

Curator
Lim Cheng Soon

Contributors
Damian
Sowers
Peter Cooper
Vibhu Norby
Zach Hoeken Smith
Stuart
Sierra
Ben Howdle
Josh Wills
John Graham-Cumming
Nick
Knowlson

Illustrator
Matthew
Billington

Proofreaders
Emily
Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar
Jha

Printer
MagCloud

Contact

contact@hackermonthly.com

Published by
Netizens Media

46, Taylor Road,
11600 Penang, Malaysia.

Hacker Monthly is the print magazine version of Hacker News —
news.ycombinator.com,
a social news website wildly popular among programmers and startup
founders. The submission guidelines state that content can be
“anything that gratifies one’s intellectual curiosity.” Every
month, we select from the top voted articles on Hacker News and print
them in magazine format.
For more, visit hackermonthly.com

Sacrificing
Everything For My Dog

By DAMIAN SOWERS

Nobody
will bat an eye if you’re making big sacrifices to give your
children a better life. This sacrificial behavior is hard wired into
our DNA and it’s expected of every parent. In fact, evolution
depends on this behavior.

However,
if you tell somebody you’re restructuring your life to make your
dog happy, there’s a good chance they will laugh and think your
future involves a strait-jacket and a big nurse by the name of
Ratched.

Until
now I never told anybody about my reasons for my big life changes and
I feel quite embarrassed as I’m typing this. The truth is, if I
didn’t love my dog so much, my life would be radically different
and I’m sure I would be miserable.

I
don’t believe in God, but I do believe in karma. Maybe karma is
similar to luck, as in “the harder I work, the luckier I get”
type of thing. Being good to someone or something seems to create a
bunch of collateral happiness.

Here
is my story.

It
was 2008 and I was headed in a very respectable direction, currently
enrolled in a Ph.D. program for chemistry at the University of
Colorado at Boulder. I worked incredibly hard to get to this point
and had earned myself a number of gold stars along the way, all of
which looked really good on paper. For example, I spent some time
after my undergraduate studies working on the NASA Genesis mission at
the Berkeley Space Sciences Laboratory.

I
liked my advisor in Boulder and my situation was ideal. My advisor
gave me a two-month paid trip to Prague the summer before graduate
school. This trip was arranged so I could do theoretical chemistry
work for the Czech Academy of Sciences, but I also used it as an
opportunity to drink a lot of good Czech beer.

On
the surface I had a great life, but deep down something about my
situation was wrong. I was tired of chemistry yet I didn’t want to
admit this to myself. It’s easy to delude yourself when you’ve
invested so heavily into something. After all, everything I had done
in the past 10 years was dedicated to this career path.

Enter
Deimos, my Golden Retriever/Shar Pei hybrid. A master of Tug o’ War
and decimator of sticks, Deimos also has the ability to lay on a
massive guilt trip whenever I leave him. He puts his head down in
that pleading fashion and gives me those eyes that seem to say,
“Please dad, take me with you. I just want to spend time with you.”
Every time I left for graduate school duties I had to suffer through
this departure. I died a little on the inside each time.

It’s
unfair to a dog to make them wait 8 hours each day while we are at
work. Dogs only have about a decade of time on this Earth. In dog
years, this amounts to waiting 56 hours for us while we are off
working every day. That is a waste of a very short, bright life. If
you’ve ever owned a dog, you know just how intelligent they
actually are (especially larger breeds). Such intelligence deserves
great experiences and grand adventure.

So,
while I was unable to admit to myself that I was headed down the
wrong career path, I was able to recognize my intense desire to give
Deimos a situation where I could spend more time with him. This
invisible guiding paw would press on me daily.

Enter
Typhoid. Yes, Typhoid. As in the main way your character died when
playing The Oregon Trail computer game in the 5th grade. Around month
four of graduate school I started getting really high fevers on a
regular basis and pain in my lower abdomen. I didn’t know what was
going on and the doctors didn’t either. A couple of doctors tried
to tell me I had Crohn’s disease. I didn’t believe this
diagnosis, though.

After
an abscess and a lot more pain, I mentioned to my doctor that this
could be related to a case of Typhoid I contracted while
mountaineering down in Bolivia. I had all sorts of stomach problems
after that trip and I theorized that the Typhoid could have caused
some scarring in my intestines, which was then acting as nucleation
points for infection (maybe also helped along by extreme stress).

The
doctor said it was worth a shot to try a prolonged course of strong
antibiotics to see if this theory was correct. So I went home for
Christmas break with a truckload of drugs. The guiding paw of Deimos
would make it so I would never go back.

The
antibiotic treatment worked and it wasn’t too long before I was
completely healthy again. Yet, seeing how happy Deimos was in Tahoe
made me think deeply about different career paths which would allow
me to work from home so I could spend more time with him.

Enter
programming. I decided I wasn’t going back to graduate school. I
would disappoint a lot of people who had invested in me (especially
my advisor), but that bad feeling is so small in comparison to living
the wrong life. Some people stay on the wrong path their entire lives
just to avoid this disappointment and/or out of a sense of
obligation. I didn’t want this to be me. Fuck obligation.

I
had a plan. I was going to teach myself programming and change my
life. I had a very superficial introduction to Fortran in the past
with computational chemistry, but that was the extent of my
programming knowledge. So I decided I would need to hunker down for
many months and learn how to make a living with code.

Fortunately
I have amazing parents and they let me live in their house in Tahoe
(they retired and moved away to Navarro, near Mendocino). As for my
other living expenses, I still had the remainder of my student loan
and I decided I was going to gamble and put the rest of my life on a
credit card while I went through this self-taught re-education.

Many
people believe that credit cards and debt are pure evil and stupid. I
see credit cards as being the saving grace which prevented another
great depression during the recent economic collapse. Having access
to rainy day/investment money is the single greatest invention of
our economic system.

As
long as you use the money properly, and investing in yourself is the
best possible way to use money, credit cards can give you a new life.
While I was living on the card I didn’t spend my time playing
World of Warcraft or watching TV. I made sure I dedicated 8-10 hours
a day to learning the wonderful craft of programming.

A
little while later I started earning money with my first business,
Tallac Interactive. This was just a front-end local web design
business and I didn’t spend much time interacting with server side
languages, other than the occasional dive into the Wordpress
back-end. But it was enough to get noticed by the CEO and President
of Fretlight Guitar, which led to my first high-paying job as a
programmer.

Fast
forward to now and I’ve founded Mycelial, Briarpatch, and
AppRaptor. I’ve taught myself PHP, MySQL, Ruby, Ruby on Rails,
Javascript and many more amazing languages and technologies. I can’t
get enough of programming. I am paid well to do it from home and I
even spend all of my free time on programming side projects. Building
stuff with code is the most satisfying thing in the world for me.

And
yet, I wouldn’t be a programmer today if it weren’t for my
intense desire to find a lifestyle which would make Deimos happy. In
other words, I wouldn’t be happy today if I didn’t sacrifice my
previous life for my dog. I’m sure I would still be in graduate
school, poor and miserable and covered in organic toxins from the
lab.

I’m
not trying to knock chemistry. I have tremendous respect for anyone
who dedicates their life to chemistry. Chemists make our lives better
and often shorten their own in the process. It’s a harsh bargain
and an extremely noble one. I still have a massive scar from a Nitric
acid spill on my wrist which reminds me every day of the sacrifices
chemists make for the rest of us.

The
guiding paw of Deimos also had another great effect on my life. As a
result of not going back to graduate school and staying in Tahoe, I
reconnected with Lisa, who is absolutely amazing, and we’ve been
together for four years now.

I
don’t think the karma of this situation is mystical or spiritual or
anything of that nature. Providing my furry little dependent with a
life of pure happiness and grand adventure merely showed me the way
to a lifestyle with the perfect balance of nature and intellectual
stimulation, and I encourage others to find a similar balance.

There
are probably a lot of people out there who balk at the idea of
personal sacrifice for a dog. It’s easy to spot these people,
however. They are cat people.§

Damian
Sowers is a Rails and JavaScript programmer living in South Lake
Tahoe, California. His work can be found at appraptor.com

First appeared in hn.my/dog
(medium.com)

How
to Spread The Word About Your Code

By PETER COOPER

You
spent an entire weekend building a library, jQuery plugin, build
tool, or other great piece of code you wanted to share far and wide,
but after some tweets and a failed attempt to make the front page of
Hacker News, your creation languished, unloved, in a GitHub repo. A
common situation for many developers nowadays, but one you can avoid.

As
the editor of several programming newsletters, I frequently get two
types of e-mails from developers. Those reaching out to ask if I can
mention their projects, and those expressing surprise and excitement
that their work has been featured. If you’re a developer doing good
work but feel more like you’d be in that second group, the three
steps in this article are for you.

Before
we get started, there’s a stumbling block we need to kick away.
Terms like “marketing” and “advertising” are dirty words for
many developers and it’s not uncommon for developers to be
reluctant to do much promotion. “Build it and they will come”
used to work when exciting open source projects were few and far
between, but now everyone seems to be working on something and making
noise about it. Few successes come through pure luck, but rather
because developers are actively promoting their work or, at least,
making it discoverable. It’s time to join them!

1.
Get your project ready

Before
you can promote your project, you need to make it attractive to
potential users and evangelists (including general well-wishers, the
media, and other developers).

A
good name

Ensure
your project has a palatable name. It doesn’t need to be clever or
even descriptive, but it’s worth avoiding innuendos that may
present a problem down the line. For example, the popular Testacular
and Authgasm projects, are now named Karma and Authlogic respectively
after users raised a fuss.

You
should perform a search for the name you choose to be sure you’re
not clashing with anything else that’s popular or trademarked (did
you know Firefox was called Phoenix and Firebird prior to Firefox?).
The US Patent and Trademark Office has an online trademark search
facility. [tess2.uspto.gov]

A
benefit of having a relatively unique or uncommon name is so you can
search for it over time (or even set up a Google Alerts notification
for the name) and find mentions of your project without many
irrelevant results popping up. If you want to have something
descriptive but unique, consider joining two words together. For
example, when I created a Ruby library to do natural language
detection, I called it WhatLanguage and it’s easy to search for.

