
Issue 46  March 2014

On Hacking
by Richard Stallman



2  ﻿

Curator
Lim Cheng Soon

Contributors
First Round Capital 
Richard Stallman 
Nathan Wong 
Mike Ash 
Seth Brown 
Rich Adams 
Evan Miller 
Jonathan E. Chen 
Chad Fowler

Proofreaders
Emily Griffin
Sigmarie Soto

Illustrators 
Jaime G. Wong 
Joel Benjamin

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version 
of Hacker News — news.ycombinator.com, a social news 
website wildly popular among programmers and startup 
founders. The submission guidelines state that content 
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles 
on Hacker News and print them in magazine format.  
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Jaime G. Wong

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com


  3

For links to Hacker News dicussions, visit hackermonthly.com/issue-46

Contents
FEATURES

04  How to Win as a First-Time Founder
By First Round Capital

10  On Hacking
By Richard Stallman

PROGRAMMING

14  Make the Type System Do the Work
By Nathan Wong

17  Why Registers Are Fast and RAM Is Slow
By Mike Ash  

20  Vim Croquet
By Seth Brown

24  AWS Tips I Wish I’d Known Before I Started
By Rich Adams

30  Why I’m Betting on Julia
By Evan Miller

SPECIAL

32  Forever Alone
By Jonathan E. Chen

36  Killing the Crunch Mode Anti-pattern
By Chad Fowler

Drew Houston, illustrated by Joel Benjamin.

http://hackermonthly.com/issue-46


4  FEATURES

FEATURES

By First Round Capital

How to Win as a  
First-Time Founder
A Drew Houston Manifesto

In 2007, Drew Houston flew to San Francisco 
determined to find a co-founder for Dropbox. At 
the time, it was just him. No backers. No team. On 

a friend’s advice, he walked into Y Combinator’s offices 
unsolicited to talk to Paul Graham about finding the 
right person. It didn’t go well. 

“It wasn’t a great experience, coming in unan-
nounced,” Houston recently told students in an exclu-
sive Dorm Room Fund interview at MIT. “Getting 
into Y Combinator is like getting into a great school. 
So imagine having your two minutes with the dean 
of admissions and them coming away thinking you’re 
an asshole. That plane ride back was the worst. No 
co-founder. Lower chance of getting into YC. I was 
panicked.”

The good news is, early founders can turn things 
around. Soon after he thought it was all over, Houston 
teamed with fellow-MIT alum Arash Ferdowsi and 
made it into YC. Today, he’s led Dropbox to nearly 
200 million users — and the company’s growing faster 
than ever before. This hasn’t been a piece of cake, but 
Houston’s rocky start did teach him to forge ahead and 
throw out assumptions that discourage many would-be 
founders. Looking back, he recommends six strategies 
that helped him cut through the fear, drown out the 
noise, and make it happen.

 



  5

➊ Start with a worthy 
problem.

Prospective entrepreneurs are 
primed to find problems. While he 
was still in college, Houston signed 
up to beta test an online game as it 
was being built. When he ran out 
of things to do, he started poking 
around under the hood, and he 
discovered a bunch of security 
vulnerabilities. 

“So I started hacking around on 
the game, and ended up telling the 
developers, ‘Hey guys, you have to 
do this and this…’ They responded, 
‘Okay great, want to just do that for 
us?’” That’s how Houston landed 
his first engineering gig. Dropbox 
was born out of a similar moment, 
when he simply got fed up with the 
lack of seamless storage solutions 
for his files. 

But not every idea is bound to 
be a good one, or worth your time. 
After coming up with a cohort of 
aspiring founders (some successful, 
some not) and observing their vari-
ous fates, Houston has devised a list 
to help new entrants choose their 
projects wisely: 

■■ It just pulls you. This is the least 
scientific of his recommenda-
tions, but that gut feeling that a 
problem is critical and needs an 
answer shouldn’t be overlooked. 
“Sometimes you just get this 
feeling — it’s a compulsion or an 
obsession. You can’t stop thinking 
about it. You just have to work 
on this thing,” he says. “You need 
that hunger no matter what, 
because eventually the honey-
moon period wears off. Some-
where between printing your 
business cards that say ‘founder’ 
on them and everything else you 
have to do, you realize, ‘Oh, actu-
ally this is a ton of work.’” 

■■ You think it can go far. “With 
something like Dropbox, it was 
immediately like, “Wow, this is 
literally something that anyone 
with an internet connection 
could use.” Everyone needs some-
thing like this, they just don’t 
realize it yet.” Now, with the app 
approaching 200 million users, 
Houston already has his eyes 
fixed on a billion. “It’s crazy that 
we live in a world where that’s 
a totally reasonable thing to go 
after. But I look at all the things 
we can do, and the magnitude of 
the opportunity in front of us is 
so clear.”

■■ It optimizes for learning. It’s 
always smart to go where you’ll 
have the ability to learn the most. 
Go where people are smart and 
fierce, because wherever you go, 
you’re bound to learn through 
osmosis. “If you join a company, 
work with world-class people 
because that’s the fastest way 
to learn how to do things. If 
you start your own thing, you 
can learn a lot really fast from 
doing things wrong. Ask yourself, 
‘Where can I find an environ-
ment where I can work really 
hard and learn the most?’” 

➋ Own Being a Beginner.
In his book Outliers, Mal-

colm Gladwell suggests that it takes 
10,000 hours before you can truly 
become an expert at anything. 
Given the immense challenge of 
starting a company, one might think 
that founders need to be vastly 
experienced. But Houston dis-
agrees. He’s got some powerful evi-
dence, too: Google, Apple, Dell and 
Facebook — all unicorns, all started 
by first-timers or people who failed 
on the first try. 

“A lot of times it’s an asset to not 
know everything about everything,” 
Houston says. “As you advance 
in your career, you feel like you 
know so much about the world and 
what’s possible. Then you have this 
mental model about how things 
work that gets less and less flexible. 
You can get stuck.”

His favorite example came early 
on when the first articles were 
being written about his company. 
He remembers one quote precisely: 

“Fortunately, the Dropbox founders 
are too stupid to know everyone’s 
already tried this.” 

“A lot of really great, innovative 
things have happened when people 
just didn’t know it wasn’t supposed 
to be possible,” Houston says. 

It’s important to not underesti-
mate your ability to learn on the 
fly. “Everything can seem so mys-
tifying before you start,” he says. 
“But when you look behind the 
curtain at how some of these huge 
companies were built, it wasn’t a 
lot of magic. It’s people iteratively 
trying to make reasonable decisions 
and surround themselves with the 
smartest people they can.” 



6  FEATURES

➌ Assume Nothing & the 
First Mover Disadvantage

At the time Houston got the idea 
for Dropbox, people thought the 
problem was already solved. They 
had email attachments and thumb 
drives — and for the power users, 
external hard drives. What more 
did they need? Even the forward 
thinkers would have guessed a solu-
tion would come from Google or 
Microsoft. 

“People make basic assumptions 
based on what they have now. But 
you have to ask yourself, is this 
really what people are going to be 
doing in five years?” he says. “Very 
few people ask themselves what 
they would actually want instead 
if they could wave a magic wand. 
What if there could be this magic 
folder that you could access from 
anywhere and never need to back 
up?” 

Something a lot of entrepreneurs 
assume is that they have to be 
first to market in order to win in 
a category. But when you look at 
the breakout success stories, this is 
almost never the case. Google was 
preceded by Yahoo, Alta Vista, Ask 
Jeeves, and 100 other little search 
engines. Facebook entered stage left 
and slaughtered both MySpace and 
Friendster. 

“The fact is that there’s a prob-
lem with being first,” Houston says. 
“When you do that, you create a 
market, and if you’re too early, you 
essentially leave the door open 
behind you for someone to do it 
better. I actually don’t think it mat-
ters how early or late you are as 
long as you hit critical mass.”

When Dropbox was getting off 
the ground in 2007, there were 
hundreds of small storage compa-
nies. It was almost a cliché, the way 
that many people believe mobile 

photo sharing is a cliché now, he 
says. “The important thing was, I 
would keep asking people if they 
used any one of these hundred 
options, and they all said no. These 
are my favorite problems to solve. 
You can’t focus on what everyone 
else is doing — it has to be about 
what’s really broken and what you 
can do to fix it.” 

Even today, Houston’s reminded 
all the time that he has 400 people 
against Google’s 40,000. It’s daunt-
ing, but he has to shrug it off. In 
the end, tech is about disruption, 
and there’s plenty of proof that 
numbers of users, or employees or 
dollars doesn’t always make the 
difference.

“Small teams can take on bigger 
companies because of their focus 
and speed. That’s also what makes 
it fun.” 

This kind of challenge can seem 
like too big a gamble for many 
people who might otherwise start 
companies. With odds so heavily 
in favor of the Goliaths, chances 
for success seem slim, but Houston 
does his best to de-risk the idea for 
aspiring entrepreneurs.

“People assume — and misun-
derstand — that it’s risky to join a 
startup or start their own company, 
but you have to know this is ridicu-
lous,” he says. “Even if it doesn’t 
work out, the experience is so 
valuable to so many employers that 
your worst case scenario is, “Ok, so 
that was a bust, I”ll get a six-figure 
job at whatever company.’ Risk is 
this outmoded idea — your parents 
might not understand that, but 
taking these types of risks doesn’t 
have a downside.”

➍ Build a knowledge 
machine. 

For Houston, learning new things 
became an addiction — one he 
actually systematized. 

“I was living in Boston, working 
for a startup during the summer, 
living in my fraternity house. But 
every weekend, I would take this 
folding chair up to the roof with 
all these books I got on Amazon. 
I would just sit there and read all 
of them. I would spend the whole 
weekend just reading, reading, 
reading.” 

His process wasn’t complicated, 
but he did keep a list of target 
topics in his head. “I’d be like, 
alright, I don’t know anything about 
sales. So I would search for sales on 
Amazon, get the three top-rated 
books and just go at it. I did that 
for marketing, finance, product, and 
engineering. If there was one thing 
that was really important for me, 
that was it.” 

If you’ve never started a com-
pany, or worked at a smaller 
company, you’ll run into a verti-
cal learning curve, Houston says. 
There’s no way to know everything 
you need to from the start, so you 
need to a) gain as much knowledge 
as you can as fast as you can, and 
b) plan ahead to learn what you’ll 
need months down the line. You 
have to be prepared for a never-
ending conveyor belt of challenges. 

“You have to adopt a mindset 
that says, “Okay, in three months, 
I”ll need to know all this stuff, and 
then in six months there’s going 
to be a whole other set of things 
to know — again in a year, in five 
years.’ The tools will change, the 
knowledge will change, the worries 
will change.”



  7

“You have to get good at preparing 
yourself to understand what’s on 
the horizon.” 

 This is especially important for 
skills and habits that you can’t 
internalize overnight. “You’re not 
going to become a great manager 
overnight. You’re not going to 
become a great public speaker or 
figure out how to raise money,” he 
says. “These are the things you want 
to start the clock on as early as 
possible.” 

As a founder, this goes for both 
you and your employees. This can 
be a huge advantage when it comes 
to recruiting the best talent, too. 
One young engineer comes to mind 
for Houston, who was swayed by 
the opportunity to be thrown into 
the deep end right away. 

“We had this enormous infra-
structure project where we were 
spending millions of dollars and 
he was in charge of it — and he 
was like 20 at the time. He just 
wouldn’t have gotten that oppor-
tunity if he had been employee 
20,000 at Google or something,” 
he says. “This engineer even said to 
him at some point, “Dropbox let 
me do things that I wasn”t ready 
for.’”

This chance, to work on real 
things and move the needle at a 
company serving millions, is rare 
and extremely valuable. “I look at 
the interns we have at Dropbox, 
and they’re shipping real stuff every 
day,” Houston says. “In contrast, I 
had a friend who worked at Micro-
soft for a summer, and he spent the 
entire time working on the back 
button on Internet Explorer.” 

The upshot: Making learning 
central to your company’s culture 
pays serious dividends.

➎ Be resourceful. Fast.
Houston may have gotten 

off on the wrong foot with Y Com-
binator, but he was able to turn 
it around just as fast with limited 
tools.

“It was one of those things 
where it was a couple weeks before 
the deadline, and I just realized I 
had no choice. I had to write this 
application,” he says. “I was already 
at a disadvantage because I was a 
single founder and YC really wants 
co-founders. But I said to hell with 
it, I’ll just do it anyway. So I made 
a video.” 

This demo video is now part of 
Dropbox mythology. Not only did 
it catch fire on Hacker News and 
Reddit, it also convinced YC part-
ner Trevor. The key was Houston 
knew his audience. “I was part of 
that audience, so I made the video 
that would get me excited about 
Dropbox. The production value 
wasn’t great. It was just me sitting 
in my bedroom at 3 a.m., but I 
knew what to say.” It worked — he 
got an email from Paul Graham 
saying there was interest, but to 
go any further, he’d need to find a 
co-founder.

He approached this task with the 
same attitude as his YC application. 
He knew what he needed. He went 
after it, and he moved quicker than 
he felt comfortable with. That’s the 
pace you have to get used to when 
you’re involved with a startup, he 
says. Finding a co-founder on this 
timetable can be one of the most 
daunting things an entrepreneur 
can do.

