MONTH LY Issue 46 March 2014

On Hacking

by Richard Stallman

Curator HACKER MONTHLY is the print magazine version

Lim Cheng Soon of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup

Contributors founders. The submission guidelines state that content

First Round Capital can be “anything that gratifies one’s intellectual curios-

Richard Stallman ity.” Every month, we select from the top voted articles

Nathan Wong on Hacker News and print them in magazine format.

Mike Ash For more, visit hackermonthly.com

Seth Brown

Rich Adams

Evan Miller

Jonathan E. Chen Advertising Published by

Chad Fowler ads@hackermonthly.com Netizens Media
46, Taylor Road,

Proofreaders 11600 Penang,

Emily Griffin Contact Malaysia.

Sigmarie Soto contact@hackermonthly.com

lllustrators

Jaime G. Wong
Joel Benjamin

Ebook Conversion MONTHLY Issue 46 March 2014
Ashish Kumar Jha

Printer On HaCking

MagCloud ty Richard Stallman

Cover lllustration: Jaime G. Wong

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

Contents

FEATURES

04 How to Win as a First-Time Founder
By FIRST ROUND CAPITAL

10 On Hacking

By RICHARD STALLMAN

PROGRAMMING

14 Make the Type System Do the Work
By NATHAN WONG

17 Why Registers Are Fast and RAM Is Slow
By MIKE ASH

20 Vim Croquet
By SETH BROWN

24 AWS Tips | Wish I'd Known Before | Started
By RICH ADAMS

Drew Houston, illustrated by Joel Benjamin.

30 Why I'm Betting on Julia
By EVAN MILLER

SPECIAL

32 Forever Alone
By JONATHAN E. CHEN

36 Killing the Crunch Mode Anti-pattern
By CHAD FOWLER

For links to Hacker News dicussions, visit hackermonthly.com/issue-46

http://hackermonthly.com/issue-46

FEATURES

How to Win as a
First-Time Founder

A Drew Houston Manifesto

By FIRST ROUND CAPITAL

N 2007, Drew Houston flew to San Francisco

determined to find a co-founder for Dropbox. At

the time, it was just him. No backers. No team. On
a friend’s advice, he walked into Y Combinator’s offices
unsolicited to talk to Paul Graham about finding the
right person. It didn’t go well.

“It wasn’t a great experience, coming in unan-
nounced,” Houston recently told students in an exclu-
sive Dorm Room Fund interview at MIT. “Getting
into Y Combinator is like getting into a great school.
So imagine having your two minutes with the dean
of admissions and them coming away thinking you're
an asshole. That plane ride back was the worst. No
co-founder. Lower chance of getting into YC. I was
panicked.”

The good news is, early founders can turn things
around. Soon after he thought it was all over, Houston
teamed with fellow-MIT alum Arash Ferdowsi and
made it into YC. Today, he’s led Dropbox to nearly
200 million users — and the company’s growing faster
than ever before. This hasn’t been a piece of cake, but
Houston’s rocky start did teach him to forge ahead and
throw out assumptions that discourage many would-be
founders. Looking back, he recommends six strategies
that helped him cut through the fear, drown out the
noise, and make it happen.

4 FEATURES

Start with a worthy

problem.
Prospective entrepreneurs are
primed to find problems. While he
was still in college, Houston signed
up to beta test an online game as it
was being built. When he ran out
of things to do, he started poking
around under the hood, and he
discovered a bunch of security
vulnerabilities.

“So I started hacking around on
the game, and ended up telling the
developers, ‘Hey guys, you have to
do this and this...” They responded,
‘Okay great, want to just do that for
us?”” That’s how Houston landed
his first engineering gig. Dropbox
was born out of a similar moment,
when he simply got fed up with the
lack of seamless storage solutions
for his files.

But not every idea is bound to
be a good one, or worth your time.
After coming up with a cohort of
aspiring founders (some successful,
some not) and observing their vari-
ous fates, Houston has devised a list
to help new entrants choose their
projects wisely:

u It just pulls you. This is the least
scientific of his recommenda-
tions, but that gut feeling that a
problem is critical and needs an
answer shouldn’t be overlooked.
“Sometimes you just get this
feeling — it’s a compulsion or an
obsession. You can'’t stop thinking
about it. You just have to work
on this thing,” he says. “You need
that hunger no matter what,
because eventually the honey-
moon period wears off. Some-
where between printing your
business cards that say ‘founder’
on them and everything else you
have to do, you realize, ‘Oh, actu-
ally this is a ton of work.”

= You think it can go far. “With
something like Dropbox, it was
immediately like, “Wow, this is
literally something that anyone
with an internet connection
could use.” Everyone needs some-
thing like this, they just don’t
realize it yet.” Now, with the app
approaching 200 million users,
Houston already has his eyes
fixed on a billion. “It’s crazy that
we live in a world where that’s
a totally reasonable thing to go
after. But I look at all the things
we can do, and the magnitude of
the opportunity in front of us is
so clear.”

m It optimizes for learning. It's
always smart to go where you'll
have the ability to learn the most.
Go where people are smart and
fierce, because wherever you go,
you're bound to learn through
osmosis. “If you join a company,
work with world-class people
because that’s the fastest way
to learn how to do things. If
you start your own thing, you
can learn a lot really fast from
doing things wrong. Ask yourself,
‘Where can I find an environ-
ment where [can work really
hard and learn the most?””

Own Being a Beginner.

In his book Outliers, Mal-
colm Gladwell suggests that it takes
10,000 hours before you can truly
become an expert at anything.
Given the immense challenge of
starting a company, one might think
that founders need to be vastly
experienced. But Houston dis-
agrees. He's got some powerful evi-
dence, too: Google, Apple, Dell and
Facebook — all unicorns, all started
by first-timers or people who failed
on the first try.

“A lot of times it’s an asset to not
know everything about everything,”
Houston says. “As you advance
in your career, you feel like you
know so much about the world and
what's possible. Then you have this
mental model about how things
work that gets less and less flexible.
You can get stuck.”

His favorite example came early
on when the first articles were
being written about his company.
He remembers one quote precisely:

“Fortunately, the Dropbox founders
are too stupid to know everyone's
already tried this.”

“A lot of really great, innovative
things have happened when people
just didn’t know it wasn’t supposed
to be possible,” Houston says.

It’s important to not underesti-
mate your ability to learn on the
fly. “Everything can seem so mys-
tifying before you start,” he says.
“But when you look behind the
curtain at how some of these huge
companies were built, it wasn't a
lot of magic. It’s people iteratively
trying to make reasonable decisions
and surround themselves with the
smartest people they can.”

Assume Nothing & the

First Mover Disadvantage
At the time Houston got the idea
for Dropbox, people thought the
problem was already solved. They
had email attachments and thumb
drives — and for the power users,
external hard drives. What more
did they need? Even the forward
thinkers would have guessed a solu-
tion would come from Google or
Microsoft.

“People make basic assumptions
based on what they have now. But
you have to ask yourself is this
really what people are going to be
doing in five years?” he says. “Very
few people ask themselves what
they would actually want instead
if they could wave a magic wand.
What if there could be this magic
folder that you could access from
anywhere and never need to back
up?”

Something a lot of entrepreneurs
assume is that they have to be
first to market in order to win in
a category. But when you look at
the breakout success stories, this is
almost never the case. Google was
preceded by Yahoo, Alta Vista, Ask
Jeeves, and 100 other little search
engines. Facebook entered stage left
and slaughtered both MySpace and
Friendster.

“The fact is that there’s a prob-
lem with being first,” Houston says.
“When you do that, you create a
market, and if you're too early, you
essentially leave the door open
behind you for someone to do it
better. I actually don’t think it mat-
ters how early or late you are as
long as you hit critical mass.”

When Dropbox was getting off
the ground in 2007, there were
hundreds of small storage compa-
nies. It was almost a cliché, the way
that many people believe mobile

photo sharing is a cliché now, he
says. “The important thing was, [
would keep asking people if they
used any one of these hundred
options, and they all said no. These
are my favorite problems to solve.
You can’t focus on what everyone
else is doing — it has to be about
what's really broken and what you
can do to fix it.”

Even today, Houston’s reminded
all the time that he has 400 people
against Google’s 40,000. It’s daunt-
ing, but he has to shrug it off. In
the end, tech is about disruption,
and there’s plenty of proof that
numbers of users, or employees or
dollars doesn’t always make the
difference.

“Small teams can take on bigger
companies because of their focus
and speed. That's also what makes
it fun.”

This kind of challenge can seem
like too big a gamble for many
people who might otherwise start
companies. With odds so heavily
in favor of the Goliaths, chances
for success seem slim, but Houston
does his best to de-risk the idea for
aspiring entrepreneurs.

“People assume — and misun-
derstand — that it’s risky to join a
startup or start their own company,
but you have to know this is ridicu-
lous,” he says. “Even if it doesn’t
work out, the experience is so
valuable to so many employers that
your worst case scenario is, “OXk, so
that was a bust, I"ll get a six-figure
job at whatever company.’ Risk is
this outmoded idea — your parents
might not understand that, but
taking these types of risks doesn’t
have a downside.”

Build a knowledge
machine.
For Houston, learning new things
became an addiction — one he
actually systematized.

“I was living in Boston, working
for a startup during the summer,
living in my fraternity house. But
every weekend, I would take this
folding chair up to the roof with
all these books I got on Amazon.

I would just sit there and read all
of them. I would spend the whole
weekend just reading, reading,
reading.”

His process wasn’t complicated,
but he did keep a list of target
topics in his head. “I'd be like,
alright, I don’t know anything about
sales. So I would search for sales on
Amazon, get the three top-rated
books and just go at it. I did that
for marketing, finance, product, and
engineering. If there was one thing
that was really important for me,
that was it.”

If you've never started a com-
pany, or worked at a smaller
company, you'll run into a verti-
cal learning curve, Houston says.
There’s no way to know everything
you need to from the start, so you
need to a) gain as much knowledge
as you can as fast as you can, and
b) plan ahead to learn what you'll
need months down the line. You
have to be prepared for a never-
ending conveyor belt of challenges.

“You have to adopt a mindset
that says, “Okay, in three months,
I"ll need to know all this stuff, and
then in six months there’s going
to be a whole other set of things
to know — again in a year, in five
years.” The tools will change, the
knowledge will change, the worries
will change.”

6 FEATURES

“You have to get good at preparing
yourself to understand what’s on
the horizon.”

This is especially important for
skills and habits that you can’t
internalize overnight. “You're not
going to become a great manager
overnight. You're not going to
become a great public speaker or
figure out how to raise money,” he
says. “These are the things you want
to start the clock on as early as
possible.”

As a founder, this goes for both
you and your employees. This can
be a huge advantage when it comes
to recruiting the best talent, too.
One young engineer comes to mind
for Houston, who was swayed by
the opportunity to be thrown into
the deep end right away.

“We had this enormous infra-
structure project where we were
spending millions of dollars and
he was in charge of it — and he
was like 20 at the time. He just
wouldn’t have gotten that oppor-
tunity if he had been employee
20,000 at Google or something,”
he says. “This engineer even said to
him at some point, “Dropbox let
me do things that I wasn”t ready
for.””

This chance, to work on real
things and move the needle at a
company serving millions, is rare
and extremely valuable. “I look at
the interns we have at Dropbox,
and they’re shipping real stuff every
day,” Houston says. “In contrast,
had a friend who worked at Micro-
soft for a summer, and he spent the
entire time working on the back
button on Internet Explorer.”

The upshot: Making learning
central to your company’s culture
pays serious dividends.

Be resourceful. Fast.
Houston may have gotten
off on the wrong foot with Y Com-
binator, but he was able to turn
it around just as fast with limited
tools.

“It was one of those things
where it was a couple weeks before
the deadline, and I just realized I
had no choice. I had to write this
application,” he says. “I was already
at a disadvantage because I was a
single founder and YC really wants
co-founders. But I said to hell with
it, I'll just do it anyway. So I made
a video.”

This demo video is now part of
Dropbox mythology. Not only did
it catch fire on Hacker News and
Reddit, it also convinced YC part-
ner Trevor. The key was Houston
knew his audience. “I was part of
that audience, so I made the video
that would get me excited about
Dropbox. The production value
wasn’t great. It was just me sitting
in my bedroom at 3 a.m., but I
knew what to say.” It worked — he
got an email from Paul Graham
saying there was interest, but to
go any further, he’d need to find a
co-founder.

