
Issue 43  December 2013

How I Failed
Tim O’Reilly

2  ﻿

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexibile: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!
Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com
http://circleci.com/?join=hackermonthly

  3

Metrics and monitoring for people
who know what they want
We know from experience that monitoring your servers and
applications can be painful, so we built the sort of service that
we would want to use. Simple to set up, responsive support
from people who know what they're talking about, and reliably
fast metric collection and dashboards.

Why Hosted Graphite?

• Hosted metrics and StatsD: Metric aggregation without the setup headaches

• High-resolution data: See everything like some glorious mantis shrimp / eagle hybrid*

• Flexibile: Lots of sample code, available on Heroku

• Transparent pricing: Pay for metrics, not data or servers

• World-class support: We want you to be happy!
Promo code: HACKER

*Hosted Graphite’s mantis shrimp / eagle breeding program has been unsuccessful thus far

Dashboards StatsD Happiness

Grab a free trial at http://www.hostedgraphite.com

http://hostedgraphite.com

4  ﻿

Curator
Lim Cheng Soon

Contributors
Tim O’Reilly
Jeff Wofford
David Nolen
Dennis Kubes
Dominic Szablewski
John Croisant
Felix Winkelmann
Francois Zaninotto
Bemmu Sepponen
Dave Gooden

Proofreaders
Emily Griffin
Sigmarie Soto

Illustrator
Joel Benjamin

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Joel Benjamin

Issue 43 December 2013

How I Failed
Tim O’Reilly

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-43

Contents
FEATURES

06  How I Failed
By Tim O’Reilly

12  What Programming a Game in 48 Hours
Taught Me About Programming Games
By jeff Wofford

PROGRAMMING

16  ClojureScript 101
By David Nolen

20  Basics of Function Pointers in C
By Dennis Kubes

25  HTML5 Live Video Streaming Via WebSockets
By Dominic Szablewski

26  Behind the Scenes with CHICKEN Scheme
By John Croisant & Felix Winkelmann

30  Client-side Full-text Search in CSS
By François Zaninotto

SPECIAL

32  Hack Your Motivation
By Bemmu SEPPONEN

STARTUPS

34  10 Inglorious Years of Bootstrapping
By Dave Gooden

http://hackermonthly.com/issue-43

6  FEATURES

FEATURES

When you start out
as an entrepre-
neur, it’s just you
and your idea, or

you and your co-founders, and your idea.
Then you add customers, and they shape and
mold you and that idea until you achieve
the fabled “product-market fit.” If you are
lucky and diligent, you achieve that fit more
than once, reinventing yourself with multiple
products and multiple customer segments.

But if you are to succeed in building an
enduring company, it has to be about more
than that: it’s about the team and the institu-
tion you create together. As a management
team, you aren’t just working for the com-
pany; you have to work on the company,
shaping it, tuning it, setting the rules that it
will live by. And it’s easy to give that short
shrift.

At O’Reilly Media, we’ve built a successful
business and had a big impact on our indus-
try. But looking back, it’s clear how often we
failed. Some were failures of vision, some
failures of nerve, but most were failures in
building and cultivating company culture.

What do I mean by culture? Atul Gawande
summed it up perfectly in his recent New
Yorker article “Slow Ideas.” You have a cul-
ture when “X is what people do, day in and
day out, even when no one is watching. “You
must” rewards mere compliance. Getting to
“X is what we do” means establishing X as
the norm.”

By Tim O’Reilly

How I Failed
Six Lessons Learned.

  7

What I Got Right
I did a good job setting the com-
pany goals: “Work on stuff that
matters,” “Create more value than
you capture,” “Change the world by
spreading the knowledge of inno-
vators.” Our principles have been
the lodestone that led us into new
markets.

We were originally a technical
writing consulting firm, but our
desire to tell the truth about what
works and what doesn’t (rather
than telling the story as the product
manufacturer wanted it told) led
us to publish our own books. We
wanted those books to be available
online, so we began working with
eBooks all the way back in 1987.
Influenced by the ideals of the free
software movement, we didn’t
want those books to be hostage to
proprietary software, so we worked
on standards for interoperability
(what became Docbook XML) and
adopted the Viola browser (the first
graphical web browser) as a free
online book reader.

Working with Viola led us to
the web, and we got so excited
about it that we went out on a
limb to include it at the last minute
in the book we published about
the Internet in 1992, The Whole
Internet User’s Guide and Catalog,
even though there were only 200
websites at the time. The book sold
a million copies.

When Barnes & Noble or Borders
returned books to us, stickered and
unsalable, we didn’t pulp them;
we sent them to Africa, where
they could be useful to people
who couldn’t afford them. We
astounded publishing competitors
in the early ‘90s with our UNIX
and X Bibliography for bookstores,
a marketing piece that included
their books as well as our own. We

wanted to build the market, and so
highlighted the best books, not just
our own. We have followed that
same logic in building our digital
distribution business today, resell-
ing eBooks from other technology
publishers as long as they agree to
go DRM-free.

We started Safari Books Online
as a joint venture with our biggest
competitor because we believed
publishers needed to find new busi-
ness models in an electronic future,
and we thought that the models we
were inventing would be adopted
more widely if they included books
from multiple publishers. We have
worked tirelessly on DRM-free
eBooks because we believe that
locking books up in proprietary file
formats is a path toward a digital
dark age.

Our quest to give voice to new
movements and communities
led us to invest for seven years in
Make Magazine and Maker Faire
before the rest of the world took
notice and came to the party. We
published books on life-changing
diseases as well as life-changing
technologies (Childhood Leukemia,
Childhood Cancer Survivors) until
the dot com collapse of 2001 led us
into drastic retrenchment. We have
returned to health care with our
StrataRx Conference, because there
is a unique opportunity to apply
data to make the health care system
more effective and to improve
people’s lives.

We’ve done the same thing with
open data in government, advocat-
ing the idea that government at its
best acts as a platform, working to
bring citizens, civil servants, and
entrepreneurs together to solve
problems.

And through all this, we built a
profitable group of enterprises with

nearly 500 employees and collec-
tive revenues approaching $200
million.

So what’s not to like?
We could have been even more

effective by paying attention to
some key management skills.

In that spirit, here are some
reflections on how we failed as an
organization in the past, and what
we have been doing to change that.

Failure #1: People hear only half
the story
There’s a great moment in a
Michael Lewis interview on NPR.
Why, Lewis was asked, would
anyone in the financial industry talk
to him for his book The Big Short
after the devastating picture of Wall
Street he’d painted in his first book,
Liar’s Poker, nearly 20 years earlier?
Lewis replied that many of those
people got into the financial indus-
try after reading his book. Their big
takeaway was how easy it was to
make a lot of money without regard
to the niceties of creating much
value. He finished with the memo-
rable line, “You never know what
book you wrote until you know
what book people read.”

That turned out to be a major
problem for me at O’Reilly. I
talked so much about our ideals,
our goal to create more value than
we capture, to change the world
by spreading the knowledge of
innovators, that I forgot to make
sure everyone understood that we
were still a business. Even when I
said things like, “Money in a busi-
ness is like gas in the car. You have
to fill the tank, but a road trip is
not a tour of gas stations,” people
heard the “road trip is not a tour of
gas stations” way louder than they
heard “you have to fill the tank.”

8  FEATURES

As a result, we’ve had countless
struggles to have employees take
the business as seriously as they
should. I was always pretty good at
finding the sweet spot where ideal-
ism and business reality meet, but
I didn’t spend enough time teach-
ing that skill my team. And I didn’t
check in enough about what people
were actually hearing.

Reflective listening is an impor-
tant skill. If I were starting O’Reilly
all over again, I’d spend a lot more
time making sure the culture I was
trying to create was the one that I
actually created.

Failure #2: “That’s how it’s done”
In the early days of the company,
I wrote an employee manual that
reflected my own homegrown HR
philosophy, based on the idea that
I wanted everyone in the company
to have the same freedom, initia-
tive, and excitement about our
work that I did; it opened with this
statement:

“I called this booklet “Rules of
Thumb” because every rule in it is
meant to be broken at some time
or another, whenever there is good
reason. We have no absolute poli-
cies, just guidelines based on past

experience. As we grow, we will
learn, and will make new empirical
rules about what works best in new
situations.”

It also said things like:

“Bring yourself to your work! We
haven’t hired you to act as a cog in
the company machine, but to exer-
cise your intelligence, your creativ-
ity, and your perseverance. Make
things happen.”

And:

“Remember, too, that your job isn’t
just an opportunity to improve
your economic standing, or that of
the company, but to make yourself
a better person, and this world a
little better place to live. Each of
your co-workers, our customers, our
suppliers, and anyone else you deal
with is a person, just like you. Treat
them always with the care, fair-
ness, and honesty that you’d like to
experience in return.”

The only raises we had were merit
raises, as you improved your skills
and impact. You were expected to
manage your own time, with no set
hours, and the only responsibility
around vacation time was to make
sure that no balls got dropped.

Eventually, I hired an employ-
ment lawyer to review my draft,
and he said, “That’s the most inspir-
ing employee manual I’ve ever read,
but I can’t let you use it.”

I complained, but I eventually
gave in. As we grew, it was harder
and harder to maintain our informal
processes. (I remember a real inflec-
tion point at about 50-60 employ-
ees, and another at about 100.) We
gradually gave up our homegrown
way of doing things, and accepted
normal HR practices — vacation
and sick days, regular reviews,
annual salary adjustments — and
bit by bit, I let the “HR profession-
als” take over the job of framing and
managing the internal culture. That
was a mistake.

I’ve often regretted that I hadn’t
kept fighting with the lawyers,
working harder to balance all the
legal requirements (many of them
well-intentioned but designed for
a top-down command-and-control
culture) with my vision of how
a company really ought to work.
I focused my energy on product,
marketing, finance, and strategy, and
didn’t make sure I was building the
organization I wanted.

“If I were starting O’Reilly all over again,
I’d spend a lot more time making sure
the culture I was trying to create was
the one that I actually created.”

  9

Reading recently about the HR
practices at Valve and GitHub, so
reminiscent of early O’Reilly, I’m
struck by the need to redefine how
organizations work in the 21st cen-
tury. I’m not saying that Valve or
GitHub’s approach is for everyone,
but they indicate a deep engage-
ment with the problem space, and
fresh approaches managing an orga-
nization. Google’s People Analytics
may be a more scalable application
of new HR thinking to a company
of serious size.

While there’s a lot of accumu-
lated wisdom in how to run a
company, there’s a lot still to be
invented, and you should bring the
same entrepreneurial energy to
improving the culture as you do to
improving the product.

Failure #3: Cash and control
In today’s venture-capital-fueled
market of “build it and see if
they will come,” it’s often hard to
remember that there are businesses
built without investors, funded
by revenue from real customers.
I never took VC money because
in my early days as a tech-writing
consultant, I saw lots of companies
go from being great places to work
to being just another company, and

I wanted to keep control of what I
did and did not do.

I wanted control, but I missed
one of the most powerful ways to
have it.

Bill Janeway is the author of the
outstanding book Doing Capital-
ism in the Internet Economy. In it,
he recounts the lesson of one of his
own mentors, Fred Adler, “Hap-
piness is positive cash flow,” and
talks about his working principle of
“Cash and Control”: “assured access
to sufficient cash in time of crisis to
buy the time needed to understand
the unanticipated, and sufficient
control to use the time effectively.”