 “It was sort of like them telling me 
I needed to find someone to marry 
in two weeks.” 

Luckily, the video came in handy 
here, too. By the time he met with 
Arash Ferdowsi, a friend of a friend 
at MIT, his future CTO had already 
seen the demo and was interested.

“We went to the coffee house at 
the student center because that’s 
the only thing we could do,” Hous-
ton recalls. “At the time, I was just 
like, this kid seems pretty smart. I 
can’t say it was this careful process 
where I had 19 things I was look-
ing for, but he seemed intelligent 
and cool, and we spent a good two 
hours together talking. At the end, 
he said “Okay, yeah, I”ll drop out 
next week.’”

Now that he’s had time to 
reflect, he realizes how lucky he 
got with Ferdowsi, and he has some 
advice for young entrepreneurs 
looking for their other halves. “The 
most important thing is whether 
you respect this person, whether 
you trust them. Are they someone 
that you can see yourself being in 
the trenches with for a long time, 
because you’re going to see them 
more than your spouse or your 
significant other.” 



8  FEATURES

➏ Don’t lose your North Star.
Inevitably companies evolve 

as they grow, but Houston knows 
the value of keeping a higher 
purpose front and center. This is 
especially critical for Dropbox right 
now as it adds hundreds of new 
employees and expands more and 
more into enterprise software. 

Many of even the most success-
ful startups in tech will say their 
culture evolved organically — that 
they’re only just now starting to be 
intentional about it at 100 to 300 
employees. Dropbox falls into this 
category. But Houston advocates for 
an earlier attack.

“When you’re studying and get-
ting your engineering degree, things 
like mission or values sound totally 
unnecessary,” he says. “But then it 
turns out that you have to evolve 
from building this system of code to 
building a system of people. It’s like 
updating your operating system. 
You have to adapt very quickly.”

To keep this top of mind, you 
have to make the company’s mis-
sion about something more than 
money or building great products. 
It has to be about the value created 
for users. 

“Whole businesses are living 
out of Dropbox right now, big and 
small,” he says. “That’s something 
that’s really valuable — the fact 
that we’re helping employees be 
more productive, even at giant 
companies. IT departments and 
administrators have become an 
important audience for us, but at 
the same time we have to remem-
ber why we do what we do: We do 
it to make people happy.”

“We’re not just adding features 
to software. We’re on our way to 
building the biggest assembly of 
human memories ever created.” 

“We get these emails from people 
that just blow us away,” Houston 
says. “They say things like “I just 
used Dropbox to start a music festi-
val” or “I made a movie” or “I started 
the company I”ve been dreaming 
about my whole life.’ People tell 
us that Dropbox has completely 
changed how they work. And I think 
that’s what’s really exciting — being 
able to redefine how people collabo-
rate. It’s not just the why of what 
we do, it’s also a huge market. n

Drew Houston is the founder of Dropbox. 
 
First Round Capital is a San Francisco-based 
venture capital firm focusing on seed fund-
ing for technology startups and creating a 
vibrant community of entrepreneurs work-
ing to change the world.

Reprinted with permission of First Round Review 
[firstround.com/review], a publication of First Round 
Capital. 

First appeared in hn.my/drewhouston (firstround.com)

Illustration by Joel Benjamin.

http://firstround.com/review
http://hn.my/drewhouston


  9

Metrics and monitoring for people 
who know what they want
We know from experience that monitoring your servers and 
applications can be painful, so we built the sort of service that 
we would want to use. Simple to set up, responsive support 
from people who know what they're talking about, and reliably 
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexibile: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!
Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards            StatsD              Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com


10  FEATURES

By Richard Stallman

On Hacking

In June 2000, while visiting 
Korea, I did a fun hack that 
clearly illustrates the original 

and true meaning of the word 
“hacker”.

I went to lunch with some GNU 
fans, and was sitting down to eat 
some tteokpaekki 1, when a waitress 
set down six chopsticks right in 
front of me. It occurred to me that 
perhaps these were meant for three 
people, but it was more amusing to 
imagine that I was supposed to use 
all six. I did not know any way to 
do that, so I realized that if I could 
come up with a way, it would be a 
hack. I started thinking. After a few 
seconds I had an idea.

First I used my left hand to put 
three chopsticks into my right 
hand. That was not so hard, though 
I had to figure out where to put 
them so that I could control them 
individually. Then I used my right 
hand to put the other three chop-
sticks into my left hand. That was 
hard, since I had to keep the three 
chopsticks already in my right hand 
from falling out. After a couple of 
tries I got it done.



  11

Then I had to figure out how to 
use the six chopsticks. That was 
harder. I did not manage well with 
the left hand, but I succeeded in 
manipulating all three in the right 
hand. After a couple of minutes of 
practice and adjustment, I managed 
to pick up a piece of food using 
three sticks converging on it from 
three different directions, and put it 
in my mouth.

It didn’t become easy — for prac-
tical purposes, using two chopsticks 
is completely superior. But precisely 
because using three in one hand is 
hard and ordinarily never thought 
of, it has “hack value”, as my lunch 
companions immediately recog-
nized. Playfully doing something 
difficult, whether useful or not, that 
is hacking.

I later told the Korea story to a 
friend in Boston, who proceded to 
put four chopsticks in one hand and 
use them as two pairs — picking up 
two different pieces of food at once, 
one with each pair. He had topped 
my hack. Was his action, too, a 
hack? I think so. Is he therefore 
a hacker? That depends on how 
much he likes to hack.

The hacking community devel-
oped at MIT and some other 
universities in the 1960s and 1970s. 
Hacking included a wide range of 
activities, from writing software, 
to practical jokes, to exploring 
the roofs and tunnels of the MIT 
campus. Other activities, performed 
far from MIT and far from comput-
ers, also fit hackers’ idea of what 
hacking means: for instance, I think 
the controversial 1950s “musical 
piece” by John Cage, 4'33" 2, is 
more of a hack than a musical com-
position. The palindromic three-
part piece written by Guillaume de 
Machaut in the 1300s, “Ma Fin Est 
Mon Commencement”, was also 

a good hack, even better because 
it also sounds good as music. Puck 
appreciated hack value.

It is hard to write a simple 
definition of something as varied 
as hacking, but I think what these 
activities have in common is play-
fulness, cleverness, and exploration. 
Thus, hacking means exploring the 
limits of what is possible, in a spirit 
of playful cleverness. Activities 
that display playful cleverness have 
“hack value”.

Hackers typically had little 
respect for the silly rules that 
administrators like to impose, so 
they looked for ways around. For 
instance, when computers at MIT 
started to have “security” (that is, 
restrictions on what users could do), 
some hackers found clever ways to 
bypass the security, partly so they 
could use the computers freely, and 
partly just for the sake of clever-
ness (hacking does not need to be 
useful). However, only some hack-
ers did this — many were occupied 
with other kinds of cleverness, such 
as placing some amusing object on 
top of MIT’s great dome 3, finding 
a way to do a certain computation 
with only 5 instructions when the 
shortest known program required 6, 
writing a program to print numbers 
in roman numerals, or writing a 
program to understand questions in 
English.

Meanwhile, another group of 
hackers at MIT found a different 
solution to the problem of computer 
security: they designed the Incom-
patible Timesharing System without 
security “features”. In the hacker’s 
paradise, the glory days of the Arti-
ficial Intelligence Lab, there was no 
security breaking, because there was 
no security to break. It was there, 
in that environment, that I learned 
to be a hacker, though I had shown 

the inclination previously. We had 
plenty of other domains in which to 
be playfully clever, without building 
artificial security obstacles which 
then had to be overcome.

Yet when I say I am a hacker, 
people often think I am making 
a naughty admission, presenting 
myself specifically as a security 
breaker. How did this confusion 
develop?

Around 1980, when the news 
media took notice of hackers, they 
fixated on one narrow aspect of 
real hacking: the security break-
ing which some hackers occasion-
ally did. They ignored all the rest 
of hacking, and took the term to 
mean breaking security, no more 
and no less. The media have since 
spread that definition, disregarding 
our attempts to correct them. As a 
result, most people have a mistaken 
idea of what we hackers actually do 
and what we think.

You can help correct the misun-
derstanding simply by making a dis-
tinction between security breaking 
and hacking — by using the term 
“cracking” for security breaking. 
The people who do it are “crack-
ers” 4. Some of them may also be 
hackers, just as some of them may 
be chess players or golfers; most of 
them are not.

**************

1.	 Pronounced like stuckpeckee 
minus the s (with an unaspirated 
t), if I recall right.

2.	 The piece 4'33" is a trivial piece. 
For each “movement”, the pia-
nist opens the keyboard cover, 
waits the appropriate amount of 
time, then closes it; that’s all. It 
is a musical counterpart of the 
empty set.



12  FEATURES

3.	 Going on the great dome is 
“forbidden”, so in a sense it 
constitutes “breaking security”. 
Nonetheless, the MIT Museum 
proudly exhibited photos of 
some of the best dome hacks, as 
well as some of the objects that 
hackers placed on the dome in 
their hacks. The MIT administra-
tion thus implicitly recognizes 
that “breaking security” is not 
necessarily evil and need not be 
invariably condemned. Whether 
security breaking is wrong 
depends on what the security 
breaker proceeds to do with the 
“forbidden” access thus obtained. 
Hurting people is bad, amusing 
the community is good.

4.	 I coined the term “cracker” in 
the early 80s when I saw jour-
nalists were equating “hacker” 
with “security breaker”.

**************

Here are some examples of fun 
hacks. If they make you smile, 

you’re a hacker at heart.
First, some of mine.

■■ I learned to use two pairs of 
chopsticks too. Here I demon-
strate this. [twitpic.com/558zg]

■■ Speaking of chopsticks, some 
kinds of Italian grissini work fine 
as chopsticks — then, after the 
meal, you can eat them. I brought 
a bag of them to Taiwan once 
just to show them that Italy has 
chopsticks too.

■■ Customer Training College 
changed to Customer Draining 
College [hn.my/drain]. Sassy, not 
computer-related.

■■ Photos of some other hacks I’ve 
done are here. [hn.my/stallhacks]

■■ In India there is a chain of fine 
Bengali restaurants called “Oh! 
Calcutta”. The staff, and the 
clients, have no idea why that 
expression is notorious. During 
my 2014 visit to India I decided 
to inform them by bringing to 
the restaurant some printouts 
of the painting, and a publicity 
photo from the play. I left a copy 
of each with the staff.

■■ Pre-Zen studies (an April fool). 
[hn.my/prezen]

■■ Many years ago I had a root canal 
operation in a molar in the back 
of my mouth. It was difficult for 
me to keep my mouth open far 
enough, and the dentist said this 
was because I had a rather small 
mouth.  
    When it was done, I had him 
sign a testimonial affirming this 
fact. I gave it to my mother to 
show she was wrong about me, 
all those years when she said I 
had a big mouth.

■■ My puns are also playful clever-
ness. [hn.my/puns]

Other people’s hacks.

■■ Everyone’s first hack: walking 
in the wrong direction on an 
escalator. That’s not the way it’s 
designed to be used, but can you 
make it work?

■■ I think this award-winning art 
project was actually a hack.  
[hn.my/voina]

■■ A robot that climbs windows to 
deploy a sun shade. Pure, sweet, & 
computer-based. [hn.my/shady]

■■ Hoisting Nigerian scammers on 
their own petard. [hn.my/eater]
Cunning, mischievous, and not 
using computers except for email 
and phone calls.

■■ Lady Gaga’s approach to clothing 
seems like hacking to me.

■■ A charming hack in the London 
Underground. [hn.my/subway]

■■ The hacker who made this poster 
was arrested for it. [hn.my/drone]

■■ TicBot is a conversation hack. 
[touretteshero.com]

■■ Just for the hack of it, the ulti-
mate series of hacks with ordinary 
everyday objects appears in the 
1987 film, Der Lauf der Dinge, by 
Fischli and Weiss. (This should not 
be confused with the unrelated 
2006 film by the same name.)

■■ Although hacking and cracking 
are conceptually unrelated, occa-
sionally they are found together. 
This is hacking that involves 
some cracking. [hn.my/cat] 
    This hack has pointed out 
the injustice of the laws against 
“child” pornography, but doing 
that by causing other people to 
be jailed seems wrong to me. 
(Hacks can raise ethical issues 
just as other activities do; clev-
erness and playfulness do not 
guarantee that one can do no 
wrong.)  I t is also foolhardy to 
taunt a dangerous monster.

■■ A fun hack implemented via 
cracking: making TV emergency 
alert system give warnings about 
dead bodies emerging from 
graves. [hn.my/zombie] 
    The security holes that made 
this possible might be used 
humorlessly to do real harm, but 
this hack didn’t do harm. n

Richard Stallman is the founder of the Free 
Software Foundation and the GNU project.

