
How To Land An Airplane
Eduardo Mourao

Issue 37  June 2013



Engineers rebuilding the infrastructure 
that powers finance.    careers.addepar.com

http://careers.addepar.com


Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

duckduckhack.com

Now you can hack on DuckDuckGo

Create instant answer plugins for DuckDuckGo

DuckDuckHackDuckDuckHack

package DDG::Goodie::Unidecode;# ABSTRACT: return an ASCII version of the search query use 
DDG::Goodie; use Text::Unidecode; zci is_cached => 1; zci answer_type => "convert to ascii"; triggers 
startend => "unidecode"; handle remainder => sub { my $u = unidecode $_; # unidecode output some-
times contains trailing spaces $u =~ s/\s+$//; return $u; }; 1; package DDG::Goodie::Rot13; # 
ABSTRACT: Rotate chars by 13  letters use DDG::Goodie; triggers start => 'rot13'; handle remainder => 
sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1; 
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend => 
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub { 
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if ( 
$command && $command eq 'decode' ) { $str = decode_base64($str); $str = decode( "UTF-8", $str ); 
return "Base64 decoded: $str"; } else { $str = encode_base64( encode( "UTF-8", $str ) ); return "Base64 
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac-
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci 
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack-
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle 
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if ( lc($part) eq 'or' ) { 
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length = 
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ( $part ) { push @collected_parts, 
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if 
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_ 
eq 'duck' || $_ eq 'ddg' } @choices) { return $duck[0]." (not random)", answer_type => 'egg'; } return 
$choices[$choice]." (random)"; return; }; 1; package DDG::Goodie::PublicDNS; use DDG::Goodie; use 

sub { if ($_) { $_ =~ tr[a-zA-Z][n-za-mN-ZA-M]; return "ROT13: $_"; }; return }; zci is_cached => 1; 1; 
package DDG::Goodie::Base64; use DDG::Goodie; use MIME::Base64; use Encode; triggers startend => 
"base64"; zci answer_type => "base64_conversion"; zci is_cached => 1; handle remainder => sub { 
return unless $_ =~ /^(encode|decode|)\s*(.*)$/i; my $command = $1 || ''; my $str = $2 || ''; if ($str) { if ( 
$command && $command eq 'decode' ) { $str = decode_base64($str); $str = decode( "UTF-8", $str ); 
return "Base64 decoded: $str"; } else { $str = encode_base64( encode( "UTF-8", $str ) ); return "Base64 
encoded: $str"; } } return; }; 1; package DDG::Goodie::Chars; # ABSTRACT: Give the number of charac
ters (length) of the query. use DDG::Goodie; triggers start => 'chars'; zci is_cached => 1; zci 
answer_type => "chars"; handle remainder => sub { return "Chars: " .length $_ if $_; return; }; 1; pack
age DDG::Goodie::ABC; use DDG::Goodie; triggers any => "or"; zci answer_type => "rand"; handle 
query_parts => sub { my @choices; my @collected_parts; while (my $part = shift) { if ( lc($part) eq 'or' ) { 
return unless @collected_parts; push @choices, join(' ', @collected_parts); my $length = 
@collected_parts; return if $length > 1; @collected_parts = (); } elsif ( $part ) { push @collected_parts, 
$part; } } push @choices, join(' ', @collected_parts) if @choices && @collected_parts; return if 
scalar(@choices) <= 1; my $choice = int(rand(@choices)); if (my @duck = grep { $_ eq 'duckduckgo' || $_ 

http://duckduckhack.com


4  ﻿

For links to Hacker News dicussions, visit hackermonthly.com/issue-37

Curator
Lim Cheng Soon

Contributors
Rohin Dhar 
Eduardo Mourao 
Jeff Nelson 
David Lieb 
Chris Taylor 
Dominik Dabrowski 
Mike Krieger 
Andrew Wulf 
Sash MacKinnon 
Jon Bell

Illustrator 
Matthew Billington

Proofreaders
Emily Griffin
Sigmarie Soto

Ebook Conversion
Ashish Kumar Jha

Printer
MagCloud

Hacker Monthly is the print magazine version 
of Hacker News — news.ycombinator.com, a social news 
website wildly popular among programmers and startup 
founders. The submission guidelines state that content 
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles 
on Hacker News and print them in magazine format.  
For more, visit hackermonthly.com

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

Cover Illustration: Matthew Billington

http://hackermonthly.com/issue-37
http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com


  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-37

Contents
FEATURES

06  The Jellyfish Entrepreneur
By RoHin Dhar

12  How To Land An Airplane If 
You Are Not A Pilot
By Eduardo Mourao

STARTUP

16  Inventing Chromebook
By Jeff Nelson

18  Cognitive Overhead
By David Lieb

PROGRAMMING

22  The Algebra of Algebraic Data Types
By Chris Taylor

26  Python Libraries You Should Know About
By Dominik Dabrowski

30  Handling Growth with Postgres
By Mike Krieger

SPECIAL

34  How Hotel Reservations Work 
By Andrew wulf

37  What It’s Like To Die
By Sash Mackinnon

38  McDonald’s Theory Of Bad Ideas
By Jon Bell

Alex Andon,  jellyfish entrepreneur.

http://hackermonthly.com/issue-37


6  FEATURES

FEATURES

By RoHin Dhar

The Jellyfish Entrepreneur

When Alex Andon 
got his first order for 
a $25,000 jellyfish 

tank installation, he was excited. He 
also had a problem. He didn’t know 
anything about jellyfish or how 
to make a jellyfish tank. He had a 
hunch that people wanted to keep 
jellyfish as pets, so he created a test 
website and bought $100 in Google 
search ads. Lo and behold, his 
phone started ringing with enquires 
and he got his first order for the 
$25,000 jellyfish tank.

