed).

The result of running the Task was "changed": false. This shows that there were no changes; had
already installed Nginx. I can run this command over and over without worrying about it affecting
the desired result.

Going over the command:

+ all - Run on all defined hosts from the inventory file

+ -s - Run using sudo

« -m apt - Use the apt module***

« -a 'pkg=nginx state=installed update_cache=true' - Provide the arguments for the apt
module, including the package name, our desired end state and whether to update the package

repository cache or not

We can run all of our needed Tasks (via modules) in this ad-hoc way, but let’s make this more
managable. We’ll move this Task into a Playbook, which can run and coordinate multiple Tasks.

"http://docs.ansible.com/apt_module. html
*http://docs.ansible.com/apt_module.html

http://docs.ansible.com/apt_module.html
http://docs.ansible.com/apt_module.html
http://docs.ansible.com/apt_module.html
http://docs.ansible.com/apt_module.html

O = W N -

0 N O O b W N =

(RN
N O O

Configuration Management with Ansible 278

Basic Playbook

Playbooks'** can run multiple Tasks and provide some more advanced functionality that we would
miss out on if using ad-hoc commands. Let’s move the above Task into a playbook.

0 Playbooks and Roles in Ansible all use Yaml.

Create the file nginx.yml:

Playbook file nginx.yml

- hosts: local
tasks:
- name: Install Nginx
apt: pkg=nginx state=installed update_cache=true

This Task does exactly the same as our ad-hoc command, however I chose to specify my “local”
group of servers rather than “all”. We can run it with the ansible-playbook command:

Output from running the Nginx Playbook

$ ansible-playbook -s nginx.yml
PLAY [local] sskskkskokskokkkssksosokokkkokokobokkokkokokkokokkokskokoo ok kokokokokokskokkkokokokokokokk koo o ok

GATHERING FACTS skskskokokskskok sk sksk ok sk sk ok 5k sk ok ok >k sk ok >k sk ok ok sk sk sk ok sk ok ok sk ok ok sk sk ok ok skook ok sk skosk sk oskook sk skok sk skoskok sk oskokoskkosk sk
ok: [127.0.0.1]

TASK: [Install Nginx] kkkkkkkkkssssttttmmrkkkkkhbokkkkoofooooooookkokokokokokokkk o
ok: [127.0.0.1]

PLAY RECAP kokskokokokskokok sk ok ok sk ok sk ok ok sk ok ok ok sk ok ok sk okook sk okook ok skook ok sk okook sk okok ok kokok ok

127.0.0.1 : ok=2 changed=0 unreachable=0 failed=0

Use -s to tell Ansible to use sudo again, and then pass the Playbook file.

Alternatively, we could tell Ansible to use “sudo” from within the Playbook:

"http://docs.ansible.com/playbooks_intro.html

http://docs.ansible.com/playbooks_intro.html
http://docs.ansible.com/playbooks_intro.html

O O b W N~

o I O O P+ W N =

RN
N -~ O ©

Configuration Management with Ansible 279

Playbook file nginx.yml

- hosts: local
sudo: yes
tasks:
- name: Install Nginx
apt: pkg=nginx state=installed update_cache=true

Then we could run it with the following, simpler, command:
$ ansible-playbook nginx.yml

In any case, we get some useful feedback while this runs, including the Tasks Ansible runs and their
result. Here we see all ran OK, but nothing was changed. I happen to have Nginx installed already.

0 I used the command $ ansible-playbook -s -k -u vagrant nginx.yml to run this
playbook locally on my Vagrant installation while testing.

Handlers

A Handler is exactly the same as a Task (it can do anything a Task can), but it will run when called
by another Task. You can think of it as part of an Event system; A Handler will take an action when
called by an event it listens for.

This is useful for “secondary” actions that might be required after running a Task, such as starting
a new service after installation or reloading a service after a configuration change.

Adding a Handler

- hosts: local
sudo: yes
tasks:
- name: Install Nginx
apt: pkg=nginx state=installed update_cache=true
notify:
- Start Nginx

handlers:
- name: Start Nginx
service: name=nginx state=started

0w < O O P W N =~

[UGN
O O b WO N =~ O O

Configuration Management with Ansible

We can add a notify directive to the installation Task. This notifies any Handler named “Start

Nginx” after the Task is run.

Then we can create the Handler called “Start Nginx”. This Handler is the Task called when “Start

Nginx” is notified.

This particular Handler uses the Service module'**

system services. Here we simply tell Ansible that we want Nginx to be started.

Note that Ansible has us define the state you wish the service to be in, rather than
defining the change you want. Ansible will decide if a change is needed, we just tell it
the desired result.

Let’s run this Playbook again:

Output of running the Nginx Playbook with the Handler

, which can start, stop, restart, reload (and so on)

-s flag is actually redundant with "sudo: yes" in the yaml
$ ansible-playbook -s nginx.yml

PLAY [local] sxkskskskkkorsksoksssokdorkokokdokdokok ookt odok otk ok kot okokoao ook ook ok koo ok K

GATHERING FACTS kskkokokokskok sk >k ok ok 5k ok ok ok >k ok ok >k ok ok >k >k ok ok >k ok ok >k sk ok ok >k ok ok >k ok ok ok sk ok ok >k ok ok ok sk ok ok sk ok ok ok skook ok skok sk kosk sk

ok: [127.0.0.1]

TASK: [Install Nginx] #ksksssksksksoksksokokssokkossokdonokfokkokfokkoaok ookt fokkofokkorok ok ok ok
ok: [127.0.0.1]

NOTIFIED: [nginx | Start Nginx] 3k 3k 3k 3k 3k sk sk sk sk sk sk >k ok ok sk sk sk ke sk Sk Sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk sk sk sk sk sk k ok
ok: [127.0.0.1]

PLAY RECAP skkokoskokokokokokoksksk sk sk sk sk sk sk sk sk sk ks sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk o o ok ok ok ok ok ok ok sk ok ok ok ok
127.0.0.1 : ok=2 changed=0 unreachable=0 failed=0

We get the similar output, but this time the Handler was run.

Notifiers are only run if the Task is run. If I already had Nginx installed, the Install Nginx
Task would not be run and the notifier would not be called.

We can use Playbooks to run multiple Tasks, add in variables, define other settings and even include

other playbooks.

"®http://docs.ansible.com/service_module.html

http://docs.ansible.com/service_module.html
http://docs.ansible.com/service_module.html

W N O Ol & W N =~

W NN DNDNDDNDNDNDDNDNDNNNAES-S PSP
© © 00 9 O O b WO N O O 00 N O O b W N~ O O

Configuration Management with Ansible 281

More Tasks

Next we can add a few more Tasks to this Playbook and explore some other functionality.

- hosts: local
sudo: yes
vars:
- docroot: /var/www/serversforhackers.com/public
tasks:
- name: Add Nginx Repository
apt_repository: repo='ppa:nginx/stable' state=present
register: ppastable

- name: Install Nginx
apt: pkg=nginx state=installed update_cache=true
when: ppastable|success
register: nginxinstalled
notify:
- Start Nginx

- name: Create Web Root
when: nginxinstalled|success
file: dest={{ docroot }} mode=775 state=directory owner=www-data group=www-\
data
notify:
- Reload Nginx

handlers:
- name: Start Nginx
service: name=nginx state=started

- name: Reload Nginx
service: name=nginx state=reloaded

There are now three Tasks:

« Add Nginx Repository - Add the Nginx stable PPA to get the latest stable version of Nginx,

using the apt_repository module'"’.

« Install Nginx - Install Nginx using the Apt module.

""http://docs.ansible.com/apt_repository_module.html

http://docs.ansible.com/apt_repository_module.html
http://docs.ansible.com/apt_repository_module.html

W N -

Configuration Management with Ansible 282
« Create Web Root - Finally, create a web root directory.

Also new here are theregister and when directives. These tell Ansible to run a Task when something
else happens.

The “Add Nginx Repository” Task registers “ppastable”. Then we use that to inform the Install Nginx
Task to only run when the registered “ppastable” Task is successful. This allows us to conditionally
stop Ansible from running a Task.

We also use a variable. The docroot variable is defined in the var section. It’s then used as the
destination argument of the file module'*® which creates the defined directory.

This playbook can be run with the usual command:

ansible-playbook -s nginx.yml

Or, as I ran on my Vagrant machine:

ansible-playbook -s -k -u vagrant nginx.yml

Next we’ll take Ansible further and by organizing the Playbook into a Role while also showing some
more functionality.

Roles

Roles are good for organizing multiple, related Tasks and encapsulating data needed to accomplish
those Tasks. For example, installing Nginx may involve adding a package repository, installing the
package and setting up configuration. We’ve seen installation in action in a Playbook, but once we
start configuring our installations, the Playbooks tend to get a little more busy.

The configuration portion often requires extra data such as variables, files, dynamic templates and
more. These tools can be used with Playbooks, but we can do better immediately by organizing
related Tasks and data into one coherent structure: a Role.

Roles have a directory structure like this:

8http://docs.ansible.com/file_module.html

http://docs.ansible.com/file_module.html
http://docs.ansible.com/file_module.html

W N -

Configuration Management with Ansible 283

Role directory structure

rolename
/files
/handlers
/meta
/templates
/tasks
/vars

Within each directory, Ansible will search for and read any Yaml file called main.yml automatically.

We'll break apart our nginx.yml file and put each component within the corresponding directory
to create a cleaner and more complete provisioning toolset.

Files

First, within the files directory, we can add files that we’ll want copied into our servers. For Nginx,
I often copy H5BP’s Nginx component configurations'”’. I simply download the latest from Github,
make any tweaks I want, and put them into the files directory.

H5BP directory included with the Role’s files

nginx
/files
/hSbp
/-other configs from H5BP-

As we'll see, these configurations will be added via the copy module'*°.

Handlers

Inside of the handlers directory, we can put all of our Handlers that were once within the nginx.yml
Playbook.