Copyright (C) 2002-2013 Richard Stallman

Verbatim copying and distribution of this entire article is 
permitted in any medium, provided this notice is preserved.

http://twitpic.com/558zg
http://hn.my/drain
http://hn.my/stallhacks
http://hn.my/prezen
http://hn.my/puns
http://hn.my/voina
http://hn.my/shady
http://hn.my/eater
http://hn.my/subway
http://hn.my/drone
http://touretteshero.com
http://hn.my/cat
http://hn.my/zombie


  13

and help change the future of search

http://duckduckhack.com


14  PROGRAMMING

PROGRAMMING

By Nathan Wong

Declaring types and being restricted by 
the type system is often cited as a nega-
tive aspect of C++. I think this is an unfair 

assessment: a type system can make a programmer’s life 
considerably easier if it’s embraced instead of fought, as 
we’re seeing with the rise in popularity of Haskell. But 
C++, despite all its warts, has a pretty formidable type 
system of its own.

The object-oriented paradigm is commonly taught 
with the “Dog is-a Mammal” architectural mental-
ity where your classes are supposed to mirror real life 
objects and act accordingly. Make no mistake, this 
approach is an over-simplification of software architec-
ture and should be treated as such, but the principles 
behind it are actually fairly sound. Classes should aim 
to be a self-contained representation of some concept 
or thing that has state and actions. Here, we’re going 
to focus on how to make the type system work for you 
instead of against you.

Specifically, we’re going to focus on the conver-
sion of data from one form to another. Many seem 
to think of conversions as being functions, taking one 
piece of data and returning another. But in doing so, 
we callously throw away dimensional analysis, a skill 
that appears to have been lost in translation from the 
natural sciences to computing.

A simple example that demonstrates the importance 
of dimensional consistency is temperature conversions. 
All too often we see functions converting equivalent 
units look something like this:

Function-Based Conversion
double celsiusToFahrenheit(double deg_celsius) 
{ 
    return deg_celsius * 9 / 5 + 32; 
} 
  
double temperature_fahrenheit = 
celsiusToFahrenheit(20);

 OK, it works. It compiles, runs, gives the right 
answer, and passes all tests. The only problem is that 
you end up with a variable that fails to describe itself 
better than “I’m a number”. We end up using Hun-
garian-like system (apps Hungarian, specifically) to 
indicate the true units of the variable (Fahrenheit or 
Celsius). We recognize the importance of maintaining 
unit analysis, but we fail to enforce this convention; as 
with all Hungarian systems, the onus falls on the devel-
oper (and future developers) to maintain the accuracy 
of the system.

Instead, we should rely on the type system of the 
language to enforce this.

Type-Enforced Conversion
struct Degrees 
{ 
    double val; 
    Degrees(double _val) : val(_val) {} 
}; 
struct DegCelsius : public Degrees 
{ 

Make the Type System  
Do the Work



  15

    DegCelsius(double deg) : Degrees(deg) {} 
    DegCelsius(const DegFahrenheit &deg) 
        : Degrees((deg.val - 32) * 5 / 9) {} 
}; 
struct DegFahrenheit : public Degrees 
{ 
    DegFahrenheit(double deg) : Degrees(deg) {} 
    DegFahrenheit(const DegCelsius &deg) 
        : Degrees(deg.val * 9 / 5 + 32) {} 
}; 
 
DegFahrenheit input(68); 
DegCelsius temperature = input;

Now it’s obvious to any developer what type of 
degrees the temperature variable is holding, and the 
units are carried and enforced by the compiler; you’re 
physically unable to assign a Celsius degree to a Fahr-
enheit degree without it converting it properly for you.

The overhead of setting up a coherent type system 
may seem burdensome, but in an application or library 
that handles many conversions in ways that should 
be transparent to the developer, this time investment 
will pay for itself. All units coming from math and 
science would benefit from being setup this way: just 
think how much easier it would be if sin took Radians 
instead of a double, and Radians had a constructor that 
took Degrees: you could write sin(Degrees(180)) and 
get the correct result.

Coordinates
Let’s say you’re plotting points on a graph (one of the 
many widgets in your application). You want the user 
to be able to click on a point in the graph and have it 
draw the point and log the graph coordinates.

Since we’re just dealing with x and y, we could get 
away with just passing aint32_t’s around. But often 
this gets confusing because the graph widget’s mouse 
click event gives you the coordinates relative to itself, 
whereas the graph coordinates have the origin at the 
center of the graph widget, and y grows as you go up 
instead of down. (And to make things more confusing, 
sometimes you have absolute coordinates relative to 
your graph widget’s parent, too.)

As with before, we may have a function with the 
signature Point pointCoordToGraphCoord(const Point 
&coord);, but this requires the programmer to remem-
ber what type of coordinates they have when handling 
the data, and creating a developer-enforced naming 

convention to help convey this meaning is error-prone 
and tedious. Instead, the type system will not only 
enforce this convention, it will convert between the 
coordinate systems as well.

Type-Enforced Coordinates
// just holds an (x,y), oblivious to its purpose 
// in life 
struct Point 
{ 
    int32_t x, y; 
    Point(int32_t _x, int32_t _y) : x(_x), y(_y) 
{} 
    Point() : x(0), y(0) {} 
}; 
// represents a point where (0,0) is the  
// top-left of the widget 
struct RealPoint : public Point 
{ 
    RealPoint(int32_t x, int32_t y) : Point(x, 
y) {} 
    RealPoint() : Point() {} 
}; 
// represents a point where (0,0) is in the  
// center, and y grows up 
struct GraphPoint : public Point 
{ 
    GraphPoint(int32_t x, int32_t y) : Point(x, 
y) {} 
    GraphPoint() : Point() {} 
};

Our mouse handler event, being a system call, prob-
ably still gives us a raw x and y, with which we can 
immediately construct a RealPoint for further use. 
Now our conversion function can be called GraphPoint 
realToGraphCoords(const RealPoint &point);, and 
it’s clear what type of coordinate system any given 
variable is using.

Naturally, this conversion function should be part of 
GraphPoint, such as static GraphPoint GraphPoint:
:FromRealCoords(const RealPoint &coords);. Once 
the problem has been reduced to just converting real 
coordinates to graph coordinates, though, it makes the 
most sense to just create a constructor in the Graph-
Point to handle the conversion for us.



16  PROGRAMMING

Implicit Unit Conversion
// represents a point where (0,0) is in the 
center, and y grows up 
struct GraphPoint : public Point 
{ 
    GraphPoint(int32_t x, int32_t y) : Point(x, 
y) {} 
    GraphPoint() : Point() {} 
    GraphPoint(const RealPoint &coords) { 
        x = coords.x - GraphWidget::width / 2; 
        y = GraphWidget::height - coords.y - 
GraphWidget::height / 2; 
    } 
};

Now, as a developer, we don’t even have to think 
about which coordinates we have on-hand.

Example Usage
bool GraphWidget::clickHandler(int32_t x, 
int32_t y) 
{ 
    RealPoint coords(x, y); 
      
    drawPoint(coords); 
    logPoint(coords, "user click"); 
  
    return true; 
} 
  
void GraphWidget::drawPoint(const RealPoint 
&coords) 
{ 
    DrawingLibrary::Circle(coords, 2); // etc. 
} 
  
void GraphWidget::logPoint(const GraphPoint 
&coords, 
    const string &action) 
{ 
    logfile << action << " at (" << coords.x << 
", " << coords.y << ")" 
        << endl; 
}

The type system does all the work for us. The click 
handler (i.e., the user of our system) does not need to 
know that drawing and logging require different coor-
dinates systems, and perhaps even better, the drawPoint 
and logPoint functions don’t need to worry about 
what’s being passed in. Nobody needs to make assump-
tions, which means less human errors and more reliable 
code.

Further Reading
The type system affords developers an opportunity to 
save time and reduce bugs. Writing maintainable code 
should be a first priority, and embracing the power of 
static typing can make code easier to work with down 
the road. Wrong code should look wrong, and failing to 
compile is even better. There are numerous everyday 
examples of how types can help. One such example is 
handling safe and unsafe strings to prevent XSS attacks 
by having the type-system enforce unsafe-by-default 
output: print(NoEscapeString("<b>Note:</b>)); 
print(usermsg); is easy to reason with.

Since first writing this article in January, I’ve been 
exposed to Bjarne Stroustrup’s C++11 Style talk 
[hn.my/cpp11] which inspired me to finally edit and 
post it. Stroustrup’s talk includes a great demonstration 
of how to implement a unit system using C++11’s new 
user-defined literals, and makes a great argument for 
type-rich programming.

It’s time to start embracing type systems instead of 
using non-descript number types and to ask ourselves: 
how else can I take advantage of the type system to 
make my life easier? n

Nathan Wong is the Co-Founder and CTO of BuySellAds, an ad-
tech startup focused on making advertising more accessible. 
You can read his blog about the intersection of business and 
technology at nathan.ca, or follow him on Twitter at @nathandev

Reprinted with permission of the original author. 
First appeared in hn.my/typesystem (nathan.ca)

http://hn.my/cpp11
http://nathan.ca
http://twitter.com/@nathandev
http://hn.my/typesystem


  17

Distance
Let’s start with distance. It’s not 
necessarily a big factor, but it’s the 
most fun to analyze. RAM is farther 
away from the CPU than registers 
are, which can make it take longer 
to fetch data from it.

Take a 3GHz processor as an 
extreme example. The speed of 
light is roughly one foot per nano-
second, or about 30cm per nano-
second for you metric folk. Light 
can only travel about four inches in 
time of a single clock cycle of this 
processor. That means a roundtrip 
signal can only get to a component 
that’s two inches away or less, and 
that assumes that the hardware is 
perfect and able to transmit infor-
mation at the speed of light in 
vacuum. For a desktop PC, that’s 
pretty significant. However, it’s 
much less important for an iPhone, 
where the clock speed is much 
lower (the 5S runs at 1.3GHz) and 
the RAM is right next to the CPU.

Cost
As much as we might wish it 
wasn’t, cost is always a factor. In 
software, when trying to make 
a program run fast, we don’t go 
through the entire program and 
give it equal attention. Instead, 
we identify the hotspots that are 
most critical to performance, and 
give them the most attention. 
This makes the best use of our 
limited resources. Hardware is 
similar. Faster hardware is more 
expensive, and that expense is best 
spent where it’ll make the most 
difference.

Registers get used extremely 
frequently, and there aren’t a lot of 
them. There are only about 6,000 
bits of register data in an A7 (32 
64-bit general-purpose registers 
plus 32 128-bit floating-point 
registers, and some miscellaneous 
ones). There are about 8 billion bits 
(1GB) of RAM in an iPhone 5S. 
It’s worthwhile to spend a bunch 
of money making each register bit 
faster. There are literally a million 
times more RAM bits, and those 
8 billion bits pretty much have to 

be as cheap as possible if you want 
a $650 phone instead of a $6,500 
phone.

Registers use an expensive design 
that can be read quickly. Reading a 
register bit is a matter of activating 
the right transistor and then waiting 
a short time for the register hard-
ware to push the read line to the 
appropriate state.

Reading a RAM bit, on the other 
hand, is more involved. A bit in the 
DRAM found in any smartphone or 
PC consists of a single capacitor and 
a single transistor. The capacitors 
are extremely small, as you’d expect 
given that you can fit 8 billion of 
them in your pocket. This means 
they carry a very small amount 
of charge, which makes it hard to 
measure. We like to think of digital 
circuits as dealing in ones and 
zeroes, but the analog world comes 
into play here. The read line is pre-
charged to a level that’s halfway 
between a one and a zero. Then the 
capacitor is connected to it, which 
either adds or drains a tiny amount 
of charge. An amplifier is used to 
push the charge towards zero or 

By Mike Ash  

Why Registers Are Fast and 
RAM Is Slow



18  PROGRAMMING

one. Once the charge in the line is 
sufficiently amplified, the result can 
be returned.

The fact that a RAM bit is only 
one transistor and one tiny capaci-
tor makes it extremely cheap to 
manufacture. Register bits contain 
more parts and thereby cost much 
more.

There’s also a lot more complex-
ity involved just in figuring out 
what hardware to talk to with RAM 
because there’s so much more of it. 
Reading from a register looks like:

1.	 Extract the relevant bits from 
the instruction.

2.	 Put those bits onto the register 
file’s read lines.

3.	 Read the result.

Reading from RAM looks like:

1.	 Get the pointer to the data 
being loaded. (Said pointer 
is probably in a register. This 
already encompasses all of the 
work done above!)

2.	 Send that pointer off to the 
MMU.

3.	 The MMU translates the virtual 
address in the pointer to a physi-
cal address.

4.	 Send the physical address to the 
memory controller.

5.	 Memory controller figures out 
what bank of RAM the data is in 
and asks the RAM.

6.	 The RAM figures out particular 
chunk the data is in, and asks 
that chunk.

7.	 Step 6 may repeat a couple of 
more times before narrowing it 
down to a single array of cells.

8.	 Load the data from the array.

9.	 Send it back to the memory 
controller.

10.	Send it back to the CPU.

11.	Use it!

Whew.

Dealing With Slow RAM
That sums up why RAM is so much 
slower. But how does the CPU deal 
with such slowness? A RAM load is 
a single CPU instruction, but it can 
take potentially hundreds of CPU 
cycles to complete. How does the 
CPU deal with this?