An
official homepage/project URL

The
term “homepage” is a bit outdated but you ideally need a single
“home” URL that you can promote and point people to in relation
to your project. You don’t need to splash out on a fancy template
or even a domain name, but your project needs a focal point. That
could be an entire site with its own domain, such as those for Yeoman
[yeoman.io] or HTML5 Boilerplate
[html5boilerplate.com], a
simple single page on an existing domain, such as that for
RoughDraft.js, [ndreckshage.github.io/roughdraft.js]
or even a regular GitHub repo, such as for vague.js.
[github.com/GianlucaGuarini/vague.js]

If
you have the freedom to do so, make sure your site looks good on the
major browsers (including mobile), hook up some analytics to your
page and ensure the <title> tag is well written. Use a title
like “MyProject — A JavaScript Library to X, Y and Z” instead
of just “MyProject — About” or a blank title. With social
bookmarking, this matters as you can’t guarantee your evangelists
will write a good title of their own.

If
you’re not a Web designer, don’t have the time to spend making a
complete design, but still want a
complete site rather than just a GitHub repo and README, consider
using a framework like Bootstrap as it’ll provide a clean layout
out of the box and you can forget about many cross browser and device
issues.

Documentation
and copywriting

It’s
only just a cliché that developers don’t like to write
documentation, but you need something for potential users to fall
back on, and time invested in producing useful documentation up front
will pay dividends later.

At
a cynically bare minimum, you need to write enough documentation that
someone will be confident about sharing your link or promoting your
project and not feel like they’re sending their own followers into
a black hole of misunderstanding. This means your homepage or README
needs to cover a few angles. You’ll need to:

		Prominently
	feature a “[noun] is” paragraph.
	An alarming number of project homepages don’t explain, in simple
	terms, what the project is actually for or does. If you’ve built a
	JavaScript library that does language detection, say, you have to
	say so. For example: “LanguageDetect is a JavaScript library for
	detecting the natural language of text.”

An
excellent example of this in action is on libcinder.org where it
states right up front: “Cinder is a community-developed, free and
open source library for professional-quality creative coding in C++.”
Perfect!

		Write
	clear titles, subheadings, and support copy.
	At a bare minimum, ensure titles, subtitles, and any sort of writing
	on your homepage are straightforward and clear. Write for the lowest
	common denominator on your homepage. You can get more advanced
	elsewhere.

	
	Write
	a beginner’s tutorial and link to it from your home page.
	Unless everything’s simple enough to explain on a single page,
	quickly write a tutorial that covers basic installation and usage
	and either include it in your README file or put it on the Web and
	link to it from your README and/or homepage.

	
	State
	dependencies and requirements clearly.
	Does your library only work on a specific version of Node? Is it a
	browser extension for Firefox? Does your code require PostgreSQL,
	Redis, or another specific database? Be sure to include a bullet
	point list of dependencies and requirements for your project to be
	usable so as not to disappoint potential users.

	
	Specify
	the license for your code.
	While you could get away with keeping your licensing information
	tucked away in a LICENSE file in your GitHub repo, specifying what
	license your code is released under up front and center will help
	put many developers at ease. Likewise, if your project is commercial
	in nature and costs money, don’t hide that detail and mislead
	visitors.

	
	If
	your project is a library or API, feature some example code on the
	homepage. Unless
	your library is particularly complex, let visitors see an example of
	its usage on the project homepage. If your API is good, this could
	be a great way to get an “easy sale.” I’m not a huge fan of
	the code example chosen, but the homepage for Ruby [ruby-lang.org]
	shows off this technique.

Extra
materials

A
blog post is a great way to introduce a project that might need more
background or have more of a story than it’s practical to tell on a
homepage or within documentation. If there’s any sort of story
behind your project, a blog post is a great way to tell it. Be sure
to link to the post from your project’s homepage and consider
promoting the blog post separately to relevant sites within your
niche.

If
you have the ability, recording a screencast or other sort of video
can help. Could you put together a simple 5 minute screencast of how
to install and use your library? Or have you built a game that could
be demonstrated in a few minutes of gameplay? Record a simple video,
put it on YouTube, and embed it on your homepage. Your accent doesn’t
have to be as crisp as a newsreader’s, and you don’t even have to
appear within the video. All that matters is you get to the point
quickly and your audio is tolerable (not muffled, clipping, or
drowned in background music).

As
the editor of several programming newsletters, I look at thousands of
projects each year, and it’s still
uncommon to see simple screencasts, yet they certainly help a project
stand out and, as a consequence, make it more likely for me to talk
about it. You can see a perfect example on Punch’s homepage. The
early popularity of Ruby on Rails also depended upon a popular “build
a blog engine
in 15 minutes” video, back when the concept of using video to
promote an open source project was very novel.

If
you’re sticking to the straight up, GitHub README approach (and
it’s certainly not a bad idea for a simple library), a bonus tip is
to create a tiny screencast of your code in action and convert it to
an animated GIF for inclusion in your README. Richard Schneeman
outlines this technique in “Use GIFs in your Pull Request for Good,
not Evil.” [hn.my/gifs] The result
is striking and could help your README stand out.

For
further ideas on how to make your project stand out before you begin
promoting it, check out the great “How to Make Your Open Source
Project Really Awesome” by Michael Klishin. [hn.my/osawesome]
It digs into more detail about versioning, announcements, having a
changelog and writing good documentation.

2.
Get the word out

You’ve
polished your project, got a URL to promote, and you’re ready to
get the news out.

A
word of caution, however. Don’t use every technique on day one. You
could overload your site with traffic or, worse, be subjected to a
barrage of online criticism if your work or site is broken. With
something like a library or tool, a gentler approach will work well
and building up small streams of visitors and users over time will
give you a much better time.

Social
networking

Your
own social networking profiles are always a good place to start if
you have them. You’ll get more immediate feedback from people who
actually know you and if your project is particularly interesting, it
could go viral even from a single mention.

A
great example of a simple project going viral was YouTube Instant by
Feross Aboukhadijeh. Feross built YouTube Instant quickly, mentioned
it on Facebook before going to bed, and woke up to a flood of traffic
and press mentions.

If
you like to experiment and have several bucks going spare, you could
also consider paying for a promoted post on Facebook. This will give
your post more visibility in your news feed, but is best reserved for
if your Facebook friends are mostly developers or people likely to be
interested in your project. If not, and you’d still like to spend
some money, consider an ad on Reddit or a relevant programming blog
instead.

Influencers,
bloggers, and niche media

Whether
you’re working on a JavaScript library, Firefox extension, backend
app in Rails, or a theme for Bootstrap, your code will fit into one
or more niches, and every technical niche has a variety of
“influencers,” people and publications who are popular and well
known for the topic at hand.

Getting
a tweet, retweet, or even an entire blog post from an influencer
could have a significant impact on your project, as could being
invited to blog elsewhere (Mozilla Hacks, for example!). If Brendan
Eich tweeted about your JavaScript library, Lea Verou wrote a blog
post about a CSS trick you discovered, or Paul Irish mentioned a Web
development tool you built in a talk, you would attract a lot of
interest quickly. It is key, however, to realize there are many great
influencers in every space, and you’ll achieve nothing by hounding
any one person, so be prepared to move on.

Spend
some time working out who the influencers and key publications are in
your niche. For Twitter, Followerwonk [followerwonk.com]
is a handy tool that searches Twitter biographies for certain words.
If you search for “JavaScript” the first page includes several
users who would be useful to reach out to if you had a particularly
interesting JavaScript-related release to promote. Reaching out on
Twitter can be as simple as a single tweet and many busy folks prefer
Twitter as it takes less time to reply than an e-mail. A single tweet
from @smashingmag could drive thousands of visitors your way, so
consider tweeting them, and other similar accounts, when you have
something relevant.

I’d
also advise looking for blogs and e-mail newsletters in your niche.
Start with something as simple
as Googling for “JavaScript blog”, “JavaScript newsletter”,“css
blog” or whatever’s relevant to your project. Most bloggers or
e-mail newsletter publishers will not be offended by you sending them
a quick note (emphasis on quick) letting them know about your work.
Indeed, some weeks there
can be a shortage of interesting things to write about, and you might
be doing them a huge favor.

If
you choose to e-mail people (and your project will probably be more
substantial than a few hours’ work to justify this), take care not
to make demands or to even expect a reply. Many bloggers and
influential people have overflowing inboxes and struggle to reply to
everything they receive. Make your e-mail as easy to process as
possible by including a single URL (to your now superb homepage or
README) and include your “[noun] is” paragraph. Don’t take a
non-response as an insult but keep moving on to the next most
relevant person. You might even consider taking a “Here’s my
project that does X, Y and Z. No reply needed, I just thought you
might like it” approach. Softly, softly works here, as long as you
get to the point quickly.

“How
To Get Attention From Internet Celebrities” by Jason Cohen
[hn.my/emailbrain] and “How
to Write the Perfect Outreach Email” by Gregory Ciotti
[hn.my/perfectemail] go into
more detail about e-mail etiquette when promoting your work to
influencers. While you might not need to contact any “celebrities”
in your niche, the principles of keeping it short, including a call
to action, and ensuring your work is appropriate to the person are
really true for anyone you’re sending unsolicited messages to.

Podcasters
are an often forgotten source of promotion opportunities, too. While
some podcasts don’t cover news or new releases at all, many do, and
being on the radar of their hosts could help you get a mention on a
show. Smashing Magazine has put together a list of tech podcasts
[hn.my/podcasts] covering the
areas of design, user experience, and Web development in general.
Again, keep your e-mails short and sweet with no sense of expectation
to get the best results.

User-curated
social news sites

As
well as reaching influencers and niche media, sometimes reaching the
public “firehose” of news can work, too. There are few better
examples of these in the modern world of development than Hacker News
or Reddit.