Today, Alex’s company Jellyfish 
Art [jellyfishart.com] is the leading 
company in the jellyfish pet space. 
In fact, they’re pretty much the 
only company in the space. When 

they launched over four years ago, 
the only way to keep jellyfish at 
home was to pay a custom installer 
$10,000 – $25,000. After start-
ing as a custom installer, Alex later 
developed a desktop jellyfish tank 
that brought the price of jellyfish 
ownership down to $500. 

Along the way, he launched one 
of the first popular Kickstarter 
campaigns, received funding from Y 
Combinator, and created a market 
that didn’t exist before.

This is the story of Alex Andon 
and Jellyfish Art, the world’s only 
jellyfish startup.

Who Wants a Pet Jellyfish?
While the market for pet fish is 
estimated to be around $2 billion a 
year, the market for jellyfish is tiny. 
Part of the reason is that if you put 
a jellyfish in a regular fish tank, it 
will instantly be sucked into the 
filter and die. The other reason, 
according to Alex, is that until 
the 1990s there were no jellyfish 
exhibits at aquariums. In 1992, the 
Monterey Bay Aquarium took a 
chance on one, and launched the 
first major jellyfish exhibit in the 
United States. It was a smash hit.

The key to housing jellyfish 
without killing them was developed 
in 1960s by German oceanographer 
Wolfe Greve to house plankton. 

http://jellyfishart.com


  7

If a jellyfish tank’s water intake 
and outtake rate are not perfectly 
in sync, BOOM, you get liquefied 
jellyfish. Dr. Greve had previously 
designed a tank that he called the 
“Kreisel” tank that could solve this 
problem with a perfectly balanced 
filtration system (kreisel is German 
for carousel).

Kreisel tanks look like the fat 
cross section of a cylinder. A slow 
circular water flow along the edge 
of the tank keeps the jellyfish 
suspended in the middle and away 
from the filter. All water flowing 
into the tank is sprayed in a flat 
laminar sheet in front of the exit 
screen. If jellyfish get close to the 
exit screen, the incoming water 
blows them away to safety. The 
water flowing out of the tank goes 
through a screen with sufficiently 
large surface area to prevent any 
points of suction that could suck a 
jellyfish in. Only small particles pass 
through the exit screen, filtering the 
tank while the jellyfish remain safe 
in the center.

Most jellyfish look nondescript. 
They’re practically transparent until 
you shine LED lights on them or 
provide a background color. 

 

But if you create the right setting, 
jellyfish are stunning.

 

Proof of Concept
In late 2007, Alex was itching to 
start a company, any kind of com-
pany at all. He was two years out of 
college and living with tech entre-
preneurs in a house in San Fran-
cisco. He worked as a lab technician 
at a struggling biotech firm.

A marine biology major in col-
lege, Alex noticed that jellyfish 
exhibits completely mesmerized 
aquarium visitors: “People seemed 
to have an obsessive infatuation 
with the jellies. Some people would 
sit in front of the tanks for hours 
staring at them.” Since the jelly-
fish exhibits were so popular, he 
decided to explore whether there 
was a market for pet jellyfish. 

He discovered that it was pos-
sible to keep jellyfish as pets, and 
possible to catch them as well. 

Based on studying the design of 
jellyfish tanks at aquariums and 
conversations with breeders, he 
concluded that it was techni-
cally feasible to sell jellyfish to 
consumers. 

But was there any actual 
demand?

To find out, Alex put up a land-
ing page advertising the services 
of his (at this point non-existent) 
custom jellyfish tank installation 
business. 

 Alex then started a Google 
Adwords advertising campaign, 
targeting search terms like “jellyfish 
tank.” His phone started ringing 
with potential customers. Before 
he had spent $100 on Adwords, 
he made his first sale, a $25,000 
custom jellyfish tank for a restau-
rant opening in Seattle. 

The First Sale
Alex made the sale, but now he 
had a problem: he had to deliver 
on the tank he promised. Alex had 
a general understanding of jellyfish 
tank construction based on googling 
around and talking to experts, but 
he didn’t have enough expertise to 
deliver the product. 

Daniel Pon, a home aquarium 
and maintenance expert (who now 
works at Jellyfish Art in addition to 
running his own aquarium busi-
ness) remembers first meeting Alex 
around this time:

“I had lunch with him and after-
wards was like “this guy is in way 
over his head.” He doesn’t know 
how basic things about a fish tank 
work and he’s going to make a 
$25,000 jellyfish tank?”

The experience of selling his first 
jellyfish tank was, as Alex put it, “a 
complete disaster.” Eventually Alex 
found a local aquarium builder to 



8  FEATURES

build the tank on his behalf. He got 
a fishing permit and caught some 
jellyfish in a bay near San Francisco. 
He then had to get the tank and jel-
lyfish up to Seattle for installation 
while the restaurant was still under 
construction:

“A little before Christmas, a friend 
and I drove the tank up to Seattle. 
It was bad. It was filled with water 
and jellyfish so the truck weight 
was 3 times its legal payload.”

“It started snowing really hard on 
the way up. We had to get chain 
control and put chains on our tires. 
I’d never done that before. We went 
through 3 sets of chains.”

When he arrived in Seattle, the 
jellyfish were dead. That wasn’t 
such a big deal because they could 
be replaced. The main issue was 
setting up the jellyfish tank. Alex 
worked for five days straight with 

the construction company to get it 
installed properly. He slept at the 
construction site every night.