"https://github.com/h5bp/server-configs-nginx/tree/master/h5bp
2%http://docs.ansible.com/copy_module.html

https://github.com/h5bp/server-configs-nginx/tree/master/h5bp
http://docs.ansible.com/copy_module.html
https://github.com/h5bp/server-configs-nginx/tree/master/h5bp
http://docs.ansible.com/copy_module.html

O O b W N~

Configuration Management with Ansible 284

File: handlers/main.yml

- name: Start Nginx
service: name=nginx state=started

- name: Reload Nginx
service: name=nginx state=reloaded

Once these are in place, we can reference them from other files freely.

Meta

The main.yml file within the meta directory contains Role meta data, including dependencies.

If this Role depended on another Role, we could define that here. For example, I have the Nginx Role
depend on the SSL Role, which installs SSL certificates.

File: meta/main.yml

dependencies:
- { role: ssl }

If I called the “nginx” Role, it would attempt to first run the “ssl” Role.

Otherwise we can omit this file, or define the Role as having no dependencies:

File: meta/main.yml

dependencies: []

Template

Template files can contain template variables, based on Python’s Jinja2 template engine***. Files in
here should end in the . j2 extension, but can otherwise have any name. Similar to files, we won’t
find amain.yml file within the templates directory.

Here’s an example Nginx virtual host configuration. Note that it uses some variables which we’ll
define later in the vars/main.ym1 file.

2Ihttp://jinja.pocoo.org/docs/dev/

http://jinja.pocoo.org/docs/dev/
http://jinja.pocoo.org/docs/dev/

0 N O O &~ W N -

BB W W W W W W oW W W WNDNDDNDDNDDNDNDNDNDNDNNNDNNNASEASPA,PS PSP s
O O 0 9 O O i WO NP O O 00N O O i+ WNPHO O 0WWNO O ik WOWN SO O

Configuration Management with Ansible

File: templates/serversforhackers.com.j2

285

server {

Enforce the use of HTTPS
listen 80 default_server;

server_name *.{{ domain }};

return 301 https://{{ domain }}$request_uri;

server

listen 443 default_server ssl;

root /var/www/{{ domain }}/public;

index index.html index.htm index.php;

access_log /var/log/nginx/{{ domain }}.log;

error_log /var/log/nginx/{{ domain }}-error.log error;

server_name {{ domain }};

charset utf-8;

include hSbp/basic.conf;

ssl_certificate {{ ssl_crt }};

ssl_certificate_key {{ ssl_key }};

include hb5bp/directive-only/ssl.conf;

location /book {
return 301 http://book.{{ domain }};

location / {

try_files $uri $uri/ /index.php$is_args$args;

location
location

/favicon.ico { log_not_found off; access_log off; }
/robots.txt { log_not_found off; access_log off; }

location ~ \.php$ {
fastegi_split_path_info *(.+\.php)(/.+)$;

fastegi_pass unix:/var/run/php5-fpm.sock;

42
43
44
45
46
47
48
49
90
o1
52
53
o4
o5
56
o7
58
59
60
61
62
63
64
65
66

Configuration Management with Ansible 286

fastcgi_index index.php;
include fastcgi_params; # fastcgi.conf for version 1.6.1+
fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
fastcgi_param PATH_INFO $fastegi_path_info;
fastegi_param ENV production;

}

Nginx status

Nginx Plus only

#]ocation /status {

status;

status_rformat json;

allow 127.0.0.1;

deny all;

#}

location ~ */(fpmstatus|fpmping)$ {
access_log off;
allow 127.0.0.1;
deny all;
include fastcgi_params; # fastcgi.conf for version 1.6.1+
fastcgi_pass unix:/var/run/php5-fpm.sock;

}

}

This is a fairly standard Nginx configuration for a PHP application. There are three variables used
here:

« domain
« ssl crt
« ssl_key

These three will be defined in the variables section.

Variables

Before we look at the Tasks, let’s look at variables. The vars directory contains amain.yml file which
simply lists variables we’ll use. This provides a convenient place for us to change configuration-wide
settings.

Here’s what the vars/main.yml file might look like:

W N -

o I O O P W N =

NN NN N N B B | s s s s
O b= O N~ O O 0N O O b W N~ ©

Configuration Management with Ansible

File: vars/main.yml

287

domain:

serversforhackers.com

ssl_key: /etc/ssl/sfh/sfh.key
ssl_crt: /etc/ssl/sfh/sfh.crt

These are three variables which we can use elsewhere in this Role. We saw them used in the template
above, but we’ll see them in our defined Tasks as well.

Tasks

Let’s finally see this all put together into a series of Tasks.

Inside of tasks/main.yml:

Final Tasks file using all Role functionality

- hame:

Add Nginx Repository

apt_repository: repo='ppa:nginx/stable' state=present

register: ppastable

- hame:

Install Nginx

apt: pkg=nginx state=installed update_cache=true

when:

ppastable|success

register: nginxinstalled

notify:

- Start Nginx

- name:
when:

copy:

- name:
when:
file:

- hame:

when:

Add H5BP Config
nginxinstalled|success
src=hbbp dest=/etc/nginx owner=root group=root

Disable Default Site
nginxinstalled|success
dest=/etc/nginx/sites-enabled/default state=absent

Add SFH Site Config
nginxinstalled|success

register: sfhconfig

template: src=serversforhackers.com.j2 dest=/etc/nginx/sites-available/{{ doma\

in }}.conf owner=root group=root

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

Configuration Management with Ansible 288

- name: Enable SFH Site Config

when: sfhconfig|success

file: src=/etc/nginx/sites-available/{{ domain }}.conf dest=/etc/nginx/sites-e\
nabled/{{ domain }}.conf state=link

- name: Create Web root
when: nginxinstalled|success
file: dest=/var/www/{{ domain }}/public mode=775 state=directory owner=www-dat\
a group=www-data
notify:
- Reload Nginx

- name: Web Root Permissions
when: nginxinstalled|success
file: dest=/var/www/{{ domain }} mode=7T75 state=directory owner=www-data group\
=www-data recurse=yes
notify:
- Reload Nginx

This is a longer series of Tasks, which makes for a more complete installation of Nginx. The Tasks,
in order of appearance, accomplish the following:

+ Add the nginx/stable repository

« Install & start Nginx, register successful installation to trigger remaining Tasks

+ Add H5BP configuration

« Disable the default virtual host by removing the symlink to the default file from the sites-
enabled directory

+ Copy the serversforhackers.com.conf. j2 virtual host template into the Nginx configura-
tion

« Enable the virtual host configuration by symlinking it to the sites-enabled directory

+ Create the web root

« Change permission for the project root directory, which is one level above the web root created
previously

There’s some new modules (and new uses of some we've covered), including copy, template, &
file. By setting the arguments for each module, we can do some interesting things such as ensuring
files are “absent” (delete them if they exist) via state=absent, or create a file as a symlink via
state=1link. You should check the docs for each module to see what interesting and useful things
you can accomplish with them.

O = W N =

O = W N =

Configuration Management with Ansible 289

Running the Role

Before running the Role, we need to tell Ansible where our Roles are located. In my Vagrant server,
they are located within /vagrant/ansible/roles. We can add this file path to the /etc/ansible/an-
sible.cfg file

roles_path = /vagrant/ansible/roles

Assuming our nginx Role is located at /vagrant/ansible/roles/nginx, we'll be all set to run this
Role!

Remove the ss1 dependency from meta/main.yml before running this Role if you are
following along.

Let’s create a “master” yaml file which defines the Roles to use and what hosts to run them on:

Playbook file: server.yml

- hosts: all
sudo: yes
roles:

- nginx

In my Vagrant example, I use the host “local” rather than “all”.
Then we can run the Role(s):

-s option is redundant with "sudo: yes" in the yaml
ansible-playbook -s server.yml

Or as I do with my Vagrant VM:
ansible-playbook -s -k -u vagrant server.yml

Here’s the output from the run of the Nginx Role:

W N O O & W N =~

W W W W W W W WNDNDNDNDNDDNDNDNDNDNNDDNAP-AS PP R e
N O O WO N O O 00 N0 O b ON-PT O O 00 N0 Ol W NN O O

Configuration Management with Ansible

Output from Playbook using Nginx Role

290

PLAY [all} 3k ok ok 5k >k >k 3k ok ok ok ok >k ok Sk ok ok sk >k ok Sk ok ok sk ok >k ok ok ok sk ok sk ok Sk ok sk sk >k ok Sk ok sk sk ok sk ok ok sk sk ok ok ok ok ok ok sk ok ok keok sk k skokok sk k ok

GATHERING FACTS kskokokokokokokok sk ok ok sk ok sk ok ok sk okeok sk skook sk sk okook sk oskok sk skokoskokokok
ok: [127.0.0.1]

TASK: [nginx | Add Nginx Repository] ¥¥kiikkkkkkkkkkssstittimimkkkkkkkkkokkddk
changed: [127.0.0.1]

TASK: [nginx | Install Nginx] ¥kl folkoosffolkokoook xRk
changed: [127.0.0.1]

TASK: [nginx | Add HSBP Config] ¥¥¥kkikiiikkkkkkkkkssofiiotiomikkkkkkkkkfoffofofodod ok ok
changed: [127.0.0.1]

TASK: [nginx | Disable Default Site] ¥¥¥xxrikkkkkkkkfksssdittiiirikkkkkkhkkfsdk
changed: [127.0.0.1]

TASK : [nginx | Add SFH Site Config] 3k 3k Sk sk ok >k ok Sk Sk ok sk >k ok sk ok ok sk >k sk sk ok sk sk >k ok sk ok skok sk >k sk sk kosk kR kockok sk k k

changed: [127.0.0.1]

TASK: [nginx | Enable SFH Site Config] ¥¥rkkkkkkkkkkssstiiiimiiikkkkkhkffsdk
changed: [127.0.0.1]

TASK : [nginx | Create Web root] >k 3k 3k ok ok >k ok sk ok skosk >k sk sk ok kosk sk sk sk ok koskosk sk sk sk sk skosk sk sk skookoskosk sk sk skockoskosk sk kk ok

changed: [127.0.0.1]

TASK: [nginx | Web Root Permissions] ¥¥kxikkkkkkkkkksssttttimirkkkkkkkkokkfdk
ok: [127.0.0.1]

NOTIFIED: [nginx | Start Nginx] #kksskskskskskskkssokssokdonkfkoksoksokoksofokkosfokkoaokkokxok
ok: [127.0.0.1]

NOTIFIED: [nginx | Reload Nginx] ¥kttt
changed: [127.0.0.1]

PLAY RECAP skokokokokokokokokoksksk sk sk sk sk sk sk sk sk sk ke ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk o o ok ok ok ok ok ok ok ok ok ok ok ok
127.0.0.1 : ok=8 changed=17 unreachable=0 failed=0

Awesome, we put all the various components together into a coherent Role and now have Nginx

installed and configured!