Hacker
News in particular is notoriously hard to reach the front page on and
“gaming” it by getting other people to vote up your post can
backfire. (Indeed, it will backfire if you link people to your post
on Hacker News and encourage them to upvote. They have ways of
detecting this behavior. Get people to manually find your post
instead.) If you do reach the front page of Hacker News, of course,
you can certainly expect an audience of many thousands of developers
to be exposed to your work, so be sure to try.

With
Reddit, the key isn’t to dive straight into a huge sub-Reddit like
/r/programming but to look for sub-Reddits more directly related to
your project. For a JavaScript library, I’d post to /r/JavaScript
or possibly /r/webdev. Reddit ads can also perform well if you’re
OK with spending some money, and these can be targeted to specific
sub-Reddits, too.

There
are many similar sites that are less well-known but which are
respected in their niches and can drive a lot of interested visitors,
including Designer News (mobile and Web design)
[news.layervault.com],
DZone (general developer stuff) [dzone.com],
EchoJS (JavaScript) [echojs.com],
RubyFlow (Ruby and Rails) [rubyflow.com],
and Lobste.rs (general hacker and
developer stuff). Finding the right site like this and taking time to
make an on-topic, well-written post will help a lot.

3.
Maintain momentum

You’ve
built up some interest, your GitHub stars, Reddit votes, and
pageviews are all rocketing up, but now you want to capitalize on the
attention and maintain some momentum.

User
support

Whether
you’ve built an open source project or a cool tool, you’re going
to end up with users or fellow developers who want to provide
feedback, get help, or point out issues with your work. On GitHub,
the common way to do this is through the built-in “issues”
tracker, but you might also find people start to e-mail you, too.

Be
sure to define a policy, whatever it is. Users won’t feel good
about opening issues on your GitHub repo if there are already many
unresolved issues there, and your project could stagnate. Ensure you
respond to your audience or at least make your policy clear within
your README or on
your site. If you don’t want issues raised or code contributions,
make this clear up front.

Extending
your reach

For
many projects, create a dedicated Twitter account, blog, Facebook
page, or Google+ page in advance is overkill, but if your project
starts to take off, consider these things. They’ll provide an extra
way not only for users to remain in touch with your project, but also
a way for them to help promote it by retweeting things you post or by
directing potential new users your way.

You
can also extend your reach in person by going to user groups and
conferences and, if you’re really lucky, you can speak about your
work, too. This is a great way to get new users, as people are much
more likely to look into your work if they’ve met you in person.

Avoid
being defensive

If
your project does well on sites like Hacker News or Reddit, you’ll
be tempted to read all of the comments your peers leave, but be
careful. Comments about your work will, naturally, seem magnified in
their intensity and critical comments that might not actually be mean
spirited may seem as if they are to you.

It’s
hard, but the best policy is to not let any overtly mean comments get
to you, duly correct any observations that are wrong, and to thank
anyone who goes out of their way to compliment your work. Even if
you’re in the right, with the lack of body language and verbal
cues, being too defensive can look bad online and result in the post
becoming a lightning rod for drama. Engage as best you can, but if it
feels wrong to reply to something, listen to your gut.

Be
careful if you go into a new community to promote your work and get
negative feedback. Most communities have rules or expectations and
merely entering a community to promote your work is frequently
considered a faux pas. Be sensitive to people’s environments and
try to abide by a community’s rules at all times.

The
long term

If
your project does particularly well, you could be presented with the
opportunity of turning it into a business in its own right. Many
simple open source projects, often started by a single developer,
have turned into long term work or even entire companies for their
creators.

Back
in 2010, Mitchell Hashimoto released Vagrant, a Ruby-based tool for
building a deploying VirtualBox-based virtualized development
environments. In late 2012, Mitchell launched Hashicorp, a company
providing Vagrant consulting services to enterprise customers. An
even higher profile example is Puppet Labs, a company built around
the Puppet open-source configuration management tool and which has
taken total funding of $45.5 million so far.

If
your project becomes respected and heavily used within its field, you
might also be approached to write a book or article about it or even
speak at a conference. This is a good sign that your project has
“made it” to some extent as publishers and event organizers are
in the business of working out what it makes business sense to
present.

Putting
it all together: A checklist

This
has only been a basic introduction to promoting your work and with
practice you’ll come up with tons of tips of your own. Based on all
of the ideas above, here’s a basic checklist to run through next
time you release a new project and want to get some added exposure:

		Focus
	most of your efforts on your project’s homepage or README.

	
	Check
	your project’s name so it doesn’t clash with anything else and
	is unique enough to find references to your work later.

	
	Promote
	your work to your closest social group first to unbury any problems
	with your work.

	
	Record
	a screencast or write a blog post about your project if some extra
	background would be useful for others.

	
	Work
	out a perfect *“[project name] is”* sentence to describe what
	your project is or does.

	
	Use
	your *“[project name] is”* sentence to give your page a
	descriptive title.

	
	Find
	influential people, blogs, podcasts, and e-mail newsletters in your
	niche and send them a short, pleasant note.

	
	Post
	to social news and bookmarking sites. Ensure your title is
	descriptive.

	
	Use
	your *“[project name] is”* sentence in e-mails and contacts with
	influencers.

	
	Take
	a positive, “look on the good side” approach to responding to
	comments about your work.
	

Good
luck! §

Peter
is the chief publisher at Cooper Press, programmer, editor of Ruby &
HTML5 Weekly and founding chair of O’Reilly’s Fluent conference.

First appeared in
hn.my/spread (mozilla.org)

Don’t Launch
Your Product

By VIBHU NORBY

It was Monday, April 9,
2012 and we were at a team dinner. We were launching Everyme the next
day at 10:00am. Launch was a Tuesday, of course. Consumers use their
phones and the web more on Tuesdays than any other day. We had
everything set: the TechCrunch article, the AllThingsD piece, and a
handful of interviews with top tech blogs. We had 25,000+ people that
had signed up to be notified about our launch. We designed and
shipped a special page with a countdown three weeks earlier on our
homepage. It seemed like the perfect time for our iPhone-only social
network for groups: Instagram had been purchased the same day as our
team dinner for a billion dollars and Everyme was, in our minds, the
Next Big Thing™.

Our plan was simple.
Launch the app and generate enough buzz for 25-50,000 downloads, or
what we guessed was enough to propel us into the top apps in the
Social Networking category in the App Store. Once we got there, we
would start generating “organic” downloads from people checking
out the top free social apps. A month later we’d roll out an
Android app and web, and we would be proclaimed king of the messaging
space. Mark Zuckerberg would invite us to Fuki Sushi for vegetable
tempura rolls, and we would laugh about how we crushed all of our
competitors as he handed us a billion-dollar check addressed to
Everyme, Inc.

So that Monday night, we
were on top of the world and there was no way we could lose. We were
probably in the top percentile of all startups already, having
checked everything off of our startup bucket list: Y Combinator.
CHECK. Raise a big seed round. CHECK. TechCrunch. CHECK. When I went
to sleep that night, my body buzzed with excitement.

Tuesday morning rolled
around, and everything went live. Mandatory tweets and Facebook posts
went out, congratulatory emails from investors filled our inboxes,
and my second monitor looked like NASA mission control, full of
custom stats dashboards and Twitter searches.

Just hours later, by
Tuesday afternoon, we already knew that our plans and the reality
were far apart. Signups were coming in, but at a pace that would
never reach 25,000 the first day. TechCrunch was sending hundreds of
visitors, not thousands. Our Twitter searches were full of users that
didn’t get it. And there was no Zuckerberg dinner invitation in our
inbox. We peaked at rank 35 in the Social Networking category and
ended up with 11,000 downloads and 6,000 sign-ups for our first day.
Not exactly the day we expected.

It didn’t get any better
the rest of the week either. We had fewer sign-ups on Wednesday than
on Tuesday: 2,000. And fewer sign-ups on Thursday than on Wednesday.
And so on. To top it off, all of our team members had access to the
stats dashboards. You could see the psychological effects of dropping
numbers significantly impacting productivity and morale. It felt like
we had bet it all on red and the ball stopped on black.

The fact is that when you
create the big launch event, you will always see the subsequent big
drop-off. Your market is not TechCrunch readers and Mark Zuckerberg
does not want to eat vegetable tempura rolls with you. If you plan
for massive scale out of the gate, you will face disappointment and a
morale drain that can kill your company. And unlike a lot of other
problems that you face in the startup world, learning this lesson the
hard way can cost you your startup right at the outset. Here are a
couple reasons why focusing on a big launch is the wrong strategy:

		“Launching”
	screws with your metrics — and you need clean metrics to evaluate
	and iterate on your business. If you
	see 6,000 signups on day one and 2,000 on day two, you can be misled
	about the strength of your vision. It clouds your ability to single
	out the passionate users and understand their usage patterns.

	
	You’re
	probably not going to find product/market fit right out of the gate.
	So whatever press or marketing you
	have planned will fall on uninterested eyes. Again, this will
	mislead you. You’ll spend less money and waste less time by
	locating your interested market first and then pursuing marketing
	channels to reach them when ready. It sounds obvious, but it isn’t.
	When you have a consumer app, at first everyone seems like part of
	your target audience even though they aren’t. Likewise with
	enterprise, not all businesses are candidates for your software.

	
	As mentioned
	earlier, the bigger your launch, the quicker you will enter the
	famous “trough of sorrow.” No
	human can easily withstand the emotional rollercoaster of startup
	metrics. Such baggage can lose you co-founders, employees, and your
	capital. And you will lose faith in yourself in the process.

	
	You’ll be penalized
	when raising your next round. Neither the bell-curve nor the
	downward slope is an attractive graph to show investors. You can
	demonstrate growth by finding one passionate user, and then ten, and
	then 100 instead of taking in 6,000 sign-ups to find 111 passionate
	ones. Some savvy investors will ignore your charts and focus on you
	— fine — but you have to be a champion. You can’t afford to
	think negative thoughts about your business when talking to an
	investor.