First, just how long does a CPU 
take to execute a single instruction? 
It can be tempting to just assume 
that a single instruction executes 
in a single cycle, but reality is, of 
course, much more complicated.

Back in the good old days, when 
men wore their sheep proudly and 
the nation was undefeated in war, 
this was not a difficult question to 
answer. It wasn’t one-instruction-
one-cycle, but there was at least 
some clear correspondence. The 
Intel 4004, for example, took either 
8 or 16 clock cycles to execute one 
instruction, depending on what that 
instruction was. Nice and under-
standable. Things gradually got 
more complex, with a wide variety 
of timings for different instructions. 
Older CPU manuals will give a list 
of how long each instruction takes 
to execute.

Now? Not so simple.
Along with increasing clock rates, 

there’s also been a long drive to 
increase the number of instruc-
tions that can be executed per 
clock cycle. Back in the day, that 
number was something like 0.1 
of an instruction per clock cycle. 
These days, it’s up around 3-4 on a 
good day. How does it perform this 

wizardry? When you have a billion 
or more transistors per chip, you 
can add in a lot of smarts. Although 
the CPU might be executing 3-4 
instructions per clock cycle, that 
doesn’t mean each instruction 
takes 1/4th of a clock cycle to 
execute. They still take at least one 
cycle, often more. What happens 
is that the CPU is able to maintain 
multiple instructions in flight at 
any given time. Each instruction 
can be broken up into pieces: load 
the instruction, decode it to see 
what it means, gather the input 
data, perform the computation, and 
store the output data. Those can all 
happen on separate cycles.

On any given CPU cycle, the 
CPU is doing a bunch of stuff 
simultaneously:

1.	 Fetching potentially several 
instructions at once.

2.	 Decoding potentially a 
completely different set of 
instructions.

3.	 Fetching the data for potentially 
yet another different set of 
instructions.

4.	 Performing computations for yet 
more instructions.

5.	 Storing data for yet more 
instructions.

But, you say, how could this pos-
sibly work? For example:

    add x1, x1, x2 
    add x1, x1, x3

These can’t possibly execute in 
parallel like that! You need to be 
finished with the first instruction 
before you start the second!



  19

It’s true, that can’t possibly work. 
That’s where the smarts come in. 
The CPU is able to analyze the 
instruction stream and figure out 
which instructions depend on other 
instructions and shuffle things 
around. For example, if an instruc-
tion after those two adds doesn’t 
depend on them, the CPU could 
end up executing that instruction 
before the second add, even though 
it comes later in the instruction 
stream. The ideal of 3-4 instruc-
tions per clock cycle can only be 
achieved in code that has a lot of 
independent instructions.

What happens when you hit 
a memory load instruction? First 
of all, it is definitely going to take 
forever, relatively speaking. If you’re 
really lucky and the value is in L1 
cache, it’ll only take a few cycles. If 
you’re unlucky and it has to go all 
the way out to main RAM to find 
the data, it could take literally hun-
dreds of cycles. There may be a lot 
of thumb-twiddling to be done.

The CPU will try not to twiddle 
its thumbs, because that’s ineffi-
cient. First, it will try to anticipate. 
It may be able to spot that load 
instruction in advance, figure out 
what it’s going to load, and initi-
ate the load before it really starts 
executing the instruction. Second, 
it will keep executing other instruc-
tions while it waits, as long as it can. 
If there are instructions after the 
load instruction that don’t depend 
on the data being loaded, they can 
still be executed. Finally, once it’s 
executed everything it can and it 
absolutely cannot proceed any fur-
ther without that data it’s waiting 
on, it has little choice but to stall 
and wait for the data to come back 
from RAM.

Conclusion 
■■ RAM is slow because there’s a 
ton of it.

■■ That means you have to use 
designs that are cheaper, and 
cheaper means slower.

■■ Modern CPUs do crazy things 
internally and will happily 
execute your instruction stream 
in an order that’s wildly different 
from how it appears in the code.

■■ That means that the first thing 
a CPU does while waiting for a 
RAM load is run other code.

■■ If all else fails, it’ll just stop and 
wait, and wait, and wait, and 
wait. n

Mike Ash has been programming for Apple 
platforms for over two decades and for 
Mac OS X since the Public Beta. He is 
the author of the bi-weekly Friday Q&A 
[mikeash.com/pyblog] blog series on deep 
technical topics related to Mac and iOS 
programming, as well as the compilation 
book The Complete Friday Q&A: Volume I. 
In between abusing the Objective-C run-
time, he flies his glider over the beautiful 
Shenandoah Valley. When not flying, he 
holds down a day job at Plausible Labs.

Reprinted with permission of the original author. 
First appeared in hn.my/registers (mikeash.com)

http://mikeash.com/pyblog
http://hn.my/registers


20  PROGRAMMING

By Seth Brown

I recently discovered an interesting game called 
VimGolf [vimgolf.com]. The objective of the game 
is to transform a snippet of text from one form to 

another in as few keystrokes as possible. As I was play-
ing around with different puzzles on the site, I started 
to get curious about my text editing habits. I wanted 
to better understand how I manipulated text with vim 
and to see if I could identify any inefficiencies in my 
workflow. I spend a huge amount of time inside my 
text editor, so correcting even slight areas of friction 
can result in worthwhile productivity gains. This post 
explains my analysis and how I reduced the number of 
keystrokes I use in vim. I call this game Vim Croquet.

Data Acquisition
I started my analysis by collecting data. All my text 
editing on a computer is done with vim, so for 45 
days I logged every keystroke I used in vim with 
the scriptout flag. For convenience, I aliased vim in 
my shell to record all my keystrokes into a log file:

alias vim='vim -w ~/.vimlog "$@"'

Next, I needed to parse the resulting data. Parsing 
vim is complicated. vim is a modal editor where a single 
command can have different meanings in different 
modes. Commands can also have contextual effects 
where the behavior of certain actions can be different 
depending on where they are executed within a buffer. 
For example, typing cib in normal mode moves the user 
into insert mode if the command is executed between 
parentheses, but leaves the user in normal mode if 
executed outside of parentheses. If cib is executed in 
insert mode it has an altogether different behavior; it 
writes the characters cib into the current buffer. 

I looked at several candidate tools for parsing vim 
commands including industrial parser libraries like 
antler [antlr.org] and parsec [hn.my/parsec] as well as a 
vim-specific project called vimprint [hn.my/vimprint]. 
After some deliberation, I decided to write my own 
tool. I don’t do a lot of language processing, so invest-
ing the time to learn a sophisticated parser seemed 
unwarranted. 

I wrote a crude lexer in Haskell to tokenize the key-
strokes I collected into individual vim commands. My 
lexer uses monoids to extract normal mode commands 
from my log for further analysis. Here’s the source code 
for the lexer:

import qualified Data.ByteString.Lazy.Char8 as LC 
import qualified Data.List as DL 
import qualified Data.List.Split as LS 
import Data.Monoid 
import System.IO 
 
main = hSetEncoding stdout utf8 >>  
       LC.getContents >>= mapM_ putStrLn . pro-
cess 
 
process =   affixStrip  
          . startsWith  
          . splitOnMode 
          . modeSub 
          . capStrings  
          . split mark  
          . preprocess 
 
subs = appEndo . mconcat . map (Endo . sub) 
 

Vim Croquet

http://vimgolf.com
http://antlr.org
http://hn.my/parsec
http://hn.my/vimprint


  21

sub (s,r) lst@(x:xs) 
    | s `DL.isPrefixOf` lst = sub' 
    | otherwise = x:sub (s,r) xs 
    where 
     sub' = r ++ sub (s,r) (drop (length s) lst) 
sub (_,_) [] = [] 
 
preprocess =   subs meta  
             . DL.intercalate " " 
             . DL.words 
             . DL.unwords 
             . DL.lines  
             . LC.unpack 
 
splitOnMode = DL.concat $ map (\el -> split mode 
el) 
 
startsWith = filter (\el -> mark `DL.isPrefixOf` 
el && el /= mark) 
 
modeSub = map (subs mtsl) 
 
split s r = filter (/= "") $ s `LS.splitOn` r 
 
affixStrip =    clean  
             . concat  
             . map (\el -> split mark el) 
 
capStrings = map (\el -> mark ++ el ++ mark) 
 
clean = filter (not . DL.isInfixOf "[M") 
 
(mark, mode, n) = ("-(*)-","-(!)-", "") 
meta = [("\"",n),("\\",n), 
        ("\195\130\194\128\195\131\194\189`",n), 
        ("\194\128\195\189`",n), 
        ("\194\128kb\ESC",n),  
        ("\194\128kb",n),("[>0;95;c",n),  
        ("[>0;95;0c",n), 
        ("\ESC",mark),("\ETX",mark),("\r",mark)] 
mtsl = [(":",mode),("A",mode), ("a",mode),  
        ("I",mode), ("i",mode), 
        ("O",mode),("o",mode), 
        ("v", mode),("/",mode),("\ENQ","⌃e"), 
        ("\DLE","⌃p"),("\NAK","⌃u"), 
        ("\EOT","⌃d"),("\ACK","⌃f"), 
        ("\STX","⌃f"),("\EM","⌃y"), 
        ("\SI","⌃o"),("\SYN","⌃v"), 
        ("\DC2","⌃r")]

Here’s a sample of the data in its unprocessed form 
and its structure after lexing:

cut -c 1-42 ~/.vimlog | tee >(cat -v;echo)  
| ./lexer 
`Mihere's some text^Cyyp$bimore ^C0~A.^C:w^M:q 
 
`M 
yyp$b 
0~

My lexer reads from stdin and sends processed 
normal mode commands to stdout. In the above exam-
ple pipe, I use a process substitution to print a repre-
sentation of the unprocessed data on the second line 
and the resulting output of the lexer on subsequent 
lines. Each line in the output of the lexer represents 
a grouping of normal mode commands executed in 
sequence. The lexer correctly determined that I started 
in normal mode by navigating to a specific buffer using 
the `M mark; then typing here's some text in insert 
mode; then copying and pasting the line and moving 
to the start of the last word on the line using yyp$b; 
then entering additional text; and finally navigating to 
the start of the line and capitalizing the first character 
using 0~.

Key Heat Map
After lexing my log data, I forked Patrick Wied’s awe-
some heatmap-keyboard project [hn.my/heatmap] and 
added my own custom layout to read the output of 
my lexer. Patrick’s project does not detect most meta-
characters like escape, control, and command, so it was 
necessary for me to write a data loader in JavaScript 
and make some other modifications so the heatmap 
would accurately depict key usage in vim. I translated 
metacharacters used in vim to unicode representations 
and mapped these onto the keyboard. Here’s what my 
key usage looked like based on ≈500,000 normal mode 
keystrokes processed by my lexer. Increasing wave-
lengths denotes more prevalent key usage:

http://hn.my/heatmap


22  PROGRAMMING

 A prominent feature of the heatmap is the prevalent 
usage of the control key. I use control for numerous 
movement commands in vim. For example, I use ⌃p 
for Control P [hn.my/ctrlp] and I cycle forward and 
backward through open buffers with ⌃j and ⌃k, respec-
tively. Control is an efficient movement on my Kinesis 
Advantage because I remap it to left thumb delete. 

Another pattern in the heatmap that jumped out 
at me was my heavy use of ⌃E and ⌃Y. I routinely use 
these commands to navigate up and down through 
source code, but moving vertically with these com-
mands is inefficient. Each time one of these commands 
is executed, the cursor only moves a few lines at a time. 
A more efficient pattern would be to use larger vertical 
movements with ⌃U and ⌃D. These commands move the 
cursor up or down a half screen at a time, respectively. 

Command Frequency
The heatmap gives a good overview of how I use indi-
vidual keys, but I also wanted to learn more about how 
I used different key sequences. I sorted the lines in the 
output of my lexer by frequency to uncover my most 
used normal commands using a simple one-liner:

$ sort normal_cmds.txt | uniq -c | sort -nr | 
head -10 | \ 
    awk '{print NR,$0}' | column -t 
 
1   2542    j 
2   2188    k 
3   1927    jj 
4   1610    p 
5   1602    ⌃j 
6   1118    Y 
7   987     ⌃e 
8   977     zR 
9   812     P 
10  799     ⌃y

Seeing zR rank as my 8th most used sequence was 
unexpected. After pondering this, I realized a huge 
inefficiency in my text editing. My .vimrc is setup to 
automatically fold text. The problem with this configu-
ration is that I almost immediately unfold all folded 
text, so it makes no sense for my vim configuration 
to use automatically fold text by default. Therefore, I 
removed this setting so that I would no longer need to 
repeatedly use the zR command. 