Alex got the tank installed in 
time for the restaurant’s opening. 
But the tank had a few hiccups. 
One day, a pipe broke and dumped 
100 gallons of water into the 
restaurant. Other minor problems 
arose, too, though according to 
Alex, the restaurant was annoyed, 
but pretty cool about it. They still 
use the tank today, but now for fish.

Alex Andon, Jellyfish Consultant
And so with one customer under 
his belt, Alex decided to go into the 
jellyfish business. His website and 
advertising campaign kept pro-
ducing customer leads for people 
that wanted custom jellyfish tanks 
installed. At the same time, the bio-
tech company Alex worked for was 
struggling during the recession and 
looking for volunteers to leave the 
company in exchange for severance. 
Alex left biotech and committed to 
jellyfish.

He found working in the custom 
jellyfish tank installation business 
brutally difficult, but he earned 
an understanding of tank design, 
and the aquarium and pet supply 
industry.

Alex realized that he needed 
to build an affordable jellyfish 
tank. Over the course of a year, he 
finished only 3 custom installations. 
The market for $25,000 tanks was 
very small and too labor-intensive 
to scale. Instead of selling his instal-
lation services, he needed to sell a 
product.

Around February 2009, Alex put 
up a landing page on his website 
offering a desktop jellyfish prod-
uct for around $500. He put up a 
photoshopped image of a tank that 
didn’t quite exist yet. Based on 
the advice of his software engineer 
roommates, he posted it to Hacker 
News.

 Around this time, he got his big 
break, even though he wasn’t quite 
ready for it. The New York Times 
profiled him in article about people 
starting businesses after they lost 
their jobs during the recession. The 
article led to an influx of traffic to 
his site, but his affordable desktop 
jellyfish tank wasn’t ready yet, so it 
didn’t lead to any new sales. Still, 
the article put Alex on the map as 
“the jellyfish entrepreneur.” From 
March 2009 onwards, almost every 
article about jellyfish in the popular 
press mentioned Jellyfish Art.

 

“We drove the tank up to Seattle. It was 
filled with water and jellyfish so the truck 
weight was 3 times its legal payload.”



  9

The Desktop Jellyfish Product 
Version 1.0
A few months after the New York 
Times article, the first version of the 
company’s desktop jellyfish product 
was ready for sale. It was a bit of a 
Franken-aquarium, hacked together 
from various off-the-shelf aquarium 
parts. But it worked. It kept the jel-
lyfish alive, made them look pretty, 
and cost around $500.

Sales of the desktop jellyfish tank 
started to take off. The New York 
Times article ushered in a wave of 
articles by other publications about 
Jellyfish Art. Now, when visitors 
came to the site, they could actually 
buy the product. It began to look 
like a real business with a scalable 
product.

The increase in sales, however, 
exposed a critical problem in the 
business that Jellyfish Art struggles 
with to this day. Alex had suc-
ceeded in making an affordable jel-
lyfish tank that people wanted. But 

where was he going to get a reliable 
supply of jellyfish to sell?

The Jellyfish Supply Chain
When Alex started Jellyfish Art, 
he caught the jellyfish himself. He 
got stung frequently. As an aside, 
you are NOT supposed to urinate 
on a jellyfish sting. This appears to 
be an urban legend derived mostly 
from an episode of Friends in the 
1990s. Just flush it out with vinegar 
or if that’s not available, salt water. 
Okay?

But back to the subject at hand. 
Where did Alex get the jellyfish 
supply from?

“Basically, I just asked everyone. 
One local aquarium gave me a list 
of a few people who might be able 
to help. One of them was my guy 
in [place redacted for competitive 
reasons] and he worked out.”

This supplier, who lived in a trop-
ical island far from San Francisco, 
put 500-1000 jellyfish in Styrofoam 
coolers and shipped them via com-
mercial carrier to San Francisco. 
This means they flew in the cargo 
section of a regular passenger plane. 
Alex monitored the flight online 
and picked up the jellyfish at San 
Francisco Airport, like you might 
pick up your in-laws.

The jellyfish stock is kept at the 
company’s warehouse and office in 
Potrero Hill, San Francisco.

 When an order is placed, they 
ship the jellyfish to the customer 
by FedEx overnight. Jellyfish can 
survive 48-72 hours in shipping so 
even if there is a delay, the jel-
lyfish normally shows up alive. By 
contrast, fish typically die after 
twelve hours of transit. The aver-
age jellyfish lives for 6 months and 
Jellyfish Art guarantees that they 
arrive alive. 

The supply chain worked this 
way for a year. Then one day, the 
tropical supplier went to his jel-
lyfish catching spot and couldn’t 
catch a single one. All of them were 
gone. Every week he checked out 
the same spot, but every week he 
went home empty-handed.

“Alex monitored the flight online and picked 
up the jellyfish at San Francisco Airport, 
like you might pick up your in-laws.”



10  FEATURES

But Jellyfish Art survived. Thanks 
to his increased market exposure, 
it was easier to get jellyfish. If you 
breed jellyfish and want to sell 
them, Alex is the only game in 
town. He managed to find a decent 
supplier in Europe that provided 
just enough supply.

Let’s Make Our Own Product
After a year of rising sales sell-
ing another company’s fish tank 
retrofitted with their own filtration 
system, Alex decided it was time 
for Jellyfish Art to develop its own 
tanks. Buying someone else’s tanks 
was expensive and manually retro-
fitting each one was a pain.

At this point, two and a half 
years after getting started, Alex 
knew enough to design Jellyfish 
Art’s signature product: the desktop 
jellyfish tank. His original “napkin” 
design is below:

 It took another year to get to 
production. By March of the next 
year, they had a barely function-
ing prototype that they unveiled 
at the Global Pet Expo. The Expo 
is the largest trade show in the 
pet industry that is dominated by 
companies with huge marketing 
budgets. It normally caters to dog 

and cat owners. Alex and his team 
had the smallest booth, but they 
won best new product of the year 
in the aquarium category.