Having been through
multiple launches, seen companies launch at big conferences, and
talked with many startups that have experienced the same effect, what
I recommend — and what we’re doing at Origami — is not
launching at all. Take the word launch out of your vocabulary —
it’s a sign that you are gambling on your app and not building a
long-term, sustainable company. Instead, put your sign-up page up or
your app out because you need more feedback on your idea. Find an
audience of passionate users, even if small, and reach out to their
community through appropriate means. Try SEM and Facebook ads to find
a target market. Experiment with business models and onboarding
flows. Let the press come to you because they love what you’ve
made.

You wouldn’t know it by
its plain homepage, but our new product has a thriving community of
families in the hundreds already. We’ve been “testing it” for
months. One of these days we might put out a homepage where families
can sign-up — but you won’t hear about it from the press. You’ll
hear about it from a passionate fan.§

Vibhu the founder of
Origami.com (YC S11), an online home for families. Previously, he was
a lead engineer at Myspace and Threadbox.

First appeared in hn.my/dontlaunch
(philosophically.com)

Shenzhen
Maker: Mr. Chen

By ZACH HOEKEN SMITH

I’ve been living in
Shenzhen for almost 2 years now, and I’m continually amazed by this
city. The people here are creative, it has the best resources for
building things you can find anywhere in the world, an amazing
climate, and friendly people everywhere. This is the story of one
particular Maker I’ve met in Shenzhen, Mr. Chen.

 In my ongoing obsession
with digital fabrication and small volume manufacturing, I stumbled
upon the Chinese SMT Pick and Place scene. It started with the
TM-240A that I found on Taobao, and through that I discovered
diysmt.com and oursmt.com. It turns out there are a bunch of
people building and using low-cost pick and place machines for actual
production of real products. I had to find out more.

I used my super-crappy
Chinese skills and posted in the diysmt forum to see if anyone was
local to Shenzhen and could show me their machine. I got a couple
responses, and Mr. Chen agreed to meet me and show me his operation.
Always down for an adventure, I agreed and got his address. My
assistant/translator and I hopped in a taxi and away we went.

We arrived in a neighborhood
on the outskirts of Shenzhen — the type with small alleys
separating dozens of dusty apartments with stray dogs running around
and open-air grocery stores selling meat on hooks. If you’ve ever
been to China and ventured off the beaten track, you’ll know
exactly what it’s like.

 Entering Mr. Chen’s
place, you feel like you’re stepping into a whole new world. His
apartment was immaculate, but signs of making were there if you knew
what to look for. Tucked away in one corner was the pick and place
machine. Next to it was a coffee table with boards ready to be
populated, surrounded by tea cups.

After
a round of tea, he showed me the machine in operation. This $4000
pick and place machine was awesome to see. He had about 16 feeders
and was populating entire boards in a single go. Between snapping
pics and taking video, I asked him about what he does with it and why
he needs gear like this.

It turns out, Mr. Chen was
more interesting than his machine! You see, he’s managed to carve
out a nice little niche for himself by designing and manufacturing
his own electronics and then selling them at the infamous Huaqiangbei
electronics market. He started about 7 years ago and has been
building and selling various things that whole time. Today he was
making AVR ICE programmers, but tomorrow he might build controllers
for the fans for his brother’s small DC fan factory.

As we got to talking about
making and DIY culture, I began to get a sense that this
down-to-earth guy was someone who really understands the so-called
Maker culture. He was very business savvy, and even had a slogan:
花小钱,赚大钱
which roughly means, “spend less and earn more.”
What he was describing was a lean operation where he had digital
fabrication tools that allowed him to retool and switch around really
quickly and efficiently. His house was doubling as his production
floor, so he had very little overhead. He also understood that he
needed to find niche markets in order to remain competitive.

 His setup was slick and
efficient: order pcbs and stencils from a fab, apply solder paste
using a clever fixture, use the pick and place machine to get the
parts on the board, reflow everything in his smt oven, and then
hand-solder the connectors. The solder paste fixture itself was
rather brilliant. The stencil was attached to a hinged lid. He took a
sacrificial pcb, hand aligned it with the stencil, and then glued it
in place. He then took 2 header pins and nailed them into a connector
hole until just a small nub was sticking out. These pins then became
the alignment pins for the pcb to apply solder to. Brilliant, cheap,
and effective.

I
complimented him on his self-reliance and was surprised by yet
another twist that would be enough to turn any urban farm-loving
hipster green with jealousy. In addition to running his own
electronics manufacturing operation, Mr. Chen was growing organic
vegetables, and raising chickens and pigeons on the roof of his
apartment! This guy was the picture of self-reliance, and he had a
relaxed attitude that told me immediately that he had carved out a
cozy existence in his life with his wife, son, pigeons, and
electronics. Watching the flock of pigeons flying freely through the
sky on a sunny winter afternoon, it was easy to see why.

All in all, it was a lovely afternoon, and I feel like I’ve come
closer to understanding the impenetrable culture of Shenzhen makers.
To all the Mr. Chen’s of the world out there, and anyone else who
pursues the goal of self-employment through making, I salute you! §

Zach Hoeken Smith is the
co-founder of MakerBot Industries and built the object sharing
website Thingiverse.com, as
well as the web-based digital manufacturing hub BotQueue.com.
Lately he is living in hardware paradise also known as Shenzhen,
China.

First appeared in
hn.my/chen (hoektronics.com)

My Clojure
Workflow, Reloaded

By STUART SIERRA

One of the great pleasures
of working with a dynamic language is being able to build a system
while simultaneously interacting with it. To make this possible,
first you need the ability to redefine parts of the program while it
is running: Clojure provides this capability admirably. However, some
aspects of Clojure’s runtime are not quite as late-binding as one
might wish for interactive development. For example, the effect of a
changed macro definition will not be seen until code which uses the
macro has been recompiled. Changes to methods of a defrecord or
deftype will not have any effect on existing instances of that type.

The facilities that
Clojure provides for loading code from files are not sufficient to
deal with these issues. I wrote the second version of tools.namespace
to make a “smarter” require that recognizes dependencies between
namespaces and reloads them appropriately.

But tools.namespace is
only part of the story. To really get the benefit of interactive
development, I want to ensure that the version of the application I
am currently interacting with is congruent with the source files I’m
editing. That means not only that the application must be running the
most up-to-date version of the code, but also that any state in the
application was produced by that same code. It is dangerously easy,
when changing and reloading code at the REPL, to get an application
into a state which could not have been reached by the code it is
currently running.

Therefore, after every
significant code change, I want to restart the application from
scratch. But I don’t want to restart the JVM and reload all my
Clojure code in order to do it: that takes too long and is too
disruptive to my workflow. Instead, I want to design my application
in such a way that I can quickly shut it down, discard any transient
state it might have built up, start it again, and return to a similar
state. And when I say quickly, I mean that the whole process should
take less than a second.

To achieve this goal, I
make the application itself into a transient object. Instead of the
application being a singleton tied to a JVM process, I write code to
construct instances of my application, possibly many of them within
one JVM. Each time I make a change, I discard the old instance and
construct a new one. The technique is similar to dealing with virtual
machines in a cloud environment: rather than try to transition a VM
from an old state to a new state, we simply discard the old one and
spin up a new one.

Designing applications
this way requires discipline. First and foremost, all states must be
local. Any global state, anywhere, breaks the whole model. Second,
all resources acquired by the application instance must be carefully
managed so that they can be released when the instance is destroyed.

Enough talk. Here’s how
it works.

The System Constructor

In some “main”
namespace, I provide a constructor function for the application. I
usually call it system because it represents the whole system I am
working on.

 ;; In src/com/example/my_project/system.clj

 (ns com.example.my-project.system)

 (defn system
 "Returns a new instance of the whole application."
 []
 ...)

The system constructor can
optionally take parameters which specify its configuration.

Creating a system is not
the same as starting it and should not have side effects. Usually the
system constructor will create instances of other components it
depends on and return a data structure such as a map or defrecord
which contains them. My system instance might look something like
this:

 {:db
 {:uri "datomic:mem://dev"}
 :scheduler #<ScheduledThreadPoolExecutor...>
 :cache #<Atom {}>
 :handler #<Fn ...>
 :server #<Jetty ...>}

Sometimes I have different
versions of the constructor that produce different systems for
interactive development, testing, and production.

Notice that some things
which are “global” from the point of view of the application,
such as my web server and scheduled thread pool, become “local”
instances in this data structure. Any function which needs one of
these components has to take it as a parameter. This isn’t as
burdensome as it might seem: each function gets, at most, one extra
argument providing the “context” in which it operates. That
context could be the entire system object, but more often will be
some subset. With judicious use of lexical closures, the extra
arguments disappear from most code. In addition to enabling more
interactive development, this approach makes testing easier.

Start and Stop

Next, I have functions to
start and stop the system. Ideally, these behave like real functions,
in that they return a new value representing the “started” or
“stopped” system, but they also have to perform side effects
along the way, such as opening a connection to a database or starting
a web server.

 ;; In src/com/example/my_project/system.clj

 (defn start
 "Performs side effects to initialize the system, acquire resources, and start it running. Returns an updated instance of the system."
 [system]
 ...)
 (defn stop
 "Performs side effects to shut down the system and release its resources. Returns an updated instance of the system."
 [system]
 ...)

These functions can call
similar start/stop functions on sub-systems in turn. In the past,
I’ve talked about a “Lifecycle” protocol containing start and
stop methods. It’s not necessary, but is sometimes useful to ensure
that all components of the system can be started and stopped in a
consistent way.

There’s usually a bit of
trial-and-error while I get the start/stop functions working
correctly. If something in start/stop throws an exception, I could
easily end up in a state where a sub-system has acquired a resource —
such as a socket connection — but I do not have any handle on that
sub-system with which to shut it down and release the resource. In
that situation, there’s nothing for it but to restart the JVM.

Dev Profile and
user.clj

You probably know that the
Clojure REPL starts by default in the user namespace. In addition, if
there is a file named user.clj at the root of the Java classpath,
Clojure will load that file automatically when it starts.

You probably don’t want
user.clj to be loaded in a deployed production app or library
release, but by using Leiningen 2 profiles we can ensure that it is
only loaded during development.