He approached this task with the

same attitude as his YC application.

He knew what he needed. He went
after it, and he moved quicker than
he felt comfortable with. That’s the
pace you have to get used to when
you're involved with a startup, he
says. Finding a co-founder on this
timetable can be one of the most
daunting things an entrepreneur
can do.

“It was sort of like them telling me
I needed to find someone to marry
in two weeks.”

Luckily, the video came in handy
here, too. By the time he met with
Arash Ferdowsi, a friend of a friend
at MIT, his future CTO had already
seen the demo and was interested.

“We went to the coffee house at
the student center because that’s
the only thing we could do,” Hous-
ton recalls. “At the time, I was just
like, this kid seems pretty smart. I
can’t say it was this careful process
where I had 19 things I was look-
ing for, but he seemed intelligent
and cool, and we spent a good two
hours together talking. At the end,
he said “Okay, yeah, I"ll drop out
next week.”

Now that he’s had time to
reflect, he realizes how lucky he
got with Ferdowsi, and he has some
advice for young entrepreneurs
looking for their other halves. “The
most important thing is whether
you respect this person, whether
you trust them. Are they someone
that you can see yourself being in
the trenches with for a long time,
because you're going to see them
more than your spouse or your
significant other.”

Don’t lose your North Star.

Inevitably companies evolve
as they grow, but Houston knows
the value of keeping a higher
purpose front and center. This is
especially critical for Dropbox right
now as it adds hundreds of new
employees and expands more and
more into enterprise software.

Many of even the most success-
ful startups in tech will say their
culture evolved organically — that
they’re only just now starting to be
intentional about it at 100 to 300
employees. Dropbox falls into this
category. But Houston advocates for
an earlier attack.

“When you're studying and get-
ting your engineering degree, things
like mission or values sound totally
unnecessary,” he says. “But then it
turns out that you have to evolve
from building this system of code to
building a system of people. It’s like
updating your operating system.
You have to adapt very quickly.”

To keep this top of mind, you
have to make the company’s mis-
sion about something more than
money or building great products.
It has to be about the value created
for users.

“Whole businesses are living
out of Dropbox right now, big and
small,” he says. “That’s something
that’s really valuable — the fact
that we're helping employees be
more productive, even at giant
companies. IT departments and
administrators have become an
important audience for us, but at
the same time we have to remem-
ber why we do what we do: We do
it to make people happy.”

“We're not just adding features

to software. We're on our way to
building the biggest assembly of
human memories ever created.”

“We get these emails from people
that just blow us away,” Houston
says. “They say things like “I just
used Dropbox to start a music festi-
val” or “I made a movie” or “I started
the company I"ve been dreaming
about my whole life.” People tell
us that Dropbox has completely
changed how they work. And I think
that’s what'’s really exciting — being
able to redefine how people collabo-
rate. It's not just the why of what
we do, it’s also a huge market. B

Drew Houston is the founder of Dropbox.

First Round Capital is a San Francisco-based
venture capital firm focusing on seed fund-
ing for technology startups and creating a
vibrant community of entrepreneurs work-
ing to change the world.

Reprinted with permission of First Round Review
[firstround.com/review], a publication of First Round
Capital.

First appeared in hn.my/drewhouston (firstround.com)

lllustration by Joel Benjamin.

8 FEATURES

http://firstround.com/review
http://hn.my/drewhouston

Metrics and monitoring for people
who know what they want

We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

(7 @
Dashboards StatsD Happiness

Why Hosted Graphite?

- Hosted metrics and StatsD: Metric aggregation without the setup headaches

+ High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*
* Flexibile: Lots of sample code, available on Heroku

* Transparent pricing: Pay for metrics, not data or servers

» World-class support: We want you to be happy!
Promo code: HACKER

Grab a free trial at http://www.hostedgraphite.com @ HOSTED GRAPHITE

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

http://hostedgraphite.com

On Hacking

By RICHARD STALLMAN

N JUNE 2000, while visiting

Korea, I did a fun hack that

clearly illustrates the original
and true meaning of the word
“hacker”.

I went to lunch with some GNU
fans, and was sitting down to eat
some tteokpaekki !, when a waitress
set down six chopsticks right in
front of me. It occurred to me that
perhaps these were meant for three
people, but it was more amusing to
imagine that I was supposed to use
all six. I did not know any way to
do that, so I realized that if I could
come up with a way, it would be a
hack. I started thinking. After a few
seconds I had an idea.

First I used my left hand to put
three chopsticks into my right
hand. That was not so hard, though
I had to figure out where to put
them so that I could control them
individually. Then I used my right
hand to put the other three chop-
sticks into my left hand. That was
hard, since I had to keep the three
chopsticks already in my right hand
from falling out. After a couple of
tries I got it done.

10 FEATURES

Then I had to figure out how to
use the six chopsticks. That was
harder. I did not manage well with
the left hand, but I succeeded in
manipulating all three in the right
hand. After a couple of minutes of
practice and adjustment, I managed
to pick up a piece of food using
three sticks converging on it from
three different directions, and put it
in my mouth.

It didn’t become easy — for prac-
tical purposes, using two chopsticks
is completely superior. But precisely
because using three in one hand is
hard and ordinarily never thought
of, it has “hack value”, as my lunch
companions immediately recog-
nized. Playfully doing something
difficult, whether useful or not, that
is hacking.

I later told the Korea story to a
friend in Boston, who proceded to
put four chopsticks in one hand and
use them as two pairs — picking up
two different pieces of food at once,
one with each pair. He had topped
my hack. Was his action, too, a
hack? I think so. Is he therefore
a hacker? That depends on how
much he likes to hack.

The hacking community devel-
oped at MIT and some other
universities in the 1960s and 1970s.
Hacking included a wide range of
activities, from writing software,
to practical jokes, to exploring
the roofs and tunnels of the MIT
campus. Other activities, performed
far from MIT and far from comput-
ers, also fit hackers’ idea of what
hacking means: for instance, I think
the controversial 1950s “musical
piece” by John Cage, 4'33" 2, is
more of a hack than a musical com-
position. The palindromic three-
part piece written by Guillaume de
Machaut in the 1300s, “Ma Fin Est
Mon Commencement”, was also

a good hack, even better because
it also sounds good as music. Puck
appreciated hack value.

It is hard to write a simple
definition of something as varied
as hacking, but I think what these
activities have in common is play-
fulness, cleverness, and exploration.
Thus, hacking means exploring the
limits of what is possible, in a spirit
of playful cleverness. Activities
that display playful cleverness have
“hack value”.

Hackers typically had little
respect for the silly rules that
administrators like to impose, so
they looked for ways around. For
instance, when computers at MIT
started to have “security” (that is,
restrictions on what users could do),
some hackers found clever ways to
bypass the security, partly so they
could use the computers freely, and
partly just for the sake of clever-
ness (hacking does not need to be
useful). However, only some hack-
ers did this — many were occupied
with other kinds of cleverness, such
as placing some amusing object on
top of MIT’s great dome 3, finding
a way to do a certain computation
with only 5 instructions when the
shortest known program required 6,
writing a program to print numbers
in roman numerals, or writing a
program to understand questions in
English.

Meanwhile, another group of
hackers at MIT found a different
solution to the problem of computer
security: they designed the Incom-
patible Timesharing System without
security “features”. In the hacker’s
paradise, the glory days of the Arti-
ficial Intelligence Lab, there was no
security breaking, because there was
no security to break. It was there,
in that environment, that I learned
to be a hacker, though I had shown

the inclination previously. We had
plenty of other domains in which to
be playfully clever, without building
artificial security obstacles which
then had to be overcome.

Yet when [say I am a hacker,
people often think I am making
a naughty admission, presenting
myself specifically as a security
breaker. How did this confusion
develop?

Around 1980, when the news
media took notice of hackers, they
fixated on one narrow aspect of
real hacking: the security break-
ing which some hackers occasion-
ally did. They ignored all the rest
of hacking, and took the term to
mean breaking security, no more
and no less. The media have since
spread that definition, disregarding
our attempts to correct them. As a
result, most people have a mistaken
idea of what we hackers actually do
and what we think.

You can help correct the misun-
derstanding simply by making a dis-
tinction between security breaking
and hacking — by using the term
“cracking” for security breaking.
The people who do it are “crack-
ers” 4. Some of them may also be
hackers, just as some of them may
be chess players or golfers; most of
them are not.

ok ok ok ok ok o o R R R R R

1. Pronounced like stuckpeckee
minus the s (with an unaspirated
t), if I recall right.

2. The piece 4'33" is a trivial piece.
For each “movement”, the pia-
nist opens the keyboard cover,
waits the appropriate amount of
time, then closes it; that’s all. It
is a musical counterpart of the
empty set.

3. Going on the great dome is
“forbidden”, so in a sense it
constitutes “breaking security”.
Nonetheless, the MIT Museum
proudly exhibited photos of
some of the best dome hacks, as
well as some of the objects that
hackers placed on the dome in
their hacks. The MIT administra-
tion thus implicitly recognizes
that “breaking security” is not
necessarily evil and need not be
invariably condemned. Whether
security breaking is wrong
depends on what the security
breaker proceeds to do with the
“forbidden” access thus obtained.
Hurting people is bad, amusing
the community is good.

4. 1 coined the term “cracker” in
the early 80s when I saw jour-
nalists were equating “hacker”
with “security breaker”.

ok ok 3k ok ok ok ok ok ok ok ok %k ok ok

ERE ARE SOME examples of fun
hacks. If they make you smile,
you're a hacker at heart.
First, some of mine.

u [learned to use two pairs of
chopsticks too. Here I demon-
strate this. [twitpic.com/558zg]

m Speaking of chopsticks, some
kinds of Italian grissini work fine
as chopsticks — then, after the
meal, you can eat them. [brought
a bag of them to Taiwan once
just to show them that Italy has
chopsticks too.

u Customer Training College
changed to Customer Draining
College [hn.my/drain]. Sassy, not
computer-related.

= Photos of some other hacks I've
done are here. [hn.my/stallhacks]

® In India there is a chain of fine
Bengali restaurants called “Oh!
Calcutta”. The staff and the
clients, have no idea why that
expression is notorious. During
my 2014 visit to India I decided
to inform them by bringing to
the restaurant some printouts
of the painting, and a publicity
photo from the play. I left a copy
of each with the staff.

® Pre-Zen studies (an April fool).
[hn.my/prezen]

® Many years ago I had a root canal
operation in a molar in the back
of my mouth. It was difficult for
me to keep my mouth open far
enough, and the dentist said this
was because I had a rather small
mouth.

When it was done, I had him
sign a testimonial affirming this
fact. I gave it to my mother to
show she was wrong about me,
all those years when she said I
had a big mouth.

® My puns are also playful clever-
ness. [hn.my/puns]

Other people’s hacks.

m Everyone’s first hack: walking
in the wrong direction on an
escalator. That’s not the way it’s
designed to be used, but can you
make it work?

m [think this award-winning art
project was actually a hack.
[hn.my/voina]

= A robot that climbs windows to
deploy a sun shade. Pure, sweet, &
computer-based. [hn.my/shady]

= Hoisting Nigerian scammers on
their own petard. [hn.my/eater]
Cunning, mischievous, and not
using computers except for email
and phone calls.

® Lady Gaga’s approach to clothing
seems like hacking to me.

® A charming hack in the London
Underground. [hn.my/subway]

® The hacker who made this poster
was arrested for it. [hn.my/drone]

m TicBot is a conversation hack.
[touretteshero.com]

m Just for the hack of it, the ulti-
mate series of hacks with ordinary
everyday objects appears in the
1987 film, Der Lauf der Dinge, by
Fischli and Weiss. (This should not
be confused with the unrelated
2006 film by the same name.)

m Although hacking and cracking
are conceptually unrelated, occa-
sionally they are found together.
This is hacking that involves
some cracking. [hn.my/cat]

This hack has pointed out
the injustice of the laws against
“child” pornography, but doing
that by causing other people to
be jailed seems wrong to me.
(Hacks can raise ethical issues
just as other activities do; clev-
erness and playfulness do not
guarantee that one can do no
wrong.) It is also foolhardy to
taunt a dangerous monster.