 And Now, 3 Years After Its Start, 
Jellyfish Art is an Overnight 
Success
After winning at the Expo, things 
start happening pretty fast for Jel-
lyfish Art. They found a Chinese 
manufacturer for their tanks, but it 
was still going to be expensive to 
kick off production, so they secured 
a small business loan. Around 
the same time, Alex heard about 
Kickstarter. He figured it could be 
a good way to get orders and fund 
the manufacturing.

In August 2011, they launched 
a Kickstarter campaign aiming to 
raise $3,000. This was the amount 
of pre-orders they had gotten so 
far based on being in the New York 
Times and winning the Pet Expo. 
It seemed like an aggressive but 
doable goal.

 They ended up raising $162,917 
on Kickstarter. For the first few 
days of the campaign, sales trickled 
in. Then rap artist Jermaine Dupri 
tweeted out about the campaign 
and it massively spiked. After 

that tweet, everything changed in 
the campaign. More blogs started 
covering it, and Alex went on local 
TV and radio to talk about the 
campaign.

Almost immediately after they 
were “blowing up on Kickstarter,” 
Alex and Jellyfish Art decided 
to apply to Y Combinator, the 
technology startup incubator and 
investment firm. In their applica-
tion to Y Combinator, they posited 
that they could use jellyfish as a 
beachhead to become the “Amazon 
for pets.” They were accepted into 
the Y Combinator Winter 2012 
batch.

Mistakes Were Made
After a meteoric rise in the fall 
of 2011, gravity set in during the 
winter of 2012.  As they started 
Y Combinator, Alex realized that 
the “Amazon for pets” idea wasn’t 
a very good one. Shipping around 
live animals in boxes like Amazon is 
a niche industry with low margins. 
The big money in pets is in dogs 
and cats. 

After toying with the idea of 
creating a database of dog breeders 
to connect people with the types 
of dogs they want, Alex decided 
against the idea. Their existing busi-
ness, Jellyfish Art, offered no advan-
tages for starting a dog breeder 
matching service. Between starting 
a breeders database from scratch 
and staying in the world of jellyfish, 
they chose jellyfish. 

During YC, Alex felt pressure to 
have a jellyfish sales chart that was 
“up and to the right.” Immediately 
after they shipped off the jellyfish 
tanks to their Kickstarter back-
ers, they launched a sale on Fab.
com, a flash sale site. The sale on 
Fab.com was their single largest 
source of sales ever, but it came at a 



  11

cost. Jellyfish Art offered the same 
discount on Fab as they offered 
their Kickstarter backers. The Kick-
starter backers were livid that they 
received the same treatment even 
though Kickstarter backers funded 
the business and put up with a 6 
month wait. Some of the people 
that should have been the biggest 
supporters of Jellyfish Art turned on 
the company.

In the wake of massive sales 
growth from Kickstarter and Fab, 
Alex started hiring for staff and 
investing in systems to make the 
business work. Sales were skyrock-
eting every day, and it was unclear 
just how massive this business 
could become. Alex explains:

“As fast as money was coming in 
the door, it was flying out. We also 
had no idea how high the sales 
would go, whether we should be 
bracing for more growth or plan-
ning for stability.”

“It turned out our product was too 
expensive for many of the large 
retail chains that originally showed 
interest, so sales eventually leveled 
out.”

As time went on, it became clear 
that sales wouldn’t continue to rise 
as quickly as they had in the past 
few months. What was previously a 
profitable business was now barely 
so because they were spending 
money as if it were a high growth 
startup. As sales started to flatten 
out, Alex let go of half his staff.

Despite deciding against the 
“Amazon for Pets” idea, they 
received offers from investors to 
fund the idea after YC Demo Day. 
Alex decided to turn down the 
funds. Even if someone was willing 
to fund it, it was not the business 
he wanted to start.

The Current Situation
According to Alex, over the last 
year, sales have been strong but flat. 
Anyone in the world willing to pay 
$500 for jellyfish buys the product 
from Jellyfish Art. The first reason 
that sales are flat is because they 
have almost 100% market share. 
It’s hard to improve on that. No 
competitors have emerged, and 
if you Google anything jellyfish 
related, you inevitably end up at 
the Jellyfish Art website or read an 
article about the company. Even 
Wikipedia uses images of their 
products in its entries. When asked 
if he was worried about competi-
tion, Alex demurred. The Jellyfish 
Art marketing machine would be 
hard to unseat.

So, the market of people willing 
to spend $500 for a jellyfish tank 
and jellyfish is basically tapped. 
According to Alex, what Jellyfish 
Art needs to do is roll out a $100 
tank and open up a much larger 
market and get shelf space in large 
retailers.

In fact, they’ve already built a 
low cost jellyfish tank, but they 
can’t release it. If their demand 
increased 5-10 times by offering 
their cheaper tank, they couldn’t 
source enough jellyfish. They cur-
rently sell just about every jellyfish 
they can get their hands on.

The whole fate of the business 
hangs on whether they can breed 
their own jellyfish. They’re sort of 
getting the hang of it, but right now 
they breed 10% of their supply and 
buy the other 90%. Once they reli-
ably nail the process of producing 
jellyfish, then they can lower their 
prices grow again.

Conclusion

 At every stage in Jellyfish Art’s evo-
lution, Alex Andon definitely sold 
well ahead of his capabilities. With-
out knowing much about jellyfish, 
he sold a $25,000 tank. Before he 
could build his own tank, he jerry-
rigged another company’s tank to 
hold jellyfish. Once he had a barely 
functioning prototype, he entered it 
in a trade show and won first prize. 
Alex was a “fake it till you make it” 
entrepreneur par excellence.