In my Leiningen
project.clj file, I create a :dev profile with an extra :source-paths
directory, plus whatever dependencies I want to use during
development. tools.namespace has to be there, and I frequently add
testing/development tools such as java.classpath or Criterium.

 ;; In project.clj:
 (defproject com.example/my-project
 "0.1.0-SNAPSHOT"
 :dependencies [[org.clojure/clojure "1.5.1"]]
 :profiles {:dev {:source-paths ["dev"]
 :dependencies [[org.clojure/tools.namespace "0.2.3"]
 [org.clojure/java.classpath "0.2.0"]]}})

Leiningen will
automatically merge the :dev profile into the project configuration
for the repl, test, and run tasks, but not jar or uberjar. That means
if I deploy my application (or release a library) as a JAR file, the
files in dev will be excluded.

I create a user.clj file
in the dev directory which defines a normal namespace called user and
refers to a bunch of symbols I commonly use during development, as
well as the symbols to construct, start, and stop the system.

 ;; In dev/user.clj
 (ns user
 (:require
 [clojure.java.io :as io]
 [clojure.string :as str]
 [clojure.pprint :refer (pprint)]
 [clojure.repl :refer :all]
 [clojure.test :as test]
 [clojure.tools.namespace.repl :refer (refresh refresh-all)]
 [com.example.my-project.system :as system]))

Also in user.clj, I have a
few things that I will only use during development, starting with a
global Var to hold the system itself:

 ;; In dev/user.clj
 (def system nil)

Now wait a minute, you
might say, isn’t that the global state you told us to avoid? It
would be, if it were part of the application. Instead it’s a
container in which I can put the current instance of the application.
I’m only going to use it for interactive development.

The system Var is
manipulated by the following functions:

 ;; In dev/user.clj

 (defn init
 "Constructs the current
 development system."
 []
 (alter-var-root #'system
 (constantly (system/system))))

 (defn start
 "Starts the current development system."
 []
 (alter-var-root #'system system/start))

 (defn stop
 "Shuts down and destroys the current development system."
 []
 (alter-var-root #'system
 (fn [s] (when s (system/
 stop s)))))

 (defn go
 "Initializes the current
 development system and starts it running."
 []
 (init)
 (start))

The exact division of
these functions isn’t important. Sometimes I omit init and start
and just have go. The important thing is to have one function that
creates and starts the system, and another function that tears it
down.

Finally, the heart of my
workflow: the reset function. This is one function which I can call
at the REPL to 1) stop the current application instance; 2) reload
any source files that have changed; and 3) create and start a new
application instance.

 ;; In dev/user.clj

 (defn reset []
 (stop)
 (refresh :after 'user/go))

The real work of reloading
files is handled by the clojure.tools.namespace.repl/refresh
function. It takes my go function as an argument, but go has to be
passed as a namespace-qualified symbol so that it can be resolved
after the user namespace has been reloaded. (This is a trick that
refresh knows how to do.)

Workflow

I do all my Clojure
development in Emacs using nREPL.el, but nothing about this workflow
is Emacs-specific. It should work with any environment that provides
a REPL, as long as it doesn’t try to do any code-reloading of its
own. (For example, the reload-on-every-request functionality of
ring-devel is incompatible with tools.namespace.) The fact that I use
Emacs as my REPL is one reason I use user.clj instead of
:repl-options in Leiningen’s project.clj: those options have no
effect on remote nREPL sessions.

The first thing I do when
I start work is launch an nREPL session and call reset. Now my
application is running and I can start working on it. Every time I
make a change, I save the file and call reset at the REPL. (I have an
Elisp helper function that I can bind to a keystroke.) Presto! My
application is running again in a clean state with all the new code.

Rather than switching the
REPL among several namespaces, I generally stay in user, where I have
all my development tools like clojure.pprint and clojure.repl. I use
the REPL itself for examining the application’s state and testing
individual functions. I frequently define little helper functions to
examine the state of the application as I work on it, all of which
are accessible by navigating the system object.

Anything I want to hang on
to, such as a snippet of test data, I define in the user.clj file,
because tools.namespace will destroy any Vars I created with def at
the REPL.

Snags

This process isn’t
perfect by any means. One of the more irritating aspects is that any
syntactic errors in a source file prevent all the code from being
loaded, including user.clj. If a file fails to compile during the
tools.namespace reloading process, any namespaces which depend on it
no longer exist. So the reset function isn’t available to call, nor
are any of my aliases or referred symbols in the user namespace.

As a work-around, in
tools.namespace 0.2.3 I added a feature to recover aliases and
referred symbols in the current REPL namespace after a failed reload.
This isn’t perfect: the reset function still doesn’t exist. But
at least I can call the refresh function from tools.namespace without
typing out its fully-qualified name
clojure.tools.namespace.repl/refresh. Once I have successfully
reloaded all the source files with refresh, I can call reset again to
start the app.

A slightly worse problem
occurs when starting a new REPL process: if there are any compilation
errors in something loaded by user.clj, then the REPL will not start
at all. I try to avoid this by starting the REPL from a known working
commit, then only changing code after it’s running. I also try not
to commit any code which does not compile, but sometimes it happens.

Occasionally I do get my
application into a state that I cannot recover from. Usually this
happens when something in a start or stop function throws an
exception. At that point, some component of the application may be in
a broken state, but I don’t have a reference to it that I can use
to shut it down. If that component acquired external resources which
I need to release before restarting it, e.g. socket connections, then
there’s basically nothing I can do but restart the JVM.
Fortunately, these situations usually only occur while I’m writing
the start/stop functions themselves, so after a few development
cycles to get them working I don’t have to worry about it.

Entry Points

The central thrust of this
approach is to design your application so that you can construct
multiple instances of it within a single JVM process. That’s ideal
for development, but what about production?

If you control the entry
point to your application process, it’s easy. Just write a -main
function that creates a single instance of your application and
starts it.

But often we deploy apps
to environments where we do not control the -main function. For
example, Ringweb apps deployed to a Servlet container have no -main.
Furthermore, they expect a static reference to a Var which contains
the root web handler function. If that handler is meant to be a
closure over some contextual state, there’s no place to construct
it.

There are a couple of ways
to work around this. One is to have a separate namespace in a
“production” profile that constructs a single instance of the
application and assigns it to a global Var. Alternatively, if the
framework provides an “initialization” hook (as lein-ring does),
you can use that to create the application instance and store it in a
global Var. The root web handler function, created exclusively for
production deployment, can pass the system object to functions that
need it.

Epilogue

I’m continually tweaking
this process, looking for improvements, but overall I’m pretty
happy with it. It has enabled me to work rapidly on some fairly large
applications. Best of all, it’s agnostic with regard to development
tools. You can adapt this workflow to any build tool that can
substitute different CLASSPATHs for different circumstances.

Some of my Relevance
coworkers like this approach; others find it too constraining. The
Pedestal team uses pieces of this technique, such as the :dev
profile, but without tools.namespace. They were annoyed that compiler
errors prevented them from starting a new REPL, so they came up with
a variation that uses a function in user.clj to load another file
called dev.clj.§

Stuart Sierra is a
developer at Relevance, Inc., contributor to Clojure, and the
co-author of Practical Clojure (Apress 2010) and ClojureScript: Up
and Running (O’Reilly 2012).

First appeared in
hn.my/clojureflow
(thinkrelevance.com)

Too Scared To
Write A Line Of Code

By BEN HOWDLE

“Design
Patterns,” “Code architecture,” “Scalability,” “OOP,”
“Maintainability,” “The code you write now, is the legacy code
of the future,” “Be kind to your future self” & “Code
smells.”

Just
like Bruce Almighty trying to block out the voices in his head, my
pangs of guilt and angst come from the paradigms above; like an
unwavering, continuous stream of distraction overwhelming my thinking
as I’m trying to write one single line of code. One single line of
code. That’s it. Nothing special. No one’s going to live or die
if it’s not the most optimised, architected and scalable line in
the world.

We
are under a constant barrage of posts, tutorials and articles about
these paradigms. I often feel guilty if these paradigms aren’t at
the forefront of my mind whilst developing.

It
often kills my output.

I’m
trying to adopt a new workflow where I won’t try and solve a
problem until it becomes a problem; until I see it in the “wild.”
Just like Adii Pienaar wrote , why do we worry about scalability on
day 1? [hn.my/day1]

This
is precisely the approach I’m trying to apply to my development.
However, it’s the same with any new approach — I’m not blindly
following it. It doesn’t give you an excuse to write shit code, but
forces you to complete a task more quickly and get that feature out
there.

Your
users care about precisely two things, “Does it work?” and “Is
it fast?” (I’m talking specifically development here; they
obviously care about design and all that jazz.)

So,
I’m trying to stick to the following mantra:

Build it, release
it, analyse it and only then decide if it needs optimising. §

London-based
JavaScript developer Ben Howdle got into development aged 19. He
started learning to code in the evenings until he managed to get his
first paid client. This year, Howdle has been building the next
generation of KashFlow using BackboneJS and co-hosting Upfront
Podcast.

First
appeared in hn.my/scared (medium.com)

Reservoir
Sampling

By JOSH WILLS

Data
scientists, that peculiar mix of software engineer and statistician,
are notoriously difficult to interview. One approach that I’ve used
over the years is to pose a problem that requires some mixture of
algorithm design and probability theory in order to come up with an
answer. Here’s an example of this type of question that has been
popular in Silicon Valley for a number of years:

Say
you have a stream of items of large and unknown length that we can
only iterate over once. Create an algorithm that randomly chooses an
item from this stream such that each item is equally likely to be
selected.

The
first thing to do when you find yourself confronted with such a
question is to stay calm. The data scientist who is interviewing you
isn’t trying to trick you by asking you to do something that is
impossible. In fact, this data scientist is desperate to hire you.
She is buried under a pile of analysis requests, her ETL pipeline is
broken, and her machine learning model is failing to converge. Her
only hope is to hire smart people such as yourself to come in and
help. She wants you to succeed.