® A fun hack implemented via
cracking: making TV emergency
alert system give warnings about
dead bodies emerging from
graves. [hn.my/zombie]
The security holes that made

this possible might be used
humorlessly to do real harm, but

this hack didn’t do harm. ®

Richard Stallman is the founder of the Free
Software Foundation and the GNU project.

Copyright (C) 2002-2013 Richard Stallman

Verbatim copying and distribution of this entire article is
permitted in any medium, provided this notice is preserved.

12 FEATURES

http://twitpic.com/558zg
http://hn.my/drain
http://hn.my/stallhacks
http://hn.my/prezen
http://hn.my/puns
http://hn.my/voina
http://hn.my/shady
http://hn.my/eater
http://hn.my/subway
http://hn.my/drone
http://touretteshero.com
http://hn.my/cat
http://hn.my/zombie

HACK

ON YOUR

SEARCH ENGINE

and help change the future of search

http://duckduckhack.com

PROGRAMMING

Make the Type System
Do the Work

By NATHAN WONG

ECLARING TYPES AND being restricted by

the type system is often cited as a nega-

tive aspect of C++. I think this is an unfair
assessment: a type system can make a programmer’s life
considerably easier if it’s embraced instead of fought, as
we're seeing with the rise in popularity of Haskell. But
C++, despite all its warts, has a pretty formidable type
system of its own.

The object-oriented paradigm is commonly taught
with the “Dog is-a Mammal” architectural mental-
ity where your classes are supposed to mirror real life
objects and act accordingly. Make no mistake, this
approach is an over-simplification of software architec-
ture and should be treated as such, but the principles
behind it are actually fairly sound. Classes should aim
to be a self-contained representation of some concept
or thing that has state and actions. Here, we're going
to focus on how to make the type system work for you
instead of against you.

Specifically, we're going to focus on the conver-
sion of data from one form to another. Many seem
to think of conversions as being functions, taking one
piece of data and returning another. But in doing so,
we callously throw away dimensional analysis, a skill
that appears to have been lost in translation from the
natural sciences to computing.

A simple example that demonstrates the importance
of dimensional consistency is temperature conversions.
All too often we see functions converting equivalent
units look something like this:

Function-Based Conversion
double celsiusToFahrenheit(double deg_celsius)

{

return deg_celsius * 9 / 5 + 32;

double temperature_fahrenheit =
celsiusToFahrenheit(20);

OK, it works. It compiles, runs, gives the right
answer, and passes all tests. The only problem is that
you end up with a variable that fails to describe itself
better than “I'm a number”. We end up using Hun-
garian-like system (apps Hungarian, specifically) to
indicate the true units of the variable (Fahrenheit or
Celsius). We recognize the importance of maintaining
unit analysis, but we fail to enforce this convention; as
with all Hungarian systems, the onus falls on the devel-
oper (and future developers) to maintain the accuracy
of the system.

Instead, we should rely on the type system of the
language to enforce this.

Type-Enforced Conversion
struct Degrees

{
double val;
Degrees(double _val) : val(_val) {}
s
struct DegCelsius : public Degrees
{

14 PROGRAMMING

DegCelsius(double deg) : Degrees(deg) {}
DegCelsius(const DegFahrenheit °)
: Degrees((deg.val - 32) * 5 / 9) {}

}s
struct DegFahrenheit : public Degrees
{
DegFahrenheit(double deg) : Degrees(deg) {}
DegFahrenheit(const DegCelsius °)
: Degrees(deg.val * 9 / 5 + 32) {}
s

DegFahrenheit input(68);

DegCelsius temperature = input;

Now it’s obvious to any developer what type of
degrees the temperature variable is holding, and the
units are carried and enforced by the compiler; you're
physically unable to assign a Celsius degree to a Fahr-
enheit degree without it converting it properly for you.

The overhead of setting up a coherent type system
may seem burdensome, but in an application or library
that handles many conversions in ways that should
be transparent to the developer, this time investment
will pay for itself. All units coming from math and
science would benefit from being setup this way: just
think how much easier it would be if sin took Radians
instead of a double, and Radians had a constructor that
took Degrees: you could write sin(Degrees(180)) and
get the correct result.

Coordinates

Let’s say you're plotting points on a graph (one of the
many widgets in your application). You want the user
to be able to click on a point in the graph and have it
draw the point and log the graph coordinates.

Since we're just dealing with x and y, we could get
away with just passing aint32_t’s around. But often
this gets confusing because the graph widget’s mouse
click event gives you the coordinates relative to itself,
whereas the graph coordinates have the origin at the
center of the graph widget, and y grows as you go up
instead of down. (And to make things more confusing,
sometimes you have absolute coordinates relative to
your graph widget’s parent, too.)

As with before, we may have a function with the
signature Point pointCoordToGraphCoord(const Point
&coord) ;, but this requires the programmer to remem-
ber what type of coordinates they have when handling
the data, and creating a developer-enforced naming

convention to help convey this meaning is error-prone
and tedious. Instead, the type system will not only
enforce this convention, it will convert between the
coordinate systems as well.

Type-Enforced Coordinates
// just holds an (x,y), oblivious to its purpose

// in life
struct Point
{
int32_t x, y;
Point(int32_t _x, int32_t _y) : x(_x), y(y)
{3
Point() : x(@), y(0) {}
¥

// represents a point where (0,0) is the
// top-left of the widget
struct RealPoint :

{

public Point

RealPoint(int32_t x, int32_t y)

y) {}
RealPoint() : Point() {}

: Point(x,

s

// represents a point where (0,0) is in the
// center, and y grows up

struct GraphPoint : public Point

{

GraphPoint(int32_t x, int32_t y) : Point(x,
y) {}

GraphPoint() : Point() {}
¥

Our mouse handler event, being a system call, prob-
ably still gives us a raw x and y, with which we can
immediately construct a RealPoint for further use.
Now our conversion function can be called GraphPoint
realToGraphCoords(const RealPoint &point);, and
it's clear what type of coordinate system any given
variable is using.

Naturally, this conversion function should be part of
GraphPoint, such as static GraphPoint GraphPoint:
:FromRealCoords(const RealPoint &coords);. Once
the problem has been reduced to just converting real
coordinates to graph coordinates, though, it makes the
most sense to just create a constructor in the Graph-
Point to handle the conversion for us.

Implicit Unit Conversion The type system does all the work for us. The click

// represents a point where (0,0) is in the handler (i.e., the user of our system) does not need to
center, and y grows up know that drawing and logging require different coor-
struct GraphPoint : public Point dinates systems, and perhaps even better, the drawPoint
{ and logPoint functions don’t need to worry about
GraphPoint(int32_t x, int32_t y) : Point(x, what’s being passed in. Nobody needs to make assump-
y) {} tions, which means less human errors and more reliable
GraphPoint() : Point() {} code.
GraphPoint(const RealPoint &coords) {
x = coords.x - GraphWidget::width / 2; Further Reading
y = GraphWidget::height - coords.y - The type system affords developers an opportunity to
GraphWidget::height / 2; save time and reduce bugs. Writing maintainable code
} should be a first priority, and embracing the power of
}s static typing can make code easier to work with down

the road. Wrong code should look wrong, and failing to
compile is even better. There are numerous everyday
examples of how types can help. One such example is

Now, as a developer, we don’t even have to think
about which coordinates we have on-hand.

Example Usage handling safe and unsafe strings to prevent XSS attacks
bool GraphWidget::clickHandler(int32_t x, by having the type-system enforce unsafe-by-default
int32_t y) output: print(NoEscapeString("Note:));
{ print(usermsg); is easy to reason with.
RealPoint coords(x, y); Since first writing this article in January, I've been
exposed to Bjarne Stroustrup’s C++11 Style talk
drawPoint(coords); [hn.my/cpp11] which inspired me to finally edit and
logPoint(coords, "user click"); post it. Stroustrup’s talk includes a great demonstration
of how to implement a unit system using C++11’s new
return true; user-defined literals, and makes a great argument for
} type-rich programming.

It’s time to start embracing type systems instead of
void GraphWidget::drawPoint(const RealPoint using non-descript number types and to ask ourselves:
&coords) how else can I take advantage of the type system to
{ make my life easier? M

DrawinglLibrary::Circle(coords, 2); // etc.
} Nathan Wong is the Co-Founder and CTO of BuySellAds, an ad-
tech startup focused on making advertising more accessible.
void GraphWidget::logPoint(const GraphPoint You can read his blog about the intersection of business and
&coords, technology at nathan.ca, or follow him on Twitter at @nathandev

const string &action)
{ Reprinted with permission of the original author.
logfile << action << " at (" << coords.x << First appeared in hn.my/typesystem (nathan.ca)
", " << coords.y << ")"
<< endl;

16 PROGRAMMING

http://hn.my/cpp11
http://nathan.ca
http://twitter.com/@nathandev
http://hn.my/typesystem

Why Registers Are Fast and
AM Is Slow

Distance

Let’s start with distance. It’s not
necessarily a big factor, but it’s the
most fun to analyze. RAM is farther
away from the CPU than registers
are, which can make it take longer
to fetch data from it.

Take a 3GHz processor as an
extreme example. The speed of
light is roughly one foot per nano-
second, or about 30cm per nano-
second for you metric folk. Light
can only travel about four inches in
time of a single clock cycle of this
processor. That means a roundtrip
signal can only get to a component
that’s two inches away or less, and
that assumes that the hardware is
perfect and able to transmit infor-
mation at the speed of light in
vacuum. For a desktop PC, that’s
pretty significant. However, it’s
much less important for an iPhone,
where the clock speed is much
lower (the 5S runs at 1.3GHz) and
the RAM is right next to the CPU.

By MIKE ASH

Cost

As much as we might wish it
wasn’t, cost is always a factor. In
software, when trying to make

a program run fast, we don’t go
through the entire program and
give it equal attention. Instead,
we identify the hotspots that are
most critical to performance, and
give them the most attention.
This makes the best use of our
limited resources. Hardware is
similar. Faster hardware is more
expensive, and that expense is best
spent where it’ll make the most
difference.

Registers get used extremely
frequently, and there aren’t a lot of
them. There are only about 6,000
bits of register data in an A7 (32
64-bit general-purpose registers
plus 32 128-bit floating-point
registers, and some miscellaneous
ones). There are about 8 billion bits
(1GB) of RAM in an iPhone 5S.
It’s worthwhile to spend a bunch
of money making each register bit
faster. There are literally a million
times more RAM bits, and those
8 billion bits pretty much have to

be as cheap as possible if you want
a $650 phone instead of a $6,500
phone.

Registers use an expensive design
that can be read quickly. Reading a
register bit is a matter of activating
the right transistor and then waiting
a short time for the register hard-
ware to push the read line to the
appropriate state.

Reading a RAM bit, on the other
hand, is more involved. A bit in the
DRAM found in any smartphone or
PC consists of a single capacitor and
a single transistor. The capacitors
are extremely small, as you'd expect
given that you can fit 8 billion of
them in your pocket. This means
they carry a very small amount
of charge, which makes it hard to
measure. We like to think of digital
circuits as dealing in ones and
zeroes, but the analog world comes
into play here. The read line is pre-
charged to a level that’s halfway
between a one and a zero. Then the
capacitor is connected to it, which
either adds or drains a tiny amount
of charge. An amplifier is used to
push the charge towards zero or

one. Once the charge in the line is
sufficiently amplified, the result can
be returned.

The fact that a RAM bit is only
one transistor and one tiny capaci-
tor makes it extremely cheap to
manufacture. Register bits contain
more parts and thereby cost much
more.

There’s also a lot more complex-
ity involved just in figuring out
what hardware to talk to with RAM
because there’s so much more of it.
Reading from a register looks like:

1. Extract the relevant bits from
the instruction.

2. Put those bits onto the register
file’s read lines.

3. Read the result.
Reading from RAM looks like:

1. Get the pointer to the data
being loaded. (Said pointer
is probably in a register. This
already encompasses all of the
work done above!)

2. Send that pointer off to the
MMU.

3. The MMU translates the virtual
address in the pointer to a physi-
cal address.

4. Send the physical address to the
memory controller.

5. Memory controller figures out
what bank of RAM the data is in
and asks the RAM.

6. The RAM figures out particular
chunk the data is in, and asks
that chunk.

7. Step 6 may repeat a couple of
more times before narrowing it
down to a single array of cells.

8. Load the data from the array.

9. Send it back to the memory
controller.

10.Send it back to the CPU.
11.Use it!
Whew.