O = W N -

O = W N -

Configuration Management with Ansible 291

Facts

Before running any Tasks, Ansible will gather information about the system it’s provisioning. These
are called Facts, and include a wide array of system information such as the number of CPU cores,
available ipv4 and ipv6 networks, mounted disks, Linux distribution and more.

Facts are often useful in Tasks or Template configurations. For example Nginx is commonly set to
use as any worker processors as there are CPU cores. Knowing this, you may choose to set your
template of the nginx.conf file like so:

File: templates/nginx.conf.j2 - Template for /etc/nginx/nginx.conf file

user www-data www-data;
worker_processes {{ ansible_processor_cores }};
pid /var/run/nginx.pid;

And other configurations. ..

Or if you have a server with multiple CPU’s, you can use:

File: templates/nginx.conf.j2 with multiple CPU’s and cores

user www-data www-data;
worker_processes {{ ansible_processor_cores * ansible_processor_count }};

pid /var/run/nginx.pid;

And other configurations...

Ansible facts all start with anisble_ and are globally available for use any place variables can be
used: Variable files, Tasks, and Templates.

Example: Node)S

For Ubuntu, we can get the latest stable Node]S and NPM from NodeSource, which has teamed up
with Chris Lea. Chris ran the Ubuntu repository ppa:chris-lea/node. js, but now provides Node]S
via NodeSource packages. To that end, they have provided a shells script which installs the latest
stable Node]S and NPM on Debian/Ubuntu systems.

This shell script is found at https://deb.nodesource.com/setup'?>. We can take a look at this and
convert it to the following tasks from a Node]JS Role:

2Zhttps://deb.nodesource.com/setup

https://deb.nodesource.com/setup
https://deb.nodesource.com/setup

Configuration Management with Ansible 292

Node]JS and NPM Role for latest stable versions, as per NodeSource and Chris Lea

I
2 - name: Ensure Ubuntu Distro is Supported
3 get_url:
4 url="https://deb.nodesource.com/node/dists/{{ ansible_distribution_release }\
5 }/Release’
6 dest=/dev/null
7 register: distrosupported
8
9 - name: Remove 0ld Chris Lea PPA
10 apt_repository:
11 repo='ppa:chris-lea/node. js'
12 state=absent
13 when: distrosupported|success
14
15 - name: Remove 0l1d Chris Lea Sources
16 file:
17 path="'/etc/apt/sources.list.d/chris-lea-node_js-{{ ansible_distribution_rele\
18 ase }}.list'
19 state=absent
20 when: distrosupported|success
21
22 - name: Add Nodesource Keys
23 apt_key:
24 url=https://deb.nodesource.com/gpgkey/nodesource.gpg.key
25 state=present
26
27 - name: Add Nodesource Apt Sources List Deb
28 apt_repository:
29 repo='deb https://deb.nodesource.com/node {{ ansible_distribution_release }}\
30 main'
31 state=present
32 when: distrosupported|success
33
34 - name: Add Nodesource Apt Sources List Deb Src
35 apt_repository:
36 repo='deb-src https://deb.nodesource.com/node {{ ansible_distribution_releas\
37 e }} main'
38 state=present
39 when: distrosupported|success
40

41 - name: Install NodedJS

42
43

2

Configuration Management with Ansible 293

apt: pkg=nodejs state=latest update_cache=true
when: distrosupported|success

There’s a few tricks happening there. These mirror the bash script provided by Node Source.

First we create the Ensure Ubuntu Distro is Supported task, which uses the ansible_distribu-
tion_release Fact. This gives us the Ubuntu release, such as Precise or Trusty. If the resulting
URL exists, then we know our Ubuntu distribution is supported and can continue. We register
distrosupported so we can test if this step was successfully on subsequent tasks.

Then we run a series of tasks to remove Node]S repositories in case the system already has
ppa:chris-lea/node. js added. These only run when if the distribution is supported via when:
distrosupported|success. Note that most of these continue to use the ansible_distribution_-
release Fact.

Finally we get the debian source packages and install Node]S after updating the repository cache.
This will install the latest stable of NodeJS and NPM. We know it will get the latest version available
by using state=1atest when installing the node js package.

Vault

We often need to store sensitive data in our Ansible templates, Files or Variable files; It unfortunately
cannot always be avoided. Ansible has a solution for this called Ansible Vault.

Vault allows you to encrypt any Yaml file, which typically boil down to our Variable files. Vault will
not encrypt Files and Templates.

When creating an encrypted file, you’ll be asked a password which you must use to edit the file later
and when calling the Roles or Playbooks.

For example we can create a new Variable file:

ansible-vault create vars/main.yml
Vault Password:

After entering in the encryption password, the file will be opened in your default editor, usually
Vim.

The editor used is defined by the EDITOR environmental variable. The default is usually Vim. If you
are not a Vim user, you can change it quickly by setting the environmental variables:

O O b W N

Configuration Management with Ansible 294

Setting the editor used by Ansible Vault to Nano.

export EDITOR=nano
ansible-vault edit vars/main.yml

The editor can be set in the users profile/bash configuration, usually found at ~/.profile,
~/ .bashrc, ~/ .zshrc or similar, depending on the shell and Linux distribution used.

Ansible Vault itself is fairly self-explanatory. Here are the commands you can use:

Ansible-vault command options

$ ansible-vault -h
Usage: ansible-vault [createl|decryptledit|encrypt|rekey] \
[--help] [options] file_name

Options:
-h, --help show this help message and exit

For the most part, we'll use ansible-vault createledit /path/to/file.yml. Here, however, are
all of the available commands:

« create - Create a new file and encrypt it

« decrypt - Create a plaintext file from an encrypted file
« edit - Edit an already-existing encrypted file

« encrypt - Encrypt an existing plain-text file

« rekey - Set a new password on a encrypted file

Example: Users

[use Vault when creating new users. In a User Role, you can set a Variable file with users’ passwords
and a public key to add to the users’ authorized_keys file (thus giving you SSH access).

Q Public SSH keys are technically safe for the general public to see - all someone can do with
them is allow you access to their own servers. Public keys are intentionally useless for
gaining access to a system without the paired private key, which we are not putting into

this Role.

Here’s an example variable file which can be created and encrypt with Vault. While editing it, it’s
of course in plain-text:

<N O O & W N =

W N O O & W N =~

(]

10
11
12
13
14
15

Configuration Management with Ansible 295

Editing encrypted file vars/main.yml

admin_password: $6$1pQ1DqjZQ25gq9YW$mHZAMGhFpPVVvRJCYUFaDovu8ubEqvQi. Ih
deploy_password: $6%$edOgqVumZrYW9$d5z j10k/G8@DrnckixhkQDpX1@fACDINx2EHNC
common_public_key: ssh-rsa ALongSSHPublicKeyHere

Note that the passwords for the users are also hashed. You can read Ansible’s documentation on
generating encrypted passwords'?, which the User module requires to set a user password. As a
quick primer, it looks like this:

Using the mkpasswd command with SHA-512 encryption algorithm

The whois package makes the mkpasswd
command available on Ubuntu

$ sudo apt-get install -y whois

Create a password hash
$ mkpasswd --method=SHA-512
Password:

This will generate a hashed password for you to use with the user module.

Once you have set the user passwords and added the public key into the Variables file, we can make
a Task to use these encrypted variables:

File: tasks/main.yml

- name: Create Admin User
user :
name=admin
password={{ admin_password }}
groups=sudo
append=yes
shell=/bin/bash

- name: Add Admin Authorized Key
authorized_key:
user=admin
key="{{ common_public_key }}"
state=present

*http://docs.ansible.com/faq.html#how- do-i- generate-crypted-passwords-for-the-user-module

http://docs.ansible.com/faq.html#how-do-i-generate-crypted-passwords-for-the-user-module
http://docs.ansible.com/faq.html#how-do-i-generate-crypted-passwords-for-the-user-module

16
17
18
19
20
21
22
23
24
25
26
27
28

O = W N =

Configuration Management with Ansible 296

- name: Create Deploy User
user:
name=deploy
password={{ deploy_password }}
groups=www-data
append=yes
shell=/bin/bash

- name: Add Deployer Authorized Key
authorized_key:
user=deploy
key="{{ common_public_key }}"
state=present

These Tasks use the user module to create new users, passing in the passwords set in the Variable

file.

It also uses the authorized_key module to add the SSH public key as an authorized SSH key in the
server for each user.

Variables are used like usual within the Tasks file. However, in order to run this Role, we’ll need to
tell Ansible to ask for the Vault password so it can unencrypt the variables.

Let’s setup a provision.yml Playbook file to call our user Role:

A Playbook calling the User Role

- hosts: all
sudo: yes
roles:

- user

To run this Playbook, we need to tell Ansible to ask for the Vault password, as we’re running a Role
which contains an encrypted file:

Calling the provision.yml Playbook, which uses the User Role

ansible-playbook --ask-vault-pass provision.yml

You now have all the tools you need to begin using Ansible for development and production systems!

