4

iné when ﬂﬁ@m

Eduardo Mourao

‘How To Land An Airplane

Issue 37 June 2013

—_— I n
= ——— i
w! — - J_ooo-lo L3 o-l-l
oo L) LT
= o
o o
U |l I
_— T O
= 1113 o
[e]
[=
- [J—'iF
L o o) —t R
g
= o
- B R B 1 0]
[o] [e) =
=l il
= [e] o
O- Jl__
J:'I OI_ |
WO U LD '-o—"
YOU "|||||”||:
—{It --
‘ =
Engineers rebuilding the infrastructure 411+
that powers finance. » careers.addepar.com _I-=

ADDEPAR

http://careers.addepar.com

Now you can hack on DuckDuckGo

DuckDuckHack

Create instant answer plugins for DuckDuckGo

duckduckhack.com

http://duckduckhack.com

Curator
Lim Cheng Soon

Contributors
Rohin Dhar
Eduardo Mourao
Jeff Nelson
David Lieb
Chris Taylor
Dominik Dabrowski
Mike Krieger
Andrew Wulf
Sash MacKinnon
Jon Bell

lllustrator
Matthew Billington

Proofreaders
Emily Griffin

Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

HACKER MONTHLY is the print magazine version

of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com

Advertising Published by

ads@hackermonthly.com Netizens Media
46, Taylor Road,
11600 Penang,

Contact Malaysia.

contact@hackermonthly.com

E

Eduardo Mourao

- HowTo Land An Airplane
7 MONTHLY)

Issue 37 June 2013

Cover lllustration: Matthew Billington

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://hackermonthly.com/issue-37
http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

Contents

FEATURES

o6 The Jellyfish Entrepreneur

By ROHIN DHAR

12 How To Land An Airplane If
You Are Not A Pilot

By EDUARDO MOURAO

STARTUP

16 Inventing Chromebook
By JEFF NELSON

18 Cognitive Overhead
By DAVID LIEB

PROGRAMMING

22 The Algebra of Algebraic Data Types
By CHRIS TAYLOR

26 Python Libraries You Should Know About

By DOMINIK DABROWSKI

30 Handling Growth with Postgres
By MIKE KRIEGER

For links to Hacker News dicussions, visit hackermonthly.com/issue-37

Alex Andon, jellyfish entrepreneur.

SPECIAL

34 How Hotel Reservations Work
By ANDREW WULF

37 What It’s Like To Die
By SASH MACKINNON

38 McDonald’s Theory Of Bad Ideas

By JON BELL

http://hackermonthly.com/issue-37

FEATURES

The Jellyfish Ett

HEN ALEX ANDON

got his first order for

a $25,000 jellyfish
tank installation, he was excited. He
also had a problem. He didn’t know
anything about jellyfish or how
to make a jellyfish tank. He had a
hunch that people wanted to keep
jellyfish as pets, so he created a test
website and bought $100 in Google
search ads. Lo and behold, his
phone started ringing with enquires
and he got his first order for the
$25,000 jellyfish tank.

Today, Alex’s company Jellyfish
Art [jellyfishart.com] is the leading
company in the jellyfish pet space.
In fact, they're pretty much the
only company in the space. When

6 FEATURES

i

they launched over four years ago,
the only way to keep jellyfish at
home was to pay a custom installer
$10,000 — $25,000. After start-

ing as a custom installer, Alex later
developed a desktop jellyfish tank
that brought the price of jellyfish
ownership down to $500.

Along the way, he launched one
of the first popular Kickstarter
campaigns, received funding from Y
Combinator, and created a market
that didn’t exist before.

This is the story of Alex Andon
and Jellyfish Art, the world’s only
jellyfish startup.

By ROHIN DHAR | |

i

Who Wants a Pet Jellyfish?
While the market for pet fish is
estimated to be around $2 billion a
year, the market for jellyfish is tiny.
Part of the reason is that if you put
a jellyfish in a regular fish tank, it
will instantly be sucked into the
filter and die. The other reason,
according to Alex, is that until
the 1990s there were no jellyfish
exhibits at aquariums. In 1992, the
Monterey Bay Aquarium took a
chance on one, and launched the
first major jellyfish exhibit in the
United States. It was a smash hit.
The key to housing jellyfish
without killing them was developed
in 1960s by German oceanographer
Wolfe Greve to house plankton.

http://jellyfishart.com

Inlet

= Outflow
/ \4~Screen

AN

N

Plastic’
or Vinyl

If a jellyfish tank’s water intake
and outtake rate are not perfectly
in sync, BOOM, you get liquefied
jellyfish. Dr. Greve had previously
designed a tank that he called the
“Kreisel” tank that could solve this
problem with a perfectly balanced
filtration system (kreisel is German
for carousel).

Kreisel tanks look like the fat
cross section of a cylinder. A slow
circular water flow along the edge
of the tank keeps the jellyfish
suspended in the middle and away
from the filter. All water flowing
into the tank is sprayed in a flat
laminar sheet in front of the exit
screen. If jellyfish get close to the
exit screen, the incoming water
blows them away to safety. The
water flowing out of the tank goes
through a screen with sufficiently
large surface area to prevent any
points of suction that could suck a
jellyfish in. Only small particles pass
through the exit screen, filtering the
tank while the jellyfish remain safe
in the center.

Most jellyfish look nondescript.
They’re practically transparent until
you shine LED lights on them or
provide a background color.

7 ‘

Inlet

Outflow

Solid Silicone

Il

But if you create the right setting,
jellyfish are stunning.

Proof of Concept

In late 2007, Alex was itching to
start a company, any kind of com-
pany at all. He was two years out of
college and living with tech entre-
preneurs in a house in San Fran-
cisco. He worked as a lab technician
at a struggling biotech firm.

A marine biology major in col-
lege, Alex noticed that jellyfish
exhibits completely mesmerized
aquarium visitors: “People seemed
to have an obsessive infatuation
with the jellies. Some people would
sit in front of the tanks for hours
staring at them.” Since the jelly-
fish exhibits were so popular, he
decided to explore whether there
was a market for pet jellyfish.

He discovered that it was pos-
sible to keep jellyfish as pets, and
possible to catch them as well.

Based on studying the design of
jellyfish tanks at aquariums and
conversations with breeders, he
concluded that it was techni-
cally feasible to sell jellyfish to
consumers.

But was there any actual
demand?

To find out, Alex put up a land-
ing page advertising the services
of his (at this point non-existent)
custom jellyfish tank installation
business.

Alex then started a Google
Adwords advertising campaign,
targeting search terms like “jellyfish
tank.” His phone started ringing
with potential customers. Before
he had spent $100 on Adwords,
he made his first sale, a $25,000
custom jellyfish tank for a restau-
rant opening in Seattle.

The First Sale

Alex made the sale, but now he

had a problem: he had to deliver

on the tank he promised. Alex had
a general understanding of jellyfish
tank construction based on googling
around and talking to experts, but
he didn’t have enough expertise to
deliver the product.

Daniel Pon, a home aquarium
and maintenance expert (who now
works at Jellyfish Art in addition to
running his own aquarium busi-
ness) remembers first meeting Alex
around this time:

“I had lunch with him and after-
wards was like “this guy is in way
over his head.” He doesn’t know
how basic things about a fish tank

work and he’s going to make a
$25,000 jellyfish tank?”

The experience of selling his first
jellyfish tank was, as Alex put it, “a
complete disaster.” Eventually Alex
found a local aquarium builder to

We drove the tank up to Seattle. It was
filled with water and jellyfish so the truck
weight was 3 times its legal payload.

build the tank on his behalf. He got
a fishing permit and caught some
jellyfish in a bay near San Francisco.
He then had to get the tank and jel-
lyfish up to Seattle for installation
while the restaurant was still under
construction:

“A little before Christmas, a friend
and I drove the tank up to Seattle.
It was bad. It was filled with water
and jellyfish so the truck weight
was 3 times its legal payload.”

“It started snowing really hard on
the way up. We had to get chain
control and put chains on our tires.
I'd never done that before. We went
through 3 sets of chains.”

When he arrived in Seattle, the
jellyfish were dead. That wasn't
such a big deal because they could
be replaced. The main issue was
setting up the jellyfish tank. Alex
worked for five days straight with

the construction company to get it
installed properly. He slept at the
construction site every night.

Alex got the tank installed in
time for the restaurant’s opening.
But the tank had a few hiccups.
One day, a pipe broke and dumped
100 gallons of water into the
restaurant. Other minor problems
arose, too, though according to
Alex, the restaurant was annoyed,
but pretty cool about it. They still

use the tank today, but now for fish.

Alex Andon, Jellyfish Consultant
And so with one customer under
his belt, Alex decided to go into the
jellyfish business. His website and
advertising campaign kept pro-
ducing customer leads for people
that wanted custom jellyfish tanks
installed. At the same time, the bio-
tech company Alex worked for was
struggling during the recession and
looking for volunteers to leave the

company in exchange for severance.

Alex left biotech and committed to
jellyfish.

He found working in the custom
jellyfish tank installation business
brutally difficult, but he earned
an understanding of tank design,
and the aquarium and pet supply
industry.

Alex realized that he needed
to build an affordable jellyfish
tank. Over the course of a year, he
finished only 3 custom installations.
The market for $25,000 tanks was
very small and too labor-intensive
to scale. Instead of selling his instal-
lation services, he needed to sell a
product.

Around February 2009, Alex put
up a landing page on his website
offering a desktop jellyfish prod-
uct for around $500. He put up a
photoshopped image of a tank that
didn’t quite exist yet. Based on
the advice of his software engineer
roommates, he posted it to Hacker
News.

Around this time, he got his big
break, even though he wasn’t quite
ready for it. The New York Times
profiled him in article about people
starting businesses after they lost
their jobs during the recession. The
article led to an influx of traffic to
his site, but his affordable desktop
jellyfish tank wasn’t ready yet, so it
didn’t lead to any new sales. Still,
the article put Alex on the map as
“the jellyfish entrepreneur.” From
March 2009 onwards, almost every
article about jellyfish in the popular
press mentioned Jellyfish Art.

8 FEATURES

Alex monitored the flight online and picked
up the jellyfish at San Francisco Airport,
like you might pick up your in-laws.

The Desktop Jellyfish Product
Version 1.0

A few months after the New York
Times article, the first version of the
company’s desktop jellyfish product
was ready for sale. It was a bit of a
Franken-aquarium, hacked together
from various off-the-shelf aquarium
parts. But it worked. It kept the jel-
lyfish alive, made them look pretty,
and cost around $500.

Sales of the desktop jellyfish tank
started to take off. The New York
Times article ushered in a wave of
articles by other publications about
Jellyfish Art. Now, when visitors
came to the site, they could actually
buy the product. It began to look
like a real business with a scalable
product.