I learned the truth of Bill’s
statement about cash and control
in the ‘90s. Publishing is a fairly
cash-intensive business. You pay
advances to authors — many of
whom never come through with
the books they promised to write,
or take way longer to complete
them — and as your editorial,
design, and production teams work
hand in hand with the author,
you may have years of investment
before you see a penny back. And
in the old days, before eBooks and
print-on-demand, you then had to
invest tens of thousands of dollars
in inventory costs for each book.

O’Reilly was like a leaky bucket.
We were always profitable on
a P&L basis, but we never had
enough cash. And as our publishing
business accelerated through the
“90s, we needed more and more of
it. We borrowed against our receiv-
ables and our inventory, juggled
payables till our CFO was blue in
the face, but we ended up funding
our growth through equity exits
from companies we”d spun out and
sold or invested in.

We’d sold GNN to AOL for what
seemed at the time the princely
sum of $15 million, much of it
in stock. We were locked up for
a couple of years, but because of
our pressing cash needs, we had to
sell our stock as soon as it became
available, netting $30 or $40 mil-
lion because of the increase in
AOL’s value as the Internet bubble
inflated. That was a nice win, but
if we’d had the leisure to hold on
till the peak, our stock would have
been worth $1 billion, and even if
we hadn’t timed things perfectly,
several hundred million.

Where the shit really hit the fan
was after the dot com bust of 2001.
We were seriously in debt again,
our business was in free, our banks
pulled our loans and nearly put us

“O’Reilly was like a leaky bucket.
We were always profitable on
a P&L basis, but we never had
enough cash.”

10  FEATURES

out of business. I still remember the
day I had to decide which employ-
ees to cut in our first-ever layoffs.
As I pored over the worksheets, I
noticed hair all over my papers; I
was so stressed that my hair was
falling out.

It didn’t need to be that way.
In the depths of the crisis, we

hired a CFO who instituted new
financial controls and discipline. She
renegotiated contracts with suppli-
ers. She ruthlessly cut non-perform-
ing titles, freeing up the cash from
inventory. And she persuaded me
to do the layoffs rather than going
down with the ship and all hands.

The difference was enormous.
We rebuilt O’Reilly’s revenues
and profits through successful new
books and conferences, the growth
of Safari Books Online, Maker
Media, and other new businesses.
But the biggest impact was the one
that Laura had — on our cash.

There are four lessons here:

➊ Financial discipline matters.
If you’re a venture-backed

startup, financial discipline gives
you more control over when you
have to go out for that next round.
If you’re self-funded, financial
discipline lets you invest in what’s
important in your business. So
many companies agonize over the
quality of their product, and work
tirelessly to build their brand, yet
pay the barest attention to their
financials. Money is the lifeblood
of your business. Take it seriously.
Manage it well.

➋ Treat your financial team
as co-founders. They aren’t

just bean counters. They can make
the difference between success and
failure. Don’t just look for rockstar
developers or designers, look for a
rockstar CFO. Hire someone who

is better than you are, who can be a
real partner in growing the business.
Before Laura came on board, I was
always the most numerate person in
the organization, the one with the
most sensitive finger on the pulse of
our financials.

➌ Hold teams accountable
for their numbers. Every

manager — in fact, every employee
— needs to understand the financial
side of the business. One of my big
mistakes was to let people build
products, or do marketing, without
forcing them to understand the
financial impact of their decisions.
Anyone running a group with major
financial impact should have their
P&L tattooed on their brain. It isn’t
someone else’s job to pay atten-
tion. Make sure financial literacy is
part of your employee training, and
hold people accountable for their
numbers.

➍ Run lean; reinvent tirelessly.
After the bust, we laid off

20% of our staff, and while we
missed many of them intensely on
a personal level, as a business, we
didn’t skip a beat.

The Lean Startup methodology
emphasizes measurement in quest
of product-market fit, describing
a startup as “a machine for learn-
ing.” This is great. But you need to
turn these measurements not just
outward on the market but inward
on your organization. What is the
impact of each activity? Who could
be repurposed toward something
with greater impact? Does this job
really need doing? Can it be done
more efficiently and effectively?

Failure #4: Tolerating mediocrity
There was another lesson learned
from those 2001 layoffs. While
most of the people we laid off
were great employees who went
on to find good jobs elsewhere, we
were appalled to discover there
were some people who had built
themselves a nice, cozy position but
weren’t working very hard. While
most of us were pulling the wagon,
they were simply riding on it. We
even discovered several cases of
fraud! That goes back to my point
above about the importance of a
crack financial team — one of their
key jobs is to have strong controls in
place. I would never have believed
that one of my employees would do
that. It can happen to any company.
The longer you are in business, the
more outrageous things you will
have employees do on your watch!

Looking back, I had an extremely
naive view: everyone was inspired
by the same motivations as I was,
passionate about their work and the
impact that we were having. They
loved their jobs and wanted to be
great at them.

If you want that to be true, you
can’t just believe it; you have to
work at it! You need a real empha-
sis on hiring, training, and mentor-
ship — and firing! Every manager
in the company has to be an expert
on his or her staff and on finding
“employee-company fit.” HR needs
to be an active partner in talent
acquisition, culture, and leadership
development.

When someone isn’t right for
the job, it’s easy to shrink from
the confrontation of telling them
so, or to accept 60% of what you
wanted because you think you can’t
afford the time and trouble to find
a replacement. You aren’t doing
anyone any favors. An employee

  11

who is not performing at 100% is
just as aware as of that, and most
likely isn’t happy about it. Having
the courage to ask them to move
on is an essential management skill.
(It doesn’t even have to be firing; it
can be coaching them to make the
decision on their own.)

So, if you have a bad feeling
about the role someone is playing
in your organization, work the issue
until you feel right about it. Take
management seriously!

Failure #5: Hiring supplements,
not complements
Another thing I wish I’d done
earlier was to hire people who
were good at things I wasn’t. As
a founder, you often seem to be
the best at everything — the best
product designer, the best marketer,
the best sales person. Sometimes
that’s really true, but often it’s just
because you hire people who aren’t
as good as you are at the things
you’re good at, and don’t hire
people who are better than you are
at the things you don’t do so well.
You hire supplements to do more
of what you already do, rather than
people who really complement
your skills.

I already mentioned how I went
through the first 20 years of my
company’s life without hiring
someone who was better on the
financial side than I was. We didn’t
build a sales and marketing culture
either. We were product driven,
idea driven, and while we devel-
oped a unique and powerful style
of activism-driven marketing, we
never developed analytical market-
ing discipline. And as for sales, that
felt a little dirty to many of our
employees.

In the past few years, we’ve
worked hard to change that.
Laura has led a successful effort to
develop that analytical marketing
competency and to add sales think-
ing to the company DNA. We now
have sales training for anyone who
has customer contact. We’ve built a
team to focus on sponsorship sales
for our events, more than doubling
our yield and vastly improving the
profitability of our events.

Failure #6: I’ll take care of that
I believe it was Harold Geneen who
once said, “The skill of manage-
ment is to achieve your objectives
through the efforts of others.” Yet,
like so many entrepreneurs, my first
instinct was not to hire the team to
go after a new product or market,
but to do it myself, or with the
team I already had.

Some of that was a byproduct of
being a scrappy, self-funded orga-
nization, where the existing team
tries new things and hires only after
it is clear there’s really an opportu-
nity. It’s great when your manage-
ment team leads from the front.
But overall, we took it too far and
didn’t build a strong enough culture
of deliberate hiring to go after new
opportunities.

Anthropologist Claude Levi-
Strauss wrote in his book The
Savage Mind about the difference
between the bricoleur (handyman)
and the engineer. The handyman
makes do with what he has at
hand. The engineer thinks more
abstractly, figures out what he or
she needs, and acquires it before
beginning work. I was always a
bricoleur. As we go forward, I aspire
to be more of an engineer. Although
it’s good to remember that, as Marc
Hedlund, former SVP of product
development and engineering at

Etsy, remarked, “People and code
are…different. The approaches that
work so well for getting new soft-
ware to run are not directly appli-
cable to getting people to work well
together.” n

Tim O’Reilly is the founder and CEO of
O’Reilly Media Inc., thought by many to
be the best computer book publisher in
the world.

Reprinted with permission of the original author.
First appeared in hn.my/failed (oreilly.com)

http://hn.my/failed

12  FEATURES

By jeff Wofford

I participated in Ludum Dare 27
this weekend, programming
a complete game, Spacetime

Adventure, in 48 hours. I make
games for a living, but I’d never
done that before. It was fun.

It was also enlightening. For the
past several years I’ve spent most
of my development time with
C++11 in Xcode. I like it. Nah, I
love it. But this weekend, work-
ing in Adobe Flash Professional
with ActionScript 3.0, I could not
believe how high my productiv-
ity was. I was knocking off tasks
like they were popcorns in a fire. It
helps that I used to work in Flash
a lot, so I knew the drill. But I had
forgotten how easy and quick it is
to make games in that system.

The contest limit is 48 hours, but
I actually spent 30 hours. In that
time I made an entire game, and
not a terribly simple one: it involves
Box2D physics and time travel.
It’s not a highly polished game,

of course. I’m going to work on it
some more before really “releasing”
it (though you can play it now if
you want). But it has all the main
bells and whistles: front end, HUD,
user interface, the game proper,
victory screens — even music. Not
that that’s anything special — the
contest is to make a complete game,
and over a thousand contestants did
so.

Yet most of the games I make
in my professional job take much
longer than this. As I reached the
end of the weekend, I couldn’t help
but ask myself, “How is it that you
were able to complete this game
in less than 48 hours, when most
of the games you work on take
upwards of several months?”

 The last game I shipped, House
of Shadows, took 11 months. Even
if you assume that it was 10 times
more complicated than Space-
time Adventure, this still leaves a
productivity ratio of about 6:1. This

means that if I could transfer the
pace of production from Ludum
Dare into my normal work, I would
complete a game like House of
Shadows in less than 2 months.

Now no doubt some of the
differences between a Ludum
Dare project and a “real” project
are esoteric and non-transferable.
House of Shadows, for example, is
really probably more than ten times
more complicated than Spacetime
Adventure, thinking in terms of
the internal game mechanics, rules,
variation, and user interface. Space-
time Adventure gets away with
being pretty simple really. But along
with this kind of non-transferable
difference, perhaps there are other
differences that are transferable.
Maybe there are things about creat-
ing a 48 hour project that can make
a “real” project faster and maybe
even more fun.

What Programming a Game
in 48 Hours Taught Me

About Programming Games

  13

Differences
Intensity of focus. Almost all my
waking hours were dedicated
to programming during the 48
hours of the contest. I even took
less sleep. This intensity of focus
allowed me to maintain contact
with the concepts and issues in the
game so that I was able to remain
productive without costly ramp-up
and ramp-down times.

Expectation of constant clo-
sure. I expected to be done fast.
At the macro level for the game
as a whole. At the micro level for
individual tasks. I was not at all
happy with tasks, bugs, or setbacks
that threatened the rigid deadline.
I expected to make rapid, constant
progress, and I made sure I did.

Freedom from IDE distractions.
One of the worst hits to productiv-
ity in my usual development setup
— although fortunately this is not
a daily problem — is when some
aspect of the tools themselves go so
slow that they lose my attention. If
I have to Rebuild All, or work with
a slow Photoshop, or if Xcode is
hanging and crashing, not only does
this cost time immediately, but it
also causes me to get distracted.
I try to fill the time by checking
email or Hacker News, and this
costs yet more time. During Ludum
Dare, I remained tightly interfaced
with Flash. I was continually in the
midst of the edit -> compile -> test
-> edit loop. This was one of the
largest reasons for the high pace of
production. The IDE did not kick
me out at any time. It gave me no
reason to look away. I need that in
my daily work.