The
second thing to do is to think deeply about the question. Assume that
you are talking to a good person who has read Daniel Tunkelang’s
excellent advice about interviewing data scientists
[hn.my/dtunkelang]. This means
that this interview question probably originated in a real problem
that this data scientist has encountered in her work. Therefore, a
simple answer like, “I would put all of the items in a list and
then select one at random once the stream ended,” would be a bad
thing for you to say, because it would mean that you didn’t think
deeply about what would happen if there were more items in the stream
than would fit in memory (or even on disk!) on a single computer.

The
third thing to do is to create a simple example problem that allows
you to work through what should happen for several concrete instances
of the problem. The vast majority of humans do a much better job of
solving problems when they work with concrete examples instead of
abstractions, so making the problem concrete can go a long way toward
helping you find a solution.

A
Primer on Reservoir Sampling

For
this problem, the simplest concrete example would be a stream that
only contained a single item. In this case, our algorithm should
return this single element with probability 1. Now let’s try a
slightly harder problem, a stream with exactly two elements. We know
that we have to hold on to the first element we see from this stream,
because we don’t know if we’re in the case that the stream only
has one element. When the second element comes along, we know that we
want to return one of the two elements, each with probability 1/2. So
let’s generate a random number R between 0 and 1, and return the
first element if R is less than 0.5 and return the second element if
R is greater than 0.5.

Now
let’s try to generalize this approach to a stream with three
elements. After we’ve seen the second element in the stream, we’re
now holding on to either the first element or the second element,
each with probability 1/2. When the third element arrives, what
should we do? Well, if we know that there are only three elements in
the stream, we need to return this third element with probability
1/3, which means that we’ll return the other element we’re
holding with probability 1 — 1/3 = 2/3. That means that the
probability of returning each element in the stream is as follows:

		First
	Element: (1/2) * (2/3) = 1/3

	
	Second
	Element: (1/2) * (2/3) = 1/3

	
	Third
	Element: 1/3

By
considering the stream of three elements, we see how to generalize
this algorithm to any N: at every step N, keep the next element in
the stream with probability 1/N. This means that we have an (N-1)/N
probability of keeping the element we are currently holding on to,
which means that we keep it with probability (1/(N-1)) * (N-1)/N =
1/N.

This
general technique is called reservoir sampling, and it is useful in a
number of applications that require us to analyze very large data
sets. You can find an excellent overview of a set of algorithms for
performing reservoir sampling in this blog post [hn.my/gregable]
by Greg Grothaus. I’d like to focus
on two of those algorithms in particular, and talk about how they are
used in Cloudera ML [hn.my/ml], our
open-source collection of data preparation and machine learning
algorithms for Hadoop.

Applied
Reservoir Sampling in Cloudera ML

The
first of the algorithms Greg describes is a distributed reservoir
sampling algorithm. You’ll note that in order for the algorithm we
described above to work, all of the elements in the stream must be
read sequentially. To create a distributed reservoir sample of size
K, we use a MapReduce analogue of the ORDER BY RAND()
trick/anti-pattern from SQL: for each element in the set, we generate
a random number R between 0 and 1, and keep the K elements that have
the largest values of R. This trick is especially useful when we want
to create stratified samples from a large dataset. Each stratum is a
specific combination of categorical variables that is important for
an analysis, such as gender, age, or geographical location. If there
is significant skew in our input data set, it’s possible that a
naive random sampling of observations will underrepresent certain
strata in the dataset. Cloudera ML has a sample command that can be
used to create stratified samples for text files and Hive tables (via
the HCatalog interface to the Hive Metastore) such that N records
will be selected for every combination of the categorical variables
that define the strata.

The
second algorithm is even more interesting: a weighted distributed
reservoir sample, where every item in the set has an associated
weight, and we want to sample such that the probability that an item
is selected is proportional to its weight. It wasn’t even clear
whether or not this was even possible until Pavlos Efraimidis and
Paul Spirakis figured out a way to do it and published it in the 2005
paper “Weighted Random Sampling with a Reservoir.” The solution
is as simple as it is elegant, and it is based on the same idea as
the distributed reservoir sampling algorithm described above. For
each item in the stream, we compute a score as follows: first,
generate a random number R between 0 and 1, and then take the nth
root of R, where n is the weight of the current item. Return the K
items with the highest score as the sample. Items with higher weights
will tend to have scores that are closer to 1, and are thus more
likely to be picked than items with smaller weights.

In
Cloudera ML, we use the weighted reservoir sampling algorithm in
order to cut down on the number of passes over the input data that
the scalable k-means++ algorithm needs to perform. The ksketch
command runs the k-means++ initialization procedure, performing a
small number of iterations over the input data set to select points
that form a representative sample (or sketch) of the overall data
set. For each iteration, the probability that a given point should be
added to the sketch is proportional to its distance from the closest
point in the current sketch. By using the weighted reservoir sampling
algorithm, we can select the points to add to the next sketch in a
single pass over the input data, instead of one pass to compute the
overall cost of the clustering and a second pass to select the points
based on those cost calculations.§

Josh
Wills is Cloudera’s Senior Director of Data Science, working with
customers and engineers to develop Hadoop-based solutions across a
wide-range of industries. He is the founder and VP of the Apache
Crunch project for creating optimized MapReduce pipelines in Java and
lead developer of Cloudera ML, a set of open-source libraries and
command-line tools for building machine learning models on Hadoop.

First appeared in hn.my/rs
(cloudera.com)

How
I Coded In 1985

By: JOHN GRAHAM-CUMMING

Back in 1985 I worked on
the computerization of a machine designed to stick labels on bottles.
The company that made the machines was using electromechanical
controls to spool labels off a reel and onto products (such as
bottles of shampoo) passing by on a conveyor. The entire thing needed
to work with mm accuracy because consumers don’t like labels that
aren’t perfectly aligned.

Unfortunately,
electromechanical controls aren’t as flexible as computer controls,
so the company contracted a local technical college (where I was
studying electronics) to prototype computer control using a KIM-1.
Another student had put together the machine with a conveyor, a
mechanism for delivering the labels, control of stepper motors, and
infrared sensors for detecting labels and products.

My
job was to write the software in 6502 assembly. Unfortunately, there
wasn’t an assembler and the KIM-1 just had a hex keypad and small
display. So, it meant writing the code by hand, hand assembling, and
typing it in. The code looked like this:

It was immediately obvious
that computer control was going to be more flexible. The program
first did automatic calibration: it measured the length of labels on
the spool itself, it measured the distance between labels itself, and
it enabled an operator to quickly set up the “overhang” distance
(how much of the label is sticking out so the product can catch onto
it).

While running, it
could automatically detect how fast the conveyor was moving and
compensate, and spot when a label was
missing from the supply spool (which happened when one peeled off by
accident).

Of course, writing code
like this is a pain. You first had to write the code (the blue), then
turn it into machine code (the red) and work out memory locations for
each instruction and relative jumps. At the time I didn’t own a
calculator capable of doing hex, so I did most of the calculations
needed (such as for relative jumps in my head).

But it taught me two
things: to get it right the first time and to learn to run code in my
own head. The latter has remained important to this day. I continue
to run code in my head when debugging, typically I reach for the
brain debugger before gdb or similar. On the KIM-1 there were only
the most basic debugging functions and I built a few into the
program, but most of the debugging was done by staring at the output
(on the hex display) and the behavior (of the steppers), and by
running the code through in my head.

Here’s the full program
[hn.my/kim1] for the curious.

P.S. A number of
people have pointed out that in 1985 the KIM-1 was far from
state-of-the-art and we had lots of niceties like compilers, etc.
True. In fact, prior to this I had been programming using BASIC and
ZASM (Z80 assembler) under CP/M, but you go to war with the army you
have: the technical college had a KIM-1 to spare; it had good I/O and
thus made a fine prototyping system for an embedded controller.§

Dr John Graham-Cumming
is a computer programmer and author. He can be found on the web at
jgc.org

First appeared in hn.my/1985
(jgc.org)

Why Maybe Is
Better Than Null

By NICK KNOWLSON

This
article is divided into two parts: Explanation and FAQ. The
explanation shows the reasons why a bunch of people think Maybe is
way more useful than null. The FAQ is a list of my responses to
common arguments I’ve seen about the shortcomings of Maybe.

I’m
going to try to not go overboard with details here - my aim is to
make it accessible to as many programmers as possible, not to be as
thorough as possible.

Explanation

Motivation

Tony
Hoare, the inventor of null, has gone on record calling it his
“billion-dollar mistake”. So what should replace it?

Maybe,
at its core, is a construct that allows programmers to move null
checks into the type system so they can be enforced at compile-time.
Instead of forgetting to deal with a null check and finding out with
an exception at run-time, you forget to deal with a null check and
find out with an error at compile-time, before anyone else even sees
it! And that’s not just some null checks, that’s all of them!

Details

There
are two components to an environment free of null pointer exceptions:

The
elimination of null. This means that all types (even reference
types!) become non-nullable.

		An
	alternative representation for the idea of “may contain an empty
	or invalid value”. This is what Maybe is for.

	
	So
	how does Maybe accomplish this, and how does it achieve all those
	benefits listed above? It’s actually very straightforward.

I’m
going to explain this in object-oriented terms, because if you’re
already familiar with algebraic data types, odds are you already know
about Maybe too. Anyway, think of Maybe<T> as an interface with
a single type parameter that has exactly two implementing classes:
Just<T> and Nothing. The Just<T> class wraps a value of
some other type and the Nothing class doesn’t. There are a variety
of methods provided by Maybe to extract the value safely, but I’m
going to omit these for now, as they’re not the point. When you
receive an object of type Maybe<String> (for example) you now
have the type system helping you out, telling you “there might be a
String here, but it might be empty”. You can’t perform operations
on the String until you’ve safely extracted it and made a choice
about what to do in the case that it’s empty.