The increase in sales, however,
exposed a critical problem in the
business that Jellyfish Art struggles
with to this day. Alex had suc-
ceeded in making an affordable jel-
lyfish tank that people wanted. But

where was he going to get a reliable
supply of jellyfish to sell?

The Jellyfish Supply Chain
When Alex started Jellyfish Art,
he caught the jellyfish himself. He
got stung frequently. As an aside,
you are NOT supposed to urinate
on a jellyfish sting. This appears to
be an urban legend derived mostly
from an episode of Friends in the
1990s. Just flush it out with vinegar
or if that’s not available, salt water.
Okay?

But back to the subject at hand.
Where did Alex get the jellyfish
supply from?

“Basically, I just asked everyone.
One local aquarium gave me a list
of a few people who might be able
to help. One of them was my guy
in [place redacted for competitive
reasons] and he worked out.”

This supplier, who lived in a trop-
ical island far from San Francisco,
put 500-1000 jellyfish in Styrofoam
coolers and shipped them via com-
mercial carrier to San Francisco.
This means they flew in the cargo
section of a regular passenger plane.
Alex monitored the flight online
and picked up the jellyfish at San
Francisco Airport, like you might
pick up your in-laws.

The jellyfish stock is kept at the
company’s warehouse and office in
Potrero Hill, San Francisco.

When an order is placed, they
ship the jellyfish to the customer
by FedEx overnight. Jellyfish can
survive 48-72 hours in shipping so
even if there is a delay, the jel-
lyfish normally shows up alive. By
contrast, fish typically die after
twelve hours of transit. The aver-
age jellyfish lives for 6 months and
Jellyfish Art guarantees that they
arrive alive.

The supply chain worked this
way for a year. Then one day, the
tropical supplier went to his jel-
lyfish catching spot and couldn’t
catch a single one. All of them were
gone. Every week he checked out
the same spot, but every week he
went home empty-handed.

But Jellyfish Art survived. Thanks
to his increased market exposure,
it was easier to get jellyfish. If you
breed jellyfish and want to sell
them, Alex is the only game in
town. He managed to find a decent
supplier in Europe that provided
just enough supply.

Let’s Make Our Own Product
After a year of rising sales sell-

ing another company’s fish tank
retrofitted with their own filtration
system, Alex decided it was time
for Jellyfish Art to develop its own
tanks. Buying someone else’s tanks
was expensive and manually retro-
fitting each one was a pain.

At this point, two and a half
years after getting started, Alex
knew enough to design Jellyfish
Art’s signature product: the desktop
jellyfish tank. His original “napkin”
design is below:

- Prdut Pesian by
Mex Aadon) /210

Rurglic Sellfoh Tk

with progmummable
chrrr:m,\, LED,

sty fows o
ok Jisglay Yuak
o Gieoton |
hage over a
|ar’L Gurbae

wica o avei

streaw of aw
buehles creates

civeular lawjuas

vaker Flow

hewrative ¢

oss peliles

e carbeilye cofains

A B
M W bl and octivated

o T R
* Thermpunehes ble
'HM-‘«LFW replaceal

“afass pebbles

- ‘1’\1‘«"\\4&\. Salt

It took another year to get to
production. By March of the next
year, they had a barely function-
ing prototype that they unveiled
at the Global Pet Expo. The Expo
is the largest trade show in the
pet industry that is dominated by
companies with huge marketing
budgets. It normally caters to dog

and cat owners. Alex and his team
had the smallest booth, but they
won best new product of the year
in the aquarium category.

And Now, 3 Years After Its Start,
Jellyfish Art is an Overnight
Success

After winning at the Expo, things
start happening pretty fast for Jel-
lyfish Art. They found a Chinese
manufacturer for their tanks, but it
was still going to be expensive to
kick off production, so they secured
a small business loan. Around

the same time, Alex heard about
Kickstarter. He figured it could be
a good way to get orders and fund
the manufacturing.

In August 2011, they launched
a Kickstarter campaign aiming to
raise $3,000. This was the amount
of pre-orders they had gotten so
far based on being in the New York
Times and winning the Pet Expo.

It seemed like an aggressive but
doable goal.

They ended up raising $162,917
on Kickstarter. For the first few
days of the campaign, sales trickled
in. Then rap artist Jermaine Dupri
tweeted out about the campaign
and it massively spiked. After

that tweet, everything changed in
the campaign. More blogs started
covering it, and Alex went on local
TV and radio to talk about the
campaign.

Almost immediately after they
were “blowing up on Kickstarter,”
Alex and Jellyfish Art decided
to apply to Y Combinator, the
technology startup incubator and
investment firm. In their applica-
tion to Y Combinator, they posited
that they could use jellyfish as a
beachhead to become the “Amazon
for pets.” They were accepted into
the Y Combinator Winter 2012
batch.

Mistakes Were Made

After a meteoric rise in the fall

of 2011, gravity set in during the
winter of 2012. As they started

Y Combinator, Alex realized that
the “Amazon for pets” idea wasn'’t
a very good one. Shipping around
live animals in boxes like Amazon is
a niche industry with low margins.
The big money in pets is in dogs
and cats.

After toying with the idea of
creating a database of dog breeders
to connect people with the types
of dogs they want, Alex decided
against the idea. Their existing busi-
ness, Jellyfish Art, offered no advan-
tages for starting a dog breeder
matching service. Between starting
a breeders database from scratch
and staying in the world of jellyfish,
they chose jellyfish.

During YC, Alex felt pressure to
have a jellyfish sales chart that was
“up and to the right.” Immediately
after they shipped off the jellyfish
tanks to their Kickstarter back-
ers, they launched a sale on Fab.
com, a flash sale site. The sale on
Fab.com was their single largest
source of sales ever, but it came at a

10 FEATURES

cost. Jellyfish Art offered the same
discount on Fab as they offered
their Kickstarter backers. The Kick-
starter backers were livid that they
received the same treatment even
though Kickstarter backers funded
the business and put up with a 6
month wait. Some of the people
that should have been the biggest
supporters of Jellyfish Art turned on
the company.

In the wake of massive sales
growth from Kickstarter and Fab,
Alex started hiring for staff and
investing in systems to make the
business work. Sales were skyrock-
eting every day, and it was unclear
just how massive this business
could become. Alex explains:

“As fast as money was coming in
the door, it was flying out. We also
had no idea how high the sales
would go, whether we should be
bracing for more growth or plan-

ning for stability.”

“It turned out our product was too
expensive for many of the large
retail chains that originally showed
interest, so sales eventually leveled
out

”

As time went on, it became clear
that sales wouldn’t continue to rise
as quickly as they had in the past
few months. What was previously a
profitable business was now barely
so because they were spending
money as if it were a high growth
startup. As sales started to flatten
out, Alex let go of half his staff.

Despite deciding against the
“Amazon for Pets” idea, they
received offers from investors to
fund the idea after YC Demo Day.
Alex decided to turn down the
funds. Even if someone was willing
to fund it, it was not the business
he wanted to start.

The Current Situation

According to Alex, over the last
year, sales have been strong but flat.
Anyone in the world willing to pay
$500 for jellyfish buys the product
from Jellyfish Art. The first reason
that sales are flat is because they
have almost 100% market share.
It’s hard to improve on that. No
competitors have emerged, and

if you Google anything jellyfish
related, you inevitably end up at
the Jellyfish Art website or read an
article about the company. Even
Wikipedia uses images of their
products in its entries. When asked
if he was worried about competi-
tion, Alex demurred. The Jellyfish
Art marketing machine would be
hard to unseat.

So, the market of people willing
to spend $500 for a jellyfish tank
and jellyfish is basically tapped.
According to Alex, what Jellyfish
Art needs to do is roll out a $100
tank and open up a much larger
market and get shelf space in large
retailers.

In fact, they've already built a
low cost jellyfish tank, but they
can't release it. If their demand
increased 5-10 times by offering
their cheaper tank, they couldn’t
source enough jellyfish. They cur-
rently sell just about every jellyfish
they can get their hands on.

The whole fate of the business
hangs on whether they can breed
their own jellyfish. They’re sort of
getting the hang of it, but right now
they breed 10% of their supply and
buy the other 90%. Once they reli-
ably nail the process of producing
jellyfish, then they can lower their
prices grow again.

Conclusion

"
' W,
D%I Elyt-EnAr i.. e
fo\voryfe)

Je A

At every stage in Jellyfish Art’s evo-
lution, Alex Andon definitely sold
well ahead of his capabilities. With-
out knowing much about jellyfish,
he sold a $25,000 tank. Before he
could build his own tank, he jerry-
rigged another company’s tank to
hold jellyfish. Once he had a barely
functioning prototype, he entered it
in a trade show and won first prize.
Alex was a “fake it till you make it”
entrepreneur par excellence.

But then, he made it. The home
jellyfish market is small, but Jelly-
fish Art both created it and domi-
nates it. With the business stable,
Alex has had time to experiment
with living in a van in San Francisco
(he doesn’t recommend it), build-
ing a website for artisans to sell
their crafts, and figuring out what
he wants to do with his life.

Living in San Francisco with a
bunch of tech entrepreneurs has
heavily influenced Alex. He will tell
you that what he really wants to do
now is start a successful tech com-
pany. Alex thought he could turn
Jellyfish Art into a tech business, but
he couldn’t. It’s a jellyfish business.
But that’s still pretty awesome. M

Rohin Dhar is the co-founder of Pricconom-
ics Price Guides. He is also the co-founder
of Personforce job boards and has an MBA
from Stanford and BA from Dartmouth.

Reprinted with permission of the original author.
First appeared in hn.my/jellyfish (priceonomics.com)

http://hn.my/jellyfish

How To Land An Airplan
If You Are Not A Pilot

By EDUARDO MOURAO

T S I Sae S ——_ S S " ’ el

el b s J o e 1o (i X ity P ‘ e an a

T FLIGHT SCHOOL people
always ask me:

“Can I land a plane? I have X

years of flight simulator experience.”

The short answer is: history
shows you will probably die. Not
necessarily because it is difficult,
but because you don’t know what
you don’t know. Flight simulators
distort important aspects of land-
ing airplanes: your awesome 200
degrees/3D vision, the muscle
mechanics of flying and the notion
of distance. In fact, flight simulators
are harder than the real thing. Yet,
many people in the flight school
I teach landed their first flight
without the need for intervention. I
landed an airplane for the first time
when I was 11 years old. With a bit
of luck you can do this by yourself.
So, in case of an emergency, this is
what you could do...