Dealing With Slow RAM

That sums up why RAM is so much
slower. But how does the CPU deal
with such slowness? A RAM load is
a single CPU instruction, but it can
take potentially hundreds of CPU
cycles to complete. How does the
CPU deal with this?

First, just how long does a CPU
take to execute a single instruction?
It can be tempting to just assume
that a single instruction executes
in a single cycle, but reality is, of
course, much more complicated.

Back in the good old days, when
men wore their sheep proudly and
the nation was undefeated in war,
this was not a difficult question to
answer. [t wasn’t one-instruction-
one-cycle, but there was at least
some clear correspondence. The
Intel 4004, for example, took either
8 or 16 clock cycles to execute one
instruction, depending on what that
instruction was. Nice and under-
standable. Things gradually got
more complex, with a wide variety
of timings for different instructions.
Older CPU manuals will give a list
of how long each instruction takes
to execute.

Now? Not so simple.

Along with increasing clock rates,
there’s also been a long drive to
increase the number of instruc-
tions that can be executed per
clock cycle. Back in the day, that
number was something like 0.1
of an instruction per clock cycle.
These days, it's up around 3-4 on a
good day. How does it perform this

wizardry? When you have a billion
or more transistors per chip, you
can add in a lot of smarts. Although
the CPU might be executing 3-4
instructions per clock cycle, that
doesn’t mean each instruction
takes 1/4th of a clock cycle to
execute. They still take at least one
cycle, often more. What happens
is that the CPU is able to maintain
multiple instructions in flight at
any given time. Each instruction
can be broken up into pieces: load
the instruction, decode it to see
what it means, gather the input
data, perform the computation, and
store the output data. Those can all
happen on separate cycles.

On any given CPU cycle, the
CPU is doing a bunch of stuff
simultaneously:

1. Fetching potentially several
instructions at once.

2. Decoding potentially a
completely different set of
instructions.

3. Fetching the data for potentially
yet another different set of
instructions.

4. Performing computations for yet
more instructions.

5. Storing data for yet more
instructions.

But, you say, how could this pos-
sibly work? For example:

add x1, x1, x2
add x1, x1, x3

These can’t possibly execute in
parallel like that! You need to be
finished with the first instruction
before you start the second!

18 PROGRAMMING

It's true, that can’t possibly work.
That's where the smarts come in.
The CPU is able to analyze the
instruction stream and figure out
which instructions depend on other
instructions and shuffle things
around. For example, if an instruc-
tion after those two adds doesn’t
depend on them, the CPU could
end up executing that instruction
before the second add, even though
it comes later in the instruction
stream. The ideal of 3-4 instruc-
tions per clock cycle can only be
achieved in code that has a lot of
independent instructions.

What happens when you hit
a memory load instruction? First
of all, it is definitely going to take
forever, relatively speaking. If you're
really lucky and the value is in L1
cache, it'll only take a few cycles. If
you’re unlucky and it has to go all
the way out to main RAM to find
the data, it could take literally hun-
dreds of cycles. There may be a lot
of thumb-twiddling to be done.

The CPU will try not to twiddle
its thumbs, because that’s ineffi-
cient. First, it will try to anticipate.
It may be able to spot that load
instruction in advance, figure out
what it’s going to load, and initi-
ate the load before it really starts
executing the instruction. Second,
it will keep executing other instruc-
tions while it waits, as long as it can.
If there are instructions after the
load instruction that don’t depend
on the data being loaded, they can
still be executed. Finally, once it’s
executed everything it can and it
absolutely cannot proceed any fur-
ther without that data it’s waiting
on, it has little choice but to stall
and wait for the data to come back
from RAM.

Conclusion
® RAM is slow because there’s a
ton of it.

® That means you have to use
designs that are cheaper, and
cheaper means slower.

® Modern CPUs do crazy things
internally and will happily
execute your instruction stream
in an order that’s wildly different
from how it appears in the code.

® That means that the first thing
a CPU does while waiting for a
RAM load is run other code.

m If all else fails, it'll just stop and
wait, and wait, and wait, and
wait.

Mike Ash has been programming for Apple
platforms for over two decades and for
Mac OS X since the Public Beta. He is
the author of the bi-weekly Friday Q&A
[mikeash.com/pyblog] blog series on deep
technical topics related to Mac and iOS
programming, as well as the compilation
book The Complete Friday Q&A: Volumel.
In between abusing the Objective-C run-
time, he flies his glider over the beautiful
Shenandoah Valley. When not flying, he
holds down a day job at Plausible Labs.

Reprinted with permission of the original author.
First appeared in hn.my/registers (mikeash.com)

http://mikeash.com/pyblog
http://hn.my/registers

Vim Croquet

By SETH BROWN

RECENTLY DISCOVERED AN interesting game called

VimGolf [vimgolf.com]. The objective of the game

is to transform a snippet of text from one form to
another in as few keystrokes as possible. As I was play-
ing around with different puzzles on the site, I started
to get curious about my text editing habits. I wanted
to better understand how I manipulated text with vim
and to see if I could identify any inefficiencies in my
workflow. I spend a huge amount of time inside my
text editor, so correcting even slight areas of friction
can result in worthwhile productivity gains. This post
explains my analysis and how I reduced the number of
keystrokes I use in vim. I call this game Vim Croquet.

Data Acquisition

I started my analysis by collecting data. All my text
editing on a computer is done with vim, so for 45
days I logged every keystroke I used in vim with
the scriptout flag. For convenience, I aliased vim in
my shell to record all my keystrokes into a log file:

alias vim='vim -w ~/.vimlog "$@""'

Next, I needed to parse the resulting data. Parsing
vim is complicated. vim is a modal editor where a single
command can have different meanings in different
modes. Commands can also have contextual effects
where the behavior of certain actions can be different
depending on where they are executed within a buffer.
For example, typing cib in normal mode moves the user
into insert mode if the command is executed between
parentheses, but leaves the user in normal mode if
executed outside of parentheses. If cib is executed in
insert mode it has an altogether different behavior; it
writes the characters cib into the current buffer.

I looked at several candidate tools for parsing vim
commands including industrial parser libraries like
antler [antlr.org] and parsec [hn.my/parsec] as well as a
vim-specific project called vimprint [hn.my/vimprint].
After some deliberation, I decided to write my own
tool. I don’t do a lot of language processing, so invest-
ing the time to learn a sophisticated parser seemed
unwarranted.

I wrote a crude lexer in Haskell to tokenize the key-
strokes I collected into individual vim commands. My
lexer uses monoids to extract normal mode commands
from my log for further analysis. Here’s the source code
for the lexer:

import qualified Data.ByteString.Lazy.Char8 as LC
import qualified Data.List as DL

import qualified Data.List.Split as LS

import Data.Monoid

import System.IO

main = hSetEncoding stdout utf8 >>
LC.getContents >>= mapM_ putStrLn . pro-
cess
process = affixStrip

. startsWith
. splitOnMode
. modeSub

. capStrings
. split mark
. preprocess
subs = appEndo . mconcat .

map (Endo . sub)

20 PROGRAMMING

http://vimgolf.com
http://antlr.org
http://hn.my/parsec
http://hn.my/vimprint

sub (s,r) lst@(x:xs)
| s “DL.isPrefix0of* 1lst = sub'
| otherwise = x:sub (s,r) xs
where
sub' = r ++ sub (s,r) (drop (length s) 1st)
sub (_,_) [1 =11

preprocess = subs meta

. DL.intercalate " "
. DL.words

. DL.unwords

. DL.lines

. LC.unpack

splitOnMode = DL.concat $ map (\el -> split mode
el)

startsWith = filter (\el -> mark “DL.isPrefixOf"
el & el /= mark)

modeSub = map (subs mtsl)

split s r = filter (/= "") $ s "LS.splitOon’ r
affixStrip = clean
. concat

. map (\el -> split mark el)
capStrings = map (\el -> mark ++ el ++ mark)

clean = filter (not . DL.isInfixOf "[M")

(mark, mode, n) = ("-(*)-","-(!)-", "")

meta = [("\"",n),("\\",n),
("\195\130\194\128\195\131\194\189" ",n),
("\194\128\195\189" ",n),
("\194\128kb\ESC",n),

("\194\128kb",n), ("[>0;95;c",n),
("[>90;95;0c",n),

("\ESC",mark), ("\ETX",mark), ("\r",mark)]
[(":",mode), ("A",mode), ("a",mode),
("I",mode), ("i",mode),

("0",mode), ("0o",mode),

("v", mode), ("/",mode), ("\ENQ",""e"),
("\DLE",""p"), ("\NAK",""u"),
("\EOT","~d"), ("\ACK",""~f"),
("\STX", "), ("\EM", "y,
("\SI","?0"), ("\SYN"," V"),
("\npC2",""*r")]

mtsl

Here’s a sample of the data in its unprocessed form
and its structure after lexing:

cut -c 1-42 ~/.vimlog | tee >(cat -v;echo)
| ./lexer
“Mihere's some text~Cyyp$bimore ~CO~A.~C:w M:q

M
yyp$b
O~

My lexer reads from stdin and sends processed
normal mode commands to stdout. In the above exam-
ple pipe, I use a process substitution to print a repre-
sentation of the unprocessed data on the second line
and the resulting output of the lexer on subsequent
lines. Each line in the output of the lexer represents
a grouping of normal mode commands executed in
sequence. The lexer correctly determined that I started
in normal mode by navigating to a specific buffer using
the “M mark; then typing here's some text in insert
mode; then copying and pasting the line and moving
to the start of the last word on the line using yyp$b;
then entering additional text; and finally navigating to
the start of the line and capitalizing the first character
using O~.

Key Heat Map

After lexing my log data, I forked Patrick Wied'’s awe-
some heatmap-keyboard project [hn.my/heatmap] and
added my own custom layout to read the output of
my lexer. Patrick’s project does not detect most meta-
characters like escape, control, and command, so it was
necessary for me to write a data loader in JavaScript
and make some other modifications so the heatmap
would accurately depict key usage in vim. I translated
metacharacters used in vim to unicode representations
and mapped these onto the keyboard. Here’s what my
key usage looked like based on #500,000 normal mode
keystrokes processed by my lexer. Increasing wave-
lengths denotes more prevalent key usage:

http://hn.my/heatmap

A prominent feature of the heatmap is the prevalent
usage of the control key. I use control for numerous
movement commands in vim. For example, I use *p
for Control P [hn.my/ctrlp] and I cycle forward and
backward through open buffers with 25 and k, respec-
tively. Control is an efficient movement on my Kinesis
Advantage because I remap it to left thumb delete.

Another pattern in the heatmap that jumped out
at me was my heavy use of ~E and *v. I routinely use
these commands to navigate up and down through
source code, but moving vertically with these com-
mands is inefficient. Each time one of these commands
is executed, the cursor only moves a few lines at a time.
A more efficient pattern would be to use larger vertical
movements with ~U and ~D. These commands move the
cursor up or down a half screen at a time, respectively.

Command Frequency

The heatmap gives a good overview of how I use indi-
vidual keys, but I also wanted to learn more about how
I used different key sequences. I sorted the lines in the
output of my lexer by frequency to uncover my most
used normal commands using a simple one-liner:

$ sort normal_cmds.txt | uniq -c | sort -nr |
head -10 | \
awk '{print NR,$0}' | column -t

1 2542 j
2 2188 k
31927 3j
4 1610 p
5 1602 *j
6 1118 Y
7 987 re
8 977 ZR
9 812 P
10 799 Ay

Seeing zR rank as my 8th most used sequence was
unexpected. After pondering this, [realized a huge
inefficiency in my text editing. My .vimrc is setup to
automatically fold text. The problem with this configu-
ration is that I almost immediately unfold all folded
text, so it makes no sense for my vim configuration
to use automatically fold text by default. Therefore, I
removed this setting so that I would no longer need to
repeatedly use the zR command.