But then, he made it. The home 
jellyfish market is small, but Jelly-
fish Art both created it and domi-
nates it. With the business stable, 
Alex has had time to experiment 
with living in a van in San Francisco 
(he doesn’t recommend it), build-
ing a website for artisans to sell 
their crafts, and figuring out what 
he wants to do with his life. 

Living in San Francisco with a 
bunch of tech entrepreneurs has 
heavily influenced Alex. He will tell 
you that what he really wants to do 
now is start a successful tech com-
pany. Alex thought he could turn 
Jellyfish Art into a tech business, but 
he couldn’t. It’s a jellyfish business. 
But that’s still pretty awesome. n

Rohin Dhar is the co-founder of Priceonom-
ics Price Guides. He is also the co-founder 
of Personforce job boards and has an MBA 
from Stanford and BA from Dartmouth.

Reprinted with permission of the original author. 
First appeared in hn.my/jellyfish (priceonomics.com)

http://hn.my/jellyfish


12  FEATURES

How To Land An Airplane 
If You Are Not A Pilot

By Eduardo Mourao



  13

At flight school people 
always ask me:

 
“Can I land a plane? I have X 
years of flight simulator experience.”

The short answer is: history 
shows you will probably die. Not 
necessarily because it is difficult, 
but because you don’t know what 
you don’t know. Flight simulators 
distort important aspects of land-
ing airplanes: your awesome 200 
degrees/3D vision, the muscle 
mechanics of flying and the notion 
of distance. In fact, flight simulators 
are harder than the real thing. Yet, 
many people in the flight school 
I teach landed their first flight 
without the need for intervention. I 
landed an airplane for the first time 
when I was 11 years old. With a bit 
of luck you can do this by yourself. 
So, in case of an emergency, this is 
what you could do...

There are many types of air-
planes, but when it comes to 
landing there are pretty much two 
classes: heavy and light. This is more 
related to lift/weight ratio (and 
wing type) than the actual the size 
of the airplane. I will show you how 
you can land light airplanes in the 
easiest way possible, as long as you 
first open any flight simulator right 
now (xplane for iPhone is ok) and 
understand the basic controls (pitch, 
roll, yaw) and the relationship 
between speed and angle of attack. 
Playing with it for 10 minutes (at 
low speeds) should suffice. The 
basic mechanics are good enough. 
Keep in mind that brains are incred-
ible machines and can learn things 
automatically, but you need to stay 
calm. For instance, my wife learned 
how to keep an airplane flying with-
out one single instruction.

The pilot died, now what? 

➊ Stay calm; take control
Flying airplanes is easy, but 

stay calm. Your only goal now is 
to take control. The first thing 
you will do is put your hands on 
the yoke (or stick). Do not make 
sudden moves. Airplanes are not 
like cars; inputs must be very subtle 
and smooth. If the airplane is not 
leveled, you will instinctively and 
smoothly move the yoke to make 
the airplane level against the hori-
zon.  At this point the plane will 
be likely going up or down a bit 
(maybe you are not even aware of 
that), but don’t worry about this 
now. Check if the pilot’s body is 
blocking or pushing anything, and 
check if the pedals are clear (don’t 
touch the pedals). The throttle 
is the black (or gray) lever in the 
middle of the panel or between the 
seats. Now, push the throttle for-
ward until you feel where the end 
is and then pull back 30% of that. 
You should be using 70% of the 
engine for now. That will prevent 
you from crashing for a while. If 
you are flying a propeller airplane 
check the RPM (just like a car, it 
should be right in front of you). 
The RPM should be around 2.300. 
The speedometer and tachometer 
should have colors; never let it get 
close to the yellow or red areas. 
(yellow = this is wrong, red = you 
are doomed) 

➋ Inform the situation
Put the headset on. There 

should be a BLACK push button 
at the right side or your yoke.  
Your radio should be set with an 
approach or center. Push the button 
(keep pushed) and speak slowing 
(but briefly) what happened, start 
by saying “PAN PAN” or MAYDAY 
(depends on the country). Do not 
lose more than 15-20 seconds doing 
this since we still need to find an 
acceptable airspeed for this air-
plane! Also, you will need to find a 
place to land. If you know where 
you are, great! Also, the guys on the 
radio will tell you which direction 
you should go. If no one answers to 
you just keep flying straight (do not 
make turns yet). Ask them if there 
is a pilot around that knows that 
specific aircraft (this should help 
you with finding the speed). 

➌ Flying straight and 
airspeed

Now, the speed. I don’t know 
which airplane you are flying 
(you probably don’t either), so 
you will need to test a reasonable 
approach/flight speed. We do this 
by using the airplane’s altitude/
angle of attack. Airplanes usu-
ally fly at a certain angle of attack; 
the slower you fly the greater the 
angle of attack (and engine power) 
needed to continue a leveled flight 
(because it increases the lift and 
drag). What we want is to find a 
speed where the airplane flies with 
a very small angle of attack. To do 
that you will accelerate the airplane 
to about 70-90% of the throttle. 
Now, looking at the altimeter, stay 
at that altitude and start pulling the 
throttle back (slowly) and watch 
the horizon closely (or artificial 
horizon). As soon as you need to 
push the yoke back to keep flying at 



14  FEATURES

the same altitude, check the speed-
ometer: that’s 90% of the speed you 
should be flying now. Accelerate 
a bit to get to the correct speed. 
Remember this: everything is 
subtle; do not push back the yoke 
to the point where the nose is going 
up more than 6-8 degrees. If there 
is an artificial horizon, your angle 
should be just enough to make a 
thin blue line between the piece 
presenting the airplane and the 
yellow/brown background repre-
senting the ground. 