Command Complexity
Another optimization I wanted to look at was normal 
mode command complexity. I was curious to see if I 
could find any commands that I routinely used which 
also required an excessive number of keystrokes to 
execute. I wanted to find these commands so that I 
could create shortcuts to speed up their execution. I 
used entropy as a proxy to measure command com-
plexity using a short script in Python:

#!/usr/bin/env python 
import sys 
from codecs import getreader, getwriter 
from collections import Counter 
from operator import itemgetter 
from math import log, log1p 
 
sys.stdin = getreader('utf-8')(sys.stdin) 
sys.stdout = getwriter('utf-8')(sys.stdout) 
 
def H(vec, correct=True): 
    """Calculate the Shannon Entropy of a vector 
    """ 
    n = float(len(vec)) 
    c = Counter(vec) 
    h = sum(((-freq / n) * log(freq / n, 2)) for 
freq in c.values()) 
 
    # impose a penality to correct for size 
    if all([correct is True, n > 0]): 
        h = h / log1p(n) 
 
    return h 
 
def main(): 
    k = 1 
    lines = (_.strip() for _ in sys.stdin) 
    hs = ((st, H(list(st))) for st in lines) 
    srt_hs = sorted(hs, key=itemgetter(1), 
reverse=True) 
    for n, i in enumerate(srt_hs[:k], 1): 
        fmt_st = u'{r}\t{s}\t{h:.4f}'.
format(r=n, s=i[0], h=i[1]) 
        print fmt_st 
 
if __name__ == '__main__': 
    main()

http://hn.my/ctrlp


  23

The entropy script reads from stdin and finds the 
normal mode command with the highest entropy. I 
used the output of my lexer as input for my entropy 
calculation:

$ sort normal_cmds.txt | uniq -c | sort -nr | 
sed "s/^[ \t]*//" | \ 
    awk 'BEGIN{OFS="\t";}{if ($1>100) print 
$1,$2}' | \ 
    cut -f2 | ./entropy.py 
 
1 ggvG$"zy 1.2516

In the command above, I first filtered all the normal 
mode commands that I executed more than 100 times. 
Then, among this subset, I found the command with 
the highest entropy. This analysis precipitated the 
command ggvG$"zy, which I executed 246 times in 
45 days. The command takes an unwieldy 11 key-
strokes and yanks the entire current buffer into the 
z register. I typically use this command to move the 
contents of one buffer into another buffer. Since I use 
this sequence so frequently, I added a short cut to my 
.vimrc to reduce the number of keystrokes I need to 
execute:

nnoremap <leader>ya ggvG$"zy

Conclusions
My Vim Croquet match revealed three optimizations 
to decrease the number of keystrokes I use in vim:

■■ Use coarser navigation commands like ^U and ^D 
instead of ^E and ^Y

■■ Prevent buffers from automatically folding text to 
obviate using zR

■■ Create shortcuts for verbose commands that are 
frequently used like ggvG$"zy

These 3 simple changes have saved me thousands of 
superfluous keystrokes each month.

The code snippets above are presented in isolation 
and may be difficult to follow. To help clarify the steps 
in my analysis, here’s my Makefile, which shows how 
the code presented in this post fits together:

SHELL           := /bin/bash 
LOG             := ~/.vimlog 
CMDS            := normal_cmds.txt 
FRQS            := frequencies.txt 
ENTS            := entropy.txt 
LEXER_SRC       := lexer.hs 
LEXER_OBJS      := lexer.{o,hi} 
LEXER_BIN       := lexer 
H               := entropy.py 
UTF             := iconv -f iso-8859-1 -t utf-8 
 
.PRECIOUS: $(LOG) 
.PHONY: all entropy clean distclean 
 
all: $(LEXER_BIN) $(CMDS) $(FRQS) entropy 
 
$(LEXER_BIN): $(LEXER_SRC) 
    ghc --make $^ 
 
$(CMDS): $(LEXER_BIN) 
    cat $(LOG) | $(UTF) | ./$^ > $@ 
 
$(FRQS): $(H) $(LOG) $(CMDS) 
    sort $(CMDS) | uniq -c | sort -nr | sed 
"s/^[ \t]*//" | \ 
      awk 'BEGIN{OFS="\t";}{if ($$1>100) print 
NR,$$1,$$2}' > $@ 
 
entropy: $(H) $(FRQS) 
    cut -f3 $(FRQS) | ./$(H) 
 
clean: 
    @- $(RM) $(LEXER_OBJS) $(LEXER_BIN) $(CMDS) 
$(FRQS) $(ENTS) 
 
distclean: clean

n

Seth Brown is a Data Scientist in the telecommunications industry. 
His research focuses on understanding the topology of the global 
Internet using large-scale computing, statistical modeling, and 
data visualization techniques. Prior to computer networking, he 
was a research scientist in bioinformatics where he studied the 
structure and function of gene regulatory networks. Seth writes 
about topics in data analysis and data visualization on his website, 
drbunsen.org. He can be found on Twitter @drbunsen

Reprinted with permission of the original author. 
First appeared in hn.my/vimcroquet (drbunsen.org)

http://drbunsen.org
http://twitter.com/@drbunsen
http://hn.my/vimcroquet


24  PROGRAMMING

Moving from physical 
servers to the “cloud” 
involves a paradigm 

shift in thinking. Generally in a 
physical environment you care 
about each individual host; they 
each have their own static IP, you 
probably monitor them individu-
ally, and if one goes down you have 
to get it back up ASAP. You might 
think you can just move this infra-
structure to AWS and start getting 
the benefits of the “cloud” straight 
away. Unfortunately, it’s not quite 
that easy (believe me, I tried). You 
need to think differently when it 
comes to AWS, and it’s not always 
obvious what needs to be done.

So, inspired by Sehrope Sarkuni’s 
recent post [hn.my/sarkuni], here’s 
a collection of AWS tips I wish 
someone had told me when I was 
starting out. These are based on 
things I’ve learned deploying vari-
ous applications on AWS both per-
sonally and for my day job. Some 
are just “gotcha”’s to watch out for 

(and that I fell victim to), some are 
things I’ve heard from other people 
that I ended up implementing and 
finding useful, but mostly they’re 
just things I’ve learned the hard 
way.

Application Development
Store no application state on your 
servers.
The reason for this is so that if your 
server gets killed, you won’t lose 
any application state. To that end, 
sessions should be stored in a data-
base, not on the local filesystem. 
Logs should be handled via syslog 
(or similar) and sent to a remote 
store. Uploads should go direct to 
S3 (don’t store on local filesystem 
and have another process move to 
S3 for example). And any post-pro-
cessing or long running tasks should 
be done via an asynchronous queue 
(SQS is great for this).

Store extra information in your 
logs.
Log lines normally have informa-
tion like timestamp, pid, etc. You’ll 
also probably want to add instance-
id, region, availability-zone and 
environment (staging, production, 
etc.), as these will help debugging 
considerably. You can get this infor-
mation from the instance metadata 
service. The method I use is to grab 
this information as part of my boot-
strap scripts, and store it in files on 
the filesystem (/env/az, /env/region, 
etc). This way I’m not constantly 
querying the metadata service for 
the information. You should make 
sure this information gets updated 
properly when your instances 
reboot, as you don’t want to save an 
AMI and have the same data per-
sist, as it will then be incorrect.

If you need to interact with AWS, 
use the SDK for your language.
Don’t try to roll your own; I did 
this at first as I only needed a 
simple upload to S3, but then you 

By Rich Adams

AWS Tips I Wish I’d Known 
Before I Started

A collection of random tips for Amazon Web Services 
(AWS) that I wish I’d been told a few years ago.

http://hn.my/sarkuni


  25

add more services and it’s just an 
all-around bad idea. The AWS 
SDKs are well written, handle 
authentication automatically, 
handle retry logic, and they’re 
maintained and iterated on by 
Amazon. Also, if you use EC2 IAM 
roles (which you absolutely should, 
more on this later) then the SDK 
will automatically grab the correct 
credentials for you.

Have tools to view application logs.
You should have an admin tool, 
syslog viewer, or something that 
allows you to view current real-
time log info without needing to 
SSH into a running instance. If you 
have centralized logging (which you 
really should), then you just want 
to be sure you can read the logs 
there without needing to use SSH. 
Needing to SSH into a running 
application instance to view logs is 
going to become problematic.

Operations
Disable SSH access to all servers.
This sounds crazy, I know, but 
port 22 should be disallowed for 
everyone in your security group. 
If there’s one thing you take away 
from this post, this should be it: If 
you have to SSH into your serv-
ers, then your automation has 
failed. Disabling it at the firewall 
level (rather than on the servers 
themselves) will help the transi-
tion to this frame of thinking, as it 
will highlight any areas you need 
to automate, while still letting you 
easily re-instate access to solve 
immediate issues. It’s incredibly 
freeing to know that you never 
need to SSH into an instance. This 
is both the most frightening and yet 
most useful thing I’ve learned.

Servers are ephemeral; you don’t 
care about them. You only care 
about the service as a whole.
If a single server dies, it should be of 
no big concern to you. This is where 
the real benefit of AWS comes in 
compared to using physical serv-
ers yourself. Normally if a physical 
server dies, there’s panic. With AWS, 
you don’t care, because auto-scaling 
will give you a fresh new instance 
soon anyway. Netflix has taken 
this several steps further with their 
simian army, where they have things 
like Chaos Monkey, which will kill 
random instances in production 
(they also have Chaos Gorilla to 
kill AZs and I’ve heard rumor of a 
Chaos Kong to kill regions...). The 
point is that servers will fail, but this 
shouldn’t matter in your application.

Don’t give servers static/elastic IPs.
For a typical web application, you 
should put things behind a load bal-
ancer, and balance them between 
AZs. There are a few cases where 
Elastic IPs will probably need to be 
used, but in order to make best use 
of auto-scaling you’ll want to use 
a load balancer instead of giving 
every instance their own unique IP.

Automate everything.
This is more of general operations 
advice than AWS specific, but 
everything needs to be automated. 
Recovery, deployment, failover, etc. 
Package and OS updates should be 
managed by something, whether it’s 
just a bash script, or Chef/Puppet, 
etc. You shouldn’t have to care about 
this stuff. As mentioned earlier, you 
should also make sure to disable SSH 
access, as this will pretty quickly 
highlight any part of your process 
that isn’t automated. Remember the 
key phrase from earlier, if you have 
to SSH into your servers, then your 
automation has failed.

Everyone gets an IAM account. 
Never login to the master.
Usually you’ll have an “opera-
tions account” for a service, and 
your entire ops team will have the 
password. With AWS, you definitely 
don’t want to do that. Every-
one gets an IAM user with just 
the permissions they need (least 
privilege). An IAM user can control 
everything in the infrastructure. At 
the time of writing, the only thing 
an IAM user can’t access are some 
parts of the billing pages.

If you want to protect your 
account even more, make sure to 
enable multi-factor authentication 
for everyone (you can use Google 
Authenticator). I’ve heard of some 
users who give the MFA token 
to two people, and the password 
to two others, so to perform any 
action on the master account, two 
of the users need to agree. This 
is overkill for my case, but worth 
mentioning in case someone else 
wants to do it.

Get your alerts to become 
notifications.
If you’ve set everything up cor-
rectly, your health checks should 
automatically destroy bad instances 
and spawn new ones. There’s usu-
ally no action to take when getting 
a CloudWatch alert, as everything 
should be automated. If you’re get-
ting alerts where manual interven-
tion is required, do a post-mortem 
and figure out if there’s a way you 
can automate the action in the 
future. The last time I had an action-
able alert from CloudWatch was 
about a year ago, and it’s extremely 
awesome not to be woken up at 
4am for ops alerts any more.



26  PROGRAMMING

Billing
Set up granular billing alerts.
You should always have at least one 
billing alert set up, but that will 
only tell you on a monthly basis 
once you’ve exceeded your allow-
ance. If you want to catch runaway 
billing early, you need a more fine 
grained approach. The way I do it is 
to set up an alert for my expected 
usage each week. So the first week’s 
alert for say $1,000, the second 
for $2,000, third for $3,000, etc. If 
the week-2 alarm goes off before 
the 14th/15th of the month, then I 
know something is probably going 
wrong. For even more fine-grained 
control, you can set this up for 
each individual service, that way 
you instantly know which service is 
causing the problem. This could be 
useful if your usage on one service 
is quite steady month-to-month, 
but another is more erratic. Have 
the individual weekly alerts for the 
steady one, but just an overall one 
for the more erratic one. If every-
thing is steady, then this is probably 
overkill, as looking at CloudWatch 
will quickly tell you which service 
is the one causing the problem.

Security
Use EC2 roles, do not give applica-
tions an IAM account.
If your application has AWS cre-
dentials baked into it, you’re “doing 
it wrong.” One of the reasons it’s 
important to use the AWS SDK for 
your language is that you can really 
easily use EC2 IAM roles. The idea 
of a role is that you specify the 
permissions a certain role should 
get, then assign that role to an 
EC2 instance. Whenever you use 
the AWS SDK on that instance, 
you don’t specify any credentials. 
Instead, the SDK will retrieve tem-
porary credentials which have the 

permissions of the role you set up. 
This is all handled transparently as 
far as you’re concerned. It’s secure, 
and extremely useful.

Assign permissions to groups, not 
users.
Managing users can be a pain, if 
you’re using Active Directory, or 
some other external authentication 
mechanism which you’ve integrated 
with IAM, then this probably 
won’t matter as much (or maybe 
it matters more). But I’ve found it 
much easier to manage permissions 
by assigning them only to groups, 
rather than to individual users. 
It’s much easier to rein in permis-
sions and get an overall view of the 
system than going through each 
individual user to see what permis-
sions have been assigned.