Ansible is capable of much more. If you're curious, check out how you can:

Configuration Management with Ansible 297

+ Use Ansible for application deployment

+ Use Ansible for rolling updates of infrastructure or applications

+ Use Ansible with Continuous Integration (and/or Continuous Deployment) services to per-
form

+ Use Ansible with Vagrant for development

« Ask Ansible to prompt you for variables

+ Add public Roles to Ansible Galaxy

+ Use Tower’s free tier to get Ansible’s GUI, useful for server configuration management in the
browser

SSH

We use SSH to log into our servers, but it actually has a lot of other neat uses as well!

Logging in

Of course, we can use SSH to login to a server:
ssh user@hostname

If needed, we can specify a different port:

ssh -p 2222 user@hostname

Sometimes, if we have a lot of SSH keys in our ~/.ssh directory, we’ll often find that SSHing into
servers with the intent of using a password results in a “too many authentication attempts” error. If
we need to log into a server with a password, we can attempt to force password-based login. The
following will stop SSH from attempting to use your SSH keys first, falling back to password-based
authentication:

ssh -o "PubkeyAuthentication no" username@hostname

If you use AWS, and in other cases, you might get an id file such as a PEM file. In this case, you’ll
need to specify the specific identity file to use when logging in. We can do this with the -i flag:

ssh -i /path/to/identity.pem username@hostname

You may need to set your permissions on the pem file so only the owner can read/write/ex-
ecute it: chmod 0600 identity.pem.

o I O O P W N =

NN NN P 1 s s sl s
W N, O O© 0030 O b WD~ OO O

SSH Config

Configuring your local SSH config file is a very efficient way of using SSH.

If you want to setup aliases for servers you access often, you can create or edit the ~/.ssh/config
file and specify each servers you want to log into, along with the authentication methods to use.

Here are some examples you may add into your config file:

File: ~/.ssh/config

Host somealias
HostName example.com
Port 2222
User someuser
IdentityFile ~/.ssh/id_example
IdentitiesOnly yes

Host anotheralias
HostName 192.168.33.10
User anotheruser
PubkeyAuthentication no

Host aws
HostName some.address.ec2.aws.com
User awsuser
IdentityFile ~/.ssh/aws_identity.pem
IdentitiesOnly yes

Host somehostname anotherhostname athirdhostname
HostName someserver.example.com
User sharedusername
IdentityFile ~/.ssh/id_shared
IdentitiesOnly yes

Logging into a server using a defined host (“alias”) then becomes as easy as this:
ssh somealias

Note that we can define multiple hosts per definition as well!

Let’s cover some of the options used above:

SSH Config 301

« HostName - The remote server host (domain or ipaddress) to connect to

+ Port - The port to use when connecting

+ User - The username to log in with

« IdentityFile - The SSH key identity to use to log in with, if using SSH key access

« IdentitiesOnly - “Yes” to specify only attempting to log in via SSH key (don’t use password
authentication)

« PubkeyAuthentication - “No” to specify you wish to bypass attempting SSH key authentica-
tion, defaulting back to password-based authentication

SSH Tunneling

SSH can be used for tunneling, which is essentially port forwarding. There’s a few ways we can do
this - Local (Outbound), Remote (Inbound), and some others (Dynamic and Agent Forwarding).

Some uses of this are to allow users to connect to remote services not listening on public networks,
view your sites on your local machine or get around proxy restrictions, such as country-based limits.

Local Port Forwarding

Local port forwarding is what you use when you need to tunnel “through” a server’s firewall or
other limitation.

A common example is attempting to connect to a remote database which is either behind a firewall
or is only listening to local connections.

For example, MySQL only listens to localhost connections by default. You can’t remotely connect to
it without editing MySQL’smy . cnf configuration file and have it listen on a public network interface.
There may also be a firewall preventing you from connecting to MySQL’s port 3306 as well.

This is a common case when you are running MySQL on a server but want to connect to it from
your computer’s MySQL client, such as MySQL Workbench, Navicat, SequelPro or the command
line MySQL client.

0 For this example a “remote” server means any computer that isn’t yours, which includes
virtual machines (guests) running inside of your host computer.

Assuming we have SSH access to the remote server, we can get around these access issues by creating
a tunnel into the server. That looks like the following:

SSH tunneling - local port forwarding

ssh -L 3306:1localhost:3306 username@hostname

Let’s go over this command:

+ -L - Setup local port forwarding
« 3306 - The local port to forward

SSH Tunneling 303

+ localhost:3306 - Within the remote server, what address and port to forward traffic to. Since
the MySQL server is on the remote server, we're tunneling to the remote server’s “localhost”
on port 3306, which MySQL is listening to.

« username@localhost - The SSH username and host to connect to

I can then use my local MySQL client to connect to the remote server as if it’s a local one:

Socket = SSH |

Name: Tunnel Example

Host: 1127.0.0.1
Username: someuser
Password: esssssscssssssscssssansnns
Database: |optiona

Port: | 3306|

| | Connect using 55L

| ?) [Connect |

[used the same port locally and remotely, but I could have specified a different local port to use:
ssh -L 3307:1localhost:3306 username@hostname

Then my local mysql client would have to connect to port 3307, which would still tunnel to the
remote server’s local 3306:

SSH Tunneling 304

Socket = SSH |

Name: Tunnel Example
Host: 1127.0.0.1
Username: | someuser
Password: sssssssssssssssssssssnsns
Database: optiona

Port: | 3307]

|| Connect using S5L

@ [Connect |

Remote Port Forwarding

Remote Port Forwarding is useful when you need to share your local computer with others who are
outside of your network. One common use is to share your localhost web server with the outside
world. This is how tools such as ngrok, pagekite, localtunnel and other “localhost tunneling” services
work.

To accomplish this ourselves, we need a remote server all parties (our local computers and who we
want to share with) can reach. Something like an AWS or Digital Ocean server will do.

Let’s pretend our local computer has a web server running on port 8001:

Local machine has a web server listening at port 8001

On our local machine:
$ curl localhost:8001
Hi!

We want our friends to see our website, which simply says “Hi!”. Let’s use a remote server to forward
requests to our local computer:

Still on our local machine:
ssh -R 9000:1ocalhost:8001 username@hostname

Let’s go over this command:

SSH Tunneling 305

+ -R - Using remote port forwarding

+ 9000 - The remote server’s port to use (not our local server this time!)

+ localhost:8001 - The local address to forward to. Since our webserver is on localhost port
8001, that’s what we specify here. (the order of those arguments changed for -R over -L!)

+ username@hostname - SSH access to the remote server

If our remote server’s IP address was 123.123.123.123, then our friends can access our website at
123.123.123.123:9000, which will forward to our local site at localhost:8001!

9 To accomplish this, your remote server’s firewall must not block port 900@. You may also
need to edit /etc/ssh/sshd_config and set the GatewayPorts directive to yes. (Don’t
forget to restart SSH after any changes to sshd_config).

00 I O O b W N =~

_ s
W N~ OO O

One-Off Commands & Multiple
Servers

You can run commands remotely using SSH without having to start a new terminal session and
manually running commands.

Using the following “trick”, you’re connecting via SSH, running a command, and seeing the output
all in one shot.

Let’s run some simple commands on a remote server to see this in action. The following will run
the pwd command. We’ll see that it returns the default folder that we would be in when logging in.
Then we’ll run the 1s command to see the directory’s output:

Run “pwd” command
$ ssh username@hostname pwd
/home/username

Run “1s -1la” command
$ ssh username@hostname ls -1la
drwxr-xr-x 8 username username 4096 Jun 30 17:49 .

drwxr-xr-x 4 root root 4096 Apr 28 2013

STW------- 1 username username 18589 Jun 30 17:49 .bash_history
-rw-r--r-- 1 username username 220 Apr 28 2013 .bash_logout
-rw-r--r-- 1 username username 3486 Apr 28 2013 .bashrc
-Tw-Tr--r-- 1 username username 675 Apr 28 2013 .profile
drwxrwxr-x 2 username username 4096 Mar 15 14:21 .ssh

This lets us use SSH as a quick and easy way to check server statuses or perform quick operations.
This can be used in scripts to automate running commands in multiple servers as well.

Basic Ansible

Using SSH in this manner is actually the basis of how the server provisioning tool Ansible works. It
will run commands over SSH on groups of servers (in series or in parallel).

Let’s see how that works. Note that we’ll cover Ansible more in depth in the Server Configuration
Management section of the book.

Start by installing Ansible on a local computer or server that will be doing the provisioning (usually
not the server being provisioned):

B wWw N -

One-Off Commands & Multiple Servers 307

sudo apt-add-repository ppa:ansible/ansible
sudo apt-get update
sudo apt-get install -y ansible

0 Ansible is “agentless”, meaning it doesn’t need to be running a service on the server it

is provisioning. It works almost exclusively through SSH connections. We can provision

servers from any server that can connect to other servers over SSH and has Ansible
installed.

Next, configure one or more servers in the /etc/ansible/hosts directory:

[web]

192.168.22.10
192.168.22.11
192.168.22.12

This defines a “web” group of servers. I happen to have tested this with three local virtual machines,
and so the addresses I put here are the three Ip addresses of my VMs. These can be IP addresses or
host names.

Once that file is saved, we can run a command on all three servers at once!
ansible -k all -m ping -u vagrant

This will run “ping” on each server. You’ll get some JSON output saying if they were successful or
not.

The flags of that command:

+ -k - Ask for password

« all - All servers configured in /etc/ansible/hosts. We could have specified the “web” group
as well, which contained all of our defined servers

« -m ping - Use the ping module, which just runs the command “ping”

 -u vagrant - Login with user “vagrant”, which will work if the hosts defined are other vagrant
servers. Change the username as needed. It defaults to the username of the user running the
command.