Easy object placement and
animation tools. The UI work in
particular went incredibly fast and
this was entirely due to working in
Flash. I could drag a bitmap into
Flash to import it, then place it,
position it, add filters, animate it,
and attach the animations to code
all in one tight motion, all within
Flash. Tasks that can take a whole
day took minutes. I need this all the
time.

Lower degree of polish. Space-
time Adventure is reasonably
complete but it’s not a final, ship-
pable, polished game. Part of the
slowness of a normal, professional
game project is the degree of polish
that goes into the product. As a
rough estimate, I’d say that polish
approximately doubles the length
of a project. If I had to add fea-
tures like sound effects, particles,
more UI animations, button states,
higher-quality art, variety of art,
and additional gameplay features
to Spacetime Adventure, it would
have taken at least twice as long.

No responsibility for mainte-
nance. Creating a maintainable
game — one that is capable of
long-term repair and expansion
— is more difficult than a quick,
throw-away game like Spacetime
Adventure. In actual fact, Spacetime
Adventure’s code is generally pretty
clean and maintainable, but this
quality happened to come easily, in
part because of the smallness of the
game; it wasn’t hard-won. And there
is “slop” in the code that I would
not have been comfortable with if
I expected to have to live with the
game for longer or expand it much
larger. When you can write sloppy,
get-it-done code, it pays to do so.
When you can’t, it doesn’t. With
Ludum Dare you always can. With
production code, you rarely can.

C++ headers. More than once
during the competition I would
reach a point in the code and think,
“Argh, I don’t want to have to add/
change/look up/remove that func-
tion because it would mean having
to mess with the header file.” Then
I thought, “Oh wait, this isn’t C++.
There are no header files.” The feel-
ing of liberation and simplicity that
hit me in those moments convinced
me that for a great deal of coding
situations, headers are a serious
bane. They impart a constant agony
of redundancy onto everything you
write. Every substantial (i.e. seman-
tic) change must touch two files,
and do so in a coordinated way. The
simplicity and immediacy of single-
file ActionScript classes felt like a
breath of fresh air.

There is a place for the header/
source division. For established
code, dividing classes makes for
faster compilation for both the
user and the provider. This is rarely
an issue in “game programming”
proper (as opposed to “engine
programming”).

This point, along with a few
others in this list, convinces me
once and for all that scripting
languages are the way to go for
most game programming. When
these aren’t available, my friend
Wouter van Oortmerssen’s Java
Style Classes in C++ may provide
a handy workaround. I’m thinking
of trying it for my current project’s
game code.

14  FEATURES

Performance and safety oblivi-
ousness. I know this is an old lesson
that needs no explication, but I
was struck more forcefully than
ever how C++ imposes a signifi-
cant mental cost on programmers
to use the language carefully. This
sounds like more of a bash against
C++ than it really is. You use C++
precisely when you need high
performance. The reason I normally
program games in C++ instead of in
Flash is that my performance test-
ing of ActionScript reveals that it is
at least an order of magnitude too
slow for the kind of games I make
on the kinds of platforms I normally
make them for. I like C++ because
it gives me many of the benefits of
ActionScript (and other high level
languages) while enabling lightning
speed performance.

But this weekend I felt more than
ever the liberation that comes when
you don’t have to dance the C++
dance. When deleting something I
simply set the reference to null. I
can do the same thing in C++ by
using std::shared_ptr, but even then
one still has to be mindful of cycles.
The word “mindful” here is not as
innocent as it sounds. The detection
and anticipation of object graph

cycles while in the middle of coding
is non-trivial. A programmer’s chief
resource is the energy of his or her
mind. Everything that expends or
depletes that energy makes him
or her less effective, more tired,
and less happy. There were several
moments during the competition
when I thought, “I need to delete
this expensive resource. I’ll set it to
null. Ah, but are there any cycles
that might keep it afloat?” And then
I remembered, “Yes, but the whole
cycle will die along with it.” There
was a palpable feeling of relief
when I realized that I didn’t need
to worry about the cycles. I could
use that mental energy to focus on
the game itself.

It’s not just memory manage-
ment. The whole context of Flash/
ActionScript made me less con-
cerned about performance. I know
Flash is slow. At the beginning of
the project I did some testing and
confirmed that it was fast enough.
From that point on I never worried
about performance again.

It’s remarkable how subtle and
constant the performance concern
is. A good C++ programmer —
especially one working on a rela-
tively slow platform like mobile

phones — is continually assessing
the cost of what he or she is writ-
ing. Should I use a vector here? A
map? An unordered map? Will it
be faster to pass this argument by
reference? Should I reserve() this
vector so that it doesn’t overshoot
its necessary size? You use C++
because you want to squeeze frame
rate out of tightly constrained hard-
ware. Every variable, every function
becomes a potential choke point,
and a seasoned programmer is
always measuring the ramifications
of each choice. The C++ program-
mer is a deer sniffing the air for
the scent of boots and gunpowder:
everything’s an opportunity for
gain; everything’s an opportunity
for calamity.

When performance is of the
essence, this state of alertness is an
appropriate price to pay. But when
you don’t have to pay that price —
and in every game there are systems
that have no serious likelihood
of bottlenecking — you will gain
mental energy back by essentially
ignoring performance. You cannot
do this in C++: it requires an aware-
ness of execution and memory
costs at every step. This is another
argument in favor of never building

“I felt more than ever the liberation that comes
when you don’t have to dance the C++ dance.”

  15

a game without a good scripting
language for the highest-level code.
In ActionScript I fell into an easy
rhythm of doing what I needed to
do for the game behavior. I did not
worry about the cost of an Array vs.
a Vector: I used what was conve-
nient. I felt a little lazy being so
carefree. But the approach cost me
nothing: the game runs like butter
even on older desktop systems.

Minimal Snowballing. In the
broadest sense, a 48 hour project
minimizes a problem that plagues
all projects. Work tends to snow-
ball. For every task there are “task
addendums” that extend the total
effort. It’s not enough just to put an
asteroid into the game. Beforehand
you have to design the asteroid, talk
about the asteroid, and schedule
the asteroid. Once the asteroid is
written you have to test the aster-
oid, commit the code, adjust the
asteroid, review the code, adjust it
some more, document it, adjust the
comments, fix the commit, refac-
tor, optimize, extend. This sounds
like the standard complaint about
project management: projects
should be simple but management
adds cruft. Yet in some sense any
project — even one undertaken by

a single person — is susceptible to
snowballing. It’s an odd thing, hard
to put your finger on. Every task
begets more tasks at the code level
(typing, commenting, optimiza-
tion) and the quality level (testing,
debugging, refining).

It’s almost mathematical. For
every hour you spend working, you
must spend another 10 minutes
responding to or expanding that
work. After six hours of working
you have accumulated an additional
1 hour of this metawork, which of
course — being work — needs its
own 10 minutes of response and
expansion. Six hours of metawork
later, you’ve accumulated an hour
of metametawork, which needs
yet another layer of response and
expansion, and so on. Each layer of
metawork is another layer of snow
on the snowball. The larger the
tasks get, the larger the tasks get.

In a 48 hour project this cycle is
defeated — or at least minimized
— by the sheer concentration of
focus. There are no “metatasks” —
there are only tasks. You don’t have
to re-learn what you did yesterday,
because there was no yesterday. You
don’t have to plan for next week.
You don’t have time to talk about

what you’re doing — you think fast,
then you act. This can’t be the best
way to accomplish just any project,
but when it’s possible it is incred-
ibly efficient, and that efficiency is
incredibly satisfying. n

Jeff Wofford has worked in game devel-
opment since 1995. Currently he is the
Duke of Development for Mobile Games
at Armor Games and a lecturer at South-
ern Methodist University’s Guildhall game
development program.

“You don’t have time to talk about what
you’re doing — you think fast, then you act.”

Reprinted with permission of the original author.
First appeared in hn.my/48hrs (jeffwofford.com)

http://hn.my/48hrs

16  PROGRAMMING

PROGRAMMING

By David Nolen

While none of the ideas in core.async
are new, understanding how to solve
problems with CSP is simply not as well

documented as using plain callbacks or Promises. My
previous articles have mostly explored fairly sophis-
ticated uses of core.async, this one instead takes the
form of a very basic tutorial on using core.async with
ClojureScript.

We’re going to demonstrate all the steps required to
build a simple search interface, and we’ll see how core.
async provides some unique solutions to problems
common to client-side user interface programming.

I recommend using Google Chrome so that you can
get good source map support. You don’t need Emacs to
have fun with Lisp. SublimeText 2 is pretty nice these
days, I recommend installing the paredit and lispindent
packages via Sublime Package Control.

If you have Leiningen installed you can run the fol-
lowing at the command line in whatever directory you
like:

lein new mies async-tut1

This will create a template project so you don’t have
to worry about configuring lein-cljsbuild yourself.

Unless otherwise noted, files are relative to the proj-
ect directory.

Change the :dependencies in the project.clj file to
look like the following:

:dependencies
 [[org.clojure/clojure "1.5.1"]
 [org.clojure/clojurescript "0.0-2030"]
 [org.clojure/core.async "0.1.256.0-1bf8cf-
alpha"]] ;; ADD

In the project directory run the following to start the
auto compile process:

lein cljsbuild auto async-tut1

First off we want to add the following markup to
index.html before the first script tag which loads goog/
base.js:

<input id="query" type="text"></input>
<button id="search">Search</button>
<p id="results"></p>

Open index.html in Chrome and make sure you see
an input field and a text button.

Now we want to write some code so that we can
interact with the DOM. We want our code to be resil-
ient to browser differences so we’ll use Google Closure
to abstract this stuff away as we might with jQuery.

We require goog.dom and give it a less annoying alias.
Change the ns form in src/async_tut1/core.cljs to
the following:

(ns async-tut1.core
 (:require [goog.dom :as dom]))

We want to confirm that this will work, so let’s
change the console.log expression so it looks this
instead:

(.log js/console (dom/getElement "query"))

Save the file and it should be recompiled instantly.
We should be able to refresh the browser and see that
a DOM element got printed in the JavaScript Console
(View > Developer > JavaScript Console). Remove this
little test snippet after you’ve confirmed it works.

So far so good.

ClojureScript 101

  17

Now we want a way to deal with the user clicking
the mouse. Instead of just setting up a callback on the
button directly, we’re going to make the button put the
click event onto a core.async channel.

Let’s write a little helper called listen that will return
a channel of the events for a particular element and
particular event type. We need to require core.async
macros and functions. Our ns should now look like the
following:

(ns async-tut1.core
 (:require-macros [cljs.core.async.macros
:refer [go]])
 (:require [goog.dom :as dom]
 [goog.events :as events]
 [cljs.core.async :refer [put! chan
<!]]))

Again we want to abstract away browser quirks so
we use goog.events for dealing with that. We include
only the core.async macros and functions that we
intend to use.

Now we can write our listen fn; it looks like this:

(defn listen [el type]
 (let [out (chan)]
 (events/listen el type
 (fn [e] (put! out e)))
 out))

We want to verify our function works as advertised,
so we check it with following snippet of code at the
end of the file:

(let [clicks (listen (dom/getElement "search")
"click")]
 (go (while true
 (.log js/console (<! clicks)))))

Note that we’ve created what appears to be an infi-
nite loop here, but actually it’s a little state machine. If
there are no events to read from the click channel, the
go block will be suspended.