Command Complexity

Another optimization I wanted to look at was normal
mode command complexity. I was curious to see if I
could find any commands that I routinely used which
also required an excessive number of keystrokes to
execute. | wanted to find these commands so that I
could create shortcuts to speed up their execution. [
used entropy as a proxy to measure command com-
plexity using a short script in Python:

#!/usr/bin/env python

import sys

from codecs import getreader, getwriter
from collections import Counter

from operator import itemgetter

from math import log, loglp

sys.
sys.

stdin = getreader('utf-8')(sys.stdin)
stdout = getwriter('utf-8')(sys.stdout)

def H(vec, correct=True):
"""Calculate the Shannon Entropy of a vector

n

float(len(vec))

Counter(vec)

sum(((-freq / n) * log(freq / n, 2)) for
c.values())

freq in

impose a penality to correct for size
if all([correct is True, n > 0]):
h = h / loglp(n)

return h

def main():
k=1
lines = (_.strip() for _ in sys.stdin)
hs = ((st, H(list(st))) for st in lines)
srt_hs = sorted(hs, key=itemgetter(1l),
reverse=True)
for n, i in enumerate(srt_hs[:k], 1):
fmt_st = u'{r}\t{s}\t{h:.4f}".
format(r=n, s=i[@], h=i[1])
print fmt_st

if __name__ ==
main()

' main__':

22 PROGRAMMING

http://hn.my/ctrlp

The entropy script reads from stdin and finds the
normal mode command with the highest entropy. I
used the output of my lexer as input for my entropy
calculation:

$ sort normal_cmds.txt | uniq -c | sort -nr |
sed "s/A[\t]*//" | \

awk 'BEGIN{OFS="\t";}{if ($1>1@0) print
$1,$2}" |\

cut -f2 | ./entropy.py

1 ggvG$"zy 1.2516

In the command above, I first filtered all the normal

mode commands that I executed more than 100 times.

Then, among this subset, I found the command with
the highest entropy. This analysis precipitated the
command ggvG$"zy, which I executed 246 times in
45 days. The command takes an unwieldy 11 key-
strokes and yanks the entire current buffer into the

z register. | typically use this command to move the
contents of one buffer into another buffer. Since I use
this sequence so frequently, I added a short cut to my
.vimrc to reduce the number of keystrokes I need to
execute:

nnoremap <leader>ya ggvG$"zy

Conclusions
My Vim Croquet match revealed three optimizations
to decrease the number of keystrokes I use in vim:

m Use coarser navigation commands like AU and D
instead of ~E and ~Y

® Prevent buffers from automatically folding text to
obviate using zR

m Create shortcuts for verbose commands that are
frequently used like ggvG$"zy

These 3 simple changes have saved me thousands of
superfluous keystrokes each month.

The code snippets above are presented in isolation
and may be difficult to follow. To help clarify the steps
in my analysis, here’s my Makefile, which shows how
the code presented in this post fits together:

SHELL := /bin/bash

LOG := ~/.vimlog

CMDS := normal_cmds.txt

FRQS := frequencies.txt

ENTS := entropy.txt

LEXER_SRC := lexer.hs

LEXER_OBJS := lexer.{o,hi}

LEXER_BIN := lexer

H := entropy.py

UTF := iconv -f iso0-8859-1 -t utf-8

.PRECIOUS: $(LOG)
.PHONY: all entropy clean distclean

all: $(LEXER_BIN) $(CMDS) $(FRQS) entropy

$(LEXER_BIN): $(LEXER_SRC)
ghc --make $~

$(CMDS): $(LEXER_BIN)
cat $(LOG) | $(UTF) | ./$" > %@

$(FRQS): $(H) $(LOG) $(CMDS)
sort $(CMDS) | unig -c | sort -nr | sed
"s/AL \EI*//" N
awk 'BEGIN{OFS="\t";}{if ($$1>100) print
NR,$$1,$32}" > $@

entropy: $(H) $(FRQS)
cut -3 $(FRQS) | ./$(H)

clean:
@- $(RM) $(LEXER_OBJS) $(LEXER_BIN) $(CMDS)
$(FRQS) $(ENTS)

distclean: clean

Seth Brown is a Data Scientist in the telecommunications industry.
His research focuses on understanding the topology of the global
Internet using large-scale computing, statistical modeling, and
data visualization techniques. Prior to computer networking, he
was a research scientist in bioinformatics where he studied the
structure and function of gene regulatory networks. Seth writes
about topics in data analysis and data visualization on his website,
drbunsen.org. He can be found on Twitter @drbunsen

Reprinted with permission of the original author.
First appeared in hn.my/vimcroquet (drbunsen.org)

http://drbunsen.org
http://twitter.com/@drbunsen
http://hn.my/vimcroquet

AWS Tips | Wish I'd Known
Before | Started

A collection of random tips for Amazon Web Services

(AWS) that 1 wish I'd been told a few years ago.

OVING FROM PHYSICAL

servers to the “cloud”

involves a paradigm
shift in thinking. Generally in a
physical environment you care
about each individual host; they
each have their own static IP, you
probably monitor them individu-
ally, and if one goes down you have
to get it back up ASAP. You might
think you can just move this infra-
structure to AWS and start getting
the benefits of the “cloud” straight
away. Unfortunately, it's not quite
that easy (believe me, I tried). You
need to think differently when it
comes to AWS, and it’s not always
obvious what needs to be done.

So, inspired by Sehrope Sarkuni’s
recent post [hn.my/sarkuni], here’s
a collection of AWS tips I wish
someone had told me when I was
starting out. These are based on
things I've learned deploying vari-
ous applications on AWS both per-
sonally and for my day job. Some

are just “gotcha”’s to watch out for

By RICH ADAMS

(and that I fell victim to), some are
things I've heard from other people
that I ended up implementing and
finding useful, but mostly they're
just things I've learned the hard
way.

Application Development

Store no application state on your
servers.

The reason for this is so that if your
server gets killed, you won’t lose
any application state. To that end,
sessions should be stored in a data-
base, not on the local filesystem.
Logs should be handled via syslog
(or similar) and sent to a remote
store. Uploads should go direct to
S3 (don’t store on local filesystem
and have another process move to
S3 for example). And any post-pro-
cessing or long running tasks should
be done via an asynchronous queue

(SQS is great for this).

Store extra information in your
logs.

Log lines normally have informa-
tion like timestamp, pid, etc. You'll
also probably want to add instance-
id, region, availability-zone and
environment (staging, production,
etc.), as these will help debugging
considerably. You can get this infor-
mation from the instance metadata
service. The method I use is to grab
this information as part of my boot-
strap scripts, and store it in files on
the filesystem (/env/az, /env/region,
etc). This way I'm not constantly
querying the metadata service for
the information. You should make
sure this information gets updated
properly when your instances
reboot, as you don’t want to save an
AMI and have the same data per-
sist, as it will then be incorrect.

If you need to interact with AWS,
use the SDK for your language.
Don'’t try to roll your own; I did
this at first as I only needed a
simple upload to S3, but then you

24 PROGRAMMING

http://hn.my/sarkuni

add more services and it’s just an
all-around bad idea. The AWS
SDKs are well written, handle
authentication automatically,
handle retry logic, and they're
maintained and iterated on by
Amazon. Also, if you use EC2 TAM
roles (which you absolutely should,
more on this later) then the SDK
will automatically grab the correct
credentials for you.

Have tools to view application logs.
You should have an admin tool,
syslog viewer, or something that
allows you to view current real-
time log info without needing to
SSH into a running instance. If you
have centralized logging (which you
really should), then you just want
to be sure you can read the logs
there without needing to use SSH.
Needing to SSH into a running
application instance to view logs is
going to become problematic.

Operations

Disable SSH access to all servers.
This sounds crazy, I know, but
port 22 should be disallowed for
everyone in your security group.
If there’s one thing you take away
from this post, this should be it: If
you have to SSH into your serv-
ers, then your automation has
failed. Disabling it at the firewall
level (rather than on the servers
themselves) will help the transi-
tion to this frame of thinking, as it
will highlight any areas you need
to automate, while still letting you
easily re-instate access to solve
immediate issues. It’s incredibly
freeing to know that you never
need to SSH into an instance. This
is both the most frightening and yet
most useful thing I've learned.

Servers are ephemeral; you don’t
care about them. You only care
about the service as a whole.

If a single server dies, it should be of
no big concern to you. This is where
the real benefit of AWS comes in
compared to using physical serv-

ers yourself. Normally if a physical
server dies, there’s panic. With AWS,
you don’t care, because auto-scaling
will give you a fresh new instance
soon anyway. Netflix has taken

this several steps further with their
simian army, where they have things
like Chaos Monkey, which will kill
random instances in production
(they also have Chaos Gorilla to

kill AZs and I've heard rumor of a
Chaos Kong to kill regions...). The
point is that servers will fail, but this
shouldn’t matter in your application.

Don't give servers static/elastic IPs.
For a typical web application, you
should put things behind a load bal-
ancer, and balance them between
AZs. There are a few cases where
Elastic IPs will probably need to be
used, but in order to make best use
of auto-scaling you'll want to use

a load balancer instead of giving
every instance their own unique IP.

Automate everything.

This is more of general operations
advice than AWS specific, but
everything needs to be automated.
Recovery, deployment, failover, etc.
Package and OS updates should be
managed by something, whether it’s
just a bash script, or Chef/Puppet,
etc. You shouldn’t have to care about
this stuff. As mentioned earlier, you
should also make sure to disable SSH
access, as this will pretty quickly
highlight any part of your process
that isn’t automated. Remember the
key phrase from earlier, if you have
to SSH into your servers, then your
automation has failed.

Everyone gets an IAM account.
Never login to the master.

Usually you’ll have an “opera-

tions account” for a service, and
your entire ops team will have the
password. With AWS, you definitely
don’t want to do that. Every-

one gets an [AM user with just

the permissions they need (least
privilege). An IAM user can control
everything in the infrastructure. At
the time of writing, the only thing
an IAM user can’t access are some
parts of the billing pages.

If you want to protect your
account even more, make sure to
enable multi-factor authentication
for everyone (you can use Google
Authenticator). I've heard of some
users who give the MFA token
to two people, and the password
to two others, so to perform any
action on the master account, two
of the users need to agree. This
is overkill for my case, but worth
mentioning in case someone else
wants to do it.

Get your alerts to become
notifications.

If you've set everything up cor-
rectly, your health checks should
automatically destroy bad instances
and spawn new ones. There’s usu-
ally no action to take when getting
a CloudWatch alert, as everything
should be automated. If you're get-
ting alerts where manual interven-
tion is required, do a post-mortem
and figure out if there’s a way you
can automate the action in the
future. The last time I had an action-
able alert from CloudWatch was
about a year ago, and it's extremely
awesome not to be woken up at
4am for ops alerts any more.

Billing

Set up granular billing alerts.

You should always have at least one
billing alert set up, but that will
only tell you on a monthly basis
once you've exceeded your allow-
ance. If you want to catch runaway
billing early, you need a more fine
grained approach. The way I do it is
to set up an alert for my expected
usage each week. So the first week’s
alert for say $1,000, the second

for $2,000, third for $3,000, etc. If
the week-2 alarm goes off before
the 14th/15th of the month, then I
know something is probably going
wrong. For even more fine-grained
control, you can set this up for
each individual service, that way
you instantly know which service is
causing the problem. This could be
useful if your usage on one service
is quite steady month-to-month,
but another is more erratic. Have
the individual weekly alerts for the
steady one, but just an overall one
for the more erratic one. If every-
thing is steady, then this is probably
overkill, as looking at CloudWatch
will quickly tell you which service
is the one causing the problem.

Security

Use EC2 roles, do not give applica-
tions an IAM account.

If your application has AWS cre-
dentials baked into it, you're “doing
it wrong.” One of the reasons it’s
important to use the AWS SDK for
your language is that you can really
easily use EC2 IAM roles. The idea
of a role is that you specify the
permissions a certain role should
get, then assign that role to an

EC2 instance. Whenever you use
the AWS SDK on that instance,
you don’t specify any credentials.
Instead, the SDK will retrieve tem-
porary credentials which have the

permissions of the role you set up.
This is all handled transparently as
far as you're concerned. It’s secure,
and extremely useful.

Assign permissions to groups, not
users.

Managing users can be a pain, if
you're using Active Directory, or
some other external authentication
mechanism which you’ve integrated
with IAM, then this probably
won't matter as much (or maybe

it matters more). But I've found it
much easier to manage permissions
by assigning them only to groups,
rather than to individual users.

It’s much easier to rein in permis-
sions and get an overall view of the
system than going through each
individual user to see what permis-
sions have been assigned.