That’s useful for running a simple command across all defined servers. More interestingly, you can
run any arbitrary command using the “shell” module:

One-Off Commands & Multiple Servers 308
ansible -K all -m shell -u vagrant -a "apt-get install nginx"

Here, the -a "apt-get install nginx defines the command to run using the “shell” module.

I've also used -K over -k (uppercase vs lowercase). Uppercase “K” will use sudo with the command,
and ask for the user’s password.

124

More information on running ad-hoc commands with Ansible’* can be found in the official

documentation.

As mentioned, we’ll cover Ansible more in depth in the Server Configuration Management
section of the book. That will include an explanation of why the “shell” module may not
be the best way to use Ansible.

*http://docs.ansible.com/intro_adhoc.html

http://docs.ansible.com/intro_adhoc.html
http://docs.ansible.com/intro_adhoc.html

Monitoring Processes

As some point you’ll likely find yourself writing a script which needs to run all the time - a “long
running process”. These are scripts that should continue to run even if there’s an error and should
should restart when the system reboots.

These can be simple scripts or full-fledged applications.

To ensure our processes are always running, we need something to watch them. Such tools are
Process Watchers. They monitor processes and restart them if they fail (usually due to unhandled
errors or configuration issues), and ensure they (re)start on system boot.

©O© 00 N O U b W N =

=Y
N O O b W N~ 0O

A Sample Script

Linux distributions typically come tools to watch over processes. These tools are typically either
Upstart or Systemd (altho the older SysV is still commonly used, often in conjunction with Upstart).

Most things we install with a package manager come with mechanisms in place for process watching
using Upstart or Systemd. For example, when we install PHP5-FPM, Apache and Nginx with our
package managers, they integrate with such systems so that they are actively monitored, leaving
them much less likely to fail without notice.

Configuration for SysV/Upstart and Systemd isn’t necessarily complex, but it’s common to find that
we can use some other solutions which might be more featured or easier to configure.

We'll cover a few of these monitoring tools. However, let’s start with an example script that will
serve as an example process to be monitored.

Node]JS script found at /srv/http.js

#!/usr/bin/env node
var http = require('http');

function serve(ip, port)

{
http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
res.write("\nSome Secrets:");
res.write("\n"+process.env.SECRET_PASSPHRASE);
res.write("\n"+process.env.SECRET_TWO);
res.end("\nThere's no place like "+ip+":"+port+"\n");
}).listen(port, ip);
console.log('Server running at http://'+ip+':'+port+'/"');
}

// Create a server listening on all networks
serve('0.0.0.0', 9000);

All this example service does is take a web request and print out a message. It’s not useful in reality,
but good for our purposes. We just want a service to run and monitor.

Note that the service prints out two environmental variables: “SECRET_PASSPHRASE” and “SE-
CRET_TWO”. We'll see how we can pass these into a watched process.

System Services

When Linux starts, the Kernel goes through a startup process, which includes initializing devices,
mounting filesystems and then moves onto beginning the system init process.

The init process starts and monitors various services and processes. This includes core services such
as the network, but also (usually) our installed applications such as Apache or Nginx.

There are various popular init processes. An old linux standard is System V Init (aka SysVinit or just
SysV). A newer init process is Upstart. Finally there is Systemd.

Currently, Ubuntu has both SysVinit and Upstart installed and supported. They are often used in
conjunction.

Debian has moved onto Systemd. Because Ubuntu is downstream from Debian, and after some
internal turmoil, it will also include Systemd in a future release. Ubuntu 14.04 still uses Upstart/SysV.

In any case, all of these systems are responsible for managing processes in various stages of a system’s
life cycle: Start up, shutdown, reboot and during unexpected errors.

The serversforhackers.com' video site covers the following system init process monitors
in a bit more depth.

System V Init (SysVinit, SysV)

You can tell your distribution is using SysVinit when you run commands such as /etc/init.d/service-
name [start|stop|restart|reload].Configurations for SysV are executable bash scripts found in
the /etc/init.d directory. These scripts are responsible for handling the start, stop, restart and
reload commands.

If you're interested to see what they look like or want to write your own, you can find a “skeleton”
file. This is used as a baseline script found at /etc/init.d/skeleton. You can use it to copy and
tweak as needed for your use.

SysVinit won’t be covered futher here, but you can take a look to see which services have files in
here.

23https://serversforhackers.com

https://serversforhackers.com
https://serversforhackers.com

O = W N =

System Services 312

Upstart

As mentioned, Upstart is the (relatively) newer system used by Ubuntu to handle process ini-
tialization and management. Configurations for Upstart are found in /etc/init rather than the
/ete/init.d directory. Upstart configuration files end in the .conf extension.

Unlike SysVinit, the configurations in Upstart aren’t directly executable scripts. Instead, the are
configurations which follow Upstart’s DSL (domain specific language).

An example configuration is as follows:

File: /etc/init/circus.conf

start on filesystem and net-device-up IFACE=lo
stop on runlevel [016]

respawn
exec /usr/local/bin/circusd /etc/circus/circusd.ini

This configuration for Circus (more on that tool later) will start Circus on boot, after the file system
and localhost (lo) network have been initialized. It will stop at runlevel [016], essentially saying
when the system shuts down (0), in single-user mode (1) or when the system reboots (6).

You can find more on Linux run levels in this IBM article'*.

The respawn directive will tell Upstart to respawn the process if it dies unexpectedly.

Finally the exec directive is a command used to run the process. Here we run the circusd process,
passing it the circusd. ini configuration file.

Q Many programs try to run as daemons (in the background). Processes managed by Upstart
generally should run in the foreground, allowing Upstart to monitor it.

That being said, Upstart can track certain processes which run as Daemons. See documen-
tation on the use of the expect directive for more information.

Upstart uses the initctl command to control processes. We can run commands such as:

2http://www.ibm.com/developerworks/library/I-Ipic1-v3-101-3/

http://www.ibm.com/developerworks/library/l-lpic1-v3-101-3/
http://www.ibm.com/developerworks/library/l-lpic1-v3-101-3/

0 = O O b W N =

e
W N~ OO O

O = W N =

System Services 313

| ist available services
sudo initctl list

Start and Stop Circus
sudo initctl start circus
sudo initctl stop circus

Restart and Reload Circus
sudo initctl restart circus
sudo initctl reload circus

Get the processes status (running or not running)

sudo initctl status circus

Ubuntu also has shortcuts for these - you can use the start, stop, restart, reload and status
commands directly:

sudo start circus
sudo stop circus
sudo restart circus
sudo reload circus
sudo status circus

The Service Command

You may have noticed that everytime we’ve installed software, we’ve controlled it with the service
command, such as the following:

sudo service apache2 start
sudo service nginx reload

Because Ubuntu (and other distributions) has transitioned between process monitors such as
SysVinit and Upstart, the service command was created. This command is a common interface
for many process monitors. For example, you can control SysV and Upstart processes using the
same set of commands.

From the service man page:

The SCRIPT parameter specifies a System V init script, located in /etc/init.d/SCRIPT,
or the name of an upstart job in /etc/init. The existence of an upstart job of the same
name as a script in /etc/init.d will cause the upstart job to take precedence over the init.d
script.

O© 00 9 O O b W N =

-
(]

System Services 314

The service command will check for the existence of a service by name in SysVinit’s /etc/init.d
and Upstart’s /etc/init. If it finds a matching service in both, Upstart configurations will take
precedence.

If you’ve ever wondered why you find tutorials using /etc/init.d and others using service to
manage processes, now you know!

Systemd

Systemd is the newest init process manager. It’s already used in many distributions (Fedora, RedHat
7, Debian 8, CoreOS, Arch and eventually Ubuntu).

Its use has been hotly contested. It’s considered a “polyglot”, taking over a lot of services such as
logging, CRON and other system management. The “Linux Philosophy” has always been one of
small tools that do one thing well. Whether Systemd ignores this philosophy is a topic of heated
debate.

In any case, it seems to be winning in many distributions!

0 It’s likely that Ubuntu will continue to use the service command even when Systemd is
used, so our interface for managing processes can hopefully stay consistent.

Systemd uses the systemctl command to manage processes. Here are some examples of how to use
it:

Start/Stop services
sudo systemctl start some-service
sudo systemctl stop some-service

Restart/Reload services
sudo systemctl restart some-service

sudo systemctl reload some-service

Service status

sudo systemctl status some-service

As mentioned, Systemd also takes over other responsibilities, such as power management.

D W N -

0 N O O & W N =~

B R s o
o > O N =~ O O

System Services 315

sudo systemctl reboot
sudo systemctl poweroff
sudo systemctl suspend
And some others

Services in Systemd are called “units”. Unit files (configuration for services) are located at /etc/sys-
temd/system and contain the file extension .service.

Here’s some example usage taken from CoreOS’s example'”’

container:

, which shows the starting of a Docker

[Unit]
Description=MyApp
After=docker.service

Requires=docker.service

[Service]

TimeoutStartSec=0

ExecStartPre=-/usr/bin/docker kill busybox1

ExecStartPre=-/usr/bin/docker rm busybox1

ExecStartPre=/usr/bin/docker pull busybox

ExecStart=/usr/bin/docker run --name busybox1 busybox /bin/sh -c "while true; do\
echo Hello World; sleep 1; done"

[Install]
WantedBy=multi-user.target

First we define the [unit], which has a description of simply “MyApp”. Then we define after and
requires, which defines that this service should only start after the docker .service is active.

Then we define the [Service] section. We disables the time check against how long a service should
take to start, by setting TimeoutStartSec to 0. Then there is a series of commands to execute before
starting the service via the ExecStartPre directive. Finally, ExecStart defines the command to run.

Finally we define the [Install] section. The Install directive is used when systemctl enables or
disables a service (but is ignored while Systemd is running a unit/service). Here we find the wantedBy
directive, which defines the target which this service will be started with. Multi-user is sort of a
catch-all target most commonly used.

Using These Systems

Most software we install will set up process monitoring automatically. If we install something with
apt-get in this book, we likely will not have to do extra work to make the software start on system
boot.