Let’s search Wikipedia. Define the basic URL we are
going to hit via JSONP and put this right after the ns
form.

(def wiki-search-url
 "http://en.wikipedia.org/w/api.php?action=open
search&format=json&search=")

Now we want to make a function that returns a
channel for JSONP results.

We again reach for Google Closure to avoid browser
quirks. Make your ns form look like the following:

(ns async-tut1.core
 (:require-macros [cljs.core.async.macros
:refer [go]])
 (:require [goog.dom :as dom]
 [goog.events :as events]
 [cljs.core.async :refer [<! put!
chan]])
 (:import [goog.net Jsonp]
 [goog Uri]))

Here we use :import so that we can use short names
for the Google Closure constructors.

Note: :import is only for this use case; you never use it
with ClojureScript libraries.

Our JSONP helper looks like the following (put it
after listen in the file):

(defn jsonp [uri]
 (let [out (chan)
 req (Jsonp. (Uri. uri))]
 (.send req nil (fn [res] (put! out res)))
 out))

This looks pretty straight forward, very similar to
listen. Let’s write a simple function for constructing a
query url:

(defn query-url [q]
 (str wiki-search-url q))

Again let’s test this by writing a snippet of code at
the bottom of the file.

(go (.log js/console (<! (jsonp (query-url
"cats")))))

In the JavaScript Console we should see we got an
array of JSON data back from Wikipedia. Success!

18  PROGRAMMING

It’s time to hook everything together. Remove the
test snippet and replace it with the following:

(defn user-query []
 (.-value (dom/getElement "query")))

(defn init []
 (let [clicks (listen (dom/getElement "search")
"click")]
 (go (while true
 (<! clicks)
 (.log js/console (<! (jsonp (query-url
(user-query)))))))))

(init)

Try it now. You should be able to write a query in the
input field, click “Search”, and see results in the JavaS-
cript Console.

If you’ve done any JavaScript programming, this way
of writing the code should be somewhat surprising —
we don’t need a callback to work with button clicks!

Think about how this works: when the page loads,
init will run, the go block will try to read from
clicks, but there will be nothing to read, so the go
block becomes suspended. Only when you click on
the button can it proceed, at which point we’ll run the
query and loop around. The code reads exactly how it
would if you didn’t have to consider asynchrony!

Instead of printing to the console we would like to
render the results to the page. Let’s do that now, add
the following before init:

(defn render-query [results]
 (str
 ""
 (apply str
 (for [result results]
 (str "" result "")))
 ""))

The usual string concatenation stuff. We use a list
comprehension here just for fun.

Now change init to look like the following:

(defn init []
 (let [clicks (listen (dom/getElement "search")
"click")
 results-view (dom/getElement "results")]
 (go (while true
 (<! clicks)
 (let [[_ results] (<! (jsonp (query-
url (user-query))))]
 (set! (.-innerHTML results-view)
(render-query results)))))))

Hopefully this code at this point just makes sense.
Notice how we can use destructuring on the JSON
array of Wikipedia results.

  19

A beautiful succinct program! The complete listing follows:

(ns async-tut1.core
 (:require-macros [cljs.core.async.macros :refer [go]])
 (:require [goog.dom :as dom]
 [goog.events :as events]
 [cljs.core.async :refer [<! put! chan]])
 (:import [goog.net Jsonp]
 [goog Uri]))

(def wiki-search-url
 "http://en.wikipedia.org/w/api.php?action=opensearch&format=json&search=")

(defn listen [el type]
 (let [out (chan)]
 (events/listen el type
 (fn [e] (put! out e)))
 out))

(defn jsonp [uri]
 (let [out (chan)
 req (Jsonp. (Uri. uri))]
 (.send req nil (fn [res] (put! out res)))
 out))

(defn query-url [q]
 (str wiki-search-url q))

(defn user-query []
 (.-value (dom/getElement "query")))

(defn render-query [results]
 (str
 ""
 (apply str
 (for [result results]
 (str "" result "")))
 ""))

(defn init []
 (let [clicks (listen (dom/getElement "search") "click")
 results-view (dom/getElement "results")]
 (go (while true
 (<! clicks)
 (let [[_ results] (<! (jsonp (query-url (user-query))))]
 (set! (.-innerHTML results-view) (render-query results)))))))

(init)

David Nolen is a JavaScript developer for The New
York Times. In his free time he works on a variety
of open source Clojure projects including core.
match, core.logic, and ClojureScript.

Reprinted with permission of the original author.
First appeared in hn.my/cs101 (swannodette.github.io)

http://hn.my/cs101

20  PROGRAMMING

By Dennis Kubes

Function pointers are an interesting and power-
ful tool but their syntax can be a little confus-
ing. This post will going into C function point-

ers from the basics to simple usage to some quirks
about function names and addresses. In the end it will
give you an easy way to think about function pointers
so their usage is clearer.

A Simple Function and Function Pointer
Let’s start with a very simple function to print out the
message “hello world” and see how we can create a
function pointer from there.

#include <stdio.h>

// function prototype
void sayHello();

// function implementation
void sayHello() {
 printf("hello world\n");
}

// calling from main
int main() {
 sayHello();
}

Here we have a function called sayHello along with
its function prototype. This function returns nothing
(void) and doesn’t take any parameters. We call the
function from main and it prints out “hello world”.
Pretty simple. Now let’s convert main to use a function
pointer instead of calling the function directly.

int main() {
 void (*sayHelloPtr)() = sayHello;
 (*sayHelloPtr)();
}

The syntax void (*sayHelloPtr)() on line 2 may
look a little weird so let’s look at it step by step.

1.	 We are creating a function pointer to a function
that returns nothing (void) so the return type is
void. That is the void keyword.

2.	 We have the pointer name sayHelloPtr. This is simi-
lar to creating any other pointer and it has to have
a name.

3.	 We use the * notation to signify that it is a pointer.
This is no different than declaring an int pointer or
a char pointer.

4.	 We must have parentheses around the pointer
(*sayHelloPrt). If we don’t have parentheses it is
seen as void *sayHelloPtr, which is a void pointer
instead of a pointer to a void function. This is a
key point; function pointers must have parentheses
around them.

5.	 We have the parameter list. Since there isn’t one in
this case, we just have empty parentheses (*sayHel-
loPrt)().

6.	 Putting it all together we get void (*sayHelloPtr)
(), a pointer to a function that returns void and
takes no parameters.

Basics of Function
Pointers in C

  21

On line 2 above we are assigning the sayHello func-
tion name to our newly created function pointer like
this: void (*sayHelloPtr)() = sayHello. We will go
into more detail about function names later, but for
now understand that a function name (label) is the
address of the function and it can be assigned to a func-
tion pointer. This is similar to int *x = &myint where
we assign the address of myint to an int pointer. Only
in the case of a function, the address-of the function is
the function name and we don’t need the address-of
operator. Simply put, the function name is the address-
of the function. On line 3 we dereference and call our
function pointer like this (*sayHelloPtr)().

1.	 Once created on line 2, sayHelloPtr is our function
pointer name and can be treated just like any other
pointer, assigned, and stored.

2.	 We dereference our sayHelloPtr pointer the same
as we dereference any other pointer, by using
the value-at-address (*) operator. This gives us
*sayHelloPtr.

3.	 Again we must have parentheses around the pointer
(*sayHelloPrt). If we don’t, it isn’t a function
pointer. We must have parentheses when creating a
function pointer and when dereferencing it.

4.	 The () operator is used to call a function in C. It
is no different on a function pointer. If we had a
parameter list there would be values in the paren-
theses similar to any other function call. This gives
us (*sayHelloPrt)().

5.	 This function has no return value so there is no
need to assign its return to any variable. The func-
tion call can standalone similar to sayHello().

Now that we have shown the weird syntax, under-
stand that often function pointers are just treated and
called as regular functions after being assigned. To
modify our previous example:

int main() {
 void (*sayHelloPtr)() = sayHello;
 sayHelloPtr();
}

As before we assign the sayHello function to our
function pointer, but now we call the function pointer
just like we would call a regular function. We will get
into function names later which will show why this
works but for now understand that calling a function

pointer with full syntax (*sayHelloPtr)() is the same
as calling the function pointer as a regular function
sayHelloPtr().

A Function Pointer with Parameters
Now lets create a function pointer that still doesn’t
return anything (void) but now has parameters.

#include <stdio.h>

// function prototype
void subtractAndPrint(int x, int y);

// function implementation
void subtractAndPrint(int x, int y) {
 int z = x - y;
 printf("Simon says, the answer is: %d\n", z);
}

// calling from main
int main() {
 void (*sapPtr)(int, int) = subtractAndPrint;
 (*sapPtr)(10, 2);
 sapPtr(10, 2);
}

As before, we have our function prototype, our func-
tion implementation and the executing of the func-
tion from main using a function pointer. The signature
of both the prototype and its implementation has
changed. Where before our sayHello function didn’t
have parameters, the subtractAndPrint function takes
two parameters, both integers, and subtracts one from
the other and prints the result.

1.	 We create our sapPtr function pointer on line 14
with void (*sapPtr)(int, int). The only differ-
ence from before is that instead of empty parenthe-
ses on the end when creating the function we have
(int, int), which matches the signature of our
new function.

2.	 On line 15 when dereferencing and executing the
function, everything is the same as when we called
our sayHello function except now we have (10, 2)
on the end passing parameters.

3.	 On line 16 we show executing the function pointer
as a regular function.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

22  PROGRAMMING

A Function Pointer with Parameters and Return
Value
Let’s change our subtractAndPrint function to be called
subtract and to return the result instead of printing it.

#include <stdio.h>

// function prototype
int subtract(int x, int y);

// function implementation
int subtract(int x, int y) {
 return x - y;
}

// calling from main
int main() {
 int (*subtractPtr)(int, int) = subtract;

 int y = (*subtractPtr)(10, 2);
 printf("Subtract gives: %d\n", y);

 int z = subtractPtr(10, 2);
 printf("Subtract gives: %d\n", z);
}

This is similar to the subtractAndPrint function,
except now the subtract function returns an int. The
prototype and function signatures have changed as
would be expected.

1.	 We create our subtractPtr function pointer on line
13 with int (*subtractPtr)(int, int). The only
difference from before is instead of void we have an
int return value. This matches our subtract method
signature.

2.	 On line 15 when dereferencing and executing the
function pointer, everything is the same as when we
called our subtractAndPrint function, except now
we have int y =, which assigns the return value of
the function to y.

3.	 On line 16 we print out the return value.

4.	 On lines 18 – 19 we execute the function pointer as
a regular function and print the results.

This isn’t much different from before; we just added
the int return value. Let’s move on to a little more
complex example where we pass a function pointer
into another function as a parameter.

Passing a Function Pointer as a Parameter
We have stepped through the main parts of the declar-
ing and executing function pointers with and without
parameters and return values. Now let’s look at using
a function pointer to execute different functions based
on input.