Set up automated security auditing.
It’s important to keep track of
changes in your infrastructure’s
security settings. One way to do this
is to first set up a security auditor
role [hn.my/secaudit], which will
give anyone assigned that role read-
only access to any security-related
settings on your account. You can
then use this rather fantastic Python
script [hn.my/secconfig], which
will go over all the items in your
account and produce a canonical
output showing your configuration.
You set up a cronjob somewhere

to run this script, and compare

its output to the output from the
previous run. Any differences will
show you exactly what has been
changed in your security configura-
tion. It's useful to set this up and
just have it email you the diff of
any changes.

Use CloudTrail to keep an audit
log.

CloudTrail will log any action
performed via the APIs or web
console into an S3 bucket. Set up
the bucket with versioning to be
sure no one can modify your logs,
and you then have a complete audit
trail of all changes in your account.
You hope that you will never need
to use this, but it’s well worth
having for when you do.

S3

Use “-” instead of “.” in bucket
names for SSL.

If you ever want to use your bucket
over SSL, using a “.” will cause you
to get certificate mismatch errors.
You can’t change bucket names
once you've created them, so you'd
have to copy everything to a new
bucket.

Avoid filesystem mounts (FUSE,
etc.).

I've found them to be about as reli-
able as a large government depart-
ment when used in critical applica-
tions. Use the SDK instead.

You don’t have to use CloudFront
in front of S3 (but it can help).

If all you care about is scalability,
you can link people directly to the
S3 URL instead of using Cloud-
Front. S3 can scale to any capacity
(although some users have reported
that it doesn’t scale instantly), so it
is great if that’s all your care about.
Additionally, updates are available
quickly in S3, yet you have to wait
for the TTL when using a CDN to
see the change (although I believe
you can set a Os TTL in Cloud-
Front now, so this point is probably
moot).

26 PROGRAMMING

http://hn.my/secaudit
http://hn.my/secconfig

If you need speed, or are
handling very high bandwidth
(10TB+), then you might want to
use a CDN like CloudFront in front
of S3. CloudFront can dramatically
speed up access for users around
the globe, as it copies your content
to edge locations. Depending on
your use case, this can also work
out slightly cheaper if you deal with
very high bandwidth (10TB+) with
lower request numbers, as it’s about
$0.010/GB cheaper for CloudFront
bandwidth than S3 bandwidth
once you get above 10TB, but the
cost per request is slightly higher
than if you were to access the files
from S3 directly. Depending on
your usage pattern, the savings
from bandwidth could outweigh
the extra cost per request. Since
content is only fetched from S3
infrequently (and at a much lower
rate than normal), your S3 cost
would be much smaller than if you
were serving content directly from
S3. The AWS documentation on
CloudFront explains how you can
use it with S3.

Use random strings at the start of
your keys.

This seems like a strange idea, but
one of the implementation details
of S3 is that Amazon uses the
object key to determine where a file
is physically placed in S3. So files
with the same prefix might end up
on the same hard disk for example.
By randomizing your key prefixes,
you end up with a better distribu-
tion of your object files.

EC2/VPC

Use tags!

Pretty much everything can be
given tags, use them! They’re great
for organizing things, make it easier
to search and group things up. You
can also use them to trigger certain
behaviors on your instances, for
example a tag of env=debug could
put your application into debug
mode when it deploys, etc.

Use termination protection for
non-auto-scaling instances. Thank
me later.

If you have any instances which
are one-off things that aren’t under
auto-scaling, then you should prob-
ably enable termination protection,
to stop anyone from accidentally
deleting the instance. I've had it
happen, it sucks, learn from my
mistake!

Use a VPC.

VPC either wasn’t around, or I
didn’t notice it when I got started
with AWS. It seems like a pain at
first, but once you get stuck in and
play with it, it's surprising easy to
set up and get going. It provides
all sorts of extra features over EC2
that are well worth the extra time
it takes to set up a VPC. First, you
can control traffic at the network
level using ACLs, you can modify
instance size, security groups, etc.
without needing to terminate an
instance. You can specify egress
firewall rules (you cannot control
outbound traffic from normal
EC2). But the biggest thing is that
you have your own private subnet
where your instances are com-
pletely cut off from everyone else,
so it adds an extra layer of protec-
tion. Don’t wait like I did, use VPC
straight away to make things easy
on yourself.

Use reserved instances to save big
$$8.

Reserving an instance is just put-
ting some money upfront in order
to get a lower hourly rate. It ends
up being a lot cheaper than an
on-demand instance would cost.
So if you know you're going to be
keeping an instance around for 1
or 3 years, it’s well worth reserv-
ing them. Reserved instances are a
purely logical concept in AWS, you
don’t assign a specific instance to
be reserved, but rather just specify
the type and size, and any instances
that match the criteria will get the
lower price.

Lock down your security groups.
Don’t use 0.0.0.0/0 if you can help
it; make sure to use specific rules

to restrict access to your instances.
For example, if your instances are
behind an ELB, you should set your
security groups to only allow traffic
from the ELBs, rather than from
0.0.0.0/0. You can do that by enter-
ing “amazon-elb/amazon-elb-sg” as
the CIDR (it should auto-complete
for you). If you need to allow some
of your other instances access to
certain ports, don’t use their IP, but
specify their security group identi-
fier instead (just start typing “sg-”
and it should auto-complete for

you).

Don’t keep unassociated Elastic
IPs.

You get charged for any Elastic IPs
you have created but not associ-
ated with an instance, so make sure
you don’t keep them around once
you're done with them.

ELB

Terminate SSL on the load
balancer.

You'll need to add your SSL cer-
tificate information to the ELB, but
this will take the overhead of SSL
termination away from your servers
which can speed things up. Addi-
tionally, if you upload your SSL
certificate, you can pass through the
HTTPS traffic and the load bal-
ancer will add some extra headers
to your request (x-forwarded-for,
etc.), which are useful if you want
to know who the end user is. If you
just forward TCP, then those head-
ers aren’t added and you lose the
information.

Pre-warm your ELBs if you're
expecting heavy traffic.

It takes time for your ELB to scale
up capacity. If you know you're
going to have a large traffic spike
(selling tickets, big event, etc.), you
need to “warm up” your ELB in
advance. You can inject a load of
traffic, and it will cause ELB to scale
up and not choke when you actu-
ally get the traffic; however, AWS
suggests you contact them instead
to pre-warm your load balancer.
Alternatively you can install your
own load balancer software on an
EC2 instance and use that instead
(HAProxy, etc).

ElastiCache

Use the configuration endpoints,
instead of individual node
endpoints.

Normally you would have to make
your application aware of every
Memcached node available. If you
want to dynamically scale up your
capacity, then this becomes an issue
as you will need to have some way
to make your application aware of
the changes. An easier way is to use

the configuration endpoint, which
means using an AWS version of a
Memcached library that abstracts
away the auto-discovery of new
nodes. The AWS guide to cache
node auto-discovery has more
information.

RDS

Set up event subscriptions for
failover.

If you're using a Multi-AZ setup,
this is one of those things you
might not think about which ends
up being incredibly useful when
you do need it.

CloudWatch

Use the CLI tools.

It can become extremely tedious to
create alarms using the web con-
sole, especially if you're setting up
a lot of similar alarms, as there’s no
ability to “clone” an existing alarm
while making a minor change else-
where. Scripting this using the CLI
tools can save you lots of time.

Use the free metrics.

CloudWatch monitors all sorts of
things for free (bandwidth, CPU
usage, etc.), and you get up to 2
weeks of historical data. This saves
you having to use your own tools
to monitor you systems. If you need
longer than 2 weeks, unfortunately
you'll need to use a third-party or
custom built monitoring solution.

Use custom metrics.

If you want to monitor things not
covered by the free metrics, you can
send your own metric information
to CloudWatch and make use of the
alarms and graphing features. This
can not only be used for things like
tracking disk space usage, but also for
custom application metrics too. The
AWS page on publishing custom
metrics has more information.

Use detailed monitoring.

It’s ~$3.50 per instance/month, and
well worth the extra cost for the
extra detail. 1 minute granularity
is much better than 5 minutes. You
can have cases where a problem is
hidden in the 5 minute breakdown
but shows itself quite clearly in the
1 minute graphs. This may not be
useful for everyone, but it's made
investigating some issues much
easier for me.

Auto-Scaling

Scale down on INSUFFICIENT _
DATA as well as ALARM.

For your scale-down action, make
sure to trigger a scale-down event
when there’s no metric data, as
well as when your trigger goes off.
For example, if you have an app
which usually has very low traffic,
but experiences occasional spikes,
you want to be sure that it scales
down once the spike is over and
the traffic stops. If there’s no traffic,
you'll get INSUFFIFIENT_DATA
instead of ALARM for your low
traffic threshold and it won't trigger
a scale-down action.

Use ELB health check instead of
EC2 health checks.

This is a configuration option when
creating your scaling group, you can
specify whether to use the standard
EC2 checks (is the instance con-
nected to the network), or to use
your ELB health check. The ELB
health check offers way more flex-
ibility. If your health check fails and
the instance gets taken out of the
load balancing pool, you're pretty
much always going to want to have
that instance killed by auto-scaling
and a fresh one take its place. If
you don’t set up your scaling group
to use the ELB checks, then that
won'’t necessarily happen. The

28 PROGRAMMING

AWS documentation on adding the
health check has all the information
you need to set this up.

Only use the availability zones
(AZs) your ELB is configured for.
If you add your scaling group to
multiple AZs, make sure your ELB
is configured to use all of those AZs,
otherwise your capacity will scale
up, and the load balancer won’t be
able to see them.

Don’t use multiple scaling triggers
on the same group.

If you have multiple CloudWatch
alarms which trigger scaling actions
for the same auto-scaling group,

it might not work as you initially
expect it to. For example, let’s say
you add a trigger to scale up when
CPU usage gets too high, or when
the inbound network traffic gets
high, and your scale down actions
are the opposite. You might get an
increase in CPU usage, but your
inbound network is fine. So the
high CPU trigger causes a scale-up
action, but the low inbound traffic
alarm immediately triggers a scale-
down action. Depending on how
you've set your cool down period,
this can cause quite a problem

as they’ll just fight against each
other. If you want multiple triggers,
you can use multiple auto-scaling
groups.

IAM

Use IAM roles.

Don’t create users for applica-
tion, always use IAM roles if you
can. They simplify everything, and
keeps things secure. Having appli-
cation users just creates a point of
failure (what if someone acciden-
tally deletes the API key?) and it
becomes a pain to manage.

Users can have multiple API keys.
This can be useful if someone is
working on multiple projects, or if
you want a one-time key just to test
something out, without wanting to
worry about accidentally revealing
your normal key.

IAM users can have multi-factor
authentication, use it!

Enable MFA for your IAM users
to add an extra layer of security.
Your master account should most
definitely have this, but it’s also
worth enabling it for normal IAM
users too.

Route53

Use ALIAS records.

An ALIAS record will link your
record set to a particular AWS
resource directly (i.e., you can map
a domain to an S3 bucket), but the
key is that you don’t get charged
for any ALIAS lookups. So whereas
a CNAME entry would cost you
money, an ALIAS record won't.
Also, unlike a CNAME, you can
use an ALIAS on your zone apex.
You can read more about this on
the AWS page for creating alias
resource record sets.

Elastic MapReduce

Specify a directory on S3 for Hive
results.

If you use Hive to output results
to S3, you must specify a direc-
tory in the bucket, not the root of
the bucket, otherwise you'll get a
rather unhelpful NullPointerEx-
ception with no real explanation as
to why.

Miscellaneous Tips

Scale horizontally.

I've found that using lots of smaller
machines is generally more reli-
able than using a smaller number
of larger machines. You need to
balance this though, as trying to
run your application from 100
t1.micro instances probably isn’t
going to work very well. Break-

ing your application into lots of
smaller instances means you'll be
more resilient to failure in one of
the machines. If you're just running
from two massive compute clus-
ter machines, and one goes down,
things are going to get bad.

Your application may require
changes to work on AWS.

While a lot of applications can
probably just be deployed to an
EC2 instance and work well, if
you're coming from a physical
environment, you may need to re-
architect your application in order
to accommodate changes. Don’t
just think you can copy the files
over and be done with it.

Decide on a naming convention
early, and stick to it.