2https://coreos.com/docs/launching-containers/launching/getting-started-with-systemd/

https://coreos.com/docs/launching-containers/launching/getting-started-with-systemd/
https://coreos.com/docs/launching-containers/launching/getting-started-with-systemd/

System Services 316

Software installed with language-specific package mangers (PIP, NPM, Gems) will need configu-
ration to manage an application or process. This configuration will define how to handle start up,
shutdown, reboot, and errors.

We'll use Upstart in some cases. In other cases, we’ll use Upstart to monitor a third-party process
monitor such as Supervisord or Circus.

For your own use, I suggest continuing to use Upstart for now. However, keep an eye on Systemd
for when it becomes the defacto init system.

The remaining chapters of this section will cover some common “third-party” process monitors you
can use.

Supervisord

Written in Python, Supervisord is a simple and extremely popular choice for process monitoring. Its
excellent documentation is found at http://supervisord.org'* Let’s check out the package on Ubuntu:

o I O O P+ W N =

N B 1 | s s s s
© ©W 0O J O O b WO N~ O O

$ apt-cache show supervisor
Package: supervisor
Priority: extra

Section: universe/admin
Installed-Size: 1485

Maintainer: Ubuntu Developers <ubuntu-devel-discuss@lists.ubuntu.com>

Original-Maintainer: Qijiang Fan <fqj1994@gmail.com>
Architecture: all

Version: 3.0b2-1

Depends: python, python-meld3, python-pkg-resources (>= 0.6¢7)
Filename: pool/universe/s/supervisor/supervisor_3.0b2-1_all.deb
Size: 313972

MDS5sum: 1e5ee@3933451a0f4fcOff391404£292

SHA1: d9dc47366e99e7T7b6577a9a82abd538c4982¢c58e

SHA256: f83f89a439cc8dedf2a545edbf20506695e4b477c579a5824c063fbaf94127c1

Description: A system for controlling process state
Description-md5: b18ffbeaa3a697e8ccaee9cc104ec380
Homepage: http://supervisord.org/

Bugs: https://bugs.launchpad.net/ubuntu/+filebug
Origin: Ubuntu

We can see that we’ll get version 3.0b2. That latest is version 3.1 (as of this writing), but 3.0b2 is good

enough.

A Chain of Process Monitors

We can get a newer version of Supervisord by installing it manually or using Python’s Pip. However
then we’d lose out on the benefits that the APT package gives us. We'd have to make sure all the
dependencies are met and setup Upstart or SysV ourselves.

Instead, we’ll install Supervisord with APT. When we do, note that Supervisord is actually monitored
by Upstart! There is a “chain” of monitoring.

*8http://supervisord.org/

http://supervisord.org/
http://supervisord.org/

Supervisord 318

Upstart will monitor Supervisord, which in turn will monitor whatever we configure.

If you’d like, you can skip this chaining by using a system process monitor such as Upstart, SysV or
Systemd.

The benefit of “third-party” process monitors such as Supervisord are extra features you may need
or want.

Installation

To install Supervisord, we can simply run the following (note that its often referred to as “supervisor”
instead of “supervisord”):

sudo apt-get install -y supervisor

Installing it as an APT package gives us the ability to treat it as a service (since Upstart/SysV is
monitoring it!):

sudo service supervisor start

Configuration

Configuration for Supervisord is found in /etc/supervisor. If we look at the configuration file
/etc/supervisor/supervisord.conf, we'll see at the following at the bottom:

[include]
files = /etc/supervisor/conf.d/*.conf

So, any files found in /etc/supervisor/conf.d and ending in . conf will be included. This is where
we can add configurations for our services.

Now we need to tell Supervisord how to run and monitor our Node script. To do so, we’ll create a
configuration which tells Supervisord how to start and monitor the Node script.

Let’s create a configuration for it called webhook . conf.

© 00 39 O O b W N =~

N
(]

Supervisord 319

File: /etc/supervisor/conf.d/webhook.conf

[program:nodehook]

command=/usr/bin/node /srv/http.js

directory=/srv

autostart=true

autorestart=true

startretries=3

stdout_logfile=/var/log/webhook/nodehook.out.log
stderr_logfile=/var/log/webhook/nodehook.err.log

user=www-data

environment=SECRET_PASSPHRASE='this is secret', SECRET_TWO='another secret'

As usual, we need to go over the options set here:

program:nodehook

Defines the name of the program to monitor. We’ll call it “nodehook” (the name is arbitrary).

command

Define the command to run. We use node to run the http. js file. If we needed to pass any command
line arguments/flags, we could do so here.

directory

We can set a directory for Supervisord to “cd” into for before running the monitored process, useful
for cases where the process assumes a directory structure relative to the location of the executed
script.

autostart
Setting this “true” means the process will start when Supervisord starts (essentially on system boot).

Because Supervisord itself will start on system boot, thanks to the configured Upstart/SysV, we know
that our Node process will be started in turn after Supervisord.

autorestart

If this is “true”, the process will be restarted if it exits unexpectedly.

Supervisord 320

startretries

The number of retries to attempt before the process is considered “failed”.

stdout_logfile

The file to write any regular (stdout) output.

stderr_logfile

The file to write any error (stderr) output.

Q Note that we've specified some log files to be created inside of the /var/log/webhook
directory. Supervisord won’t create a directory for logs if they do not exit; We need to
create them before running Supervisord:

sudo mkdir /var/log/webhook

user

The process will be run as the defined user

environment

Environment variables to pass to the process. You can specify multiple in a comma-separated
list, such as key1="valuel", key2="value2" key3="value3". This is useful if your script needs to
authenticate against other services such as an API or database.

Controlling Processes

Now that we’ve configured Supervisord to monitor our Node process, we can read the configuration
in and then reload Supervisord, using the supervisorctl tool:

supervisorctl reread

supervisorctl update

Our Node process should be running now. We can check this by simply running supervisorctl:

O = W N =

Supervisord 321

$ supervisorctl
nodehook RUNNING pid 444, uptime 0:02:45

You can exit the supervisorctl tool using ctrl+c.

We can double check this using the ps command:

$ ps aux | grep node
www-data 444 0.0 2.0 659620 10520 ? Sl 00:57 ©:00 /usr/bin/node \
/srv/http. js

It’s running! If we check our sample Node process listening at localhost:9000, we’ll see the output
generated which include the environment variables.

$ curl localhost:9000

Some Secrets:

this is secret

another secret

There's no place like 127.0.0.1:9000

Q If your process is not running, try explicitly telling Supervisord to start process “nodehook”
via supervisorctl start nodehook

There are other things we can do with the supervisorctl command as well. Enter the controlling
tool using supervisorctl:

$ sudo supervisorctl
nodehook RUNNING pid 444, uptime ©:15:42

Then you can use the help command to see available commands:

supervisor> help
default commands (type help <topic>):

add clear fg open quit remove restart start stop update
avail exit maintail pid reload reread shutdown status tail version

We can try some more commands. Let’s stop the nodehook process:

W N -

Supervisord 322

supervisor> stop nodehook
nodehook : stopped

Then we can start it back up:

supervisor> start nodehook
nodehook: started

Use ctrl+c or type “exit” to get out of the supervisor tool.

Those commands can also be run directly, without being “in” the supervisorctl tool:

supervisorctl stop nodebook
supervisorctl start nodebook

Web Interface

We can configure the web interface that comes with Supervisord. This lets us see a list of all
monitored processes, as well as take action on them (restarting, stoppping, clearing logs and checking
output).

Inside of /etc/supervisord.conf, add this:
[inet_http_server]

port = 9001

username = user # Basic auth username

password = pass # Basic auth password

If we access our server in a web browser at port 9001, we’ll see the web interface after entering in
the basic auth username and password:

C |7 192.169.22.10:9001 L AD e

Supervisor......

[REFRESH | [RESTART ALL | [sTOP ALL |

State Description

running pid 520, uptime 0:01:23 nodehook Restart Stop ClearLog Tail -f

Clicking into the process name (“nodehook” in this case) will show the logs for that process.

If you make use of this interface, you’ll want to ensure that it’s not publicly available, usually
accomplished using the firewall.

Forever

In the Node world, Forever is a popular choice for process watchers. If you already have Node and
NPM on your server, it’s very easy to use! Its documentation is found at the GitHub project page
nodejitsu/forever.

One caveat to Forever is that it’s not meant to persist processes across a system (re)boot and doesn’t
necessarily handle graceful restarts. This limits its usefulness a bit, but it’s very easy to use!

However, Forever can watch for file changes, making it a nice development tool.

Installation

To install Forever, we’ll use NPM, the Node Package Manager. Forever is typically installed globally,
so we'll use “sudo” and the -g flag.

sudo npm install -g forever

ﬁ This assumes that Node and NPM is already installed on your system.

Usage

There’s no configuration files for Forever - we can just start using it.

Let’s see an example of using Forever to run our /srv/http. js script:

sudo forever start -1 /var/log/forever/forever.log \
-a -o /var/log/webhook/out.log -e /var/log/webhook/error.log \
--sourceDir /srv http.js

There’s a bunch of options (and more in the docs). Let’s cover the flags used above:

« start - We're telling Forever to start a new process. There are other actions forever can take,
such as listing each process, stopping all processes, restarting all processes, checking logs, and
more.

Forever 324

« -1 /var/log/forever/forever.log - Specify the log used for Forever’s output.

« -a - Tell Forever to append to the log files specified, instead of overwrite them with new log
output.

« -0 /var/log/webhook/out.log - Where to log regular output from the process being watched.
« -e /var/log/webhook/error.log - Where to log error output from the process being watched.
« —sourceDir /srv - What directory to run the process relative to

« http.js - the script to run. We don’t specify the full path /srv/http. js since the - -sourceDir
option will fill in the file path for us.

ﬁ You may need to create the log directories, for example /var/log/forever and
/var/log/webhook in this example.