#include <stdio.h>

// function prototypes
int add(int x, int y);
int subtract(int x, int y);
int domath(int (*mathop)(int, int), int x,
int y);

// add x + y
int add(int x, int y) {
 return x + y;
}

// subtract x - y
int subtract(int x, int y) {
 return x - y;
}

// run the function pointer with inputs
int domath(int (*mathop)(int, int), int x,
int y) {
 return (*mathop)(x, y);
}

// calling from main
int main() {

 // call math function with add
 int a = domath(add, 10, 2);
 printf("Add gives: %d\n", a);

 // call math function with subtract
 int b = domath(subtract, 10, 2);
 printf("Subtract gives: %d\n", b);
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

1
2
3
4
5
6

7
8
9
10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33

  23

Let’s break this down:

1.	 We have two functions with the same signature int
function(int, int), add and subtract. Both return
an integer and both take two integers as parameters.

2.	 On line 6 we have int domath(int (*mathop)
(int, int), int x, int y). The first parameter
int (*mathop)(int, int) is a pointer to a func-
tion that takes two integers as input and returns an
integer. We have seen this before, and the syntax is
no different here. The last two parameters x and y
are just integer inputs into the domath function. So
the domath function takes a function pointer and
two integers as parameters.

3.	 On lines 19 – 21 the domath function executes the
function pointer passed with the x and y integers
passed. This could also have been done as mathop(x,
y);.

4.	 Lines 27 and 31 are somewhat new. We are call-
ing the domath function and we are passing in the
function names. Function names are the address-of
the function and can be used in place of function
pointers.

The main function calls domath twice, once for add
and once for subtract, printing out the results.

Function Names and Addresses
Let’s wrap up by talking a bit about function names
and addresses as promised. A function name (label)
is converted into a pointer to itself. This means that
function names can be used where function pointers
are required as input. It also leads to some very funky
looking code that actually works. Take a look at some
examples:

#include <stdio.h>

// function prototypes
void add(char *name, int x, int y);

// add x + y
void add(char *name, int x, int y) {
 printf("%s gives: %d\n", name, x + y);
}

// calling from main
int main() {

 // some funky function pointer assignment
 void (*add1Ptr)(char*, int, int) = add;
 void (*add2Ptr)(char*, int, int) = *add;
 void (*add3Ptr)(char*, int, int) = &add;
 void (*add4Ptr)(char*, int, int) = **add;
 void (*add5Ptr)(char*, int, int) = ***add;

 // execution still works
 (*add1Ptr)("add1Ptr", 10, 2);
 (*add2Ptr)("add2Ptr", 10, 2);
 (*add3Ptr)("add3Ptr", 10, 2);
 (*add4Ptr)("add4Ptr", 10, 2);
 (*add5Ptr)("add5Ptr", 10, 2);

 // this works too
 add1Ptr("add1PtrFunc", 10, 2);
 add2Ptr("add2PtrFunc", 10, 2);
 add3Ptr("add3PtrFunc", 10, 2);
 add4Ptr("add4PtrFunc", 10, 2);
 add5Ptr("add5PtrFunc", 10, 2);
}

Run this code and every function pointer will
execute. Yes, you will get some warnings about char
conversion as this is a simple example. But the function
pointers still work.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

24  PROGRAMMING

1.	 Line 15: the function name add by itself gives the
address of the function. It is implicitly converted
to a function pointer. Function names can be used
where function pointers are required as input.

2.	 Line 16: the value-at-address operator *add when
applied to the function name gives the function
at that address, which is converted to a function
pointer implicitly just like the function name.

3.	 Line 17: address-of (&) operators when applied to
a function name gives the address of the function.
This yields a function pointer, too.

4.	 Lines 18 and 19: the pointers to the function keep
yielding themselves over and over again, return-
ing the function address, which is converted to a
function pointer. In the end, it is same as just the
function name.

5.	 This code isn’t an example of best practice. The
takeaway is this: One, function names are converted
to function pointers implicitly the same way that
array names are converted to pointers implicitly
when passed into functions. Function names can be
used wherever a function pointer is required. Two,
the address-of (&) and value-at-address (*) opera-
tors are almost always redundant when used against
function names.

Conclusion
I hope this helps clarify some things about function
pointers and their usage. When understood, function
pointers become a powerful tool in the C toolbox. In
future posts I may go into more detailed usage of func-
tion pointers for things like callbacks and basic OOP in
C. n

Dennis lives in Plano, Texas and has been programming for over
15 years. He uses many different languages, whatever works best
for the job. He thinks programming is an art, algorithms can be
elegant and mathematics can be beautiful.

Reprinted with permission of the original author.
First appeared in hn.my/cpointer (denniskubes.net)

http://hn.my/cpointer

  25

When I built my Instant Webcam App, I
was searching for a solution to stream
live video from the iPhone’s Camera to

browsers. There were none.
When it comes to (live) streaming video with

HTML5, the situation is pretty dire. HTML5 Video
currently has no formalized support for streaming
whatsoever. Safari supports the awkward HTTP Live
Streaming, and there’s an upcoming Media Source
Extension standard as well as MPEG-DASH. But all
these solutions divide the video in shorter segments,
each of which can be downloaded by the browser indi-
vidually. This introduces a minimum lag of 5 seconds.

So here’s a totally different solution that works
in any modern browser: Firefox, Chrome, Safari,
Mobile Safari, Chrome for Android, and even Internet
Explorer 10.

It’s quite backwards, uses outdated technology, and
doesn’t support audio at the moment. But it works.
Surprisingly well.

The Camera Video is encoded by ffmpeg sent to a
tiny nodejs script over HTTP that simply distributes
the MPEG stream via WebSockets to all connected
Browsers. The Browser then decodes the MPEG stream
in JavaScript and renders the decoded pictures into a
Canvas Element.

You can even use a Raspberry Pi to stream the
video. It’s a bit on the slow side, but in my tests it had
no problem encoding 320x240 video on the fly with
30fps. This makes it, to my knowledge, the best video
streaming solution for the Raspberry Pi right now.

Here’s how to set this up. First get a current version
of ffmpeg. Up-to-date packages are available at deb-
multimedia. If you are on Linux, your Webcam should
be available at /dev/video0 or /dev/video1. On OSX
or Windows you may be able to feed ffmpeg through
VLC somehow.

Make sure you have nodejs installed on the server
through which you want to distribute the stream. Get
the stream-server.js script from jsmpeg and change the
default password at the top of the file. This password is
there to ensure that no one can hijack the video stream.

Now install its dependency to the ws WebSocket
package and start the server:

npm install ws
node stream-server.js yourpassword

You should see the following output when the server
is running correctly:

Listening for MPEG Stream on http://127.0.0.1:80
82/<secret>/<width>/<height>
Awaiting WebSocket connection on ws://127.0.0.1:8084

With the server started, you can now start ffmpeg
and point it to the domain and port where it is running:

ffmpeg -s 640x480 -f video4linux2 -i /dev/video0
\ -f mpeg1video -b 800k -r 30
\ http://example.com:8082/yourpassword/640/480/

This starts capturing the webcam video in 640x480
and encodes an MPEG video with 30fps and a bitrate
of 800kbit/s. The encoded video is then sent to the
specified host and port via HTTP. Make sure to provide
the correct secret as specified in the stream-server.js.
The width and height parameters in the destina-
tion URL also have to be set correctly; the stream
server otherwise has no way to figure out the correct
dimensions.

On the Raspberry Pi you will probably have to turn
down the resolution to 320x240 to still be able to
encode with 30fps.

To view the stream, get the stream-example.html
and jsmpg.js from the jsmpeg project [hn.my/jsmpeg].
Change the WebSocket URL in the stream-example.
html to your server’s and open it in your favorite browser.

If everything works, you should be able to see a smooth
camera video with less than 100ms lag. Quite nice for
such hackery and a humble MPEG decoder in JS. n

Dominic is the author of the HTML5 Game Engine Impact
[impactjs.com]. He writes about all things JavaScript and Web-
Technology on his personal blog PhobosLab [phoboslab.org] and
create games in his free time.

HTML5 Live Video Streaming Via
WebSockets By Dominic Szablewski

Reprinted with permission of the original author.
First appeared in hn.my/websockets (phoboslab.org)

http://hn.my/jsmpeg
http://hn.my/websockets

26  PROGRAMMING

By John Croisant & Felix Winkelmann

For the past couple years,
I’ve been playing with the
Lisp family of languages,

namely Common Lisp, Clojure,
and Scheme. One of my favor-
ite languages for hobby coding is
CHICKEN Scheme [call-cc.org], a
mature, high-performance imple-
mentation of Scheme that compiles
to portable C code. CHICKEN’s
variety of built-in features and
downloadable libraries, excellent
FFI support, and helpful com-
munity make it a very appealing
language.

Recently, I came across SPOCK,
a compiler and runtime system
for compiling Scheme code into
JavaScript. As it turns out, SPOCK
and CHICKEN have the same cre-
ator: Felix Winkelmann, a software
developer in Göttingen, Germany.
Intrigued, I got in touch with
Felix to ask him about CHICKEN,
SPOCK, how he got started, and
what keeps him motivated to keep
working on CHICKEN after more
than a decade.

Felix, thanks for agreeing to an
interview. Many of our read-
ers probably haven’t heard of
CHICKEN Scheme before. What
is it? What kinds of software is it
good for? What sets it apart from
other Scheme implementations?
CHICKEN is, at its core, just
another implementation of the
Scheme programming language. It
is R5RS-compliant and provides
numerous extension libraries for
all sorts of things. CHICKEN
compiles Scheme into portable C
code, which can subsequently be

compiled into a standalone execut-
able or a library. An interpreter
is also available for interactive
development.

There are a large number of
extensions (what we call “eggs”)
that cover a large spectrum of
functionality, like bindings to C
and C++ libraries and handling of
many databases, protocols, network-
ing, graphics, and user interface
programming. So I’d say it is good
for a lot of things. Dynamic typing
combined with a compiler that can
generate quite efficient code allows
CHICKEN to be used for every-
thing including scripting, applica-
tion programming, and systems
programming.

What I like about CHICKEN is
that it makes it very easy to work
with existing libraries. The foreign
function interface makes integrat-
ing C code a snap. Many people
have contributed extensions to our
library, and installing these exten-
sions is straightforward. CHICKEN
tries to be developer-friendly and
easy to use, and it puts an emphasis
on making those things simple that

Behind the Scenes with
CHICKEN Scheme

http://call-cc.org

  27

have traditionally been neglected in
dynamic languages, like generating
real standalone executables. Full
support for Scheme is provided,
including the parts that are usually
hard to implement or implemented
inefficiently.

But what really makes
CHICKEN special is its commu-
nity. A group of helpful and faithful
fanatics is actively maintaining and
improving it, sometimes at a fright-
ening pace. If you need help, ask on
the mailing lists or IRC channel and
you get it. Always.

What motivated you to create
CHICKEN?
I was scratching my own itch:
having a decent compiler for a
powerful and elegant language,
one that I can use for day-to-day
programming instead of banging my
head against the limitations of the
mainstream languages that I have
to use otherwise. Something that
doesn’t get in the way of solving a
particular programming problem.

Do you often use CHICKEN in
your own programming? What
kinds of software to you create
with it?
I use CHICKEN as much as I can. I
have done some freelancing writing
Scheme, but haven’t had the chance
so far to use it at work (I’d love to,
though). Unfortunately, I don’t have
much time left between work and
maintenance, even though my head
is exploding with ideas. If I find the
time, I usually implement other
programming languages — I’m one
of those programmers that always
end up implementing programming
languages in the hope of using them
to write something interesting in
the future… But I never get beyond
the first stage. :-)

When did you first become inter-
ested in computers or program-
ming? How did you learn to
program?
I started around the age of 12, I
think, at the start of the home
computing era. I never got the
computers with the cool games
like the other kids, so I had to dive
into BASIC programming pretty
early. Later I studied mathematics
and computer science but quickly
realized that I’m way too dumb for
math and dropped out after just a
year or so.