There’s a lot of resources on AWS
where you can change the name
later, but there’s equally a lot where
you cannot (security group names,
etc.). Having a consistent naming
convention will help to self-doc-
ument your infrastructure. Don’t
forget to make use of tags too. M

Rich Adams is a systems engineer at Gra-
cenote who used to work on departure
control systems for the airline industry.
He now splits his time between playing
with Amazon Web Services and making
sure there’s enough Mountain Dew flow-
ing through him. Say hi to him on Twitter
at @r_adams

Reprinted with permission of the original author.
First appeared in hn.my/awstips (wblinks.com)

http://twitter.com/@r_adams
http://hn.my/awstips

Why I'm Betting on Julia

By EVAN MILLER

HE PROBLEM WITH most programming lan-

guages is they're designed by language geeks,

who tend to worry about things that I don’t
much care for. Safety, type systems, homoiconicity,
and so forth. I'm sure these things are great, but when
I'm messing around with a new project for fun, my
two concerns are 1) making it work and 2) making it
fast. For me, code is like a car. It's a means to an end.
The “expressiveness” of a piece of code is about as
important to me as the “expressiveness” of a catalytic
converter.

This approach to programming is often (derisively)
called cowboy coding. I don’t think a cowboy is quite
the right image, because a cowboy must take frequent
breaks due to the physical limitations of his horse. A
better aspirational image is an obsessed scientist who
spends weeks in the laboratory and emerges, bleary-
eyed, exhausted, and wan, with an ingenious new
contraption that possibly causes a fire on first use.

Enough about me. Normally I use one language to
make something work, and a second language to make
it fast, and a third language to make it scream. This
pattern is fairly common. For many programmers, the
prototyping language is often Python, Ruby, or R. Once
the code works, you rewrite the slow parts in C or
C++. If you are truly insane, you then rewrite the inner
C loops using assembler, CUDA, or OpenCL.

Unfortunately, there’s a big wall between the proto-
typing language and C, and another big wall between
C and assembler. Besides having to learn three different
languages to get the job done, you have to mentally
switch between the layers of abstraction. At a more
quotidian level, you have to write a significant amount

of glue code, and often find yourself switching between
different source files, different code editors, and dispa-
rate debuggers.

I read about Julia [julialang.org] a while back, and
thought it sounded cool, but not like something I
urgently needed. Julia is a dynamic language with great
performance. That’s nice, I thought, but I've already
invested a lot of time putting a Ferrari engine into my
VW Beetle — why would I buy a new car? Besides,
nowadays a number of platforms — Java HotSpot,
PyPy, and asm.js, to name a few — claim to offer “C
performance” from a language other than C.

Only later did I realize what makes Julia differ-
ent from all the others. Julia breaks down the second
wall — the wall between your high-level code and
native assembly. Not only can you write code with the
performance of C in Julia, you can take a peek behind
the curtain of any function into its LLVM Intermediate

Representation as well as its generated assembly code
— all within the REPL. Check it out.

emiller ~/Code/julia (master) ./julia

A fresh approach to technical computing
Documentation: http://docs.julialang.org
Type "help()" to list help topics

Version 0.3.0-prerelease+261 (2013-11-30)
Commit 97b5983 (@ days old master)
x86_64-apple-darwinl2.5.0

julia> f(x) = x * X

30 PROGRAMMING

http://julialang.org

f (generic function with 1 method)

julia> f(2.0)
4.0

julia> code_llvm(f, (Floaté4,))

define double @julia_f662(double) {
top:
%1 = fmul double %0, %0,
ret double %1, !dbg !3553

ldbg 13553

julia> code_native(f, (Float64,))
.section __TEXT,__text,regular,pure_
instructions
Filename: none
Source line: 1
push

mov

RBP
RBP, RSP
Source line: 1

vmulsd XMM@, XMM@, XMM@
pop RBP
ret

Bam — you can go from writing a one-line function
to inspecting its LLVM-optimized X86 assembler code
in about 20 seconds.

So forget the stuff you may have read about Julia’s
type system, multiple dispatch and homoiconi-what-
ever. That stuff is cool (I guess), but if you're like me,
the real benefit is being able to go from the first proto-
type all the way to balls-to-the-wall multi-core SIMD
performance optimizations without ever leaving the
Julia environment.

That, in a nutshell, is why I'm betting on Julia. I
hesitate to make the comparison, but it’s poised to do
for technical computing what Node.js is doing for web
development — getting disparate groups of programmers
to code in the same language. With Node.js, it was the
front-end designers and the back-end developers. With
Julia, it's the domain experts and the speed freaks. That
is a major accomplishment.

Julia’s only drawback at this point is the relative
dearth of libraries — but the language makes it unusu-
ally easy to interface with existing C libraries. Unlike
with native interfaces in other languages, you can call C
code without writing a single line of C, and so I antici-
pate that Julia’s libraries will catch up quickly. From

personal experience, [was able to access 5K lines of C
code using about 150 lines of Julia — and no extra glue
code in C.

If you work in a technical group that’s in charge of
a dizzying mix of Python, C, C++, Fortran, and R code
— or if you're just a performance-obsessed gun-slinging
cowboy shoot-from-the-hip Lone Ranger like me — I
encourage you to download Julia and take it for a spin.
If you're hesitant to complicate your professional life
with Yet Another Programming Language, think of
Julia as a tool that will eventually help you reduce the
number of languages that your project depends on.

I almost neglected to mention: Julia is actually quite
a nice language, even ignoring its excellent performance
characteristics. I'm no language aesthete, but learning
it entailed remarkably few head-scratching moments.
At present Julia is in my top 3 favorite programming
languages.

Finally, you'll find an active and supportive Julia
community. My favorite part about the community is
that it is full of math-and-science types who tend to be
very smart and very friendly. That’s because Julia was
not designed by language geeks — it came from math,
science, and engineering MIT students who wanted a
fast, practical language to replace C and Fortran. So it’s
not designed to be beautiful (though it is); it’s designed
to give you answers quickly. That, for me, is what com-
puting is all about. M

Evan Miller is the creator of Wizard [wizardmac.com], a next-
generation statistics package for Mac.

Reprinted with permission of the original author.
First appeared in hn.my/julia (evanmiller.org)

http://wizardmac.com

SPECIAL

Forever Alone

Why Loneliness Matters In The Social Age

By JONATHAN E. CHEN

ONELINESS WAS A problem

I experienced most poi-

gnantly in college. In the
three years I spent at Carnegie
Mellon, the crippling effects of
loneliness slowly pecked away at
my enthusiasm for learning and
for life, until I was drowning in an
endless depressive haze that never
completely cleared until I left
Pittsburgh.

It wasn’t for lack of trying either.
At the warm behest of the orienta-
tion counselors, I joined just the
right number of clubs, participated
in most of the dorm activities, and
tried to expand my social portfolio
as much as possible.

None of it worked.

To the extent that I sought out
CAPS (our student psych and
counseling service) for help, the
platitudes they offered as advice
(“Just put yourself out there!”) only
served to confirm my suspicion
that loneliness isn’t a very visible

I got up and went over and looked out the window. I felt so lonesome, all of
a sudden. I almost wished I was dead. Boy, did I feel rotten. I felt so damn
lonesome. I just didn’t want to hang around anymore. It made me too sad

and lonesome.

problem. (After all, the cure for
loneliness isn’t exactly something
that could be prescribed. “Have
you considered transferring?” they
finally suggested, after exhausting
their list of thought-terminating
clichés. I graduated early instead.)

As prolonged loneliness took its
toll, I became very unhappy — to
put it lightly — and even in retro-
spect I have difficulty pinpointing a
specific cause. It wasn’t that I didn’t
know anyone or failed to make any
friends, and it wasn't that I was
alone more than I liked.

— J.D. Salinger in Catcher in the Rye

Sure, I could point my finger at
the abysmally fickle weather pat-
terns of Pittsburgh, or the pseudo-
suburban bubble that envelops the
campus. There might even be a
correlation between my academic
dissonance with computer sci-
ence and my feelings of loneliness.
I might also just be an extremely
unlikable person.

For whatever the reason (or a
confluence thereof) the reality
remained that I struggled with
loneliness throughout my time in
college.

3k 3k 3k 3k ok ok ok ok ok ok kok ok ok

32 SPECIAL

RECALL A CONVERSATION with my

friend Dev one particular evening

on the patio of our dormitory. It
was the beginning of my junior
and last year at CMU, and I had
just finished throwing an ice cream
party for the residents I oversaw as
an RA.

“Glad to be back?” he asked as
he plopped down on a lawn chair
beside me.

“No, not really.”

The sun was setting, and any
good feelings about the upcoming
semester with it. We made small
talk about the school in general,
as he had recently transferred, but
eventually Dev asked me if I was
happy there.

“No, not really.”

“Why do you think you're so
miserable here?”

“I don’t know. A lot of things,

I guess. But mostly because I feel
lonely. Like I don’t belong, like

I can’t relate to or connect with
anyone on an emotional level. I
haven’t made any quality relation-
ships here that I would look back

on with any fond memories. Fuck...

I don’t know what to do.”

College, at least for me, was a
harrowing exercise in how help-
lessly debilitating, hopelessly
soul-crushing, and at times life-
threatening loneliness could be. It’s
a problem nobody talks about, and

it'’s been a subject of much personal

relevance and interest.

Loneliness as a Health Problem
A recent article published on Slate
outlines the hidden dangers of
social isolation. Chronic loneliness,
as Jessica Olien discovered, poses
serious health risks that not only
impact mental health but physi-
ological well-being as well.

The lack of quality social rela-
tionships in a person’s life has been
linked to an increased mortality
risk comparable to smoking and
alcohol consumption and exceeds
the influence of other risk factors
like physical inactivity and obesity.
It's hard to brush off loneliness as a
character flaw or an ephemeral feel-
ing when you realize it kills more
people than obesity.

Research also shows that loneli-
ness diminishes sleep quality and
impairs physiological function, in
some cases reducing immune func-
tion and boosting inflammation,
which increases risk for diabetes
and heart disease.

Why hasn’t loneliness gotten
much attention as a medical prob-
lem? Olien shares the following
observation:

As a culture we obsess over strate-
gies to prevent obesity. We pro-
vide resources to help people quit
smoking. But I have never had a
doctor ask me how much meaning-
ful social interaction I am getting.
Even if a doctor did ask, it is not
as though there is a prescription for
meaningful social interaction.

As a society we look down upon
those who admit to being lonely,
we cast and ostracize them with
labels like “loners” insofar as they
prefer to hide behind shame and
doubt rather than speak up. This
dynamic only makes it harder to
devise solutions to what is clearly a
larger societal issue, and it certainly

brings to question the effects of cul-
ture on our perception of loneliness
as a problem.

Loneliness as a Culture Problem
Stephen Fry, in a blog post titled
Only the Lonely which explains his
suicide attempt last year, describes
in detail his struggle with depres-
sion. His account offers a rare and
candid glimpse into the reality

of loneliness with which those
afflicted often hide from the public:

“Lonely? I get invitation cards
through the post almost every day.
I shall be in the Royal Box at
Wimbledon and I have serious and
generous offers from friends asking
me to join them in the South of
France, Italy, Sicily, South Africa,
British Columbia and America this
summer. I have two months to start
a book before I go off to Broadway
for a run of Twelfth Night there.

“I can read back that last sentence
and see that, bipolar or not, if I'm
under treatment and not actually
depressed, what the fuck right do
I have to be lonely, unhappy or
forlorn? I don’t have the right. But
there again I don’t have the right
not to have those feelings. Feelings
are not something to which one
does or does not have rights.

“In the end loneliness is the most
terrible and contradictory of my
problems.”

In the United States, approxi-
mately 60 million people, or 20%
of the population, feel lonely.
According to the General Social
Survey, between 1985 and 2004,
the number of people with whom
the average American discusses
important matters decreased from
three to two, and the number with

no one to discuss important matters
with tripled.

Modernization has been cited as
a reason for the intensification of
loneliness in every society around
the world, attributed to greater
migration, smaller household
sizes, and a larger degree of media
consumption.

In Japan, loneliness is an even
more pervasive, layered problem
mired in cultural parochialisms.
Gideon Lewis-Kraus pens a beauti-
ful narrative on Harper’s in which
he describes his foray into the
world of Japanese co-sleeping cafés:

“Why do you think he came here,
to the sleeping café?”

“He wanted five-second hug maybe
because he had no one to hug.
Japan is haji culture. Shame. Is
shame culture. Or maybe also is
shyness. I don’t know why. Tokyo
people...very alone. And he does not
have...” She thought for a second,
shrugged, reached for her phone.
“Please hold moment.”