Not shown here was the -c¢ option, which can use if we’re not running a node script. For example if
we’re running a bash script, we could use -¢ /bin/bash.

root@®49ddc9d98b94:/# sudo forever start --sourceDir=/srv/ -1 /var/log/forever/forever.log -a -o /var/log/webhook/out.log -e /var/log/webhook/error.log http.js
--minUptime not set. Defaulting to: 1000ms

--spinSleepTime not set. Your script will exit if it does not stay up for at least 1000ms
Forever processing file:

root@49ddc9d98b94:/# sudo forever list

i Forever processes running

uid forever pid logfile uptime

8 [@] RX8F 149 155 /var/log/forever/forever.log 0:0:0:49.659
root@49ddc9d98bo4: /# I

O© 00 9 O Ol b W N =

-
(]

1
12

N

Circus

Circus is a more fully featured process manager. Similar to Supervisord, it’s written in Python but
doesn’t require any knowledge of Python for its use, with the minor exception of possibly using a
Python package manager to install it.

Installation

Circus is available to install via Python’s package manager Pip. Pip will manage Python dependen-
cies, but not necessarily other system dependencies, so external libraries used by the Circus Python
package will need to get installed separately.

Circus uses ZeroMQ'* for messaging between system events and to send commands. It also prefers
the use of Python’s Virtualenv, which is similar to rbenv in the Ruby world. Virtualenv let’s you
install and use Python in its own environment, allowing the use of different versions of Python and
Python libraries within each environment.

On Ubuntu, we can install the system dependencies (ZeroMQ/LibEvent, Python Dev, Virtualenv and
Python Pip) like so:

sudo apt-get install -y libzmg-dev libevent-dev python-dev python-virtualenv
Then, to install Circus, we can use Virtualenv to setup an environment and Pip to install Circus:

Create directory for Circus

and change owner to current user
sudo mkdir /var/opt/circus

sudo chown ($whoami) circus

Setup virtual environment for Python
virtualenv /var/opt/circus

Install Circus & Related
cd /var/opt/circus

./bin/pip install circus
./bin/pip install circus-web

"2%http://zeromq.org/

http://zeromq.org/
http://zeromq.org/

0 N O O & W N =

U U U
00 3 0O O b W DN~ OO O

Circus 326

Once we setup a virtual environment via the virtualenv command, we used the environment’s
version of Pip to install Circus and Circus-Web.

Q If you log out and back into your server, the environment setup with Virtualenv will
need to be re-initiated. You can do that by sourcing the “activate” file created within each
environment:

source /var/opt/circus/bin/activate

More information on virtualenv can be found in the Virtualenv docs**.

Once Circus and Circus-web are installed, we can begin using Circus to monitor our sample Node]JS
process.

Configuration

Circus uses . ini files for configuration. We'll create a new configuration file for our NodeJS script
called webhook . ini:

File: /var/opt/circus/webhook.ini

[eircus]

statsd = 1

httpd = 1

httpd_host 127.0.0.1
httpd_port = 9002

[watcher:webhook]

cmd = /usr/bin/nodejs /srv/http.js
numprocesses = 1

max_retry = 3

stdout_stream.class = FileStream
stdout_stream.filename = ./webhook.out.log
stderr_stream.class = FileStream
stderr_stream. filename = ./webhook.err.log

[env:webhook]
SECRET_PASSPHRASE = some secret
SECRET_TWO = another secret

There’s a lot happening here, let’s cover it.

%http://docs.python-guide.org/en/latest/dev/virtualenvs/

http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/

Circus 327

circus

This is the section for the configuration of Circus itself, rather than being something specific to our
Node]JS process.

Here we enable the web interface for Circus (Circus-Web):

« statsd - This enables the stats module, which can read system resource usage of Circus and
its monitored processes

« httpd - Enabling this tells Circus-Web to start the circushttpd daemon, which is its web
interface

« httpd_host and httpd_port - Set the host and port to bind the circushttpd daemon. This
defaults to localhost:8080 if not specified.

watcher:webhook

Here we define a watcher and name it “webhook”.

The cmd we’ve set is simply to have nodejs run our http. js file defined in the beginning of this
chapter.

The numprocesses is set to 1, as Node scripts run as a single processes. This is not to say that Circus
can’t run multiple instances of our Node script - in fact it can. However we’ll just run one instance
of the http. js script.

0 The numprocesses directive has some interesting implications. Circus can actually control
and monitor multiple processes for us. We can use Circus to “spin up” multiple processes
of an application.

For example, if Circus is monitoring multiple processes of an application. This is similar
to setting the number of processes that Apache or PHP-FPM would use, if they did not
control that themselves.

We set the max_retry to three - Circus will try a max of three times to restart the process if it dies.

Next we’ll define our log files. We need to set the stdout_stream.class to FileStream, which will
write to a file. Then we set the stdout_stream. filename to the log file. In this case, I just set it as a
file in the same directory, however you may want it saved somewhere in /var/log.

We do the same for our error log, by defining the stderr_* directives rather than the stdout_*

directives.

There are other available options for log files, such as setting the output format and
handling the rotation of logs. You can find them in the official documentation®*.

http://circus.readthedocs.org/en/0.11.1/

http://circus.readthedocs.org/en/0.11.1/
http://circus.readthedocs.org/en/0.11.1/

Circus 328

User and Group

We can set what user and group to run the process as via the uid and gid parameters. These directives
expect user and group ID numbers instead of the user/group names.

You can find your user’s uid and gid by simply typing the id command:

Typing in "id" as user "vagrant”
$ id
uid=1000(vagrant) gid=1000(vagrant) groups=1000(vagrant)

You can specify a username to get any user’s information as well:

$ id www-data
uid=33(www-data) gid=33(www-data) groups=33(www-data)

We can use uid/gid of 33 if we wanted our process to run as www-data. By default, Circus will run
processes as the same user/group that Circus is run as.

A Note that we didn’t use Circus with “sudo” - it’s not run as root in these examples. This is
usually done as a security measure. You can run it with sudo in conjunction with using the
uid/gid options (similar to how we did with Supervisord). Be aware that running circusd

as root exposes you to potential privilege escalation bugs (vulnerabilities).

132

Circus has more security information found in the security section'*? of the documentation.

env:webhook

Our Node]S script looks for two environmental variables SECRET_PASSPHRASE and SECRET_TWO.
Circus allows us to pass environment variables to the script to use as well. Here we can set simply
key and value pairs for our script to use.

Controlling Processes

Circus comes with a circusctl command which we can use to control monitored processes. This is
very similar to Supervisord’s supervisorctl.

We can run one-off commands, or we can enter the controller:

*2http://circus.readthedocs.org/en/latest/design/security/

http://circus.readthedocs.org/en/latest/design/security/
http://circus.readthedocs.org/en/latest/design/security/

W N =

N O O s

Circus 329

Enter the Circus controller

./bin/circusctl

Run the “help” command to see all the available commands:

(circusctl) help
Documented commands (type help <topic>):

add globaloptions 1list numwatchers reloadconfig signal stop
decr help listen options restart start
dstats incr listsockets quit rm stats
get ipython numprocesses reload set status

If we use 1ist, we'll see a list of three processes, Circus’s own running processes and the webhook:

« circusd-stats - The stats module we enabled
« circushttpd - The httpd module (web interface)
« webhook - The NodeJS script we are monitoring

Use ctrl+c to exit circusctl. We can also use one-off commands without entering the controller:

Running . /bin/circusctl stop will stop all processes. We can define a specific process as well -
running . /bin/circusctl stop webhook will stop Node]JS script. (We can run start webhook to
restart it).

The reloadconfig config option will re-read configuration if we change the webhook . ini file. Then
we can run reload to make the changes take effect:

./bin/circusctl reloadconfig
./bin/circusctl reload

Interestingly, circusctl is “just” a ZeroMQ arbiter - it’s just sending commands in the form of
messages, acting as a ZeroMQ client. You can actually send your own commands programmatically.
For example, the JSON to stop all processes looks like this:

O O B W N~

Circus 330

{
"command": "stop",
"properties": {
"waiting": False
}
}

The Circus web interface will tell you what socket (IP + Port) to send ZeroMQ messages to, for
exanqﬂetcp://127.®.®.1:5555.

Web Interface

As mentioned, Circus has a web interface. This makes use of Socket.io to send “real-time” updates
via the Stats module which we enabled alongside the web console (httpd).

O =

tep://127.0.0.1:5555 Watchers Add Watcher
HOME
ALL SOCKETS
Name Processes Command Shell uid gid Status
Add an endpoint webhook 1 nodejs /http.js False MNone None @

& TCP://127.0.0.1:5555

Circus Daemons

CPU Memeory
circus (5565) circusd-stats (556s) circushttpd (556s)
CPU MEM CPU MEM CPU MEM
1.7% 10.4% 4.0% 3.2% 1.0% 4.2%
Options
ZeroMQ endpoint used to connect clients like circusctl or circushttpd tcp://127.0.0.1:5555
ZeroMQ endpoint used for pub/sub tep://127.0.0.1:5556
ZeroMQ endpoint used for the pub/sub stats top://127.0.0.1:5557
Delay in seconds for the ZMQ polling. 5.0

This interface shows the processes being monitored and even lets you add additional processes to a
watched process, if it supports it. For example, if Circus is monitoring a Python application, it can

add more application listening processes. This is similar to how we can configure more processes in
Apache or PHP-FPM.

O = W N =

Circus 331

Starting on Boot

When covering Supervisord, we mentioned that installing it via a package manager actually sets
up an Upstart/SysV configuration, so that the system is monitoring Supervisord, while Supervisord
was monitoring our NodeJS script.

Circus is in the same situation; It requires something to monitor it so that it starts on system boot
and restarts if there’s an unexpected error. Because we installed Circus using Pip, rather than a
system package manager, there is no Upstart, SysV or Systemd configuration setup so ensure Circus
is always running.