Set up automated security auditing.
It’s important to keep track of 
changes in your infrastructure’s 
security settings. One way to do this 
is to first set up a security auditor 
role [hn.my/secaudit], which will 
give anyone assigned that role read-
only access to any security-related 
settings on your account. You can 
then use this rather fantastic Python 
script [hn.my/secconfig], which 
will go over all the items in your 
account and produce a canonical 
output showing your configuration. 
You set up a cronjob somewhere 
to run this script, and compare 
its output to the output from the 
previous run. Any differences will 
show you exactly what has been 
changed in your security configura-
tion. It’s useful to set this up and 
just have it email you the diff of 
any changes. 

Use CloudTrail to keep an audit 
log.
CloudTrail will log any action 
performed via the APIs or web 
console into an S3 bucket. Set up 
the bucket with versioning to be 
sure no one can modify your logs, 
and you then have a complete audit 
trail of all changes in your account. 
You hope that you will never need 
to use this, but it’s well worth 
having for when you do.

S3
Use “-” instead of “.” in bucket 
names for SSL.
If you ever want to use your bucket 
over SSL, using a “.” will cause you 
to get certificate mismatch errors. 
You can’t change bucket names 
once you’ve created them, so you’d 
have to copy everything to a new 
bucket.

Avoid filesystem mounts (FUSE, 
etc.).
I’ve found them to be about as reli-
able as a large government depart-
ment when used in critical applica-
tions. Use the SDK instead.

You don’t have to use CloudFront 
in front of S3 (but it can help).
If all you care about is scalability, 
you can link people directly to the 
S3 URL instead of using Cloud-
Front. S3 can scale to any capacity 
(although some users have reported 
that it doesn’t scale instantly), so it 
is great if that’s all your care about. 
Additionally, updates are available 
quickly in S3, yet you have to wait 
for the TTL when using a CDN to 
see the change (although I believe 
you can set a 0s TTL in Cloud-
Front now, so this point is probably 
moot).

http://hn.my/secaudit
http://hn.my/secconfig


  27

If you need speed, or are 
handling very high bandwidth 
(10TB+), then you might want to 
use a CDN like CloudFront in front 
of S3. CloudFront can dramatically 
speed up access for users around 
the globe, as it copies your content 
to edge locations. Depending on 
your use case, this can also work 
out slightly cheaper if you deal with 
very high bandwidth (10TB+) with 
lower request numbers, as it’s about 
$0.010/GB cheaper for CloudFront 
bandwidth than S3 bandwidth 
once you get above 10TB, but the 
cost per request is slightly higher 
than if you were to access the files 
from S3 directly. Depending on 
your usage pattern, the savings 
from bandwidth could outweigh 
the extra cost per request. Since 
content is only fetched from S3 
infrequently (and at a much lower 
rate than normal), your S3 cost 
would be much smaller than if you 
were serving content directly from 
S3. The AWS documentation on 
CloudFront explains how you can 
use it with S3.

Use random strings at the start of 
your keys.
This seems like a strange idea, but 
one of the implementation details 
of S3 is that Amazon uses the 
object key to determine where a file 
is physically placed in S3. So files 
with the same prefix might end up 
on the same hard disk for example. 
By randomizing your key prefixes, 
you end up with a better distribu-
tion of your object files. 

EC2/VPC
Use tags!
Pretty much everything can be 
given tags, use them! They’re great 
for organizing things, make it easier 
to search and group things up. You 
can also use them to trigger certain 
behaviors on your instances, for 
example a tag of env=debug could 
put your application into debug 
mode when it deploys, etc.

Use termination protection for 
non-auto-scaling instances. Thank 
me later.
If you have any instances which 
are one-off things that aren’t under 
auto-scaling, then you should prob-
ably enable termination protection, 
to stop anyone from accidentally 
deleting the instance. I’ve had it 
happen, it sucks, learn from my 
mistake!

Use a VPC.
VPC either wasn’t around, or I 
didn’t notice it when I got started 
with AWS. It seems like a pain at 
first, but once you get stuck in and 
play with it, it’s surprising easy to 
set up and get going. It provides 
all sorts of extra features over EC2 
that are well worth the extra time 
it takes to set up a VPC. First, you 
can control traffic at the network 
level using ACLs, you can modify 
instance size, security groups, etc. 
without needing to terminate an 
instance. You can specify egress 
firewall rules (you cannot control 
outbound traffic from normal 
EC2). But the biggest thing is that 
you have your own private subnet 
where your instances are com-
pletely cut off from everyone else, 
so it adds an extra layer of protec-
tion. Don’t wait like I did, use VPC 
straight away to make things easy 
on yourself.

Use reserved instances to save big 
$$$.
Reserving an instance is just put-
ting some money upfront in order 
to get a lower hourly rate. It ends 
up being a lot cheaper than an 
on-demand instance would cost. 
So if you know you’re going to be 
keeping an instance around for 1 
or 3 years, it’s well worth reserv-
ing them. Reserved instances are a 
purely logical concept in AWS, you 
don’t assign a specific instance to 
be reserved, but rather just specify 
the type and size, and any instances 
that match the criteria will get the 
lower price.

Lock down your security groups.
Don’t use 0.0.0.0/0 if you can help 
it; make sure to use specific rules 
to restrict access to your instances. 
For example, if your instances are 
behind an ELB, you should set your 
security groups to only allow traffic 
from the ELBs, rather than from 
0.0.0.0/0. You can do that by enter-
ing “amazon-elb/amazon-elb-sg” as 
the CIDR (it should auto-complete 
for you). If you need to allow some 
of your other instances access to 
certain ports, don’t use their IP, but 
specify their security group identi-
fier instead (just start typing “sg-” 
and it should auto-complete for 
you).

Don’t keep unassociated Elastic 
IPs.
You get charged for any Elastic IPs 
you have created but not associ-
ated with an instance, so make sure 
you don’t keep them around once 
you’re done with them.



28  PROGRAMMING

ELB
Terminate SSL on the load 
balancer.
You’ll need to add your SSL cer-
tificate information to the ELB, but 
this will take the overhead of SSL 
termination away from your servers 
which can speed things up. Addi-
tionally, if you upload your SSL 
certificate, you can pass through the 
HTTPS traffic and the load bal-
ancer will add some extra headers 
to your request (x-forwarded-for, 
etc.), which are useful if you want 
to know who the end user is. If you 
just forward TCP, then those head-
ers aren’t added and you lose the 
information.

Pre-warm your ELBs if you’re 
expecting heavy traffic.
It takes time for your ELB to scale 
up capacity. If you know you’re 
going to have a large traffic spike 
(selling tickets, big event, etc.), you 
need to “warm up” your ELB in 
advance. You can inject a load of 
traffic, and it will cause ELB to scale 
up and not choke when you actu-
ally get the traffic; however, AWS 
suggests you contact them instead 
to pre-warm your load balancer. 
Alternatively you can install your 
own load balancer software on an 
EC2 instance and use that instead 
(HAProxy, etc).

ElastiCache
Use the configuration endpoints, 
instead of individual node 
endpoints.
Normally you would have to make 
your application aware of every 
Memcached node available. If you 
want to dynamically scale up your 
capacity, then this becomes an issue 
as you will need to have some way 
to make your application aware of 
the changes. An easier way is to use 

the configuration endpoint, which 
means using an AWS version of a 
Memcached library that abstracts 
away the auto-discovery of new 
nodes. The AWS guide to cache 
node auto-discovery has more 
information.

RDS
Set up event subscriptions for 
failover.
If you’re using a Multi-AZ setup, 
this is one of those things you 
might not think about which ends 
up being incredibly useful when 
you do need it.

CloudWatch
Use the CLI tools.
It can become extremely tedious to 
create alarms using the web con-
sole, especially if you’re setting up 
a lot of similar alarms, as there’s no 
ability to “clone” an existing alarm 
while making a minor change else-
where. Scripting this using the CLI 
tools can save you lots of time.

Use the free metrics.
CloudWatch monitors all sorts of 
things for free (bandwidth, CPU 
usage, etc.), and you get up to 2 
weeks of historical data. This saves 
you having to use your own tools 
to monitor you systems. If you need 
longer than 2 weeks, unfortunately 
you’ll need to use a third-party or 
custom built monitoring solution.

Use custom metrics.
If you want to monitor things not 
covered by the free metrics, you can 
send your own metric information 
to CloudWatch and make use of the 
alarms and graphing features. This 
can not only be used for things like 
tracking disk space usage, but also for 
custom application metrics too. The 
AWS page on publishing custom 
metrics has more information.

Use detailed monitoring.
It’s ~$3.50 per instance/month, and 
well worth the extra cost for the 
extra detail. 1 minute granularity 
is much better than 5 minutes. You 
can have cases where a problem is 
hidden in the 5 minute breakdown 
but shows itself quite clearly in the 
1 minute graphs. This may not be 
useful for everyone, but it’s made 
investigating some issues much 
easier for me.

Auto-Scaling
Scale down on INSUFFICIENT_
DATA as well as ALARM.
For your scale-down action, make 
sure to trigger a scale-down event 
when there’s no metric data, as 
well as when your trigger goes off. 
For example, if you have an app 
which usually has very low traffic, 
but experiences occasional spikes, 
you want to be sure that it scales 
down once the spike is over and 
the traffic stops. If there’s no traffic, 
you’ll get INSUFFIFIENT_DATA 
instead of ALARM for your low 
traffic threshold and it won’t trigger 
a scale-down action.

Use ELB health check instead of 
EC2 health checks.
This is a configuration option when 
creating your scaling group, you can 
specify whether to use the standard 
EC2 checks (is the instance con-
nected to the network), or to use 
your ELB health check. The ELB 
health check offers way more flex-
ibility. If your health check fails and 
the instance gets taken out of the 
load balancing pool, you’re pretty 
much always going to want to have 
that instance killed by auto-scaling 
and a fresh one take its place. If 
you don’t set up your scaling group 
to use the ELB checks, then that 
won’t necessarily happen. The 



  29

AWS documentation on adding the 
health check has all the information 
you need to set this up.

Only use the availability zones 
(AZs) your ELB is configured for.
If you add your scaling group to 
multiple AZs, make sure your ELB 
is configured to use all of those AZs, 
otherwise your capacity will scale 
up, and the load balancer won’t be 
able to see them.

Don’t use multiple scaling triggers 
on the same group.
If you have multiple CloudWatch 
alarms which trigger scaling actions 
for the same auto-scaling group, 
it might not work as you initially 
expect it to. For example, let’s say 
you add a trigger to scale up when 
CPU usage gets too high, or when 
the inbound network traffic gets 
high, and your scale down actions 
are the opposite. You might get an 
increase in CPU usage, but your 
inbound network is fine. So the 
high CPU trigger causes a scale-up 
action, but the low inbound traffic 
alarm immediately triggers a scale-
down action. Depending on how 
you’ve set your cool down period, 
this can cause quite a problem 
as they’ll just fight against each 
other. If you want multiple triggers, 
you can use multiple auto-scaling 
groups.

IAM
Use IAM roles.
Don’t create users for applica-
tion, always use IAM roles if you 
can. They simplify everything, and 
keeps things secure. Having appli-
cation users just creates a point of 
failure (what if someone acciden-
tally deletes the API key?) and it 
becomes a pain to manage.

Users can have multiple API keys.
This can be useful if someone is 
working on multiple projects, or if 
you want a one-time key just to test 
something out, without wanting to 
worry about accidentally revealing 
your normal key.

IAM users can have multi-factor 
authentication, use it!
Enable MFA for your IAM users 
to add an extra layer of security. 
Your master account should most 
definitely have this, but it’s also 
worth enabling it for normal IAM 
users too.

Route53
Use ALIAS records.
An ALIAS record will link your 
record set to a particular AWS 
resource directly (i.e., you can map 
a domain to an S3 bucket), but the 
key is that you don’t get charged 
for any ALIAS lookups. So whereas 
a CNAME entry would cost you 
money, an ALIAS record won’t. 
Also, unlike a CNAME, you can 
use an ALIAS on your zone apex. 
You can read more about this on 
the AWS page for creating alias 
resource record sets.

Elastic MapReduce
Specify a directory on S3 for Hive 
results.
If you use Hive to output results 
to S3, you must specify a direc-
tory in the bucket, not the root of 
the bucket, otherwise you’ll get a 
rather unhelpful NullPointerEx-
ception with no real explanation as 
to why. 

Miscellaneous Tips
Scale horizontally.
I’ve found that using lots of smaller 
machines is generally more reli-
able than using a smaller number 
of larger machines. You need to 
balance this though, as trying to 
run your application from 100 
t1.micro instances probably isn’t 
going to work very well. Break-
ing your application into lots of 
smaller instances means you’ll be 
more resilient to failure in one of 
the machines. If you’re just running 
from two massive compute clus-
ter machines, and one goes down, 
things are going to get bad.

Your application may require 
changes to work on AWS.
While a lot of applications can 
probably just be deployed to an 
EC2 instance and work well, if 
you’re coming from a physical 
environment, you may need to re-
architect your application in order 
to accommodate changes. Don’t 
just think you can copy the files 
over and be done with it.