There are many types of air-
planes, but when it comes to
landing there are pretty much two
classes: heavy and light. This is more
related to lift/weight ratio (and
wing type) than the actual the size
of the airplane. I will show you how
you can land light airplanes in the
easiest way possible, as long as you
first open any flight simulator right
now (xplane for iPhone is ok) and
understand the basic controls (pitch,
roll, yaw) and the relationship
between speed and angle of attack.
Playing with it for 10 minutes (at
low speeds) should suffice. The
basic mechanics are good enough.
Keep in mind that brains are incred-
ible machines and can learn things
automatically, but you need to stay
calm. For instance, my wife learned
how to keep an airplane flying with-
out one single instruction.

The pilot died, now what?

Stay calm; take control

Flying airplanes is easy, but
stay calm. Your only goal now is
to take control. The first thing
you will do is put your hands on
the yoke (or stick). Do not make
sudden moves. Airplanes are not
like cars; inputs must be very subtle
and smooth. If the airplane is not
leveled, you will instinctively and
smoothly move the yoke to make
the airplane level against the hori-
zon. At this point the plane will
be likely going up or down a bit
(maybe you are not even aware of
that), but don’t worry about this
now. Check if the pilot’s body is
blocking or pushing anything, and
check if the pedals are clear (don’t
touch the pedals). The throttle
is the black (or gray) lever in the
middle of the panel or between the
seats. Now, push the throttle for-
ward until you feel where the end
is and then pull back 30% of that.
You should be using 70% of the
engine for now. That will prevent
you from crashing for a while. If
you are flying a propeller airplane
check the RPM (just like a car, it
should be right in front of you).
The RPM should be around 2.300.
The speedometer and tachometer
should have colors; never let it get
close to the yellow or red areas.
(yellow = this is wrong, red = you
are doomed)

Inform the situation

Put the headset on. There
should be a BLACK push button
at the right side or your yoke.
Your radio should be set with an
approach or center. Push the button
(keep pushed) and speak slowing
(but briefly) what happened, start
by saying “PAN PAN” or MAYDAY
(depends on the country). Do not
lose more than 15-20 seconds doing
this since we still need to find an
acceptable airspeed for this air-
plane! Also, you will need to find a
place to land. If you know where
you are, great! Also, the guys on the
radio will tell you which direction
you should go. If no one answers to
you just keep flying straight (do not
make turns yet). Ask them if there
is a pilot around that knows that
specific aircraft (this should help
you with finding the speed).

Flying straight and

airspeed
Now, the speed. I don’t know
which airplane you are flying
(you probably don’t either), so
you will need to test a reasonable
approach/flight speed. We do this
by using the airplane’s altitude/
angle of attack. Airplanes usu-
ally fly at a certain angle of attack;
the slower you fly the greater the
angle of attack (and engine power)
needed to continue a leveled flight
(because it increases the lift and
drag). What we want is to find a
speed where the airplane flies with
a very small angle of attack. To do
that you will accelerate the airplane
to about 70-90% of the throttle.
Now, looking at the altimeter, stay
at that altitude and start pulling the
throttle back (slowly) and watch
the horizon closely (or artificial
horizon). As soon as you need to
push the yoke back to keep flying at

the same altitude, check the speed-
ometer: that’s 90% of the speed you
should be flying now. Accelerate

a bit to get to the correct speed.
Remember this: everything is
subtle; do not push back the yoke
to the point where the nose is going
up more than 6-8 degrees. If there
is an artificial horizon, your angle
should be just enough to make a
thin blue line between the piece
presenting the airplane and the
yellow/brown background repre-
senting the ground.

Making turns

Making correct turns are
hard. It takes 20+ hours of instruc-
tion to teach students how to turn
correctly and they still make turns
that suck. You are not going to learn
this. With that said, this is how
your turns will work: first, where
do you want a go? If this is a 180
turn, look 90 to the direction you
want to turn, find a reference (trees,
etc. — use the tip of the wing) and
start the turn by very slowly turning
the yoke to the direction you want.
This is so delicate that someone
looking at your hands would barely
notice you are actually moving the
yoke. As soon as your reference
is on the other site (same position
relative to the wing), you finished
the turn 180 turn. The maximum
angle of turning you will use for
this entire flight is no more than
10 degrees (tilt your head to the
right/left a little, that's more than
enough). You might get a bit dizzy
because you are making the turns
wrong, but ignore it.

Approaching
Now, the guys on the radio

guided you to the runway or you
found the runway yourself. This
is the part where flight simulators
are useless. You should be higher
than you probably think. Most
people have a wrong perception of
the height the airplanes approach
because the size and direction of
airliner passengers windows. That
makes first-time pilots come in
too low, especially flight simulator
players.

You should be at least at 1000
feet above the ground. If you
see the number 29.92 set in the
altimeter, ignore the altimeter
completely. Ask on the radio for
this altimeter setting (change the
setting by turning the knob on the
altimeter). If you don’t have a radio
or GPS, try this: you should be high
to the point where you can see
cars but cannot possibly identify
the specific color or model. This is
around the 45th floor of a building.
Remember: the altimeter is show-
ing your altitude relative to a sea
level configured by that number,
not the distance to the ground.

Your approach will consist of
getting the airplane at this height
and 1 mile (or less) apart from the
airfield, aligned with the runway.

Landing

Anyone who plays with a
flight simulator should get to this
point without any instructions,
but now things will get stupidly
fast. Adrenaline and not knowing
what you are doing are the main
reasons for this. To land you will
have to forget everything you know
about xplane of Microsoft’s flight
simulator.

Using small movements, you will
keep the runway between your legs.
Be patient and make only small
corrections. If you over correct you
will start zigzagging. Airplanes are
like kayaks, they are always skidding
and inertia make things take a bit
longer, you need to wait for your
input to make a difference (this
impression is actually caused by our
notion of space).

We should find a distance
between you and the runway at
which you could turn off the engine
at your current altitude and still
reach the runway. We can’t do that
now, but the good thing about light
airplanes is that they lose speed
very fast. With that said, you will
stay at the current speed (or the
speed someone tells you on the
radio). If you can locate the control
to lower the flaps to its next posi-
tion, do it now. This will feel like
the airplane is braking and could
gain altitude, but keep you current
speed; the flaps won't break.

Time to dive: you kept the
runway between your legs, you are
1000 ft. above the ground and the
runway is 1 mile in front of you.
You will point the nose of this
airplane to the very beginning of
the runway. The speed will start to
grow and you will reduce throttle
to keep your current speed. You
will not overshoot the runway;
don’t worry about that. Keep your

14 FEATURES

Controlling an airplane on the ground
sometimes feels like driving a shopping
cart backwards at 60 miles/hour.

eye on the speed. Some people
will feel the pressure changing in
their ears, and this is normal. You
point the nose of the airplane to
the beginning of the runway, but
you won't be able to land there.
You should cross the beginning

of the runway at the height of a
4-5 story building and descend-
ing. When you reach the height

of a common pole, cut the throttle
completely. You will start to pull
and reduce the descending speed.
If you pull it sooner it will get ugly.
The airplane should be as high as

a very tall person now. Do not let
it land. Smoothly keep pulling it
more and more to try to keep this
height. After a few seconds you
will hear a buzz, which means the
plane is starting to stall. Because
you followed my instructions, you
should be around 1.5 meters from
the ground and the plane will land
by itself. If you ever hear that buzz-
ing sound and the distance between
you and the ground is greater than
a height, you can fall on your feet.
Push the throttle to the end and do
not pull the yoke until the buzzing
stops. Get altitude and try every-
thing again. If the airplane hits

the ground, immediately cut the
throttle. Some landings can be so
hard that they can hurt a bit.

After the plane is on the ground,
it won'’t go straight. It will turn to
the left or right immediately after
you touch the runway. The pedals,

which you haven’t used until now,
are also used to brake and control
the airplane on the ground. Do not
put your whole foot on the pedals.
Instead, you will put only the tips
of your toes on the lower part of
them (like kicking). If you push the
left pedal, the airplane goes to the
left (and vice versa). If you push
the upper part of the rudder you
will brake one of the main wheels.
Unlike cars, every main wheel has
its own braking pedal. Do not brake
the airplane now; wait for it to get
slower. When the airplane is slow,
move the tip of your toe to the
upper part of the pedal and push
left and right, slowing and simul-
taneously. Controlling an airplane
on the ground sometimes feels like
driving a shopping cart backwards
at 60 miles/hour.

You made it! Now just push but-
tons around and you will end up
turning the engines off (red ones

first).

Conclusion (TL;DR)

Playing 10 minutes with a flying
simulator will make you more com-
fortable maintaining the airplane
in the air, but it won'’t help you on
landing. The biggest mistake most
first timers make is coming too
slow and too low for landing. Make
sure you are high and glide to the
ground without the need to use
the throttle (but use it if you need
it). Do not fear the ground and

start to flare only when you are 10
meters high (same height as a pole).
When you reach the height of a
tall person, keep pulling until the
airplane stalls. You have the option
to give up before touching the
ground, but never try to take off
after touching the ground. Don’t
ever push the yoke when close to
the ground because you will be
certain to crash. If you fly by 2/3 of
the runway, apply full throttle and
try again. If you are on a newer/
larger airplane, you will need a
pilot on the radio to help you, but
the good news is that it could be
possible to program the airplane to
land by itself.

Remember: you have time and
you can keep trying as long as you
can keep the airplane flying. |

Former commercial pilot, Eduardo is the
founder & lead engineer of a credit card
company and founder of a startup in Brazil.
Heisalso aflightinstructor and avid sport
biker.

Reprinted with permission of the original author.
First appeared in hn.my/land (eduardo.intermeta.com.br)

lllustration by Matthew Billington.

http://hn.my/land

STARTUP

Inventing
Chromebook

By JEFF NELSON

HILE WORKING FOR

Google back in

2006, I had the good
fortune to create a new operating
system.

I confess it wasn’t created from
scratch; it was a chopped down
Linux distribution, as so many
“new” operating systems are these
days.

This new operating system was
originally code-named “Google OS”
and since 2009 has been released
to the public under the prod-
uct names, Google Chrome OS,
Chromebook, and Chromebox. I
wrote a patent for it, #8,239,662,
titled “Network-based Operating
System Across Devices” that was
finally granted in August 7, 2012,
long after I left Google.

Here are few interesting tid-
bits about the invention of
Chromebook.

First, Chromebook was initially
rejected by Google management.

In fact, I wrote the first version as
early as July 2006 and showed it
around to management. Instead of
launching a project, the response
was extremely tepid. My boss
complained, “You can’t use it on

an airplane.” Actually, you could
since, under the covers, it was still a
bare-bones Linux distribution and
could execute any Linux program
installed on it.