➍ Making turns
Making correct turns are 

hard. It takes 20+ hours of instruc-
tion to teach students how to turn 
correctly and they still make turns 
that suck. You are not going to learn 
this. With that said, this is how 
your turns will work: first, where 
do you want a go? If this is a 180 
turn, look 90 to the direction you 
want to turn, find a reference (trees, 
etc. — use the tip of the wing) and 
start the turn by very slowly turning 
the yoke to the direction you want.  
This is so delicate that someone 
looking at your hands would barely 
notice you are actually moving the 
yoke.  As soon as your reference 
is on the other site (same position 
relative to the wing), you finished 
the turn 180 turn. The maximum 
angle of turning you will use for 
this entire flight is no more than 
10 degrees (tilt your head to the 
right/left a little, that’s more than 
enough). You might get a bit dizzy 
because you are making the turns 
wrong, but ignore it.

➎ Approaching
Now, the guys on the radio 

guided you to the runway or you 
found the runway yourself. This 
is the part where flight simulators 
are useless. You should be higher 
than you probably think. Most 
people have a wrong perception of 
the height the airplanes approach 
because the size and direction of 
airliner passengers windows. That 
makes first-time pilots come in 
too low, especially flight simulator 
players. 

You should be at least at 1000 
feet above the ground. If you 
see the number 29.92 set in the 
altimeter, ignore the altimeter 
completely. Ask on the radio for 
this altimeter setting (change the 
setting by turning the knob on the 
altimeter). If you don’t have a radio 
or GPS, try this: you should be high 
to the point where you can see 
cars but cannot possibly identify 
the specific color or model. This is 
around the 45th floor of a building. 
Remember: the altimeter is show-
ing your altitude relative to a sea 
level configured by that number, 
not the distance to the ground.

Your approach will consist of 
getting the airplane at this height 
and 1 mile (or less) apart from the 
airfield, aligned with the runway.

➏ Landing
Anyone who plays with a 

flight simulator should get to this 
point without any instructions, 
but now things will get stupidly 
fast. Adrenaline and not knowing 
what you are doing are the main 
reasons for this. To land you will 
have to forget everything you know 
about xplane of Microsoft’s flight 
simulator. 

Using small movements, you will 
keep the runway between your legs. 
Be patient and make only small 
corrections. If you over correct you 
will start zigzagging. Airplanes are 
like kayaks, they are always skidding 
and inertia make things take a bit 
longer, you need to wait for your 
input to make a difference (this 
impression is actually caused by our 
notion of space).

We should find a distance 
between you and the runway at 
which you could turn off the engine 
at your current altitude and still 
reach the runway. We can’t do that 
now, but the good thing about light 
airplanes is that they lose speed 
very fast. With that said, you will 
stay at the current speed (or the 
speed someone tells you on the 
radio). If you can locate the control 
to lower the flaps to its next posi-
tion, do it now. This will feel like 
the airplane is braking and could 
gain altitude, but keep you current 
speed; the flaps won’t break. 

Time to dive: you kept the 
runway between your legs, you are 
1000 ft. above the ground and the 
runway is 1 mile in front of you. 
You will point the nose of this 
airplane to the very beginning of 
the runway. The speed will start to 
grow and you will reduce throttle 
to keep your current speed. You 
will not overshoot the runway; 
don’t worry about that. Keep your 



  15

eye on the speed. Some people 
will feel the pressure changing in 
their ears, and this is normal.  You 
point the nose of the airplane to 
the beginning of the runway, but 
you won’t be able to land there. 
You should cross the beginning 
of the runway at the height of a 
4-5 story building and descend-
ing.  When you reach the height 
of a common pole, cut the throttle 
completely. You will start to pull 
and reduce the descending speed. 
If you pull it sooner it will get ugly. 
The airplane should be as high as 
a very tall person now. Do not let 
it land. Smoothly keep pulling it 
more and more to try to keep this 
height. After a few seconds you 
will hear a buzz, which means the 
plane is starting to stall. Because 
you followed my instructions, you 
should be around 1.5 meters from 
the ground and the plane will land 
by itself. If you ever hear that buzz-
ing sound and the distance between 
you and the ground is greater than 
a height, you can fall on your feet. 
Push the throttle to the end and do 
not pull the yoke until the buzzing 
stops. Get altitude and try every-
thing again. If the airplane hits 
the ground, immediately cut the 
throttle. Some landings can be so 
hard that they can hurt a bit. 

After the plane is on the ground, 
it won’t go straight. It will turn to 
the left or right immediately after 
you touch the runway. The pedals, 

which you haven’t used until now, 
are also used to brake and control 
the airplane on the ground. Do not 
put your whole foot on the pedals. 
Instead, you will put only the tips 
of your toes on the lower part of 
them (like kicking). If you push the 
left pedal, the airplane goes to the 
left (and vice versa). If you push 
the upper part of the rudder you 
will brake one of the main wheels. 
Unlike cars, every main wheel has 
its own braking pedal. Do not brake 
the airplane now; wait for it to get 
slower. When the airplane is slow, 
move the tip of your toe to the 
upper part of the pedal and push 
left and right, slowing and simul-
taneously. Controlling an airplane 
on the ground sometimes feels like 
driving a shopping cart backwards 
at 60 miles/hour.

You made it! Now just push but-
tons around and you will end up 
turning the engines off (red ones 
first).