I’m addicted to computer books,
so I was able to pick up a lot of dif-
ferent subjects, but I always ended
up learning about programming
languages.

How did you first learn about
Scheme/Lisp? Did you find it
challenging at first, or did it
come easily? What made you
like it enough to create a Scheme
implementation?
I somehow came upon a small book
about Lisp, which was very chal-
lenging and strange. But my fasci-
nation started early and I sucked
up everything I could about Lisp,
its various variants and the imple-
mentation techniques involved in
making it run. Scheme, being such a
clean, minimal and elegant language
got me quickly hooked, as it did to
so many others.

Internet access came very late, so
to get access to a Lisp system I had
to write one myself. I wrote count-
less Lisp and Scheme implementa-
tions — most of them were rub-
bish, and none was ever complete.
But implementing Lisp is the true
way of learning the language, and
in the end, reading Henry Baker’s
“Cheney on the M.T.A.” paper and
Andrew Appel’s wonderful book

“Compiling with Continuations”
showed a way that was just so
elegant that I had to try it out.

You first released CHICKEN in
2000 — over a decade ago! What
motivates you to keep working on
it after so many years? Have you
ever had times of low motivation,
where you didn’t want to work on
it anymore? How did you cope?
Yes, I think hacking began about
15 years ago. It’s hard to believe
that it has been such a long time.
I wanted to stop more than once,
but what made the difference was
the feedback I got. Even when the
system was barely usable (actually
even when it wasn’t usable at all),
people tried it out, sent patches,
suggested improvements and, most
surprisingly, they used it! For real
stuff! That was both baffling and
highly motivating. Being so grate-
ful for the feedback, I couldn’t stop
working on it.

Maintaining such a project,
especially one that is growing very
fast, can be quite a piece of work.
Over the years, a core team of very
capable, motivated and friendly
folks has emerged that do all the
hard work and additionally keep up
with my moods. But before that,
keeping up with the project (bug-
fixing, porting, testing) turned out
to be a full-time job. I was ready
to walk away more than once, and
not having the time to use the stuff
you worked on for such a long time
can be quite frustrating. Usually,
taking a few weeks of vacation
from all things CHICKEN related
helps, until my fingers start itching,
the ideas start flowing, and I throw
myself back into the project.

28  PROGRAMMING

In your initial announcement of
CHICKEN, you included a dis-
claimer: “This is *not* a produc-
tion quality/high-performance
system.” A lot has changed since
then. Would you say now that
CHICKEN is a “production qual-
ity/high performance system”?
Yes, I think I’d say that. The compiler
can generate very fast code, if you
know what you’re doing and if you
have an idea of how it operates. A
massive amount of code has been fed
to the system, which weeded out a
countless number of bugs. So it is not
too immodest to say that CHICKEN
has become quite mature.

It will never be bug free, of
course, but that is the price you pay
for keeping up a fast pace of devel-
opment. With maturity, the class
of bugs shifts to more advanced
and obscure parts of the system.
Additionally, we do an awful lot
of automated testing, which is of
tremendous help.

Do you have future plans for
CHICKEN? Where would you like
it to be in 5 years?
There are many things that need
to be improved. People are using it
heavily, and companies have started
using it for getting real stuff done,
so there is always something to fix
and improve. The next Scheme
standard (R7RS) is around the
corner, and we plan to support
it, which will be another piece of
work. A lot of infrastructure has
been created (testing, bug-tracking,
code repositories, documentation,
etc.) that needs constant attention.

I don’t know. I think in 5 years I
would like it to be like it is now —
just better.

 Let’s talk about SPOCK. What is
it? Is it ready for people to use?
Why would someone want to use
it?
SPOCK is a compiler from a subset
of R5RS Scheme to JavaScript. It
uses a compilation strategy similar
to CHICKEN, but it is more light-
weight and cuts a few corners of
the Scheme standard to be practi-
cal. It has not been used a lot so
far, but it works, and I think it has
some potential to be a useful glue
language for Scheme-based web
software. But, I’m not an expert in
web programming, so my opinions
must be taken with a grain of salt.

The interesting bit is that the
distinction between server-side and
client-side gets fuzzier — a Scheme
server can emit Scheme code to run
on the client, and Scheme’s power-
ful syntactic extension mechanisms
can make this look like a single
piece of code. SPOCK is not what
I’d call ready for production yet.
But I’d say there is potential.

What motivated you to create
SPOCK?
Originally, I wanted to have a
clean compiler core for Scheme,
using the “Cheney on the M.T.A.”
compilation strategy (which is also
used in CHICKEN). JavaScript is
an interesting and powerful target
language that already takes care of
a lot of things (garbage collection,
dynamic typing, etc.), so it was a
natural choice. After the usual frus-
tration of getting it to work on all
major browsers, the parts just fell
into place.

Have you used it for any projects
yet?
I have only done experiments
with it. I’d love to do more, but I
severely lack the experience in web
programming.

You mentioned that CHICKEN
and SPOCK both use Henry Bak-
er’s “Cheney on the M.T.A.” compi-
lation strategy. How much did your
experience developing CHICKEN
help with creating SPOCK? Are the
implementations similar?
Baker’s method is really incred-
ibly clever — naturally, I have to
say that — but the code that it
produces takes some getting used
to. It’s a bit of a challenge to read
code that has been converted to
continuation-passing style (CPS)
and translated to another language.
Without the experience I gained
from CHICKEN, SPOCK would
have taken much more time.
SPOCK is a good deal simpler and
cleaner than CHICKEN, but of
course it supports a much smaller
language, it’s not fully R5RS com-
pliant, and it doesn’t have to cope
with the horrors of POSIX, the
Windows API, or C compiler issues.
And JavaScript takes care of a lot of
dirty details, of course.

  29

Much of Baker’s paper seems
pretty specific to the memory man-
agement and function call conven-
tions of C. What gave you the idea
of applying it to JavaScript? Are
the techniques described in the
paper relevant in JavaScript?
I think they are relevant to every
language. Baker’s compilation strat-
egy is applicable to nearly every
language that has activation frames
with limited extent. It elegantly
combines garbage collection with
stack frame management and con-
tinuation creation, so static lan-
guages like C are a natural choice.
JavaScript already provides garbage
collection, but Baker’s method gives
us tail-call optimization and first-
class continuations. There has been
at least one CPS-based Scheme-
to-JavaScript compiler before,
but it didn’t explicitly use Baker’s
method, as far as I know.

SPOCK’s documentation includes
a warning that it “stresses JavaS-
cript implementations in unusual
ways.” Are there significant per-
formance issues with SPOCK? If
so, do you think performance will
improve as SPOCK matures?
That is possible, yes. SPOCK cre-
ates deeply nested functions, and
this stresses existing JavaScript
engines in unexpected ways. It
even uncovered a bug in Mozilla’s
JavaScript engine — which is fixed
now, thanks to the engine’s main-
tainers. There may be corner cases
that haven’t been thought of yet.
SPOCK just needs more users and
more testing.

What’s next for SPOCK? Are you
going to continue developing it?
Currently, I’m just waiting for
people to use it.

But, SPOCK is clean enough to
be grokked by whoever wants to
hack on it. It is not under active
development at the moment, but it
has a reasonable size and complex-
ity, which makes it easier to main-
tain than, say, CHICKEN. It would
be interesting to see how people
use it, and I’ll be available in case
something breaks.

Both CHICKEN and SPOCK are
open source. If someone is inter-
ested in contributing, what is the
best way to get started?

Just give it a try. Play with it,
learn about it, write something
useful, or even something use-
less. Then get in touch with the
community, ask questions on the
mailing list, or enjoy the daily fun
on our IRC channel. Submitting a
new CHICKEN library or exten-
sion module is very easy. There
are endless things to do, even if it
is just testing, and we are happy
about every little bit of help we can
get, and happy to provide help to
those that need it themselves. Every
line of code contributed makes
CHICKEN better, increases our
corpus of testing code, or at least
gives us something to think about.

One last question: What inspired
the names CHICKEN and
SPOCK? Do they mean anything,
aside from the bird and the well-
known Star Trek character?
That question always comes up,
sooner or later.

I had a plastic toy of Feathers
McGraw on my desk, the evil pen-
guin (disguised as a chicken!) from
the Wallace and Gromit movie,
“The Wrong Trousers.” Looking

for a preliminary working title for
the compiler, I used the first thing
that came to my mind that day.
I’m somewhat superstitious about
names for software projects, and
things were progressing well, so I
didn’t dare to change the name.

Also, there is the old philosophi-
cal question: which came first, the
chicken or the egg? This applies
to CHICKEN, too. The compiler
is written in Scheme, so you need
CHICKEN in order to compile
CHICKEN.

For SPOCK, the story is not
that interesting. I just like whacky
names, and it seemed nice to have
some sort of “persona” to associate
with the compiler. Like CHICKEN,
“Spock” was just the first thing that
came to mind.

After SPOCK, I worked for a
while on a rudimentary compiler
that produced C++ instead of
JavaScript, but it was never fin-
ished. It was quite bare “bones,” so
naturally I called it MCCOY. n

John Croisant is a self-taught programmer
in a variety of languages, including Python,
C/C++, Lisp/Scheme, and especially Ruby.
In his downtime, he enjoys reading fiction,
watching old movies and TV series, and (of
course) playing video games.

Felix Winkelmann is the implementor and
lead-maintainer of CHICKEN, a popular
Scheme implementation.

Reprinted with permission of the original author.
First appeared in hn.my/chicken (atomicobject.com)

http://hn.my/chicken

30  PROGRAMMING

Using data- attributes for indexation and a
dynamic stylesheet with a CSS3 selector for
search is is straightforward way to imple-

ment a client-side full-text search in CSS rather than
JavaScript. Here is an example.

The Searchable List

<!-- Data generated by Faker, see https://
github.com/fzaninotto/Faker -->
<ul class="contacts">
 <!-- Add text to the data-index attribute to
enable full-text search -->
 <!-- Don't forget to lowercase it to make
search case-insensitive -->
 <li class="searchable" data-
index="onabednarschamberger.frank@wuckert.com1-
265-479-1196x714">
 <dl>
 <dt>First Name</dt><dd>Ona</dd>
 <dt>Last Name</dt><dd>Bednar</dd>
 <dt>Email</dt><dd>schamberger.frank@wuck-
ert.com</dd>
 <dt>Phone</dt><dd>1-265-479-1196x714</dd>
 </dl>

 <li class="searchable" data-
index="newtoncronintorphy.dorothea@gmail.
com(121)644-5577">
 <dl>
 <dt>First Name</dt><dd>Newton</dd>
 <dt>Last Name</dt><dd>Cronin</dd>
 <dt>Email</dt><dd>torphy.dorothea@gmail.
com</dd>
 <dt>Phone</dt><dd>(121)644-5577</dd>
 </dl>

 <!-- add as much data as you want -->

The Search Code
The search is very straightforward: it relies on two
well-supported CSS3 selectors (:not() and [attr*=])
and the rewriting of a style rule each time the search
input is modified:

<input type="text" placeholder="search"
id="search">
<style id="search_style"></style>
<script type="text/javascript">
var searchStyle = document.
getElementById('search_style');
document.getElementById('search').
addEventListener('input', function() {
 if (!this.value) {
 searchStyle.innerHTML = "";
 return;
 }
 // look ma, no indexOf!
 searchStyle.innerHTML =
".searchable:not([data-index*=\"" + this.value.
toLowerCase() + "\"]) { display: none; }";
 // beware of css injections!
});
</script>

The advantage of using CSS selectors rather than
JavaScript indexOf() for search is speed: you only
change one element at each keystroke (the <style>
tag) instead of changing all the elements matching the
query. Using the :not() selector, this implementation
works on IE9+, but it could easily be made compatible
with IE8+ by using two rules instead of one. n

François Zaninotto is the CEO a digital innovation workshop
named marmelab, located in eastern France. Former Propel lead
developer, former Symfony lead documenter, he is still involved
in various open-source projects in PHP and Node.js. He regularly
blogs about open-source, Lean Startup, Domain-Drive Design
and tech trends in redotheweb.com

Client-side Full-text Search in CSS
By François Zaninotto

Reprinted with permission of the original author. First
appeared in hn.my/csssearch (redotheweb.com)

http://redotheweb.com
http://hn.my/csssearch

  31
The fast and easy way to accept affiliates into your online business

AFFILIATE.IO
Visit affiliate.io/hacker for discount

Without affiliate.io...