Second, Google OS was not orig-
inally written for Chrome or called
“Chrome OS.” The first versions
were all based on Firefox. When
I wrote the first version in 2006,
Google had not yet started develop-
ing a web browser of its own, nor
had the name “Chrome” existed as a
Google product. Chrome versions
followed in 2007, after internal beta
test versions of Chrome started to
be passed around inside Google.

Third, Chromebook was defi-
nitely not intended to be “another
device” for web browsing — as
many product reviewers have char-
acterized the Samsung Chrome-
book models. The first versions
were bare-bones Linux distribu-
tions, but fully functional for many
tasks, including code development
for a Google engineer. I myself
used versions of Chromebook,
exclusively, every day, for over a
year as my primary development
box, taking it on many business
trips and even some airplanes.

Fourth, the main priority of
Chromebook — originally — was
not to write a webapp-only oper-
ating system. In fact, the main
priority when I started constructing
the operating system was the need
for speed — to create a super-fast
operating system.

16 STARTUP

Why bother to write a super-fast
operating system? [was frustrated
with Windows and Linux, which
I perceived were unnecessarily
slow. For example, at that time my
occupation was writing webapps
for Google, so I was restarting my
web browser frequently, sometimes
hundreds of times a day, to clear
browser cache and cookies as part
of the code development process.
Restarting the web browser was a
particularly slow operation, often
taking 30-45 seconds, whether
IE or Firefox, Linux or Windows.
(Chrome not being available in
2006.) However, even simple tasks
such as displaying a directory in
a file explorer were unreasonably
slow operations, requiring several
seconds for a task that should be
nearly instantaneous. A few sec-
onds here, 45 seconds there, might
not sound like much of a delay, but
when such delays occur hundreds
of times a day, it adds up to a costly
amount of time.

The solution? Move the entire
desktop operating system into
RAM. By moving the entire
operating system into RAM, that
immediately took off the table the
largest performance bottlenecks in
the operating system: File I/O.

Very few tasks that an operat-
ing system performs are CPU
intensive or cause other major
delays that can’t be attributed to
File I/O. By running the operating
system entirely in RAM, most such
tasks became nearly instantaneous,
without having to rewrite or do any
performance optimization at all
for thousands of applications that
make up the operating system. For
example, restarting Firefox went
from ~45 seconds to ~1 second.
Browsing a directory in the file
explorer went from ~8 seconds

to ~0.01 seconds. Even compil-

ing code became 60% faster, and I
could run non-indexed, recursive
greps of the entire RAM resident
file system in under 15 seconds. Try
doing that with a hard disk.

When discussing the RAM
resident architecture of the original
versions of Chromebook, nearly
everyone expressed concerns about
data loss. In fact, data loss was not
a problem for several reasons. First,
many tasks were performed as
webapps, so as long as the webapps
were well-written, there was no
possibility of data loss. Second, I
had configured my IDE to auto-save
backups to a network drive, so even
in the event of a system crash only
a few seconds of work could be lost.
Third, some version occasionally
synced backups to a local storage
media. Aside from that and boot
loading, the operating system never
accessed any local storage media
aside from dynamic RAM. Ever.

Running a RAM resident oper-
ating system did pose other chal-
lenges. First, avoiding the installa-
tion of any bloated applications. A
bloated application hogging a few
gigabytes of hard disk space might
not be painful, but hogging a few
gigabytes of RAM is. Such bloat
had to be avoided by replacing the
functionality with webapps.

Second, many software vendors
don’t support Linux at all. This
functionality also was replaced with
webapps.

Thus, tracking down webapps
to replace any and all functional-
ity normally found on a desktop
became a priority. That’s how
the seeds of the webapps on the
Chromium desktop, albeit originally
written in HTML and running on
Firefox, were planted.

While running your front-end
operating system entirely in RAM
is a fundamental shift to the status
quo of modern operating system
architectures, I'm convinced the
benefits far outweigh the costs. As
we live our lives, connected and
online, few or no resources need to
be stored on the same computer as
the attached keyboard, and those
which are stored don’t need to be
accessed by spinning a magnetic
platter. M

Mr. Nelson has written two books and
many magazine articles on Java and
cloud computing during his twenty year
career as a Java and C++ engineer and tech
lead. He has extensive experience in the
Big Data and Search industries, building
highly scalable web services, and lead-
ing engineering teams at such companies
as Google and eBay. He holds a Masters
Degree in Applied Mathematics.

Reprinted with permission of the original author.

First appeared in hn.my/chromebook (jeff-nelson.com)

http://hn.my/chromebook

Cognitive Overhead

Why Your Product Isn't As Simple As You Think

T’S BEEN HARD to ignore the

massive shift in the last decade

toward simple products. The
minimalist design aesthetic pio-
neered by Dieter Rams in the 1960s
on alarm clocks and toasters was
popularized by Apple and Google
in the 2000s on iPods and search
boxes. Soon after, Web 2.0 took
over, yielding big buttons, less text,
more images, and happier users.
Startup accelerators and design
gurus popped up proselytizing “sim-
plicity!” and the rapid growth of
mobile in the last five years has cre-
ated an almost strict requirement
for simple products that work on
our new small screens and increas-
ingly small attention spans. Some
of the most popular products today
(Twitter, Snapchat, Instagram) all
have simplicity of design and expe-
rience at their core.

By DAVID LIEB

This Ain‘t Is Your Grandma'’s
Internet

So why did this happen, and why
mostly in the last 10 years? Some say
that good design simply lags behind
technology and that design has finally
caught up. Others point to the evolu-
tion of our devices and our environ-
ments — definitely a major factor.

Your Market You
(it you're reading this)

But I believe the high-order bit
is even more straightforward: It's
only been in the last 10 years that
technology products have reached
the mass market. The market size
of the entire broadband Internet in
2000 was 50 million people; today
it is 2 billion people; in a few short
years with the shift to mobile it will
be more than 5 billion people. This
mass market is comprised mostly
of people who sit in the middle of
the tech-adopter bell curve, and
since they aren’t product design-
ers, computer programmers, and
tech bloggers, they require an even
higher degree of simplicity.

“Simple” Isn't What You Think
But “simplicity” comes in many fla-
vors. We can make products simpler
by optimizing along a number of
vectors:

® minimize number of steps in the
flow

® minimize time required
® minimize number of features

® minimize elements on each page

But the most important, and
often most overlooked, is Cogni-
tive Simplicity. This is an idea that
slowly emerged as my company,
Bump, tried to understand exactly
why Bump is so popular, especially
in the non-tech crowd. We believe
product builders should first and
foremost minimize the Cognitive
Overhead of their products, even
though it often comes at the cost of
simplicity in other areas.

18 STARTUP

We take our ability to cut through cognitive
overhead for granted; our mental circuits for
our products’ patterns are well practiced.

Cognitive Overhead

There isn’t yet much written about
cognitive overhead in our field. The
best definition on the web comes
from a web designer and engineer
in Chicago named David Demaree:

Cognitive Overhead — “How
many logical connections or jumps
your brain has to make in order
to understand or contextualize the
thing you're looking at.”

Minimizing cognitive overhead is
imperative when designing for the
mass market. Why? Because most
people haven’t developed the pat-
tern matching machinery in their
brains to quickly convert what they
see in your product (app design,
messaging, what they heard from
friends, etc.) into meaning and pur-
pose. We, the product builders, take
our ability to cut through cognitive
overhead for granted; our mental
circuits for our products’ patterns
are well practiced.

This is especially pronounced
for mass market mobile products.
Normal people already have to use
more of their mental horsepower
to cut through cognitive overhead.
Now imagine the added burden
of having to do that while on a
crowded bus, or in line at Starbucks,

or while opening your app for the
first time while eating dinner with
a friend and texting another. This
isn’t 1999 when your users were
sitting in their quiet bedrooms
checking out your website on a
large monitor while waiting for
their Napster downloads to finish;
they are out in the real world being
bombarded with distractions.

My, What Big Cognitive Over-
head You Have

To illustrate the difference between
generic simplicity and cognitive
simplicity, let’s look at a couple
products that, on the surface, might
be regarded as being simple to use,
but rank in my book as some of the
most cognitively complex products
of late.

® QR Codes — Designed to check
the simplicity boxes of speed,
ubiquity, and small number of
steps, QR codes really dropped
the ball on cognitive overhead.
“So it’s a barcode? No? It’s a
website? Ok. But I open websites
with my web browser, not my
camera. So I take a picture of it?
No, I take a picture of it with an
app? Which app?”

= iCloud / PhotoStream — When

we heard Steve Jobs preach

the utopian future where all of
our photos and data would be
seamlessly synchronized among
all our devices, we smelled the
Apple simplicity we’d all grown
to love. But in practice, iCloud is
rife with cognitive overhead — it
only backs up your most recent
photos, it works on certain select
apps but not others, you have

to create an icloud.com email
account for it to sync your mail
and notes but not everything else.
Oh, and it works on new iPhone
and iPads and Macs running

OS X v10.7.4 or later, but not
your PC or Android tablet. Try
explaining that to your mother.

Cognitive Simplicity Winners

So which products really nail cogni-
tive simplicity? Here are a couple
examples:

® Shazam — An app that magically
hears what song is playing and
tells you what it is? Seems pretty
complex, and what'’s happen-
ing under the covers actually is.
But Shazam does a phenomenal
job keeping the user’s cognitive
burden low. They force people
to press a button to “start listen-
ing,” show real-time feedback
that shows the app is hearing
the sounds, and it buzzes when
a result is found. Shazam could
have made the flow faster or
fewer taps, but it would come at
the cost of cognitive simplicity.

= Nintendo Wii — In most ways,
the Wii was far more complicated
than its game console peers in
2006. It used accelerometers and
IR blasters and detectors that
required setup and calibration,
and it was a departure from the
mental model most people had
for video games. But the payoff
was a system with low cogni-
tive overhead — you swing the
controller to the left, and the
little avatar on screen swings his
racquet to the left. And voila,
toddlers and grandparents alike
suddenly became gamers.

Could Go Either Way?

Finally, a couple of my personal
favorite daily-use products that
could be argued either way. What
do you think?

= Dropbox — I love Dropbox. All
of my stuff is in my Dropbox;
Dropbox is on all my devices; so
all my stuff is on all my devices.
Pretty cognitively simple. But
there are certainly some poten-
tial cognitive hurdles, or, perhaps
better put, cognitive activation
energy required before reach-
ing the low cognitive overhead
state. Is Dropbox a folder on
your desktop or a cloud-storage
website? Oh and it’s a program
to install on my computer, too?
When do things get backed up?
Did it work?

= Facebook — Facebook started
out with very low cognitive
overhead — it was a digital ver-
sion of the paper Facebooks that
already commanded high engage-
ment and retention of college
kids. Question: Has Facebook’s
cognitive overhead increased or
decreased as it has expanded to
the mass market? What cogni-
tive hurdles have arisen recently
that weren’t present in the past?
Should this worry Facebook?