The Circus Deployment documentation'*® has information on how to create such a configuration.
They include two examples to use which can handle monitoring Circus processes as well as starting
them when the system boots. These are Upstart and Systemd.

Ubuntu comes with Upstart, so we’ll concentrate on that here.

0 Ubuntu is moving on to use Systemd, but has not yet made the move.

To get Circus to start on system boot (and to restart it if Circus fails), we can create a Upstart
configuration for Circus. All files inside of the /etc/init directory ending in .conf will be used by
Upstart. We'll add our configuration for Circus there.

The documentation for Circus give us this Upstart configuration to use:

File: /etc/init/circus.conf

start on filesystem and net-device-up IFACE=lo
stop on runlevel [016]

respawn
exec /usr/local/bin/circusd /etc/circus/circusd.ini

This will start and stop Circus on boot, and respawn it if it stops expectantly. It will start Circus via
the exec directive. However, the above file paths are wrong for our Node]JS example. Additionally,
it assumes you aren’t using Virtualenv (it doesn’t source /tmp/circus/bin/activate).

We can adjust this script to take care of that. To do so, we’ll use the script directive, which will
allow us to do more than we could with the simple exec line:

33https://circus.readthedocs.org/en/latest/for-ops/deployment/

https://circus.readthedocs.org/en/latest/for-ops/deployment/
https://circus.readthedocs.org/en/latest/for-ops/deployment/

© © 0 N O O b W N =

N

I O O b W N =

e
W N~ O

Circus 332

File: /etc/init/circus.conf

start on filesystem and net-device-up IFACE=lo
stop on runlevel [016]

respawn

script
cd /tmp/circus
./bin/activate
./bin/circusd ./webhook.ini
end script

This lets use put a shell script between script and end script. Here we cd into the circus directory.
Then we source the bin/activate file (using the . notation rather than the command source, which
we can’t use in this context). Finally we run circusd, passing it the webhook . ini configuration.

Note that we didn’t run Circus as a daemon (via the --daemon flag). Upstart will run it for us,
monitoring the circus process and keeping it alive itself.

Once the /etc/init/circus.conf file is created, we can start using it with Upstart’s commands:

Check the Upstart script exists
$ sudo initctl list | grep circus
circus stop/waiting

Check the status of Circus
$ sudo status circus

circus stop/waiting

Start Circus
$ sudo start circus

Stop Circus

$ sudo start circus

So we can control Circus via Upstart, and know that it will restart along with the server.

Development and Servers

Many people work on Macintoshes or Linux servers. These usually come with the ability to serve
static content out of the box, and there are even some simple options to get fancier with dynamic
content. Here are some examples of some useful tools which may be hiding under your nose.

Serving Static Content

Built-In

Your Mac has a super-easy way to server static content out of the box, without installing anything.
This makes use of the fact that Mac’s come with Python, and Python’s standard library contains the
super-handy SimpleHTTPServer module.

Serving static files using Python

cd /path/to/static/html
python -m SimpleHTTPServer 8000

After running the above command, you’ll see something like Serving HTTP on ©.0.0.0 port 8000
... -you’re good to go! Head over to http://localhost:8000 in your browser to see what you find!

The beauty of this is that you can run this from any directory/location on your Mac, even off of
shared network drives - as long as your Mac can read the files.

Serving static files from a mounted network drive

cd /Volumes/SomeNetworkDrive/path/to/html
python -m SimpleHTTPServer # awww, yeah

Mac’s system-install Python also comes bundled with Twisted, another Python web server! You can
run this (supposedly production-grade) static file server using Twisted with this command:

twistd -n web -p 8888 --path /path/to/html

This isn’t limited to Python; You can do this with the system-installed Ruby as well:

Serving static content with Ruby

ruby -run -e httpd /path/to/html -p 8888

NodeJS

If you have NodeJS installed, you can find an equally simple static file server.

0 I O O b W N =~

(AT
= o O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Serving Static Content 335

Node]S script to serve static content, via https://gist.github.com/rpflorence/701407

var http = require("http"),
url = require("url"),
path = require("path"),
fs = require("fs")
port = process.argv[2] || 8888;

http.createServer (function(request, response) {

var uri = url.parse(request.url).pathname
, filename = path.join(process.cwd(), uri);

path.exists(filename, function(exists) {
if(lexists) {
response.writeHead(404, {"Content-Type": "text/plain"});
response.write("404 Not Found\n");
response.end();
return;

if (fs.statSync(filename).isDirectory()) filename += '/index.html';

fs.readFile(filename, "binary", function(err, file) {
if(err) {
response.writeHead(500, {"Content-Type": "text/plain"});
response.write(err + "\n");
response.end();
return;

response.writeHead(200);
response.write(file, "binary");
response.end();

1

1);
}).listen(parselnt(port, 10));

console.log("Static file server running at\n => http://localhost:" + port + "/\\
NnCTRL + C to shutdown");

You can place this anywhere and then use it to serve files from the location of the NodeJS script:

Serving Static Content 336

Run NodeJS static server from directory
containing the static files

node static_server. js 8888

Dynamic Content

Serving dynamic content is, of course, more complex.

If you are on Mac’s Mavericks, you actually have PHP 5.4+ installed. This means PHP’s built-in web
server will work! This will serve static files and process PHP files.

cd /path/to/php/files
php -S localhost:8888

Of course, if your PHP application requires them, you’ll need to install modules such as mcrypt,
PDO, GD or other PHP modules which might not come with Mac OS. You can use the Brew package
manager to easily install these dependencies.

However, consider using a virtual machine (perhaps with Vagrant) to more easily be able to install
and manage application dependencies, as well as to keep your Macintosh clean of such things.
Avoiding the pain of configuring “server stuff” on your Macintosh is worth it!

	Table of Contents
	Servers
	Video Site
	Book Issues

	Introduction
	Accidental Sysadmin Syndrome
	Assumptions

	Linux Distributions
	The Sandbox
	Install Virtualbox and Vagrant
	Configure Vagrant
	Vagrant Up!
	Basic Commands
	Basic Software
	Review

	Security
	Users and Access
	IP Addresses
	Creating a New User
	Making Our User a Super User

	Setting Up the Firewall: Iptables
	Adding these rules
	Inserting Rules
	Deleting Rules
	Saving Firewall Rules
	Defaulting to DROP Over ACCEPT
	Logging Dropped Packets

	Fail2Ban
	Iptables Integration
	Installation
	Configuration

	Automatic Security Updates

	Package Managers
	Apt
	Installing
	Repositories
	Examples
	Searching Packages

	Permissions and User Management
	Permissions
	Checking Permissions
	Changing Permissions

	User Management
	Creating Users
	Umask & Group ID Bit
	Running Processes

	Webservers
	HTTP, Web Servers and Web Sites
	A Quick Note on DNS

	DNS & Hosts File
	Xip.io
	Virtual Hosts

	Hosting Web Applications
	Three Actors

	Apache
	Installing
	Configuration
	Virtual Hosts
	Apache and Web Applications
	MPM Configuration
	Security Configuration
	Envvars

	Nginx
	Features
	Installation
	Web Server Configuration
	Servers (virtual hosts)
	Integration with Web Applications

	PHP
	Installation
	Configuration
	PHP-FPM

	Server Setup for Multi-Tenancy Apps
	DNS
	Multi-Tenancy in Apache
	Multi-Tenancy in Nginx

	SSL Certificates
	SSL Overview
	Using SSL in Your Application

	Creating Self-Signed Certificates
	Creating a Wildcard Self-Signed Certificate
	Apache Setup
	Nginx Setup
	One Server Block

	Extra SSL Tricks

	Multi-Server Environments
	Implications of Multi-Server Environments
	Asset Management
	Sessions
	Lost Client Information
	SSL Traffic
	Logs

	Load Balancing with Nginx
	Balancing Algorithms
	Configuration

	Load Balancing with HAProxy
	Common Setups
	Installation
	HAProxy Configuration
	Monitoring HAProxy
	Sample NodeJS Web Server

	SSL with HAProxy
	HAProxy with SSL Termination
	HAProxy with SSL Pass-Through
	Sample NodeJS Web Server

	Web Cache
	Nuts and Bolts of HTTP Caching
	Object Caches
	Web Caches
	Types of HTTP Caches

	An Origin Server
	Testing Caching Mechanisms

	Nginx Web Caching
	Use Cases
	How It Will Work
	Origin Server
	Cache Server
	Proxy Caching
	Example: Caching Specific URIs

	Varnish
	Origin Server
	Install Varnish
	Basic Configuration
	Increasing Cache Hit Rate
	Varnish Tools
	Extra Resources

	Logs
	Logrotate
	What does Logrotate do?
	Configuring Logrotate
	Going Further

	Rsyslog
	Configuration
	Usage
	Should I Use Rsyslog?
	Sending To Rsyslog From An Application

	File Management, Deployment & Configuration Management
	Managing Files
	Copying Files Locally
	SCP: Secure Copy
	Rsync: Sync Files Across Hosts
	Deployment

	Auto-deploy with GitHub
	How it Works
	Node Listener
	Shell Script
	Putting it together
	Firewall

	Configuration Management with Ansible
	Install
	Managing Servers
	Basic: Running Commands
	Basic Playbook
	Roles
	Facts
	Vault

	SSH
	Logging in
	SSH Config
	SSH Tunneling
	Local Port Forwarding
	Remote Port Forwarding

	One-Off Commands & Multiple Servers
	Basic Ansible

	Monitoring Processes
	A Sample Script
	System Services
	System V Init (SysVinit, SysV)
	Upstart
	The Service Command
	Systemd
	Using These Systems

	Supervisord
	A Chain of Process Monitors
	Installation
	Configuration
	Controlling Processes
	Web Interface

	Forever
	Installation
	Usage

	Circus
	Installation
	Configuration
	Controlling Processes
	Web Interface
	Starting on Boot

	Development and Servers
	Serving Static Content
	Built-In
	NodeJS
	Dynamic Content