With affiliate.io...

Just you - 7 sales/week

Affiliate #042
- Lisa, Marketing expert

Affiliate #011
- Tim, power user & ambassador

Affiliate #094
- Diana, owns 7 blogs

Affiliate #027
- Tom, industry expert

Recruit, track, and promote your business

http://affiliate.io/hacker

32  SPECIAL

SPECIAL

By Bemmu SEPPONEN

Nothing is better than
being truly motivated
by an exciting project.

But if you’re stuck, here are some
things to try for a temporary boost.
The common theme among these
is switching your perspective from
thinking about your project as a
huge endeavor and instead concen-
trating on the next practical step.

“Just one change”
You should really be working on
your project, but it just seems too
daunting today to get into it. Open
one file in your project and try to
improve just one line. Just make
one tiny change. That change often
leads to another and can get you
going.

Time challenge
This can turn a mundane task into
an interesting challenge. Should
you need to gather some receipts
or other documents to submit to
your bookkeeper each month, turn
the boring task into a challenge by
keeping a high score list of how
long it takes you each time. Last
month you did it in four hours. Can
you do it in less time? Try to beat
your record.

Time slotting
Sometimes you are not in the mood
for speed challenges and even a
bit of progress today would be a
victory. Maybe in reality you have
the whole evening to work, but
pretend it is not so. Try allocating
just an hour. If you could choose,
what would be the best thing to
work on today between 10 - 11am.
If you could clone yourself for an
hour and make the clone do that
task, what would you have it do?
When the hour comes, you might
actually find yourself doing the
task you allocated, because after all
you yourself decided that to be the
most important thing you could be
working on at that point in time.

Make a list of goals
Make a list of current goals or
revisit an existing one. That, and the
realization that your time on this
planet is limited, might scare you
into action.

Help one person
If you have received some feedback
related to your project, go read
some. Could you help this person,
or better yet improve your proj-
ect in some small way to make it
less likely for the same trouble to
happen in the future?

Structured procrastination
If nothing helps you get started in
your current task, is there another
task which seems more appealing?
Thinking about all the things you
need to do, can you find the moti-
vation to do one of them? If none
of these help to get you started,
maybe your mind or body is trying
to tell you something. It could be
time to take a break.

How to maintain your
motivation
You managed to get started, now
how to keep going?

Seinfeld method
Jerry Seinfeld once described his
method for making better jokes:
work on it every day. His system is
to have a wall calendar and mark
an X on it for every day that he put
effort into writing his jokes. After
getting a chain of X marks in the
calendar, you are motivated by not
wanting to break the chain. GitHub
also has this feature, every day you
contribute to a repo, they mark that
day in green.

Hack Your Motivation

  33

Solicit feedback
If you already have some audience,
try to get them to interact with
you. If you start getting emails or
tweets about your task, it becomes
natural to put more effort into
working on it. For example if you
have a blog, at the end you could
invite users to vote on new topics
for you to write about. If you have
a web app, you could add a live
chat or feedback widget or promi-
nently mention your email address
to make it easy for people to reach
out to you. If you receive a problem
report this way, it feels wrong NOT
to get to work immediately.

Install RescueTime
This is an app you can install on
your computer that monitors which
apps you are using. You can mark
activities as productive or not
productive. You can tell Rescue-
Time that being in a text editor is
productive, but being on Facebook
is not. Based on this it knows how
many productive hours you had
and can send you a congratulation
email when you reach your daily
productivity goal and make you
have an extra feel-good association
with staying productive.

Make a dollar
If you have a side project that you
are currently doing for free, try
asking for payment. Not because
you are greedy, but because getting
paid is a strong signal from others
that they find value in what you are
doing and want you to work on that
thing. You might find that having
even one person paying for your
stuff will greatly increase how moti-
vated you get in trying to improve
it. If you feel like “I can’t do that, I
could let them down,” well, that’s
exactly the point: you’ll get a boost
of motivation from it. And if you
really do feel that you let them
down, there are always refunds.

Write a ridiculously detailed battle
plan for tomorrow
Before going to bed, think about
what the perfect day would look
like. Maybe you would get up, get
your inbox to zero, write some
code, do some copywriting or have
a nice session of exercise or study. If
you can picture the perfect day, you
could try writing it down in detail,
down to the hour (remember to
leave plenty of room for rest and
breaks, too). Now tomorrow it will
be clear what constitutes a success
for that day.

Leave a small task undone
To jump start your productivity the
next day, leave a task open from
today. Before calling it a night, leave
just one line of code unfinished so
you can jump in and finish that as
the first natural task for getting into
a productive mood tomorrow. n

Bemmu Sepponen is an expat developer. He
also runs Candy Japan [candyjapan.com],
a Japanese sweets subscription service.

“Having even one person paying for your
stuff will greatly increase how motivated
you get in trying to improve it.”

Reprinted with permission of the original author.
First appeared in hn.my/hackmotivate (bemmu.com)

http://candyjapan.com
http://hn.my/hackmotivate

34  STARTUPS

STARTUPS

In 2002, after several years of
running a small but success-
ful e-commerce business, my

business partner (and friend since
kindergarten) Cameron Henkel and
I were both searching for vaca-
tion homes to purchase as family
getaways. After a lot of hassle (I’ll
spare you the details), we realized
that there could be a big opportu-
nity in the space. In 2002 the real
estate industry was way, way behind
the curve when it came to applying
technology to the process, so we set
out to fix the problem.

In 2003 we launched LakePlace.
com, a niche classified ads website
for lake homes and lake lots in
Minnesota and Wisconsin. Like all
marketplaces, we faced the chicken
and the egg problem. We had no
listings and no visitors. Common
sense told us that we needed to
build the supply side first and worry
about the demand side later…so
that’s what we set out to do.

We spent the next 12 months on
the phones, sending emails, attend-
ing conferences and trade shows,
and meeting with real estate agents

in person to convince them to list
their properties on LakePlace.com.
We offered everyone a free trial and
100% satisfaction guarantee (people
like 100% satisfaction guarantees).
Our e-commerce success of the
past was built on SEO, before it was
called SEO, so we knew if we could
get listings, we could get visitors…
and that’s exactly what happened.
We started getting some listings and
then started getting some traffic,
more listings, more traffic. Once
we noticed specific agents getting
multiple contacts on properties,
we swooped in with the sales call.
It was time to upgrade to a paid
account or lose the service. By 2006
we had 600+ paying customers list-
ing thousands of lakeshore proper-
ties on our site.

Along the way, something else
happened. We noticed our visitors
asking our listing agents if any of
their listings were available for rent.
After the 100th (or 500th) request,
we decided to open up a vacation
rental marketplace. Using what we
learned the first time around, we
got back on the phones and offered

resort owners and vacation rental
managers free trials. We went as far
as inputting all of their informa-
tion, uploading their pictures, etc…
whatever it took to get them to try
LakePlace.com. Once they received
10-20 inquiries, we let them know
that the free trial was over and it
was time to become a paying cus-
tomer. I think we had a 99% reten-
tion rate when converting free trial
users to paying customers. Today,
LakePlace.com’s Minnesota vaca-
tion rental section is about the same
size as Homeaway and VRB — and
way bigger than AirBnB’s — and we
are a very close second in Wisconsin
(I hope to fix that this year).

Lesson #1: What’s one way to
make a free-to-pay (free trial) tran-
sition work? Base it on a success
rate, not a time limit.

By Dave Gooden

10 Inglorious Years of
Bootstrapping

  35

The (first) Big Pivot
In 2006, at the height of the real
estate boom, some of our 600+ real
estate advertisers were closing 6-8
transactions per month that could
be directly attributed to LakePlace.
com leads. If you multiply that
number out, the top agents using
our website were clearing $30k+
per month for a $59/month invest-
ment. Crazy. After looking at all of
our options, we decided that we
needed to wiggle our way into a
piece of the action, and there was
only one way to do it: we needed to
become a real estate brokerage.

We concluded that we should
be “referring” leads to agents in
exchange for a 25% referral fee on
closed transactions. Because real
estate is so heavily regulated, this
required us to become a licensed
real estate brokerage in two states,
which presented a couple of
problems:

1.	 My partner and I were not
real estate agents. To become a
broker/brokerage in MN and WI
(besides a bunch of class hours
and exams), you need to have at
least two years of experience as
a licensed agent.

2.	 We would have to cancel all of
our subscriptions (lose most of
our revenue and upset a lot of
people).

We decided to make a call to the
commercial banker who helped us
purchase an office building during
our e-commerce days. Not only was
he the top commercial banker in
the U.S. at a huge bank, he was also
an attorney and licensed real estate
broker. After a dozen meetings and
several dinners with him and his
wife, we convinced him to resign
his position at the bank, invest

some money, and join our team
as the broker and CEO. Before
jumping in though, he wanted to
make sure that the idea for our new
business model was sound…so he
picked us up in his S600 and we
drove 200 miles north to visit our
biggest advertiser.

Our top advertiser was a young
real estate broker in a popular
resort town in northern Minnesota.
Every time we launched a new
advertising opportunity, he signed
up (and paid up) almost immedi-
ately. He had just been named one
of the “30 Under 30” by Realtor
Magazine and was selling $60M
in lakeshore properties every year.
If we could convince him to buy
into our new model, everything
else would probably fall into place
pretty easily. When we asked him
if he was willing to pay a $1,000
annual fee + a 25% referral fee in
exchange for market exclusivity on
LakePlace.com (vs. $59/month flat
fee and no exclusivity), he said “yes”
without hesitation. The conversa-
tions on the drive back to the Twin
Cities were filled with excitement
as we solidified the deal with our
new CEO and discussed the wire
transfer and his start date.

The Call
In preparation for our new business
model, Cam and I hit the phones
hard. We studied the maps, carved
out 53 unique lakeshore markets
throughout Minnesota and Wiscon-
sin, and called our top advertiser in
each market. We let them all know
that we were going to be changing
our model and asked if they would
be interested in joining LakePlace.
com as our exclusive affiliate in
their market (annual fee + 25%
referral fee). In short order, we
filled all 53 slots and validated our

new model. On the other side of
the coin, the news of our changes
spread quickly throughout the
real estate industry and we had to
field a lot of calls and emails from
angry advertisers. Some agents
cancelled their advertising subscrip-
tions immediately, others decided
to continue advertising to the end
and join a waiting list to become an
affiliate.