How To make Cogpnitively Simple
Products

Make people work more, not less.
Put your user in the middle of

your flow. Make them press an
extra button, make them provide
some inputs, let them be part of
the service-providing, rather than

a bystander to it. If they are part of
the flow, they have a better van-
tage point to see what’s going on.
Automation is great, but it’s a layer
of cognitive complexity that should
be used carefully. (Bump puts the
user in the middle of the flow quite
physically. While there were other
ways to build a scalable solution
without the physical bump, it’s very
effective for helping people inter-
nalize exactly what'’s going on.)

Give people real-time feedback.

If your user has to wonder, “So,

did it work?” you've failed. Walk
people through using your product
like a magician leads the audience
through an illusion. Point out the
steps along the way, or whatever
magic your product is providing
could be lost to the user.

Slow down your product.

We've all heard stories of Google’s
relentless quest for search-result
speed, but sometimes you need to
let your user understand and appre-
ciate what your service is doing

for them. Studies have shown that
intentionally slowing down results
on travel search websites can actu-
ally increase perceived user value —
people realize and appreciate that
the service is doing a lot of work
searching all the different travel
options on their behalf.

20 STARTUP

How To Know If You've
Succeeded

Test on the young, the old...and
the drunk.

The very young and the very old
are even more sensitive to cogni-
tive overhead, as their brains aren’t
accustomed to the sort of logi-

cal leaps our products sometimes
require. Grandparents and children
make great cognitive overhead
detectors.

When you can’t find old or
young people, drunk people are a
good approximation. In fact, while
building Bump 3.0, we took teams
of designers and engineers to bars
in San Francisco and Palo Alto and
watched people use Bump, tweak-
ing the product to accommodate.

Ask your users/customers to repeat
what your product does and how it
works.

Let people use your product, and
then ask them to tell you what it
does. They’ll think you are crazy for
not knowing already, but what you
hear can point to cognitive hurdles
you've missed. One technique that
scales that we use at Bump is to
show a one question survey to a
small fraction of users inside the
app right after they are done bump-
ing, asking “What is Bump for?”

or “How do you use Bump?” The
answers help us eliminate cognitive
hurdles that remain.

There’s never been a time when
cognitive simplicity matters more.
As the mobile wave continues over
the next five years, the world will
see arguably the most rapid deploy-
ment of any new technology in
our history. Products that are truly
mass market will need to simulta-
neously target the Silicon Valley
early adopter and the kid riding
on the back of a motor scooter in
Thailand. Which products will win,
and which will lose? My money is
on those that focus on cognitive
simplicity. M

David Lieb is co-founder and CEO of Bump,
creators of the popular app that lets people
share contact information, photos, and
other content by bumping their phones
together. Bump has been downloaded
more than 130 million times.

Reprinted with permission of the original author.
First appeared in hn.my/cognitive (techcrunch.com)

http://hn.my/cognitive

PROGRAMMING

The Algebra of
Algebraic Data Types

By CHRIS TAYLOR

N THIS ARTICLE, I'll explain why Haskell’s data types
are called algebraic — without mentioning cat-
egory theory or advanced math.

The algebra you learned in high school starts with
numbers (e.g. 1, 2, 3...) and operators (e.g. addition
and multiplication). The operators give you a way to
combine numbers and make new numbers from them.
For example, combining 1 and 2 with the operation of
addition gives you another number, 3 — a fact that we
normally express as

1+2=3

When you get a little older you are introduced to
variables (e.g. X, y, z ...) which can stand for numbers.
Further still, and you learn about the laws that algebra
obeys. Laws like

0+X=X
1.x=x

which hold for all values of x. There are other laws as

well, which define properties of numbers or of operations.

When mathematicians talk about algebra, they mean
something more general than this. A mathematical
algebra has three parts:

u Objects are the “things” of the algebra. The collec-
tion of objects defines what we're talking about.

= Operations give us ways to combine old things to
make new things.

® Laws are relationships between the objects and the
operations.

In high school algebra the objects are numbers and
the operations are addition, multiplication and friends.

The algebra of Haskell types

In the algebra of Haskell types, the objects are types,
for example Bool and Int. The operators take types
that already exist and generate new types from them.
An example is the type constructor Maybe. It’s not a
type itself, but you use it to create types; for example
Maybe Bool and Maybe Int, which are types. Another
example is Either, which creates a new type from two
old types; for example Either Int Bool.

Counting

A connection to the more familiar algebra of numbers
can be seen by counting the possible values that a type
has. Take Bool, defined by

data Bool = False | True

There are two values that an object of type Bool can
have — it is either False or True (technically it could
also be undefined — a fact that I'm going to ignore
for the rest of the post). Loosely, the type Bool corre-
sponds to the number “2” in the algebra of numbers.

If Bool is 2, then what is 1? It should be a type with
only one value. In the computer science literature such
a type is often called Unit and defined as

data Unit = Unit

22 PROGRAMMING

In Haskell there is already a type with only one value
— it’s called () (pronounced “unit”). You can’t define it
yourself, but if you could it would look like

data () = ()

Using this counting analogy, Int corresponds to the
number 232, as this is the number of values of type
Int.

Addition
In principle we could types corresponding to 3, 4, 5
and so on. Sometimes we might have a genuine need to
do this — for example, the type corresponding to 7 is
useful for encoding days of the week. But it would be
nicer if we could build up new types from old. This is
where the operators of the algebra come in.

A type corresponding to addition is

data Add a b = AddL a | AddR b

That is, the type a + b is a tagged union, holding
either an a or a b. To see why this corresponds to addi-
tion, we can revisit the counting argument. Let’s say
that a is Bool and b is (), so that there are 2 values a
and 1 value for b. How many values of type Add Bool
() are there? We can list them out:

addvValues = [AddL False, AddL True, AddR ()]

There are three values, and 3 = 2 + 1. This is often
called a sum type. In Haskell the sum type is often
called Either, defined as

data Either a b = Left a | Right b
but I'll stick with Add.

Multiplication
A type corresponding to multiplication is

data Mul a b = Mul a b

That is, the type a - b is a container holding both an a
and a b. The counting argument justifies the correspon-
dence with multiplication — if we fix a and b to both be
Bool, the possible values of the type Mul Bool Bool are

mulValues = [Mul False False, Mul False True,
Mul True False, Mul True True]

There are four values, and 4 = 2 x 2. This is often called
a product type. In Haskell the product is the pair type:

data (,) a b = (a, b)

but I'll stick with Mul.

Zero

Using addition and multiplication we can generate
types corresponding to all the numbers from 1 upwards
— but what about 0? That would be a type with no
values. It sounds odd, but you can define such a type:

data Void

Notice that there are no constructors in the data
definition, so you can’t ever construct a value of type
Void — it has zero values, just as we wanted!

Laws in the algebra of Haskell types

What are the laws for the types we've just defined?
Just like in the algebra of numbers, a law will assert the
equality of two objects — in our case, the objects will
be types.

However, when I talk about equality, I don’t mean
Haskell equality, in the sense of the (==) function.
Instead, I mean that the two types are in one-to-one
correspondence — that is, when I say that two types
a and b are equal, [mean that you could write two
functions

from :: a -> b

to it b ->a

that pair up values of a with values of b, so that the fol-
lowing equations always hold (here the == is genuine,
Haskell-flavored equality):

to (from a) == a
from (to b) == b

For example, I contend that the types Bool and Add
() () are equivalent. I can demonstrate the equiva-
lence with the following functions:

to :: Bool -> Add () ()
to False = AddL ()

to True = AddR ()

from :: Add () () -> Bool
from (AddL _) = False
from (AddR _) = True

I'll use the triple equality symbol, ===, to denote this
kind of equivalence between types.

Laws for sum types
Here are two laws for addition:

Add Void a === a

which says that there are as many values of type Add
Void a as there are of type a, and

Add a b === Add b a

which says that it doesn’t matter which order you add
things in. These laws are probably more familiar to you
in the algebra of numbers as

O+Xx=X
X+y=y+X

If you fancy an exercise, you can demonstrate the
correctness of the laws in the Haskell algebra — either
with a counting argument, or by writing the functions
from and to.

Laws for product types
There are three useful laws for multiplication:

Mul Void a === Void

which says that if you multiply anything by void, you
get Void back,

Mul () a === a

which says that if you multiply by () you don’t change
anything, and

Mul a b === Mul b a

which says that it doesn’t matter which order you mul-
tiply in. The more familiar forms of these laws are:

0-x=0
1-x=x
X y:y X
Two more exercises: (i) prove the validity of these

laws in the Haskell algebra, and (ii) explain why we
don’t need laws of the form:

Mul a Void === Void
Mul a () === a

There’s also a law that relates the addition and mul-
tiplication operators:

Mul a (Add b c) === Add (Mul a b) (Mul a c)

This one is a bit trickier to reason about, but writ-
ing the corresponding from and to functions isn’t
too hard. The arithmetic version of this law is the
friendlier-looking

a-(b+c)=a-b+a-c

called the distributive law.

Function types
As well as concrete types like Int and Bool, in Haskell
you also have function types, like Int -> Bool or
Double -> String. How do these fit into the algebra?
To figure this out we can go back to the counting
argument. How many functions of type a-b are there?
Let’s be concrete, and fix a and b to both be Bool.
The value False can map to either False or True, and
similarly for the value True — thus there are 2-2=2=4
possible functions Bool -> Bool. To be really explicit,
we could enumerate them:

fl :: Bool -> Bool -- equivalent to 'id'
fl True = True

f1l False = False

f2 :: Bool -> Bool -- equivalent to 'const
False'

f2 = False

f3 :: Bool -> Bool -- equivalent to 'const True'

3 = True
f4 :: Bool -> Bool -- equivalent to 'not
f4 True = False

f4 False True

What happens if b is still Bool (with two values) and
a is a type with three values, say:

data Trio = First | Second | Third

Then each of First, Second, and Third can map to
two possible values, and in total there are 2-2-2=23=8
functions of type Trio -> Bool.

The same argument holds in general. If there are
A values of type a, and B values of type b, then the
number of values of type a - b is

BA

This justifies the common terminology for function
types as exponential types.

24 PROGRAMMING

Laws for functions
There are two laws for function types that involve the
unit type. They are:

() -> a===a

which says that there are as many functions () -> a as
there are values of type a, and

a->()===0

which says that there is only one function a -> () —
in particular, it is const (). The arithmetic versions of
these laws are

al=a
12=1

There is also a law that allows factoring out of
common arguments:

(a -> b, a ->c) ===a -> (b,c)

whose arithmetic form is

b?-c2=(bc)?

and a law about functions that return other functions:
a -> (b ->c) === (b,a) ->c

whose arithmetic form is

(c®)?=cb?