She held it close to her face,
multitouched the screen not with
thumb and forefinger but with tiny
forefinger and middle finger. I could
hear another customer whisper-
ing in Japanese in the silk-walled
cubicle at our feet. His co-sleeper
laughed loudly, then laughed sofily.
Yukiko tapped a button and shone
the phone at my face. The screen
said COURAGE.

It took an enormous effort for me
to come to terms with my losing
battle with loneliness and the ensu-
ing depression at CMU, and an even
greater leap of faith to reach out
for help. (That it was to no avail is
another story altogether.) But what
is even more disconcerting to me

is that the general stigma against
loneliness and mental health issues,
hinging on an unhealthy stress
culture, makes it hard for afflicted
students to seek assistance at all.

As Olien puts it, “In a society that
judges you based on how expansive
your social networks appear, loneli-
ness is difficult to fess up to. It feels
shameful.”

To truly combat loneliness from
a cultural angle, we need to start
by examining our own fears about
being alone and to recognize that
as humans, loneliness is often
symptomatic of our unfulfilled
social needs. Most importantly, we
need to accept that it's okay to feel
lonely. Fry, signing off on his heart-
felt post, offers this insight:

“Loneliness is not much written
about (my spell-check wanted me
to say that loveliness is not much
written about — how wrong that
is) but humankind is a social spe-
cies and maybe it's something we
should think about more than we

dO ”

Loneliness as a Technology
Problem

Technology, and by extension media
consumption in the Internet age,
adds the most perplexing (and per-
haps the most interesting) dimen-
sion to the loneliness problem. As it
turns out, technology isn’t necessar-
ily helping us feel more connected,;
in some cases, it makes loneliness
worse.

The amount of time you spend
on Facebook, as a recent study
found, is inversely related to how
happy you feel throughout the day.

Take a moment to watch this
video: http://vimeo.com/70534716

It’s a powerful, sobering reminder
that our growing dependence on
technology to communicate has
serious social repercussions, to
which Cohen presents his central
thesis:

We are lonely, but we're afraid of
intimacy, while the social networks
offer us three gratifying fantasies:
1) That we can put our attention
wherever we want it to be. 2) That
we will always be heard. 3) That
we will never have to be alone.

And that third idea, that we will
never have to be alone, is central to
changing our psyches. It's shaping a
new way of being. The best way to
describe it is:

I share, therefore I am.

Public discourse on the cultural
ramifications of technology is
certainly not a recent development,
and the general sentiment that our
perverse obsession with sharing will
be humanity’s downfall continues
to echo in various forms around
the web: articles proclaiming that
Instagram is ruining people’s lives,
the existence of a section on Reddit
called cringepics where people
congregate to ridicule things others
post on the Internet, the increasing
number of self-proclaimed “social
media gurus” on Twitter, to name a
few.

The signs seem to suggest we
have reached a tipping point for
“social” media that’s not very social
on a personal level, but whether it
means a catastrophic implosion or
a gradual return to more authentic
forms of interpersonal communica-
tions remains to be seen.

34 SPECIAL

http://vimeo.com/70534716

While technology has been a
source of social isolation for many,
it has the capacity to alleviate
loneliness as well. A study funded
by the online dating site eHar-
mony shows that couples who met
online are less likely to divorce and
achieve more marital satisfaction
than those who met in real life.

The same model could poten-
tially be applied to friendships, and
it's frustrating to see that there
aren’t more startups leveraging this
opportunity when the problem is so
immediate and in need of solutions.
It’s a matter of exposure and educa-
tion on the truths of loneliness, and
unfortunately we’re just not there
yet.

EE LT T T T TR

THE PERILS OF loneliness
shouldn’t be overlooked in
an increasingly hyper-connected
world that often tells another story
through rose-tinted lenses. Rather,
the gravity of loneliness should
be addressed and brought to light
as a multifaceted problem, one
often muted and stigmatized in
our society. I learned firsthand how
painfully real of a problem loneli-
ness could be, and more should be
done to spread its awareness and to
help those affected.

“What do you think I should do?”
I looked at Dev as the last traces of
sunlight teetered over the top of
Morewood Gardens. It was a rhe-
torical question — things weren’t
about to get better.

“Find better people,” he replied.

I offered him a weak smile in
return, but little did I know then
how prescient those words were.

In the year that followed, I
started a fraternity with some of the
best kids I'd come to know (Dev
included), graduated college and
moved to San Francisco, made some
of the best friends I've ever had,
and never looked back, if only to
remember, and remember well, that
it'’s never easy being lonely.

Jonathan E. Chen (@wikichen) is a designer
based in California. He received his B.S. in
computer science from Carnegie Mellon
University. In the past he’s worked as a
front-end developer and interaction
designer at various startups. He is cur-
rently taking some time off to explore his
interests in food and photography and is
looking for new opportunities.

Reprinted with permission of the original author.
First appeared in hn.my/foreveralone (wikichen.is)

http://twitter.com/@wikichen
http://hn.my/foreveralone

Killing the Crunch Mode
Anti-pattern

N THE SOFTWARE industry,

especially the startup world,

Crunch Mode is a ubiquitous,
unhealthy anti-pattern. Crunch
Mode refers to periods of overtime
work brought on by the need to
meet a project deadline. Develop-
ers stereotypically glorify the ability
and propensity to stay up all night
grinding through a difficult prob-
lem. It’s part of our folklore. It’s
part of how we’re measured. It’s
something companies and lead-
ers take advantage of in order to
accomplish more with less.

And it’s stupid.

If you want a “knowledge worker”

to be as ineffective and produce
the lowest level of quality pos-
sible, deprive them of their sleep
and hold them to an unrealistic

deadline. In other words, activate
Crunch Mode.

By CHAD FOWLER

Why Not Crunch?

» It makes us stupid. The more I
work, the less relevant my years
of experience become. I con-
stantly make rookie mistakes.

I break things in production.
I leave messes behind. I waste
hours going down the wrong
train of thought.

= It burns people out, sometimes
permanently. They burn up their
passion that takes down time to
replenish. Unless the non-Crunch
work is sufficiently energizing
(and frequent), enough crunch-
ing can cause your best people to
leave.

u It makes people lazy and less
productive. This may seem ironic,
but when someone puts in heroic
levels of effort, they start to place
less value on each minute. I know
that if I work all night, then an
hour brain-break mid-day sounds
very reasonable. The problem is
that these breaks become a habit
that can persist between Crunch
times.

It’s a risky way to make your
commitments. Crunch Mode
means you are using your team
beyond capacity. That'’s like
trying to drive 50km on 40km of
gas. It might be OK, but if you
do it all the time you're going to
end up broken down on the side
of the road waiting for help at
some point. Maybe more often
than not.

Accountability is lost. When
someone is working all hours,
they can’t be blamed for mis-
takes. They can’t be blamed for
coming in late, forgetting an
email, introducing bugs, not writ-
ing tests, cutting technical cor-
ners, and doing all sorts of things
that don’t describe how you want
people on your team behaving.

It puts the credibility of manage-
ment in question every time.
Because, managers, believe it or
not, every single time it happens,
the entire team asks themselves,
“But why?”

36 SPECIAL

In fields that require less creativity and
thought, Crunch Mode might even really
work as a (ruthless) management technique.
In software development, it just doesn't.

u It shows a team that the leader
cares about meeting a business
goal more than he or she cares
about their health. This may
sound harsh, but it is literally
true.

The more you have to use your
brain, the less effective and healthy
Crunch Mode is. In fields that
require less creativity and thought,
it might even really work as a
(ruthless) management technique.
In software development, it just
doesn’t.

Why do we do it?

The number one reason teams go
into Crunch Mode is that their
leaders have failed to understand
and/or set realistic expectations
for the time it takes to complete a
project. In worst cases, the dead-
lines are arbitrarily set by manage-
ment and not tied to any specific
business need. In other cases, the
deadlines are inflexible, but the
scope can and should be adjusted
to a realistic level. Sure, it may be
that the team committed to those

incorrect deadlines, but it’s up to
the ones deciding on the deadlines
to verify that they're realistic before
making a commitment.

Fear and the resulting breakdown
of communication also drive us into
Crunch Mode. “Can you get this
done by ?”“Uh...yes?” Develop-
ers fear saying “no.” Managers fear
looking bad by committing to what
seem like far off dates. Manag-
ers fear setting far off deadlines,
because developers miss dates more
often than not. “If we pad the esti-
mates are we going to miss those by
20% too?”

Another reason we go into
Crunch Mode is that we are perpet-
uating a culture of cowboy heroism
which many of us unwittingly get
caught up in. The feeling of finish-
ing tons of work in a short period
and depriving oneself of quality
personal time can be addicting,
especially when it results in “saving
the day” for a project. Rolling up
your sleeves and cranking to the
end of a deadline makes you feel
valuable in a very concrete way.

Without your overtime, the project
doesn’t get done on time. With it,
the project is saved. It’s hard to find
such black and white ways to add
value in daily “normal” work.
Maybe the most addictive feature
of Crunch Mode is it’s the easiest
way to see a team really click. At
the beginning of Crunch Mode,
people get intensely focused. Com-
munication is streamlined. The big
important stuff gets tackled quickly
and finished. A team can initially
raise its skill level a notch with the
focus alone. It feels great as both
a manager and a team member to
work that efficiently and effectively.
Unfortunately it’s difficult (not
impossible) to work this way all the
time, so we're tempted to activate
Crunch Mode on occasion just to
feel this way again.

Alternatives to Crunch-Mode

= Miss the deadline. Ya, that’s
right. Let your customers down
this time. Make less money. Incur
opportunity cost. Just fail. You
already failed to manage your
team and your time. Maybe you
should let that have more visible
consequences?

= Set smaller goals. When you set
a massive goal, way off in the
future, it’s impossible to estimate
whether it’s actually realistic.
However, if you set a goal for this
afternoon, you're probably going
to be pretty accurate with your
estimates.

= Measure progress concretely
and in small steps. Never trust a
status report, even from yourself.
In software, the only deliverable
that matters is one that you can
execute.

= Set more realistic goals for the
team and the problems you
face. If you're continually having
to slip into Crunch Mode, you
clearly don’t understand your
capabilities. Admit that you're
going to go slower than you
expected and adjust for it.

As unhealthy, counterproduc-

tive, and just plain stupid as Crunch

Mode is, sometimes you just have
to do it. We all accept that. Crunch
Mode is the nuclear option. A
leader needs to have it available as a
tool, but each time he or she wields
this tool, he or she pays in long-
term credibility and trust.

Can we stop it?

It’s time to finally stop this insanity.
Think of the time, money, energy,
and potential happiness wasted on
poor planning, communication, and
leadership.

Managers, hold yourself account-
able for Crunch Mode when it hap-
pens. See it as a personal failure.

Everyone else, hold yourself
accountable for every non-crunch
minute you work. Make them
count. Over-communicate. Focus. B

Chad Fowler is an internationally known
software developer, trainer, manager,
speaker, and musician. Over the past
decade he has worked with some of
the world’s largest companies and most
admired software developers. Chad is the
author or co-author of a number of popu-
lar software books, including“The Passion-
ate Programmer: Creating a Remarkable
Career in Software Development”.

Reprinted with permission of the original author.
First appeared in hn.my/crunchmode (chadfowler.com)

38 SPECIAL

http://hn.my/crunchmode

Zmailjet

EMAIL FOR YOUR APPS

‘ SEND. TRACK. DELIVER. A

Your one stop shop for ALL your email needs.
Manage lists as well. No extra fees for Newsletters.

Priority headers to deliver notifications in real time.

Go for mailjet

https://www.mailjet.com/?utm_source=hackermonthly&utm_medium=pdf&utm_campaign=October-hackermonthly

You push It
we test It
& deploy It

circleci.com/?join=hackermonthly

http://circleci.com/?join=hackermonthly

	FEATURES
	How to Win as a First-Time Founder
	On Hacking

	PROGRAMMING
	Make the Type System Do the Work
	Why Registers Are Fast and RAM Is Slow
	Vim Croquet
	AWS Tips I Wish I'd Known Before I Started
	Why I’m Betting on Julia

	SPECIAL
	Forever Alone
	Killing the Crunch Mode Anti-pattern