The fuse was lit. In about a
month our company would have a
licensed broker and a healthy bank
account. The plan was to join every
MLS (19 in all) in Minnesota and
Wisconsin (expensive), pull and
combine all of the lakeshore list-
ings from these different databases
and build an easy-to-use, seamless
search function (difficult). If we
could make this happen we would
be able to give our users a complete
market overview…which is exactly
what Cam and I wanted when we
were searching for our vacation
homes.

The night before our investor/
CEO was to give his 30 day notice
at the bank, Cam and I were work-
ing late. Cam’s cell phone rang at
about 10pm, it was our investor/
CEO’s wife. She asked if I was pres-
ent and then asked Cam to put her
on speaker. She started with “I need
to have a difficult conversation
with you guys….” She went on to
tell us that her husband left his law
practice because of heart problems,
he was put on beta blockers at a
very early age, and she could see
all of his symptoms coming back.
She told us, in no short order: “I’m
sorry, but I’m not going to let him
do this.”

We were floored. We were dead.
We had put our reputations on the
line with 53 agents/brokers and
burned bridges with many others. I

36  STARTUPS

can’t really explain the feeling that
came over me that night, but I can
tell you that I hope I never feel it
again. Anyway, the next morning,
after confirming the news, we had
to make our own difficult phone
calls. It was time to pull back the
curtain and admit that we had no
clue about what we were doing. We
were junior varsity level players,
and it was time to come clean and
own up to our inadequacies. The
first, dreadful call we decided to
make was to our top advertiser, the
“30 Under 30” guy. He sat quiet on
the other end of the phone while
Cam and I did our best to explain
why we could not move forward.
After a long, awkward silence, the
first words he said were “…it sounds
like you need a broker and some
money. What if I can bring that to
the table?” Cam and I looked at
each other, eyes wide open, and one
of us said “…it would be game on.”
Forty-five days later he had sold his
brokerage, moved his family to the
Twin Cities, and joined our com-
pany as a minority shareholder and
COO. We were back.

Lesson #2: A deal isn’t done until
it’s done.

Lesson #3: Good things are some-
times born of disasters.

The Trough of Sorrow
2006-2009 was full of ups and
downs. Almost immediately after
launching our new model we
entered acquisition talks with 3
large companies. The one company
we were most interested in work-
ing with took the talks very far,
but after several meetings with
their C-level execs, lawyers, and IT
teams, the deal fell apart. Our new
model started out great and was a
moderate success, but as the hous-
ing market collapsed, our referral
fee revenue began to dry up. Mar-
kets that were closing 20 referred
deals per year in 2006 turned into
1 or 2 closed deals by 2009. Less
revenue meant that we did not have
the resources to audit our affiliates
and the whole thing was spiraling
in the wrong direction. To make
matters worse, it didn’t take long
for Cam and I to realize that we
had some major personality con-
flicts with our new COO. After 12
months on the team, we all agreed
it would be best if he moved on.
The terms of our buy/sell agree-
ment required him to remain the
broker of record for 2 years while
we bought our shares back. This
gave my business partner Cam time
to get a real estate license and even-
tually his broker’s license. It also

allowed our former COO to earn
3x on his investment (not great, but
not bad).

Note: While things did not go
as planned, our COO was able to
parlay his experience at LakePlace.
com into a Director of Franchise
Sales position at a big, national real
estate company (he also became a
contestant on “The Apprentice”),
and we were able to keep our busi-
ness alive as a licensed real estate
brokerage. All in all, we have no
hard feelings and I look back on it
as a win-win. I think he feels the
same.

“We were junior varsity level players,
and it was time to come clean and
own up to our inadequacies.”

  37

A New Beginning (The Second
Pivot)
By late 2009, after reclaiming
100% ownership of our company,
it was becoming obvious to Cam
and me that our referral broker-
age model was probably not going
to be the driver of success that
we had hoped for. We had spent
more than six years searching for
a successful model that we could
attempt to scale, and during this
time companies like Zillow, Trulia,
and Redfin had soared (Facebook
and LinkedIn launched at about the
same time as LakePlace.com) while
we were spinning our wheels. After
30+ years as bff’s and more than
a decade as business partners, the
stress of long hours and shrinking
incomes was coming to a head, and
Cam and I were starting to resent
one another. And then we got
the phone call that would change
everything.

At the beginning of 2009, I
helped one of our affiliates set up
a blog, and over the course of the
year, I gave him a little SEO advice
that helped his blog rise to the top
of the SERPs. He worked for a large
brokerage that was in the largest
lakeshore market in Minnesota
(probably the largest lakeshore
market in the country). When sh*t
hit the fan at his company, he called
us right away and asked if we ever
thought about opening our own
real estate office. It’s kind of funny,
because even though we had been
working directly with realtors and
brokers, day in and day out for 6
years, the thought of opening up
our own real estate office was never
really on the table. Like I men-
tioned above, our goal was to build
a scalable product (“products scale,
services don’t…blah, blah, blah”).

After a lengthy conversation, Cam
and I got excited and agreed to
setup a “secret” meeting at a remote
lake home with a dozen realtors
from our affiliate’s brokerage. At
the end of our presentation, all
twelve agents at the table commit-
ted to joining LakePlace.com if we
committed to opening an office.
In April of 2010 LakePlace.com-
Crosslake (Brainerd Lakes) opened
its doors.

Lesson #4: Helping people can
provide unexpected returns on
investment.

So how’s switching from a
product to a service going so far? In
2009 we received two (2) refer-
ral fee checks from our affiliate in
1/53 markets. In 2010 (April-Dec),
after opening our own office, our
agents closed 53 transactions from
company generated leads in that
market. When we ran the numbers
across all of our affiliate markets,
the path forward was obvious…
so we started executing. Here’s the
timeline:

■■ 2003: LakePlace.com launches as
classified ads website

■■ 2006: LakePlace.com pivots into
a referral brokerage

■■ 2010: LakePlace.com opens first
real estate office in Crosslake,
MN (LakePlace.com-Crosslake)

■■ 2011: LakePlace.com acquires
ReMax Woodland Realty (now
LakePlace.com-Birchwood)

■■ 2011: LakePlace.com-Cross-
lake merges with Century 21
Gold Shores (now LakePlace.
com-Crosslake)

■■ 2012: LakePlace.com opens
Wayzata, MN office (LakePlace.
com-Metro)

■■ 2012: LakePlace.com opens new
headquarters in Bloomington,
MN

■■ 2012: LakePlace.com merges
with ReMax Northwoods Realty
(now LakePlace.com-Siren)

■■ 2012: LakePlace.com acquires
ReMax North Country (now
LakePlace.com-Hackensack)

■■ 2012: LakePlace.com opens
Detroit Lakes, MN office (Lake-
Place.com-Detroit Lakes)

■■ 2013: LakePlace.com opens Alex-
andria, MN office (LakePlace.
com-Alexandria)

■■ 2013: Loads of new bullet points
coming (“knock on wood”)

Our sales and revenue doubled in
2010, 2011, and 2012 but we still
have a long, long way to go. And
even though our business isn’t quite
the technology product we envi-
sioned when we started, Cam and
I are happy again and loving what
we do. Every day presents a new
challenge, and we get to attack it
from an angle that most companies
in our industry can’t see. We may
not be “changing the world,” but we
feel like we are pioneering a new
way to build a successful real estate
company, and that in and of itself
has been very satisfying.

Lesson #5: Hard work and perse-
verance pays off.

38  STARTUPS

Final Thoughts
I’m not going to pretend I’m some
sort of startup guru with magic
advice that will change your life.
There are already tons of people
out here doing that, and plenty of
them have built things that make
our company look like a lemonade
stand. I will, however, share some
things (read: anecdotes) that have
worked for me.

➊ Never quit. I don’t mean be
irresponsible. I mean if you

are working on something that you
truly, wholeheartedly believe in, but
it’s taking longer than you antici-
pated to get traction, don’t stop. It
takes time, and it’s probably going
to be a lot harder and more painful
than you thought it would be, but
don’t quit.

➋ There are riches in niches.
Niches are almost always

the best/easiest place to start if
you’re a bootstrapper.

➌ Sales cure (almost) every-
thing. Money isn’t the most

important thing in the world, but
it’s what we use to keep score…and
it keeps the lights on. More money
= less pressure…so always be selling

➍ Know your customer. Your
customer is the person who

gives you money in exchange for
your product or service. It’s easier
than you might think to get con-
fused about this one.

➎ Listen to your users. Don’t
add/remove features on

every whim, but if you ask and then
listen very closely, you’ll find nug-
gets of gold.

➏ Everything scales. If you
build a successful business

model (product, service, whatever),
it’s scalable. It might not be easy,
but it can be scaled. Don’t believe
me? Ask the founders of Walmart,
Home Depot, McDonald’s, HandR
Block, Re/Max or Fantastic Sam’s.

➐ Always think big. Cameron
and I operate with a short-

term, mid-term, and long-term
plan. The long term plan is our
“take over the world” plan. Our
3-plan approach helps to keep us
focused on our day-to-day opera-
tions but also keeps us alert and
looking for opportunities that may
help us reach our ultimate goal.

➑ No Excuses. Can’t raise
money? Figure something

else out. Don’t have connections?
Neither do we. Cam and I started
out on our entrepreneurial journey
with $600/each on credit cards (no
savings) and did $1M in revenue
our first year…because we needed
to. I’ve applied to Y-Combinator
twice and talked to local investors
a few times. Everyone said “no.”
We said “fuck “em, we”re doing it
anyway.”

➒ Pick a fight. Don’t do this
publicly, but always have an

enemy: at least one person and/or
company whose ass you are trying
to kick. Don’t stop until you have
their head on a stick…and then
pick a bigger enemy.

➓ It’s really, really hard. Cam
and I have gone several

months working insane hours with-
out a pay check or health insurance
(multiple times). Entrepreneurship
is definitely not for everyone, but
if you’re like me, you can’t imagine
doing anything else. Ever. n

Dave Gooden is the co-founder and CEO
of LakePlace.com, an accidental (but
awesome) real estate brokerage. Follow
@davegooden on Twitter.

Reprinted with permission of the original author.
First appeared in hn.my/10years (davegooden.com)

http://LakePlace.com
http://twitter.com/davegooden
http://hn.my/10years

https://www.mailjet.com/?utm_source=hackermonthly&utm_medium=pdf&utm_campaign=October-hackermonthly

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; #
ABSTRACT: Rotate chars by 13 letters use DDG::Goodie; triggers start => 'rot13'; handle remainder =>
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1;
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend =>
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub {
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if (
$command && $command eq 'decode') { $str = decode_base64($str); $str = decode("UTF-8", $str);
return "Base64 decoded: $str"; } else { $str = encode_base64(encode("UTF-8", $str)); return "Base64
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if (lc($part) eq 'or') {
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length =
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ($part) { push @collected_parts,
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_

http://duckduckhack.com

	FEATURES
	How I Failed
	What Programming a Game in 48 Hours Taught Me About Programming Games

	PROGRAMMING
	ClojureScript 101
	Basics of Function Pointers in C
	HTML5 Live Video Streaming Via WebSockets
	Behind the Scenes with CHICKEN Scheme
	Client-side Full-text Search in CSS

	SPECIAL
	Hack Your Motivation

	STARTUPS
	10 Inglorious Years of Bootstrapping