This last law may be more familiar when the order
of the variables in the pair on the right-hand side is
switched, and the parens on the left hand side are
removed:

a->b ->c === (a,b) ->c

which just says that we can curry and uncurry func-
tions. Again, it’s an interesting exercise to prove all of
these laws by writing the corresponding to and from
functions. M

Chris Taylor is a researcher at a London hedge fund. He is inter-
ested in using mathematics to write safer and more composable
programs.

Reprinted with permission of the original author.
First appeared in hn.my/algebraic (chris-taylor.github.io)

http://hn.my/algebraic

Python Libraries You
Should Know About

By DOMINIK DABROWSKI

N MY YEARS of programming in Python and roam-

ing around GitHub’s Explore section, I've come

across a few libraries that stood out to me as being
particularly enjoyable to use. This article is an effort to
further spread that knowledge.

I specifically excluded awesome libs like requests,
SQLAIlchemy, Flask, fabric, etc. because I think they're
already pretty “mainstream.” If you know what you're
trying to do, it’s almost guaranteed that you'll stumble
over the aforementioned. This is a list of libraries that
in my opinion should be better known, but aren’t.

0 pyquery (with Ixml)

pip install pyquery

For parsing HTML in Python, Beautiful Soup
[hn.my/soup] is oft recommended and it does a great
job. It sports a good Pythonic API and it’s easy to find
introductory guides on the web. All is good in parsing-
land...until you want to parse more than a dozen docu-
ments at a time and immediately run head-first into per-
formance problems. It's — simply put — very, very slow.

Just how slow? Check out this chart from the excel-
lent Python HTML Parser comparison Ian Bicking
compiled in 2008:

lxml.html (0.6 sec)

Beautitul Soup (10.6 sec)
htmiSlib ElementTree (30.2 sec)
htmISlib minidom (35.2 sec)
Genshi (7.3 sec)

HTMLParser (2.9 sec)

formencode. htmlfill (4.5 sec)

What immediately stands out is how fast Ixml is.
Compared to Beautiful Soup, the Ixml docs are pretty
sparse and that’s what originally kept me from adopt-
ing this mustang of a parsing library. Ixml is pretty
clunky to use. Yeah, you can learn and use Xpath or
cssselect to select specific elements out of the tree
and it becomes kind of tolerable. But once you've
selected the elements that you actually want to get,
you have to navigate the labyrinth of attributes Ixml
exposes, some containing the bits you want to get
at, but the vast majority just returning None. This
becomes easier after a couple dozen uses, but it
remains unintuitive.

So either slow and easy to use or fast and hard to
use, right?

Wrong!

Enter PyQuery
Oh, PyQuery, you beautiful seductress:

from pyquery import PyQuery
page = PyQuery(some_html)

last_red_anchor = page('#container >
a.red:last')

Easy as pie. It's ever-beloved jQuery but in Python!
There are some gotchas. For example, PyQuery, like
jQuery, exposes its internals upon iteration, forcing you

to re-wrap:

26 PROGRAMMING

for paragraph in page('#container > p'):
paragraph = PyQuery(paragraph)
text = paragraph.text()

That’s a wart the PyQuery creators ported over from
jQuery (where they'd fix it if it didn’t break compat-
ibility). Understandable but still unfortunate for such a
great library.

9 dateutil

pip install python-dateutil

Handling dates is a pain. Thank god dateutil exists.
I won't even go near parsing dates without trying
dateutil.parser first:

from dateutil.parser import parse

>>> parse('Mon, 11 Jul 2011 10:01:56 +0200
(CEST)")

datetime.datetime(2011, 7, 11, 10, 1, 56,
tzinfo=tzlocal())

fuzzy ignores unknown tokens

>>> s = """Today is 25 of September of 2003,
exactly
at 10:49:41 with timezone -03:00."""
>>> parse(s, fuzzy=True)
datetime.datetime(2003, 9, 25, 10, 49, 41,
tzinfo=tzoffset(None, -10800))

Another thing that dateutil does for you that would
be a total pain to do manually is recurrence:

>>> list(rrule(DAILY, count=3,
byweekday=(TU, TH),

ce dtstart=datetime(2007,1,1)))
[datetime.datetime(2007, 1, 2, 0, 0),
datetime.datetime(2007, 1, 4, 0, 0),
datetime.datetime(2007, 1, 9, 0, 9)]

9 fuzzywuzzy

pip install fuzzywuzzy

fuzzywuzzy allows you to do fuzzy comparison on
wuzzes strings. This has a whole host of use cases and
is especially nice when you have to deal with human-
generated data.

Consider the following code that uses the Levensh-
tein distance comparing some user input to an array
of possible choices.

from Levenshtein import distance

countries = ['Canada',

-]

'Antarctica’, 'Togo’,

def choose_least_distant(element, choices):
'Return the one element of choices that is
most similar to element'
return min(choices, key=lambda s:
distance(element, s))

user_input =
choose_least_distant(user_input, countries)
>>>

'canaderp’

‘Canada’

This is all nice and dandy, but we can do better. The
ocean of 3rd party libs in Python is so vast, that in most
cases we can just import something and be on our way:

from fuzzywuzzy import process

process.extractOne("canaderp", countries)
>>> ("Canada", 97)

e watchdog

pip install watchdog

watchdog is a Python API and shell utilities to moni-
tor file system events. This means you can watch some
directory and define a “push based” system. Watchdog
supports all kinds of problems. A solid piece of engi-
neering that does it much better than the 5 or so librar-
ies I tried before finding out about it.

((E,)sh

pip install sh

sh allows you to call any program as if it were a
function:

from sh import git, 1s, wc

checkout master branch
git(checkout="master")

print(the contents of this directory
print(ls("-1"))

get the longest line of this file
longest_line = wc(__file_ , "-L")

@ pattern

pip install pattern

This behemoth of a library advertises itself quite
modestly:

Pattern is a web mining module for the Python program-
ming language.

... that does Data Mining, Natural Language Process-
ing, Machine Learning and Network Analysis all in one.
I myself have yet to play with it, but a friend’s verdict
was very positive.

9 path.py

pip install path.py

When I first learned Python, os.path was my least
favorite part of the stdlib.

Even something as simple as creating a list of files in
a directory turned out to be grating:

import os

some_dir =
files = []

'/some_dir’

for f in os.listdir(some_dir):
files.append(os.path.joinpath(some_dir, f))

That listdir is in os and not os.path is unfortu-
nate and unexpected, and one would really hope for
more from such a prominent module. And then all this
manual fiddling for what really should be as simple as
possible.

But with the power of path, handling file paths
becomes fun again:

from path import path
some_dir = path('/some_dir")

files = some_dir.files()

Done!
Other goodies include:

>>> path('/"').owner
'root’

>>> path('a/b/c").splitall()
[path(*'), 'a’, 'b’, 'c']

overriding _ div__

>>> path('a') / 'b" / 'c’
path('a/b/c")

>>> path('ab/c').relpathto('ab/d/f")
path('../d/f")

Best part of it all? path subclasses Python’s str so
you can use it completely guilt-free without constantly
being forced to cast it to str and worrying about librar-
ies that check isinstance(s, basestring) (or even
worse isinstance(s, str)).

That'’s it! I hope I was able to introduce you to some
libraries you didn’t know before.

Dominik grew up in Austria and started his first business at
sixteen, helping to repair gaming consoles. He then studied CS
inVienna for a year before dropping out, instead graduating from
HackerSchool batch #3 and now works as a Software engineer
at Smarkets.

Reprinted with permission of the original author.
First appeared in hn.my/pylab (doda.co)

28 PROGRAMMING

http://hn.my/pylab

stripe

Accept payments online.

http://stripe.com

Handling Growth with Postgres

5 Tips From Instagram Engineering

By MIKE KRIEGER

S WE'VE SCALED Instagram to an ever-growing
number of active users, Postgres has con-
tinued to be our solid foundation and the
canonical data storage for most of the data created by
our users. While less than a year ago, we blogged about
how we “stored a lot of data” at Instagram at 90 likes
per second, we're now pushing over 10,000 likes per
second at peak — and our fundamental storage tech-
nology hasn’t changed.
Over the last two and a half years, we’ve picked
up a few tips and tools about scaling Postgres that we
wanted to share — things we wish we knew when we
first launched Instagram. Some of these are Postgres-
specific while others are present in other databases
as well. For background on how we’ve horizontally
partitioned Postgres, check out our Sharding and IDs
[hn.my/sharding] at Instagram post.

Partial Indexes

If you find yourself frequently filtering your
queries by a particular characteristic, and that char-
acteristic is present in a minority of your rows, partial
indexes may be a big win.

As an example, when searching tags on Instagram,
we try to surface tags that are likely to have many
photos in them. While we use technologies like Elas-
ticSearch for fancier searches in our application, this
is one case where the database was good enough. Let’s
see what Postgres does when searching tag names and
ordering by number of photos:

EXPLAIN ANALYZE SELECT id from tags WHERE name
LIKE 'snow%' ORDER BY media_count DESC LIMIT 10;
QUERY PLAN
Limit (cost=1780.73..1780.75 rows=10 width=32)
(actual time=215.211..215.228 rows=10 loops=1)
-> Sort (cost=1780.73..1819.36 rows=15455
width=32) (actual time=215.209..215.215 rows=10
loops=1)
Sort Key: media_count
Sort Method: top-N heapsort Memory:
25kB
-> Index Scan using tags_search
on tags_tag (cost=0.00..1446.75 rows=15455
width=32) (actual time=0.020..162.708 rows=64572
loops=1)
Index Cond: (((name)::text
~>=~ "'snow'::text) AND ((name)::text ~<~
"snox'::text))
Filter: ((name)::text ~~
"snow% " : :text)
Total runtime:
(8 rows)

215.275 ms

Notice how Postgres had to sort through 15,000
rows to get the right result. Since tags (for example)
exhibit a long-tail pattern, we can instead first try a
query against tags with over 100 photos; we'll do:

30 PROGRAMMING

http://hn.my/sharding

CREATE INDEX CONCURRENTLY on tags (name text_
pattern_ops) WHERE media_count >= 100

Now the query plan looks like:

EXPLAIN ANALYZE SELECT * from tags WHERE name
LIKE 'snow%' AND media_count >= 100 ORDER BY
media_count DESC LIMIT 10;

QUERY PLAN
Limit (cost=224.73..224.75 rows=10 width=32)
(actual time=3.088..3.105 rows=10 loops=1)

-> Sort (cost=224.73..225.15 rows=169
width=32) (actual time=3.086..3.090 rows=10
loops=1)

Sort Key: media_count

Sort Method: top-N heapsort Memory:
25kB

-> Index Scan using tags_tag_name_
idx on tags_tag (cost=0.00..221.07 rows=169
width=32) (actual time=0.021..2.360 rows=924
loops=1)

Index Cond: (((name)::text
~>=~ 'snow'::text) AND ((name)::text ~<~
"snox'::text))

Filter: ((name)::text ~~
"snow% " : :text)

Total runtime: 3.137 ms
(8 rows)

Notice that Postgres only had to visit 169 rows,
which was way faster. Postgres’ query planner is pretty
good at evaluating constraints too; if you later decided
that you wanted to query tags with over 500 photos,
since those are a subset of this index, it will still use the
right partial index.