Conclusion (TL;DR) 
Playing 10 minutes with a flying 
simulator will make you more com-
fortable maintaining the airplane 
in the air, but it won’t help you on 
landing. The biggest mistake most 
first timers make is coming too 
slow and too low for landing. Make 
sure you are high and glide to the 
ground without the need to use 
the throttle (but use it if you need 
it). Do not fear the ground and 

start to flare only when you are 10 
meters high (same height as a pole). 
When you reach the height of a 
tall person, keep pulling until the 
airplane stalls. You have the option 
to give up before touching the 
ground, but never try to take off 
after touching the ground. Don’t 
ever push the yoke when close to 
the ground because you will be 
certain to crash. If you fly by 2/3 of 
the runway, apply full throttle and 
try again. If you are on a newer/
larger airplane, you will need a 
pilot on the radio to help you, but 
the good news is that it could be 
possible to program the airplane to 
land by itself.

Remember: you have time and 
you can keep trying as long as you 
can keep the airplane flying. n

Former commercial pilot, Eduardo is the 
founder & lead engineer of a credit card 
company and founder of a startup in Brazil.  
He is also a flight instructor and avid sport 
biker.

“Controlling an airplane on the ground 
sometimes feels like driving a shopping 
cart backwards at 60 miles/hour.”

Reprinted with permission of the original author. 
First appeared in hn.my/land (eduardo.intermeta.com.br)

Illustration by Matthew Billington.

http://hn.my/land


16  STARTUP

STARTUP

While working for 
Google back in 
2006, I had the good 

fortune to create a new operating 
system. 

I confess it wasn’t created from 
scratch; it was a chopped down 
Linux distribution, as so many 
“new” operating systems are these 
days.

This new operating system was 
originally code-named “Google OS” 
and since 2009 has been released 
to the public under the prod-
uct names, Google Chrome OS, 
Chromebook, and Chromebox.   I 
wrote a patent for it, #8,239,662, 
titled “Network-based Operating 
System Across Devices” that was 
finally granted in August 7, 2012, 
long after I left Google.

Here are few interesting tid-
bits about the invention of 
Chromebook.

First, Chromebook was initially 
rejected by Google management.  
In fact, I wrote the first version as 
early as July 2006 and showed it 
around to management.  Instead of 
launching a project, the response 
was extremely tepid.  My boss 
complained, “You can’t use it on 
an airplane.”  Actually, you could 
since, under the covers, it was still a 
bare-bones Linux distribution and 
could execute any Linux program 
installed on it. 

Second, Google OS was not orig-
inally written for Chrome or called 
“Chrome OS.”  The first versions 
were all based on Firefox.  When 
I wrote the first version in 2006, 
Google had not yet started develop-
ing a web browser of its own, nor 
had the name “Chrome” existed as a 
Google product.  Chrome versions 
followed in 2007, after internal beta 
test versions of Chrome started to 
be passed around inside Google.

Third, Chromebook was defi-
nitely not intended to be “another 
device” for web browsing — as 
many product reviewers have char-
acterized the Samsung Chrome-
book models.  The first versions 
were bare-bones Linux distribu-
tions, but fully functional for many 
tasks, including code development 
for a Google engineer.  I myself 
used versions of Chromebook, 
exclusively, every day, for over a 
year as my primary development 
box, taking it on many business 
trips and even some airplanes.

Fourth, the main priority of 
Chromebook — originally — was 
not to write a webapp-only oper-
ating system.  In fact, the main 
priority when I started constructing 
the operating system was the need 
for speed — to create a super-fast 
operating system.

By Jeff Nelson

Inventing 
Chromebook



  17

Why bother to write a super-fast 
operating system?  I was frustrated 
with Windows and Linux, which 
I perceived were unnecessarily 
slow.  For example, at that time my 
occupation was writing webapps 
for Google, so I was restarting my 
web browser frequently, sometimes 
hundreds of times a day, to clear 
browser cache and cookies as part 
of the code development process.  
Restarting the web browser was a 
particularly slow operation, often 
taking 30-45 seconds, whether 
IE or Firefox, Linux or Windows. 
(Chrome not being available in 
2006.)  However, even simple tasks 
such as displaying a directory in 
a file explorer were unreasonably 
slow operations, requiring several 
seconds for a task that should be 
nearly instantaneous.  A few sec-
onds here, 45 seconds there, might 
not sound like much of a delay, but 
when such delays occur hundreds 
of times a day, it adds up to a costly 
amount of time.

The solution? Move the entire 
desktop operating system into 
RAM.  By moving the entire 
operating system into RAM, that 
immediately took off the table the 
largest performance bottlenecks in 
the operating system: File I/O.

Very few tasks that an operat-
ing system performs are CPU 
intensive or cause other major 
delays that can’t be attributed to 
File I/O.  By running the operating 
system entirely in RAM, most such 
tasks became nearly instantaneous, 
without having to rewrite or do any 
performance optimization at all 
for thousands of applications that 
make up the operating system.  For 
example, restarting Firefox went 
from ~45 seconds to ~1 second.  
Browsing a directory in the file 
explorer went from ~8 seconds 

to ~0.01 seconds.  Even compil-
ing code became 60% faster, and I 
could run non-indexed, recursive 
greps of the entire RAM resident 
file system in under 15 seconds.  Try 
doing that with a hard disk.

When discussing the RAM 
resident architecture of the original 
versions of Chromebook, nearly 
everyone expressed concerns about 
data loss.  In fact, data loss was not 
a problem for several reasons.  First, 
many tasks were performed as 
webapps, so as long as the webapps 
were well-written, there was no 
possibility of data loss.  Second, I 
had configured my IDE to auto-save 
backups to a network drive, so even 
in the event of a system crash only 
a few seconds of work could be lost.  
Third, some version occasionally 
synced backups to a local storage 
media.  Aside from that and boot 
loading, the operating system never 
accessed any local storage media 
aside from dynamic RAM. Ever.