Decide on a naming convention 
early, and stick to it.
There’s a lot of resources on AWS 
where you can change the name 
later, but there’s equally a lot where 
you cannot (security group names, 
etc.). Having a consistent naming 
convention will help to self-doc-
ument your infrastructure. Don’t 
forget to make use of tags too. n

Rich Adams is a systems engineer at Gra-
cenote who used to work on departure 
control systems for the airline industry. 
He now splits his time between playing 
with Amazon Web Services and making 
sure there’s enough Mountain Dew flow-
ing through him. Say hi to him on Twitter 
at @r_adams

Reprinted with permission of the original author. 
First appeared in hn.my/awstips (wblinks.com)

http://twitter.com/@r_adams
http://hn.my/awstips


30  PROGRAMMING

The problem with most programming lan-
guages is they’re designed by language geeks, 
who tend to worry about things that I don’t 

much care for. Safety, type systems, homoiconicity, 
and so forth. I’m sure these things are great, but when 
I’m messing around with a new project for fun, my 
two concerns are 1) making it work and 2) making it 
fast. For me, code is like a car. It’s a means to an end. 
The “expressiveness” of a piece of code is about as 
important to me as the “expressiveness” of a catalytic 
converter.

This approach to programming is often (derisively) 
called cowboy coding. I don’t think a cowboy is quite 
the right image, because a cowboy must take frequent 
breaks due to the physical limitations of his horse. A 
better aspirational image is an obsessed scientist who 
spends weeks in the laboratory and emerges, bleary-
eyed, exhausted, and wan, with an ingenious new 
contraption that possibly causes a fire on first use.

Enough about me. Normally I use one language to 
make something work, and a second language to make 
it fast, and a third language to make it scream. This 
pattern is fairly common. For many programmers, the 
prototyping language is often Python, Ruby, or R. Once 
the code works, you rewrite the slow parts in C or 
C++. If you are truly insane, you then rewrite the inner 
C loops using assembler, CUDA, or OpenCL.

Unfortunately, there’s a big wall between the proto-
typing language and C, and another big wall between 
C and assembler. Besides having to learn three different 
languages to get the job done, you have to mentally 
switch between the layers of abstraction. At a more 
quotidian level, you have to write a significant amount 

of glue code, and often find yourself switching between 
different source files, different code editors, and dispa-
rate debuggers.

I read about Julia [julialang.org] a while back, and 
thought it sounded cool, but not like something I 
urgently needed. Julia is a dynamic language with great 
performance. That’s nice, I thought, but I’ve already 
invested a lot of time putting a Ferrari engine into my 
VW Beetle — why would I buy a new car? Besides, 
nowadays a number of platforms — Java HotSpot, 
PyPy, and asm.js, to name a few — claim to offer “C 
performance” from a language other than C.

Only later did I realize what makes Julia differ-
ent from all the others. Julia breaks down the second 
wall — the wall between your high-level code and 
native assembly. Not only can you write code with the 
performance of C in Julia, you can take a peek behind 
the curtain of any function into its LLVM Intermediate 
Representation as well as its generated assembly code 
— all within the REPL. Check it out.

emiller ~/Code/julia (master) ./julia 
 
|  A fresh approach to technical computing 
|  Documentation: http://docs.julialang.org 
|  Type "help()" to list help topics 
| 
|  Version 0.3.0-prerelease+261 (2013-11-30) 
|  Commit 97b5983 (0 days old master) 
|  x86_64-apple-darwin12.5.0 
 
julia> f(x) = x * x 

Why I’m Betting on Julia
By Evan Miller

http://julialang.org


  31

f (generic function with 1 method) 
 
julia> f(2.0) 
4.0 
 
julia> code_llvm(f, (Float64,)) 
 
define double @julia_f662(double) { 
top: 
  %1 = fmul double %0, %0, !dbg !3553 
  ret double %1, !dbg !3553 
}

julia> code_native(f, (Float64,)) 
     .section        __TEXT,__text,regular,pure_
instructions 
Filename: none 
Source line: 1 
        push    RBP 
        mov     RBP, RSP 
Source line: 1 
        vmulsd  XMM0, XMM0, XMM0 
        pop     RBP 
        ret

Bam — you can go from writing a one-line function 
to inspecting its LLVM-optimized X86 assembler code 
in about 20 seconds.

So forget the stuff you may have read about Julia’s 
type system, multiple dispatch and homoiconi-what-
ever. That stuff is cool (I guess), but if you’re like me, 
the real benefit is being able to go from the first proto-
type all the way to balls-to-the-wall multi-core SIMD 
performance optimizations without ever leaving the 
Julia environment.

That, in a nutshell, is why I’m betting on Julia. I 
hesitate to make the comparison, but it’s poised to do 
for technical computing what Node.js is doing for web 
development — getting disparate groups of programmers 
to code in the same language. With Node.js, it was the 
front-end designers and the back-end developers. With 
Julia, it’s the domain experts and the speed freaks. That 
is a major accomplishment.

Julia’s only drawback at this point is the relative 
dearth of libraries — but the language makes it unusu-
ally easy to interface with existing C libraries. Unlike 
with native interfaces in other languages, you can call C 
code without writing a single line of C, and so I antici-
pate that Julia’s libraries will catch up quickly. From 

personal experience, I was able to access 5K lines of C 
code using about 150 lines of Julia — and no extra glue 
code in C.

If you work in a technical group that’s in charge of 
a dizzying mix of Python, C, C++, Fortran, and R code 
— or if you’re just a performance-obsessed gun-slinging 
cowboy shoot-from-the-hip Lone Ranger like me — I 
encourage you to download Julia and take it for a spin. 
If you’re hesitant to complicate your professional life 
with Yet Another Programming Language, think of 
Julia as a tool that will eventually help you reduce the 
number of languages that your project depends on.

I almost neglected to mention: Julia is actually quite 
a nice language, even ignoring its excellent performance 
characteristics. I’m no language aesthete, but learning 
it entailed remarkably few head-scratching moments. 
At present Julia is in my top 3 favorite programming 
languages.

Finally, you’ll find an active and supportive Julia 
community. My favorite part about the community is 
that it is full of math-and-science types who tend to be 
very smart and very friendly. That’s because Julia was 
not designed by language geeks — it came from math, 
science, and engineering MIT students who wanted a 
fast, practical language to replace C and Fortran. So it’s 
not designed to be beautiful (though it is); it’s designed 
to give you answers quickly. That, for me, is what com-
puting is all about. n

Evan Miller is the creator of Wizard [wizardmac.com], a next-
generation statistics package for Mac.

Reprinted with permission of the original author. 
First appeared in hn.my/julia (evanmiller.org)

http://wizardmac.com


32  SPECIAL

SPECIAL

Loneliness was a problem 
I experienced most poi-
gnantly in college. In the 

three years I spent at Carnegie 
Mellon, the crippling effects of 
loneliness slowly pecked away at 
my enthusiasm for learning and 
for life, until I was drowning in an 
endless depressive haze that never 
completely cleared until I left 
Pittsburgh.

It wasn’t for lack of trying either. 
At the warm behest of the orienta-
tion counselors, I joined just the 
right number of clubs, participated 
in most of the dorm activities, and 
tried to expand my social portfolio 
as much as possible.

None of it worked.
To the extent that I sought out 

CAPS (our student psych and 
counseling service) for help, the 
platitudes they offered as advice 
(“Just put yourself out there!”) only 
served to confirm my suspicion 
that loneliness isn’t a very visible 

problem. (After all, the cure for 
loneliness isn’t exactly something 
that could be prescribed. “Have 
you considered transferring?” they 
finally suggested, after exhausting 
their list of thought-terminating 
clichés. I graduated early instead.)

As prolonged loneliness took its 
toll, I became very unhappy — to 
put it lightly — and even in retro-
spect I have difficulty pinpointing a 
specific cause. It wasn’t that I didn’t 
know anyone or failed to make any 
friends, and it wasn’t that I was 
alone more than I liked.

Sure, I could point my finger at 
the abysmally fickle weather pat-
terns of Pittsburgh, or the pseudo-
suburban bubble that envelops the 
campus. There might even be a 
correlation between my academic 
dissonance with computer sci-
ence and my feelings of loneliness. 
I might also just be an extremely 
unlikable person.

For whatever the reason (or a 
confluence thereof) the reality 
remained that I struggled with 
loneliness throughout my time in 
college.

 **************

By Jonathan E. Chen

Forever Alone
Why Loneliness Matters In The Social Age

I got up and went over and looked out the window. I felt so lonesome, all of 
a sudden. I almost wished I was dead. Boy, did I feel rotten. I felt so damn 
lonesome. I just didn’t want to hang around anymore. It made me too sad 
and lonesome.                                    — J.D. Salinger in Catcher in the Rye

Photo credit: flickr.com/photos/vinothchandar/6646251667



  33

I recall a conversation with my 
friend Dev one particular evening 

on the patio of our dormitory. It 
was the beginning of my junior 
and last year at CMU, and I had 
just finished throwing an ice cream 
party for the residents I oversaw as 
an RA.

“Glad to be back?” he asked as 
he plopped down on a lawn chair 
beside me.

“No, not really.”
The sun was setting, and any 

good feelings about the upcoming 
semester with it. We made small 
talk about the school in general, 
as he had recently transferred, but 
eventually Dev asked me if I was 
happy there.

“No, not really.”
“Why do you think you’re so 

miserable here?”
“I don’t know. A lot of things, 

I guess. But mostly because I feel 
lonely. Like I don’t belong, like 
I can’t relate to or connect with 
anyone on an emotional level. I 
haven’t made any quality relation-
ships here that I would look back 
on with any fond memories. Fuck… 
I don’t know what to do.”

College, at least for me, was a 
harrowing exercise in how help-
lessly debilitating, hopelessly 
soul-crushing, and at times life-
threatening loneliness could be. It’s 
a problem nobody talks about, and 
it’s been a subject of much personal 
relevance and interest.

Loneliness as a Health Problem
A recent article published on Slate 
outlines the hidden dangers of 
social isolation. Chronic loneliness, 
as Jessica Olien discovered, poses 
serious health risks that not only 
impact mental health but physi-
ological well-being as well.

The lack of quality social rela-
tionships in a person’s life has been 
linked to an increased mortality 
risk comparable to smoking and 
alcohol consumption and exceeds 
the influence of other risk factors 
like physical inactivity and obesity. 
It’s hard to brush off loneliness as a 
character flaw or an ephemeral feel-
ing when you realize it kills more 
people than obesity.

Research also shows that loneli-
ness diminishes sleep quality and 
impairs physiological function, in 
some cases reducing immune func-
tion and boosting inflammation, 
which increases risk for diabetes 
and heart disease.

Why hasn’t loneliness gotten 
much attention as a medical prob-
lem? Olien shares the following 
observation:

As a culture we obsess over strate-
gies to prevent obesity. We pro-
vide resources to help people quit 
smoking. But I have never had a 
doctor ask me how much meaning-
ful social interaction I am getting. 
Even if a doctor did ask, it is not 
as though there is a prescription for 
meaningful social interaction.

As a society we look down upon 
those who admit to being lonely, 
we cast and ostracize them with 
labels like “loners” insofar as they 
prefer to hide behind shame and 
doubt rather than speak up. This 
dynamic only makes it harder to 
devise solutions to what is clearly a 
larger societal issue, and it certainly 

brings to question the effects of cul-
ture on our perception of loneliness 
as a problem.

Loneliness as a Culture Problem
Stephen Fry, in a blog post titled 
Only the Lonely which explains his 
suicide attempt last year, describes 
in detail his struggle with depres-
sion. His account offers a rare and 
candid glimpse into the reality 
of loneliness with which those 
afflicted often hide from the public:

“Lonely? I get invitation cards 
through the post almost every day. 
I shall be in the Royal Box at 
Wimbledon and I have serious and 
generous offers from friends asking 
me to join them in the South of 
France, Italy, Sicily, South Africa, 
British Columbia and America this 
summer. I have two months to start 
a book before I go off to Broadway 
for a run of Twelfth Night there.

“I can read back that last sentence 
and see that, bipolar or not, if I’m 
under treatment and not actually 
depressed, what the fuck right do 
I have to be lonely, unhappy or 
forlorn? I don’t have the right. But 
there again I don’t have the right 
not to have those feelings. Feelings 
are not something to which one 
does or does not have rights.

“In the end loneliness is the most 
terrible and contradictory of my 
problems.”

In the United States, approxi-
mately 60 million people, or 20% 
of the population, feel lonely. 
According to the General Social 
Survey, between 1985 and 2004, 
the number of people with whom 
the average American discusses 
important matters decreased from 
three to two, and the number with 

Photo credit: flickr.com/photos/vinothchandar/6646251667



34  SPECIAL

no one to discuss important matters 
with tripled.

Modernization has been cited as 
a reason for the intensification of 
loneliness in every society around 
the world, attributed to greater 
migration, smaller household 
sizes, and a larger degree of media 
consumption.