Functional Indexes

On some of our tables, we need to index strings
(for example, 64 character base 64 tokens) that are
quite long, and creating an index on those strings ends
up duplicating a lot of data. For these, Postgres’ func-
tional index feature can be very helpful:

CREATE INDEX CONCURRENTLY on tokens
(substr(token), o, 8)

While there will be multiple rows that match that
prefix, having Postgres match those prefixes and then
filter down is quick, and the resulting index was 1/10th
the size it would have been had we indexed the entire
string.

pg_reorg For Compaction

Over time, Postgres tables can become frag-
mented on disk (due to Postgres’ MVCC concurrency
model, for example). Also, most of the time, row inser-
tion order does not match the order in which you want
rows returned. For example, if you're often querying
for all likes created by one user, it’s helpful to have
those likes be contiguous on disk, to minimize disk
seeks.

Our solution to this is to use pg_reorg, which does a

3-step process to “compact” a table:

1. Acquire an exclusive lock on the table

2. Create a temporary table to accumulate changes,
and add a trigger on the original table that repli-
cates any changes to this temp table

3. Do a CREATE TABLE using a SELECT FROM...
ORDER BY, which will create a new table in index
order on disk

4. Sync the changes from the temp table that hap-
pened after the SELECT FROM started

5. Cut over to the new table

There are some details in there around lock acquisi-
tion etc, but that’s the general approach. We vetted
the tool and tried several test runs before running in
production, and we’ve run dozens of reorgs across hun-
dreds of machines without issues.

WAL-E for WAL archiving and backups

We use and contribute code to WAL-E
[hn.my/wale], Heroku'’s toolkit for continuous
archiving of Postgres Write-Ahead Log files. Using
WAL-E has simplified our backup and new-replica
bootstrap process significantly.

At its core, WAL-E is a program that archives every
WAL files generated by your PG server to Amazon's
S3, using Postgres’ archive_command. These WAL files
can then be used, in combination with a base backup,
to restore a DB to any point since that base backup.
The combination of regular base backups and the WAL
archiving means we can quickly bootstrap a new read-
replica or failover slave, too.

We’ve made our simple wrapper script for moni-
toring repeated failures to archive a file available on
GitHub. [gist.github.com/4550560]

http://hn.my/wale
http://gist.github.com/4550560

Autocommit mode and async mode in
psycopg2
Over time, we've started using more advanced features
in psycopg2, the Python driver for Postgres.

The first is autocommit mode; in this mode,
psycopg2 won't issue BEGIN/COMMIT for any
queries; instead, every query runs in its own single-
statement transaction. This is particularly useful for
read-only queries where transaction semantics aren’t
needed. It’s as easy as doing:

connection.autocommit = True

This lowered chatter between our application servers
and DBs significantly, and lowered system CPU as well
on the database boxes. Further, since we use PGBouncer
for our connection pooling, this change allows connec-
tions to be returned to the pool sooner.

Another useful psycopg2 feature is the ability to
register a wait_callback for coroutine support. Using
this allows for concurrent querying across multiple
connections at once, which is useful for fan-out queries
that hit multiple nodes — the socket will wake up and
notify when there’s data to be read (we use Python’s
select module for handling the wake-ups). This also
plays well with cooperative multi-threading libraries
like eventlet or gevent; check out psycogreen [hn.my/
psycogreen] for an example implementation.

Overall, we've been very happy with Postgres’ per-
formance and reliability. If you're interested in working
on one of the world’s largest Postgres installations with
a small team of infrastructure hackers, get in touch at
infrajobs@instagram.com M

Mike Krieger is a Brazilian entrepreneur and software engineer
best known as the co-founder of Instagram, along with Kevin
Systrom. Born in Sao Paulo, Brazil, Krieger moved to Californiain
2004 to attend Stanford University. At Stanford, where he studied
symbolic systems, he met Kevin Systrom. The two of them co-
founded Instagram in 2010.

Reprinted with permission of the original author.
First appeared in hn.my/instagres (instagram-engineering.tumblr.com)

32 PROGRAMMING

http://hn.my/psycogreen
http://hn.my/psycogreen
http://hn.my/instagres
http://mandrill.com

w4

3 4

MEET MANDRILL

By MailChimp

Mandrill is the fastest way to send transactional, triggered, and personalized emails.

lt's also the world's largest species of monkey. MANDRILL.COM

http://mandrill.com

SPECIAL

How Hotel Reservations Work

By ANDREW WULF

RECENT COMPLAINT FROM

a small hotel operator

which was posted on
Hacker News [hn.my/complain]
made me decide to talk about the
whole process of reserving a room
in a hotel.

I work for an OTA (which stands
for online travel aggregator) which
provides flight, hotel, car, and cruise
reservations. The major players
are Priceline, Expedia, Orbitz and
Travelocity. These own many other
familiar brands (like lastminute.com
is owned by Travelocity, and
booking.com is owned by Price-
line); plus there are many smaller
brands which target niche markets
and sometimes provide booking
through a major player. Other
companies like Kayak and Tripadvi-
sor provide information but handle
booking through others as well.

In the U.S. alone there are around
400,000 hotels, motels, lodges, and
bed-and-breakfasts alone. World-
wide I have no idea but I am sure
there are millions of places to stay.
All of them want customers to fill
their rooms. Many of them have
access to computerized reserva-
tion systems, but many still operate
on phone calls and fax machines.
The challenge as an OTA is how to
make this all work. It’s pretty crazy.

The average hotel in the U.S.
has around 200 rooms. These are
available for 365 days a year, so the
total room-nights is around 73,000
per year. Each one is a potential res-
ervation. Hotels generally average
around 70% occupancy for tonight,
which is the only night that really
matters, the one where someone is
occupying a room. Unlike people
selling widgets, who can make
fewer widgets or more depend-
ing on demand, hotels have a fixed
supply. An empty room brings in
nothing. A room with guests paying
anything is better than an empty

room. So the challenge is getting
people to sleep in your beds. Over a
years’ time you need a lot of those
people to make it work (that “aver-
age” hotel needs 50,000).

The difficulty with making this
work from an OTA'’s perspective is
how to allow people to make res-
ervations at, for example, 200,000
properties over the next year. That
is 14 billion potential room nights.
Now the properties may be part of
a large chain, like Marriott, that has
a massive reservation system, or a
mom and pop motor court operat-
ing with a fax machine. Each hotel
has a certain number of rooms of
different types (queen, king, etc)
and these types may be broken
down into different rates based on
any number of parameters (free
breakfast, mobile special rates,
multi-night discounts, etc.). Some-
how the details have to wind up at
the OTA so it can provide them to
potential customers. This is where
ugly happens.

34 SPECIAL

http://hn.my/complain

Even with fancy reservations systems,
ultimately an individual hotel manager is
responsible for all the data and even the rates.

Note that even with fancy
reservations systems, ultimately an
individual hotel manager is respon-
sible for all the data and even the
rates. So each one of those proper-
ties has someone who decides what
rates there will be, and how often
they can change. Even at the large
chains, individual managers may
ignore or trump the chain’s rules in
order to maximize their potential
sales. Now OTA'’s have what are
generally called market managers
(either employees or contractors),
whose job it is to deal with the
hotels, usually directly, to negotiate
special rates or deals or simply sign
them up. Some hotels and chains
are exclusive to one OTA but
many make deals with all of them.
Sometimes the deals are compli-
cated. OTA’s can either negotiate a
discount and sell the rooms them-
selves and collect the money, then
pay the hotel or chain; sometimes
they negotiate a commission and
get paid later when the guest pays
their bill after their stay; sometimes

they will reserve actual rooms at
a discount and hope to sell them
all. The latter is more risky for the
OTA since you can get stuck with
the rooms, but you have the most
flexibility on pricing.

In any case, the hotel is either
paid immediately upon the guest
making the reservation (which is
often preferable) or they have to
wait until the end of the stay and
then send the commission later
(usually much later). Both have
advantages, but hotels generally like
to get money as soon as possible, as
does the OTA. But like all con-
tracted things, the reality might be
complicated.

Now if you decide you would
rather avoid the OTA, you have to
realize that is not so cut and dry
either. Often a direct hotel reser-
vation number may not go to the
individual hotel, but to a chain
reservation line, which is unlikely
to give you any special pricing.
Often hotels are franchises and are
restricted in what they can offer,

HEE Ny

B> > D —

NN E—

» P> EEEEsssp—

usually to avoid having related
franchises try to kill each other in a
local market. Hotels know people
hope to get better deals direct and
might sell you a room at what

you imagine is a discount, except
it isn’t. Comparing rates between
OTA’s, chains and comparison sites
is always a good idea for hotels
(but rarely for flights, that’s a much
uglier can of worms for another
day).

So how does a hotel search
work? Firstly, OTAs have to get
the hotel descriptions and room
type information and prices from
the hotels. This can range from
a real-time connection to a full
reservation system which is used
by all the chain’s properties all the
way to a fax machine and a daily
or even weekly update. Availability,
which is what we call what rooms
are available for a particular date
or date range, is always based on
cached data. If we had to query
external systems to get informa-
tion for searches we would never

return anything. Like any cached
system, this creates the possibility
for stale data. The staleness can be
both availability (we say the hotel
has a room) and price (we tell you
it's $100). For searching to work we
have to ask the hotel’s system peri-
odically for updates or even wait
on a weekly fax, and then update
the caches. Once you have done a
search and have chosen a potential
hotel, you are shown the available
room types and rates, which can
range from one type/rate to dozens
at some properties. You then pick

a room and express a desire to pos-
sibly book it. At this point the OTA
system will query the real-time
hotel system if available, or the “fax
cache” and see if the room is actu-
ally available and what the current
rate is. Now we will either tell you
the room is not really available or
note the real price. Sometimes if
the room is not available you can
choose a different room; sometimes
there are no rooms available at

all. It's also possible the hotel has
rooms but is not making them avail-
able to the OTA.