By
itself (without point #1) this is nice but not fantastic. The benefit
really kicks in when you also have non-nullable types. It simplifies
the 80% of the cases that don’t involve null and gives significance
and meaning to the times when you do deal with objects wrapped in
Maybe<T>. It lets you say both “I know that this value will
literally never be null” and “It is immediately obvious to me
that I need to handle the case of an empty value here”.

Conclusion

It’s
not that dealing with any given instance of null is particularly
hard; it’s that it is so easy to miss one. Removing this concern
and encoding the information in the type system means programmers
have less things to keep track of and simplifies control flow across
the entire program. Like with memory management: when you don’t
have to keep track of it manually, it is just plain easier to write
code. More importantly, it is easier to write more robust code. This
goes for all programmers, not just the experienced or talented.

And
that is something I am firmly in favor of. A product is never the
result of a single person’s code - everything has dependencies.
Improvements to other people’s code benefit all of us.

Addendum

There
are two more points I’d like to address about Maybe that are
separate from actually explaining why it is useful.

First,
I’ve been a bit inaccurate on purpose when just referring to this
idea as Maybe. There is an implementation of this idea in Haskell
called Maybe, but implementations in different languages have
different names.

		ML,
	Scala, F#, Rust: Option

	
	Fantom,
	Kotlin: ? appended to type

	
	C#:
	Nullable or ? appended to type

Second,
not all languages with Maybe have non-nullable types. This makes
Maybe less valuable in those environments (since you lose the very
useful “I know this value will never contain null” guarantee”)
and ends up confusing people who are skeptical of Maybe’s benefits.

To
help clarify this: I agree that in a language where you don’t have
the guarantee provided by non-nullable types, Maybe just isn’t as
useful. But it is not useless either and, depending on the
environment, may still provide some benefit.

FAQ

Posts
like these are tricky. To explain something understandably and
(relatively) concisely I can’t qualify every statement and address
all the holes inline. Here is where I’ll address the bits I skipped
as well as some common sentiments I’ve previously seen on this
topic.

Maybe
isn’t the be-all end-all.

I
definitely agree. For one thing, I haven’t even mentioned Either!
This article is for people who aren’t even convinced of the
benefits of Maybe yet. In order to get my point across effectively I
want to avoid overwhelming the reader with information, so I
restricted the topics brought up here.

If
you want a higher level perspective on this issue, take a look at
dmbarbour’s view:

There
are two mistakes. One mistake is providing a “sum” type (eqv. to
Just Object | Nothing) without recognition of the typechecker. The
other mistake is joining this sum type at the hip with the idea of
references, such that you cannot have one without the other.

These
mistakes may, and I suspect should, be resolved independently.
Thinking there’s just one mistake, and thus just one language
feature to solve it, might very well be a third mistake.

Beautifully
stated! This is a much more general (and elegant) way to look at it.
It’s a somewhat harder sentiment to communicate effectively to a
lot of people though.

My
IDE plugin already does this.

Yes,
there are some IDEs and plugins that provide limited null reference
analysis. The key though is that it is limited. As far as I know (and
I’ve looked) none of them provide the same system-wide elimination
of null that encoding it in the type-system can guarantee.

And
so, you still don’t get the same reassurances of “I know this
value will literally never be null” and “It is immediately
obvious that I have to handle the case of an empty value here”.

NPEs
are the proper response to a missing value you forgot to consider.
You should be notified when something goes wrong, not hide it with
Maybe.

I’ve
got good news for you - we fundamentally agree in our approach to how
errors should be handled! You might have seen some bad examples of
Maybe usage, since proper usage would lead to these errors being
caught even earlier than a NullPointerException would have.

You
can still choose to do the equivalent of if (null) return; and some
examples will do that, because it makes sense in some contexts. What
matters is that Maybe forces you to think about it at the time of
writing the code, and to be explicit about it.

Instead
of you being notified when things go wrong, Maybe forces you to think
things through in the first place and make an explicit choice about
what to do (at least as far as possibly empty values are concerned).

And
finally, for those of you who really love exceptions, implementations
of Maybe usually provide an unsafe retrieval method, so you can
replicate the behavior of null (run-time exceptions and all) if that
is what you choose to do.

The
real problem is people not properly reasoning about their functions,
that isn’t the fault of null.

Sure,
that is one way to look at it: it’s not null’s fault, it is the
programmer’s fault. If you take this view then null is just one of
the tools used to represent emptiness and invalid values. But it
isn’t a very good tool, or at least not as good as it could be.

Maybe
is a tool that fills the same gap as null but is much more helpful to
programmers. It helps directly
address the core problem of “people not properly reasoning about
their functions” by pointing out mistakes in reasoning earlier.
With it you can statically verify that all null checks are made, and
eliminate an entire class of run-time errors.

I’m
not claiming it is a silver bullet, but it is a better tool.

Null
is meaningful! What if a value cannot have any meaningful default
value?

Then
either wait until it has a meaningful value to put in it or wrap it
in Maybe and give it a value of Nothing. That’s what Maybe is for —
to provide a type-checkable alternative to null!

So
you’re still testing against null, except that it’s called
Nothing. What have we gained?

We
have gained earlier detection of an entire class of errors! Now if
there is a missed check for an empty value you will find out at
compile-time rather than run-time. Using Maybe forces you to be
explicit about possibly-empty values and deal with the case where
they are empty.

The
user doesn’t see any null reference exceptions; they are all fixed
before they even get outside the developer’s computer.

I
think the safe navigation operator in
Groovy/Kotlin/Fantom/CoffeeScript is better than Maybe.

I’m
going to talk about Kotlin and Fantom separately in the next section
because they’re special.

In
Groovy/CoffeeScript, the safe navigation operator (?.) lets you
safely call a method or access a field on an object that may be null.
If the object IS null then the method/field just returns null as
well, instead of an exception being thrown.

I
agree that the safe navigation operator is certainly convenient, but
it is solving a different problem. If you compare it directly to
Maybe, it’s only solving the “retrieve value from possibly empty
object” part of Maybe. This is a nice thing to have, but it isn’t
nearly as interesting as moving a whole class of run-time exceptions
to compile-time.

Which
is fine, it doesn’t have to be as good as Maybe to still be useful.
Just don’t misrepresent it as being anything more than a convenient
syntax for null checks.

What
about Fantom & Kotlin?

Fantom
and Kotlin are different because they are both languages that have
non-nullable reference types and have built Maybe in as a language
feature. In both languages (Fantom, Kotlin), you can distinguish a
reference that may hold null by appending a ? to its type (i.e.
String?). The compiler can then keep track of it as if it were a
Maybe<String> and is able to prevent you from unsafely
accessing its contents. They provide safe navigation and elvis
operators to extract the value like Groovy does.

This
is probably where opinions will start to differ among people who
think Maybe is a good idea.

I
personally am thrilled by the steps Fantom and Kotlin have taken and
think that they are a great solution to eliminating null reference
exceptions. They use the fact that they’ve implemented it as a
language feature to provide really convenient and easy to understand
syntax. So easy to understand, in fact, that it might not be obvious
that it is the same damn thing as Maybe. The only differences are
that Fantom and Kotlin have a special syntax for it baked in, and
that (in exchange) it is a little bit more limited than Maybe as a
library is.

The
only downsides to this approach are related to the fact that it is
specialized. When you stretch against the limits of Maybe you can’t
drop in Either instead. You also can’t wrap Maybes in another Maybe
(Maybe<Maybe<String>>), which you might do when you have
nested calls that could fail.

I
can’t speak to how often this ends up being an issue for people
working in Fantom/Kotlin and what alternatives the language provides
because, frankly, I am pretty unfamiliar with them. If anyone with
experience would like to speak up I’d be happy to add their
information to this section.

But
Option in Scala DOESN’T save you from null!

Yes,
in Scala you can still get NullPointerExceptions. Scala doesn’t
have non-nullable reference types because Martin Odersky (for what
were probably good reasons - I’m guessing related to java interop)
decided to include null in his language. That doesn’t invalidate
all the other implementations of Maybe and it doesn’t mean it can’t
still be somewhat useful in Scala.

Feel
free to point out to people that Scala’s implementation of Option
still allows for NullPointerExceptions, just don’t generalize it to
“Maybe and Option aren’t useful”.

Safety
ISN’T guaranteed because of the existence of unsafe extraction
methods.

Often
implementations of Maybe will include more than just safe extraction
methods. Haskell’s fromJust and Scala’s get are both retrieval
functions that throw runtime errors if the value wrapped in Maybe
doesn’t exist. Just like how null usually works.

So
it is possible to shoot yourself in the foot if you want to. The
difference is you have to explicitly ask for this behavior — it
cannot sneak in by accident.

Whenever
I claim Maybe can move null reference exceptions to compile-time, it
comes with the assumption that you’re using the built-in safe
extraction methods and that you’re not requesting run-time
exceptions.

Using
Maybe is not worth the overhead.

This
is a hard question to answer without getting specific. If this was
said about a specific language or kind of application and the person
saying it has done their due diligence or has some working code to
back it up, then I can’t address that here.

If
it is a less qualified statement however, I have some counterpoints
that I can share.

1.
Bugs are expensive, even more so the later on they are caught.

It
takes a developer time to find and fix bugs - the more bugs, the more
time it takes. For each bug, overhead is introduced in the form of
finding, tracking, fixing, and testing it. Worse, bugs that make it
all the way to production impact your users and can have even more
expensive consequences like data corruption. For some applications,
small amounts of bug-related downtime could cost thousands (or
millions!) of dollars.

This
is the whole reason why we have test suites, type systems, static
analysis tools, code reviews, even exceptions! We want to catch bugs
earlier.

Maybe
lets you catch one of the most common bugs, null reference
exceptions, at compile-time instead of run-time. So if you say “it
is not worth the overhead”, think about what null reference
exceptions are costing you first, and make sure you really do know
how much it is worth.

Unless…
you are one of those lucky few who say that null reference exceptions
really are just not an issue for you. Maybe your other bug prevention
measures combined are good enough and when you tracked your faults
you found you don’t end up dealing with null reference exceptions
very much. For you guys, keep in mind that you are probably not in
the majority.