In Japan, loneliness is an even 
more pervasive, layered problem 
mired in cultural parochialisms. 
Gideon Lewis-Kraus pens a beauti-
ful narrative on Harper’s in which 
he describes his foray into the 
world of Japanese co-sleeping cafés:

“Why do you think he came here, 
to the sleeping café?”

“He wanted five-second hug maybe 
because he had no one to hug. 
Japan is haji culture. Shame. Is 
shame culture. Or maybe also is 
shyness. I don’t know why. Tokyo 
people...very alone. And he does not 
have...” She thought for a second, 
shrugged, reached for her phone. 
“Please hold moment.”

She held it close to her face, 
multitouched the screen not with 
thumb and forefinger but with tiny 
forefinger and middle finger. I could 
hear another customer whisper-
ing in Japanese in the silk-walled 
cubicle at our feet. His co-sleeper 
laughed loudly, then laughed softly. 
Yukiko tapped a button and shone 
the phone at my face. The screen 
said COURAGE.

It took an enormous effort for me 
to come to terms with my losing 
battle with loneliness and the ensu-
ing depression at CMU, and an even 
greater leap of faith to reach out 
for help. (That it was to no avail is 
another story altogether.) But what 
is even more disconcerting to me 

is that the general stigma against 
loneliness and mental health issues, 
hinging on an unhealthy stress 
culture, makes it hard for afflicted 
students to seek assistance at all.

As Olien puts it, “In a society that 
judges you based on how expansive 
your social networks appear, loneli-
ness is difficult to fess up to. It feels 
shameful.”

To truly combat loneliness from 
a cultural angle, we need to start 
by examining our own fears about 
being alone and to recognize that 
as humans, loneliness is often 
symptomatic of our unfulfilled 
social needs. Most importantly, we 
need to accept that it’s okay to feel 
lonely. Fry, signing off on his heart-
felt post, offers this insight:

“Loneliness is not much written 
about (my spell-check wanted me 
to say that loveliness is not much 
written about — how wrong that 
is) but humankind is a social spe-
cies and maybe it’s something we 
should think about more than we 
do.”

Loneliness as a Technology 
Problem
Technology, and by extension media 
consumption in the Internet age, 
adds the most perplexing (and per-
haps the most interesting) dimen-
sion to the loneliness problem. As it 
turns out, technology isn’t necessar-
ily helping us feel more connected; 
in some cases, it makes loneliness 
worse.

The amount of time you spend 
on Facebook, as a recent study 
found, is inversely related to how 
happy you feel throughout the day.

Take a moment to watch this 
video: http://vimeo.com/70534716

It’s a powerful, sobering reminder 
that our growing dependence on 
technology to communicate has 
serious social repercussions, to 
which Cohen presents his central 
thesis:

We are lonely, but we’re afraid of 
intimacy, while the social networks 
offer us three gratifying fantasies: 
1) That we can put our attention 
wherever we want it to be. 2) That 
we will always be heard. 3) That 
we will never have to be alone.

And that third idea, that we will 
never have to be alone, is central to 
changing our psyches. It’s shaping a 
new way of being. The best way to 
describe it is:

I share, therefore I am.

Public discourse on the cultural 
ramifications of technology is 
certainly not a recent development, 
and the general sentiment that our 
perverse obsession with sharing will 
be humanity’s downfall continues 
to echo in various forms around 
the web: articles proclaiming that 
Instagram is ruining people’s lives, 
the existence of a section on Reddit 
called cringepics where people 
congregate to ridicule things others 
post on the Internet, the increasing 
number of self-proclaimed “social 
media gurus” on Twitter, to name a 
few.

The signs seem to suggest we 
have reached a tipping point for 
“social” media that’s not very social 
on a personal level, but whether it 
means a catastrophic implosion or 
a gradual return to more authentic 
forms of interpersonal communica-
tions remains to be seen.

http://vimeo.com/70534716


  35

While technology has been a 
source of social isolation for many, 
it has the capacity to alleviate 
loneliness as well. A study funded 
by the online dating site eHar-
mony shows that couples who met 
online are less likely to divorce and 
achieve more marital satisfaction 
than those who met in real life.

The same model could poten-
tially be applied to friendships, and 
it’s frustrating to see that there 
aren’t more startups leveraging this 
opportunity when the problem is so 
immediate and in need of solutions. 
It’s a matter of exposure and educa-
tion on the truths of loneliness, and 
unfortunately we’re just not there 
yet.

************** 

The perils of loneliness 
shouldn’t be overlooked in 

an increasingly hyper-connected 
world that often tells another story 
through rose-tinted lenses. Rather, 
the gravity of loneliness should 
be addressed and brought to light 
as a multifaceted problem, one 
often muted and stigmatized in 
our society. I learned firsthand how 
painfully real of a problem loneli-
ness could be, and more should be 
done to spread its awareness and to 
help those affected.

“What do you think I should do?” 
I looked at Dev as the last traces of 
sunlight teetered over the top of 
Morewood Gardens. It was a rhe-
torical question — things weren’t 
about to get better.

“Find better people,” he replied.
I offered him a weak smile in 

return, but little did I know then 
how prescient those words were.

In the year that followed, I 
started a fraternity with some of the 
best kids I’d come to know (Dev 
included), graduated college and 
moved to San Francisco, made some 
of the best friends I’ve ever had, 
and never looked back, if only to 
remember, and remember well, that 
it’s never easy being lonely. n

Jonathan E. Chen (@wikichen) is a designer 
based in California. He received his B.S. in 
computer science from Carnegie Mellon 
University. In the past he’s worked as a 
front-end developer and interaction 
designer at various startups. He is cur-
rently taking some time off to explore his 
interests in food and photography and is 
looking for new opportunities.

Reprinted with permission of the original author. 
First appeared in hn.my/foreveralone (wikichen.is)

http://twitter.com/@wikichen
http://hn.my/foreveralone


36  SPECIAL

In the software industry, 
especially the startup world, 
Crunch Mode is a ubiquitous, 

unhealthy anti-pattern. Crunch 
Mode refers to periods of overtime 
work brought on by the need to 
meet a project deadline. Develop-
ers stereotypically glorify the ability 
and propensity to stay up all night 
grinding through a difficult prob-
lem. It’s part of our folklore. It’s 
part of how we’re measured. It’s 
something companies and lead-
ers take advantage of in order to 
accomplish more with less.

And it’s stupid.
If you want a “knowledge worker” 

to be as ineffective and produce 
the lowest level of quality pos-
sible, deprive them of their sleep 
and hold them to an unrealistic 
deadline. In other words, activate 
Crunch Mode.

Why Not Crunch?
■■ It makes us stupid. The more I 
work, the less relevant my years 
of experience become. I con-
stantly make rookie mistakes. 
I break things in production. 
I leave messes behind. I waste 
hours going down the wrong 
train of thought.

■■ It burns people out, sometimes 
permanently. They burn up their 
passion that takes down time to 
replenish. Unless the non-Crunch 
work is sufficiently energizing 
(and frequent), enough crunch-
ing can cause your best people to 
leave.

■■ It makes people lazy and less 
productive. This may seem ironic, 
but when someone puts in heroic 
levels of effort, they start to place 
less value on each minute. I know 
that if I work all night, then an 
hour brain-break mid-day sounds 
very reasonable. The problem is 
that these breaks become a habit 
that can persist between Crunch 
times.

■■ It’s a risky way to make your 
commitments. Crunch Mode 
means you are using your team 
beyond capacity. That’s like 
trying to drive 50km on 40km of 
gas. It might be OK, but if you 
do it all the time you’re going to 
end up broken down on the side 
of the road waiting for help at 
some point. Maybe more often 
than not.

■■ Accountability is lost. When 
someone is working all hours, 
they can’t be blamed for mis-
takes. They can’t be blamed for 
coming in late, forgetting an 
email, introducing bugs, not writ-
ing tests, cutting technical cor-
ners, and doing all sorts of things 
that don’t describe how you want 
people on your team behaving.

■■ It puts the credibility of manage-
ment in question every time. 
Because, managers, believe it or 
not, every single time it happens, 
the entire team asks themselves, 
“But why?”

By Chad Fowler

Killing the Crunch Mode 
Anti-pattern



  37

■■ It shows a team that the leader 
cares about meeting a business 
goal more than he or she cares 
about their health. This may 
sound harsh, but it is literally 
true.

The more you have to use your 
brain, the less effective and healthy 
Crunch Mode is. In fields that 
require less creativity and thought, 
it might even really work as a 
(ruthless) management technique. 
In software development, it just 
doesn’t.

Why do we do it?
The number one reason teams go 
into Crunch Mode is that their 
leaders have failed to understand 
and/or set realistic expectations 
for the time it takes to complete a 
project. In worst cases, the dead-
lines are arbitrarily set by manage-
ment and not tied to any specific 
business need. In other cases, the 
deadlines are inflexible, but the 
scope can and should be adjusted 
to a realistic level. Sure, it may be 
that the team committed to those 

incorrect deadlines, but it’s up to 
the ones deciding on the deadlines 
to verify that they’re realistic before 
making a commitment.

Fear and the resulting breakdown 
of communication also drive us into 
Crunch Mode. “Can you get this 
done by ?” “Uh…yes?” Develop-
ers fear saying “no.” Managers fear 
looking bad by committing to what 
seem like far off dates. Manag-
ers fear setting far off deadlines, 
because developers miss dates more 
often than not. “If we pad the esti-
mates are we going to miss those by 
20% too?”

Another reason we go into 
Crunch Mode is that we are perpet-
uating a culture of cowboy heroism 
which many of us unwittingly get 
caught up in. The feeling of finish-
ing tons of work in a short period 
and depriving oneself of quality 
personal time can be addicting, 
especially when it results in “saving 
the day” for a project. Rolling up 
your sleeves and cranking to the 
end of a deadline makes you feel 
valuable in a very concrete way. 

Without your overtime, the project 
doesn’t get done on time. With it, 
the project is saved. It’s hard to find 
such black and white ways to add 
value in daily “normal” work.

Maybe the most addictive feature 
of Crunch Mode is it’s the easiest 
way to see a team really click. At 
the beginning of Crunch Mode, 
people get intensely focused. Com-
munication is streamlined. The big 
important stuff gets tackled quickly 
and finished. A team can initially 
raise its skill level a notch with the 
focus alone. It feels great as both 
a manager and a team member to 
work that efficiently and effectively. 
Unfortunately it’s difficult (not 
impossible) to work this way all the 
time, so we’re tempted to activate 
Crunch Mode on occasion just to 
feel this way again.

“In fields that require less creativity and 
thought, Crunch Mode might even really 
work as a (ruthless) management technique. 
In software development, it just doesn’t.”



38  SPECIAL

Alternatives to Crunch-Mode
■■ Miss the deadline. Ya, that’s 
right. Let your customers down 
this time. Make less money. Incur 
opportunity cost. Just fail. You 
already failed to manage your 
team and your time. Maybe you 
should let that have more visible 
consequences?

■■ Set smaller goals. When you set 
a massive goal, way off in the 
future, it’s impossible to estimate 
whether it’s actually realistic. 
However, if you set a goal for this 
afternoon, you’re probably going 
to be pretty accurate with your 
estimates.

■■ Measure progress concretely 
and in small steps. Never trust a 
status report, even from yourself. 
In software, the only deliverable 
that matters is one that you can 
execute.

■■ Set more realistic goals for the 
team and the problems you 
face. If you’re continually having 
to slip into Crunch Mode, you 
clearly don’t understand your 
capabilities. Admit that you’re 
going to go slower than you 
expected and adjust for it.

As unhealthy, counterproduc-
tive, and just plain stupid as Crunch 
Mode is, sometimes you just have 
to do it. We all accept that. Crunch 
Mode is the nuclear option. A 
leader needs to have it available as a 
tool, but each time he or she wields 
this tool, he or she pays in long-
term credibility and trust.

Can we stop it?
It’s time to finally stop this insanity. 
Think of the time, money, energy, 
and potential happiness wasted on 
poor planning, communication, and 
leadership.

Managers, hold yourself account-
able for Crunch Mode when it hap-
pens. See it as a personal failure.

Everyone else, hold yourself 
accountable for every non-crunch 
minute you work. Make them 
count. Over-communicate. Focus. n

Chad Fowler is an internationally known 
software developer, trainer, manager, 
speaker, and musician. Over the past 
decade he has worked with some of 
the world’s largest companies and most 
admired software developers. Chad is the 
author or co-author of a number of popu-
lar software books, including “The Passion-
ate Programmer: Creating a Remarkable 
Career in Software Development”.

Reprinted with permission of the original author. 
First appeared in hn.my/crunchmode (chadfowler.com)

http://hn.my/crunchmode


39  SPECIAL

https://www.mailjet.com/?utm_source=hackermonthly&utm_medium=pdf&utm_campaign=October-hackermonthly


40  SPECIAL

http://circleci.com/?join=hackermonthly

	FEATURES
	How to Win as a First-Time Founder
	On Hacking

	PROGRAMMING
	Make the Type System Do the Work
	Why Registers Are Fast and RAM Is Slow
	Vim Croquet
	AWS Tips I Wish I'd Known Before I Started
	Why I’m Betting on Julia

	SPECIAL
	Forever Alone
	Killing the Crunch Mode Anti-pattern