Now you go ahead and either pay
for the reservation or at least hold
it (depending on the three types I
mentioned above). At this point,
assuming the payment is approved
if we are collecting the money, we
call the real-time system again and
request an actual reservation, or at
least mark the “fax cache” to fax
the data. At this point it can still
fail as perhaps the last room was
reserved while you were filling out
the form. The hotel system can also
fail, or data connections fail, and
you might not get the room either.
We generally don’t consider the
reservation assured unless the hotel
system tells us. Of course with the
mom and pop hotel, the reservation

might get lost or they had no rooms
available or any number of prob-
lems might greet you when you
show up. Always a good idea to call
ahead and confirm.

Once you have your reserva-
tion, you assume everything will be
smooth, and it usually is. Booking
a hotel via an OTA usually means
there is a hotel reservation number
that you will receive in the confir-
mation or perhaps in a later email.
Still, even if a major hotel chain
gives you one, it’s still possible for
the local hotel to lose things or
perhaps their local system crashed
or their inventory is not exactly up
to date. Hotels can also have fires
and other issues which might make
a reservation become unavailable.

Now, the price you pay is clearly
a highly variable thing. We try to
negotiate with hotels for special
rates; sometimes they might favor
one OTA over another. Of course,
hotels are competing with each
other. Even franchise or chain
hotels will often ignore their fran-
chise or chain rules and price things
themselves. It's a complicated game
of trying to get more people in their
beds. Remember a paying customer
at any rate is better than an empty
room. Managers will do almost any-
thing to improve their bookings.

Hotels are the only thing (maybe
cruises) where an OTA makes real
money. Cars and flights pay very
little and the price differences
there are fairly minimal. Billions of
room nights make for an appealing
marketplace, but also a challenging
one to manage. Even a small hotel
can make a lot of money if it can
attract enough customers, since the
supply is fixed and their cost is basi-
cally fixed as wel;1 the difference is
filling the rooms. OTA’s can make a
lot of money as well, but at the cost

of a complicated mass of connected
systems of various levels of quality.
Now add in multiple countries with
all sorts of different rules, mix in
contracted market managers who
may have their own agendas (which
is what it sounds like in Cancun)
and hotels desperate to fill their
rooms plus all the competing inter-
ests like OTA’s trying to book your
reservations and you have a volatile
mix of players.

I work on the customer end
(mobile) so some of this is way out
of my area, but I've learned enough
about the back end to understand
how complicated it can be.

This is nothing at all compared to
flights, which is mighty ugly stuff.
But that’s another story. M

In 3 decades of programming Andrew
has worked on almost every kind of soft-
ware. Currently he works in mobile at a
well known travel brand and writes in his
blog, thecodist.com

Reprinted with permission of the original author.
First appeared in hn.my/hotel (thecodist.com)

36 SPECIAL

http://thecodist.com
http://hn.my/hotel

What It’s Like To Die

By SASH MACKINNON

IX MONTHS AGO, I died.
I have no recollection of

the event, but I've heard the
story retold so many times that I
may as well have seen it all. I was at
the gym in my apartment complex
with my roommate, Sam. [was run-
ning on the treadmill when I turned
and told him I was going to faint. I
collapsed and fell onto the still-
moving belt, which tore the skin off
my knee and pushed me onto the
floor. Sam was shocked. He called
for help. A personal trainer and her
client ran over, called an ambulance,
and assisted Sam in giving me CPR
while my body slowly drained of
color.

My heart had gone into ventricu-
lar fibrillation. “Vfib,” as I heard
numerous doctors call it, is a type
of arrhythmia — a series of irregu-
lar electrical signals in the ventricle
chamber of the heart. Instead of
beating normally, the walls quiver
erratically, like they’re having a
seizure. The heart quickly becomes
unable to pump blood to other
organs. | had suffered from what is
officially, and somewhat morbidly,
termed “Sudden Cardiac Death.”

The paramedics arrived and
walked slowly down the length
of the pool to the gym. This was
procedure, they later told me;
they didn’t want to run and cause
alarm. When they reached me, they
defibrillated my heart by strap-
ping patches to my abdomen and
running a strong electrical current
through my body. I was told that

after the first administration my
heart had remained in arrhythmia.
After the second, it started beating
regularly.

For those 4 minutes and 30 sec-
onds, I was clinically dead.

[spent the next two days in a
coma while the doctors cooled
my body to 32 degrees in order to
avoid brain damage. During this
time I developed a pulmonary
embolism and pneumonia. When-
ever I visit a doctor now they are
always surprised — “Each of those
alone could have killed you. It’s a
miracle you survived all three!” I
survived by sitting through hours
of MRIs with oxygen in my nose,
three IVs in my arm and ten pills
a day for weeks. Sam and my two
mothers, Laurie and Kerrie, rarely
left my side.

THE STORIES YOU hear about
people dying usually end with
tunnels, lights, flashbacks, God,
and big epiphanies. That isn’t what
happened to me.

After finally regaining enough
consciousness to understand my
situation, I sat for hours staring at
the hospital walls. I didn’t have any
life changing realizations. I wasn’t
regretful. In fact, I couldn’t think
of anything in my life I wanted to
change at all. Being trapped alone
in that sterile room with wires
hanging off my chest only made me
think about everything in my life I
wanted back.

Most people I tell this story to
think I'm unlucky because I had a
cardiac arrest at 21 years old. But
I don’t think so. Only five percent
of people who suffer ventricular
fibrillation out of the hospital
survive. Of those that do survive,
more than half of them have brain
damage. That means only two and a
half percent fully recover. Not only
did I fully recover, but I did so in
the company of the people closest
to me.

If there is one lesson I took away
from the experience, it is not to
“live life to the fullest” or “have no
regrets.” It is to feel lucky. Feeling
lucky means you are appreciating
the things in your life that some-
times go unnoticed. It means you
are achieving more than think you
deserve. Feeling lucky requires a cer-
tain humility we often lose sight of.

For me, it took losing everything
to remember how lucky [am. M

Sash MacKinnon is an Australian who
moved to Silicon Valley to make games.
He worked at Zynga as Mark Pincus’tech-
nical assistant for a year before joining
MinoMonsters. Also he died.

Reprinted with permission of the original author.
First appeared in hn.my/sash (sashmackinnon.com)

http://hn.my/sash

McDonald’s Theory Of

USE A TRICK with co-workers

when we're trying to decide

where to eat for lunch and no
one has any ideas. I recommend
McDonald’s.

An interesting thing happens.
Everyone unanimously agrees that
we can't possibly go to McDon-
ald’s and better lunch suggestions
emerge. Magic!

It’s as if we've broken the ice
with the worst possible idea, and
now that the discussion has started,
people suddenly get very creative.
call it the McDonald’s Theory:

People are inspired to come up with
good ideas to ward off bad ones.

This is a technique I use a lot
at work. Projects start in different
ways. Sometimes you're handed a
formal brief. Sometimes you hear
a rumor that something might be
coming so you start thinking about
it early. Other times you've been
playing with an idea for months
or years before sharing with your
team. There’s no defined process for
all creative work, but I've come to
believe that all creative endeavors
share one thing: the second step is
easier than the first. Always.

Bad Ideas

By JON BELL

Anne Lamott advocates “shitty
first drafts,” Nike tells us to “Just Do
It,” and I recommend McDonald’s
just to get people so grossed out
they come up with a better idea.
It’s all the same thing. Lamott,
Nike, and the McDonald’s Theory
are all saying that the first step isn’t
as hard as we make it out to be.
Once, I got an email from Steve
Jobs and it was just one word: “Go!”
Exactly. Dive in. Do. Stop over-
thinking it.

The next time you have an idea
rolling around in your head, find
the courage to quiet your inner
critic just long enough to get a
piece of paper and a pen, then just
start sketching it. “But I don’t have
a long time for this!” you might
think. Or, “The idea is probably
stupid,” or, “Maybe I'll go online and
click around for — "

No. Shut up. Stop sabotaging
yourself.

The same goes for groups of
people at work. The next time a
project is being discussed in its
early stages, grab a marker, go to
the board, and throw something
up there. The idea will probably
be stupid, but that’s good! The

McDonald’s Theory teaches us that
it will trigger the group into action.
It takes a crazy kind of courage,

of focus, of foolhardy persever-
ance to quiet all those doubts long
enough to move forward. But it’s
possible — you just have to start.
Bust down that first barrier and just
get things on the page. It’s not the
kind of thing you can do in your
head; you have to write something,
sketch something, do something,
and then revise off it.

Not sure how to start? Sketch a
few shapes, then label them. Say,
“This is probably crazy, but what
if we....” and try to make your
sketch fit the problem you're trying
to solve. Like a magic spell, the
moment you put the stuff on the
board, something incredible will
happen. The room will see your
ideas, will offer their own, will
revise your thinking, and by the end
of 15 minutes, 30 minutes, an hour,
you’ll have made progress.

That’s how it’s done. M

Jon Bell is a designer living in Seattle. He
writes more about himself on Jot23.com

Reprinted with permission of the original author.
First appeared in hn.my/mcd (medium.com)

38 SPECIAL

http://gotealeaf.com
http://hn.my/mcd

join: 'Intensive Online Bootcamp',
learn: 'Web Development’,
goto: 'http://www.gotealeaf.com’

\

aTneaIIeaf Academy

online school for developers

Learn Ruby on Rails | Level up Skills | Launch Products | Get a Job

http://gotealeaf.com
http://gotealeaf.com

Rent your IT infrastructure from
Memset and discover the incredible
benefits of cloud computing.

O

MINISERKVEIX,

CLOUD COMPUTE

From $0.020/hour

to 4 x 2.9 GHz Xeon cores
31 GBytes RAM

2.5TB RAID(1) disk

MEMSET

HOSTING

Find out more about us at
www.memset.com

or chat to our sales team on
0800 634 9270.

CarbonNeutral® hosting

MIEWVIOLE I

HOSTING

MiEWIS I VURE.

CLOUD STORAGE

$0.091/GByte/month or less
99.999999% object durability

99.995% availability guarantee
RESTful API, FTP/SFTP and CDN Service

SCAN THE CODE FOR
MORE INFORMATION

THE BRITISH 5 THE BRITISH
ASSESSMENT ASSESSMENT

BUREAU A BUREAU A

1509001 = (15014001

NN / AE—

http://memset.com

	Contents
	FEATURES
	The Jellyfish Entrepreneur
	How To Land An Airplane If You Are Not A Pilot

	STARTUP
	Inventing Chromebook
	Cognitive Overhead

	PROGRAMMING
	The Algebra of Algebraic Data Types
	Python Libraries You Should Know About
	Handling Growth with Postgres

	SPECIAL
	How Hotel Reservations Work
	What It’s Like To Die
	McDonald’s Theory Of Bad Ideas