2.
There might not be as much syntactic overhead as you think. In many
cases it actually reduces overhead.

Languages
that provide Maybe usually provide many convenient ways to extract
values which are actually often shorter than the null checks you
would otherwise be writing. On top of that, code that doesn’t deal
with possibly-empty values doesn’t need to use Maybe (or check for
null!) at all.

For
those of you talking about having to mark too many properties as
optional and having to deal with Maybe everywhere, think about it
like this: You would have had to deal with the same amount of
possibly-empty values either way. The only difference is that now you
have the compiler helping you out. If your code is meant to be
robust, it will need null checks anyway. For the cost of adding a
little wrapper around your types you can replace those easy-to-forget
null checks with their equivalent compiler-checked Maybe extraction
methods.

You
also get perfect safety and ease of mind when dealing with values
that cannot logically be empty.

Enough
vague, high-level information. Show me some examples!

I
intentionally avoided showing examples in the explanation section to
avoid taking attention away from the main points. For a topic like
this one, as soon as you show some code it is like sticking a
bikeshedding magnet right in the middle of your article. But since
this post is aiming to be a definitive reference, it could use at
least a few examples.

Another
measure I am going to be taking to avoid stirring up unnecessary
arguments is comparing like with like. I will show a scenario where
null checks are used to deal with an empty value in a certain way,
then I will show what that example would look like in a language with
good support for Maybe.

The
languages I picked are:

		Java:
	to represent the traditional ways of handling nulls that most people
	are hopefully familiar with.

	
	Kotlin:
	to represent languages with non-nullable references and support for
	Maybe baked into the language.

	
	Haskell:
	to represent languages with non-nullable references and support for
	Maybe as a library.

The
scenarios follow:

Dealing
with it explicitly

Java

 public static void retrieveInfoExplicit() {
 String information = new Random().nextInt(2) == 0 ? "a,b,c" : null;

 if (information == null) {
 System.out.println("No information receved.");
 } else {
 System.out.println(Arrays.toString(parseInfo(information)));
 }
 }

Kotlin
 fun retrieveInfoExplicit() : Unit {
 val information = if (Random().nextInt(2) == 0) "a,b,c" else null

 if (information == null)
 println("No information received.")
 else
 safeParseInfo(information) forEach { println(it) }
 }

Haskell

 retrieveInfoExplicit :: IO ()
 retrieveInfoExplicit = do
 num <- randomRIO (0, 1)
 let information = if (num :: Int) == 0 then (Just "a,b,c") else Nothing
 case information of
 Nothing -> putStrLn "No information retrieved."
 Just i -> putStrLn $ show $ safeParseInfo i

Dealing
with it implicitly

Java

 public void retrieveInfo() {
 String information = Random().nextInt(2) == 0 ? "a,b,c" : null
 parseInfo(information);
 }

Kotlin

 fun retrieveInfo() : Unit {
 val information = if (Random().nextInt(2) == 0) "a,b,c" else null
 parseInfo(information)?.forEach { println(it) }
 }

Haskell

 retrieveInfo :: IO ()
 retrieveInfo = do
 num <- randomRIO (0, 1)
 let information = if (num :: Int) == 0 then (Just "a,b,c") else Nothing
 putStrLn $ show $ parseInfo information

Returning null as
well (e.g., guard statements)

Java

 public String[] parseInfo(String information) {
 if (information == null) {
 return null;
 }
 return information.split(",");
 }

Kotlin

 // Can choose to imitate java...
 fun parseInfo(information : String?) : Array? {
 if (information == null) {
 return null
 }
 return information.split(",")
 }

 // ...Or take advantage of the safe navigation operator
 fun parseInfo(information : String?) : Array? {
 return information?.split(",")
 }

Haskell
 -- Can do it with pattern matching...
 parseInfo :: Maybe String -> Maybe [String]
 parseInfo Nothing = Nothing
 parseInfo (Just information) = Just (splitOn "," information)

 -- ...Or with do notation...
 parseInfo :: Maybe String -> Maybe [String]
 parseInfo information = do i <- information
 Just (splitOn "," i)

 -- ...Or with fmap
 parseInfo :: Maybe String -> Maybe [String]
 parseInfo information = fmap (splitOn ",") information

Giving something a
default value

Java

 String name = (author == null) ? "Anonymous" : author;

Kotlin

 val name = author ?: "Anonymous"

Haskell

 let name = fromMaybe "Anonymous" author

Throwing
an exception

Java

 public String[] parseInfo(String information) {
 return information.split(",");
 }

Kotlin

 fun parseInfo(information : String?) : Array {
 return information!!.split(",")
 }

Haskell

 parseInfo :: Maybe String -> Maybe [String]
 parseInfo information = Just (splitOn "," (fromJust information))

Not having to check
for null

Java

Does not have this option, you always have to deal with null.

Kotlin

 // note: no ? appended to types
 fun safeParseInfo(information : String) : Array {
 return information.split(",")
 }

Haskell

 -- and these types are not wrapped in Maybe
 safeParseInfo :: String -> [String]
 safeParseInfo information = splitOn "," information

The nice thing about this
last example is that if the code changes and this function now needs
to be called with a value that might be null, the code won’t
compile until the developer has revisited safeParseInfo and
explicitly chosen to deal with null in one of the ways shown above.

In
case you want to run the examples yourself:

		The
	Java examples import java.util.Arrays and java.util.Random

	
	The
	Kotlin examples import java.util.Random

	
	The
	Haskell examples import System.Random, Data.List.Split, and
	Data.Maybe

That’s
it — that’s the end of both the FAQ and this article. Hope you
enjoyed it! §

Nick
Knowlson is a software developer from Victoria, British Columbia. He
enjoys reading, gaming, tea and (of course) programming. Right now he
is focusing on programming languages and language features.

First
appeared in hn.my/maybe
(nickknowlson.com)

ebook_html_m71dd3ede.jpg

ebook_html_3f65e6b.jpg

ebook_html_m10168e5c.jpg

affio.png
Without affiliate.o.

With affiiateio..

The Easiest & Quickest Affiliate System

Recruit, track, and promote your business

AFFILIATE.IO

he st end oot e Vist offlte foocker for discount.

ebook_html_3634579.jpg

tealeaf.jpg
join: 'Intensive Online Bootcamp',
learn: 'Web Development’,
goto: 'http://www.gotealeaf.com’

vwo.png
Visual Website
Optimizer

Advanced A/B Testing for SaaS apps

0Y density

See how Server Density increased Revenue by 114% with
Visual Website Optimizer at http://vwo.me/serverdensity

mandrill.jpg
&‘“?)

MEET MANDRILL

By MailChimp

[\ | et ool

ebook_html_m54e735b3.jpg

ebook_html_m59c52b4d.png

ebook_html_30737d48.jpg

cover.jpeg
wooswesows KHINOW

ebook_html_m5b6177e7.jpg
Ny oot

bbbt ot 24

wom o
985 26 5243
wes i W

gkl e Gp

[
P
el @
e 2
P

e i 24
G w
ap o8
“o

b 136 24
us co
s F
o if

B3sadapread®
a2 w2228

s wd o G206 M
q6 9
490
w2y
w2
e
as o
pri
dloys #5024

wr o

P

iy

log

Zassnaaesa®
%3 a»2®?

i et f25C B g
re @
P
w24
w1 o
wn wow
oo
oy

et

850 gt bk el
Ik 3 i Lol 1 S high
i g

e

4 4y S Claae \okd sh
Shulags et

P ovion.

W el FIC o

(3 S iy it

TR adsnct-ou. skp Mook

iC lakal lnceomiat

e s pipry o

W kel gt
Era J Vi b
mw..,“"ﬂ" Jw.v’unaz.uﬁ
BER miasumelomp 2 b - Sam 00 e
(e S S

o
b

S el

B0 oo s Lo m—

Pra S0 o ik

WE i 5 lnarsunt diin gl
ok e

NG el

B gebd [Cub b oga b

P 7 Fe Rk b b, graed-
BN wnd o 2. i -~ kvt
o e

] Gl g s
m (.'YA

B gl

ot gy 06k e P €k gt
P wiF b F e ek

60 moden.

o asc I C e admes

e o lup

T admmronsaty Lol and.

ebook_html_m2a603465.jpg
Compulat Opurnlide Lailling Mlaching - Gt Progum L

Naia Loyp.
Gy 2 g T adg J Inflaa gy

gt 6263 AL S o ae 5 Shes oot
w5 2w T ey 7 o 58 (o)

bl M oe TR gy PR Y)
Gg8 g cor s A o sl
P S S Ry
P Ry S8 P
fu o s o Lkl ¥ i -
ws B € g

. liod $215 ARG on amac 3 Shew ekt s
BT H e TR ey 3 A (A3 wlikab)

PR TSI F S " ey § Pk b it L
G0 2k B el Al b g
MR 5 Show ke s
e s TRy J PO (Fid o Dids)
w5 2% Wl led 7 D 8 g
G0 e R b 5 st o i i
e Ma o 4 5 Shew o a0
G wes ™ 500 (fik Oty B

L R TR mecouhey J P e oy dionce

&
ot MK s 5 Sho e an
on Hwe W 3 as (W 5e)

lepte
e E TR Ok b
e o e e e LEn Padh &l
o Fon o 31 ot bt
PR gy 306 ald o g appeane
P T 5 Qi obt o lelab
g 0 R [gy 5 Camy on i ok stil aunieble
P wa s Ne e o chos e 1s
fuc 2% 8 W, ES (tnply Gpart)
PRV RS T S A S0 e B b prasd b et

twilio.png
TWILIOCON®

SAN FRANCISCO, CA
SEPTEMBER 17-19. 2013

TwilioCon is 3 days of inspiration and technical sessions
with Twilio engineers and the brightest rminds in web and
mobile technology on the future of communication services.

$199 TWO-DAY CONFERENCE

Use promo code Hacker20 for 20% off the full price

ddg.png
Now you can hack on DuckDuckGo

DuckDuckHack

Create instant answer plugins for DuckDuckGo

duckduckhack.com