Running a RAM resident oper-
ating system did pose other chal-
lenges.  First, avoiding the installa-
tion of any bloated applications.  A 
bloated application hogging a few 
gigabytes of hard disk space might 
not be painful, but hogging a few 
gigabytes of RAM is.  Such bloat 
had to be avoided by replacing the 
functionality with webapps. 

Second, many software vendors 
don’t support Linux at all.  This 
functionality also was replaced with 
webapps. 

Thus, tracking down webapps 
to replace any and all functional-
ity normally found on a desktop 
became a priority.  That’s how 
the seeds of the webapps on the 
Chromium desktop, albeit originally 
written in HTML and running on 
Firefox, were planted.

While running your front-end 
operating system entirely in RAM 
is a fundamental shift to the status 
quo of modern operating system 
architectures, I’m convinced the 
benefits far outweigh the costs.  As 
we live our lives, connected and 
online, few or no resources need to 
be stored on the same computer as 
the attached keyboard, and those 
which are stored don’t need to be 
accessed by spinning a magnetic 
platter. n

Mr. Nelson has written two books and 
many magazine articles on Java and 
cloud  computing during his twenty year 
career as a Java and C++ engineer and tech 
lead. He has extensive experience in the 
Big Data and Search industries, building 
highly scalable web services, and lead-
ing engineering teams at such companies 
as Google and eBay.  He holds a Masters 
Degree in Applied Mathematics.

Reprinted with permission of the original author. 
First appeared in hn.my/chromebook (jeff-nelson.com)

http://hn.my/chromebook


18  STARTUP

It’s been hard to ignore the 
massive shift in the last decade 
toward simple products. The 

minimalist design aesthetic pio-
neered by Dieter Rams in the 1960s 
on alarm clocks and toasters was 
popularized by Apple and Google 
in the 2000s on iPods and search 
boxes. Soon after, Web 2.0 took 
over, yielding big buttons, less text, 
more images, and happier users. 
Startup accelerators and design 
gurus popped up proselytizing “sim-
plicity!” and the rapid growth of 
mobile in the last five years has cre-
ated an almost strict requirement 
for simple products that work on 
our new small screens and increas-
ingly small attention spans. Some 
of the most popular products today 
(Twitter, Snapchat, Instagram) all 
have simplicity of design and expe-
rience at their core.

This Ain’t Is Your Grandma’s 
Internet
So why did this happen, and why 
mostly in the last 10 years? Some say 
that good design simply lags behind 
technology and that design has finally 
caught up. Others point to the evolu-
tion of our devices and our environ-
ments — definitely a major factor.

But I believe the high-order bit 
is even more straightforward: It’s 
only been in the last 10 years that 
technology products have reached 
the mass market. The market size 
of the entire broadband Internet in 
2000 was 50 million people; today 
it is 2 billion people; in a few short 
years with the shift to mobile it will 
be more than 5 billion people. This 
mass market is comprised mostly 
of people who sit in the middle of 
the tech-adopter bell curve, and 
since they aren’t product design-
ers, computer programmers, and 
tech bloggers, they require an even 
higher degree of simplicity.

“Simple” Isn’t What You Think
But “simplicity” comes in many fla-
vors. We can make products simpler 
by optimizing along a number of 
vectors:

■■ minimize number of steps in the 
flow

■■ minimize time required

■■ minimize number of features

■■ minimize elements on each page

■■ ….

But the most important, and 
often most overlooked, is Cogni-
tive Simplicity. This is an idea that 
slowly emerged as my company, 
Bump, tried to understand exactly 
why Bump is so popular, especially 
in the non-tech crowd. We believe 
product builders should first and 
foremost minimize the Cognitive 
Overhead of their products, even 
though it often comes at the cost of 
simplicity in other areas.

By David Lieb

Cognitive Overhead
Why Your Product Isn’t As Simple As You Think



  19

Cognitive Overhead
There isn’t yet much written about 
cognitive overhead in our field. The 
best definition on the web comes 
from a web designer and engineer 
in Chicago named David Demaree:

Cognitive Overhead — “How 
many logical connections or jumps 
your brain has to make in order 
to understand or contextualize the 
thing you’re looking at.”

Minimizing cognitive overhead is 
imperative when designing for the 
mass market. Why? Because most 
people haven’t developed the pat-
tern matching machinery in their 
brains to quickly convert what they 
see in your product (app design, 
messaging, what they heard from 
friends, etc.) into meaning and pur-
pose. We, the product builders, take 
our ability to cut through cognitive 
overhead for granted; our mental 
circuits for our products’ patterns 
are well practiced.

This is especially pronounced 
for mass market mobile products. 
Normal people already have to use 
more of their mental horsepower 
to cut through cognitive overhead. 
Now imagine the added burden 
of having to do that while on a 
crowded bus, or in line at Starbucks, 

or while opening your app for the 
first time while eating dinner with 
a friend and texting another. This 
isn’t 1999 when your users were 
sitting in their quiet bedrooms 
checking out your website on a 
large monitor while waiting for 
their Napster downloads to finish; 
they are out in the real world being 
bombarded with distractions.

My, What Big Cognitive Over-
head You Have 
To illustrate the difference between 
generic simplicity and cognitive 
simplicity, let’s look at a couple 
products that, on the surface, might 
be regarded as being simple to use, 
but rank in my book as some of the 
most cognitively complex products 
of late.

■■ QR Codes — Designed to check 
the simplicity boxes of speed, 
ubiquity, and small number of 
steps, QR codes really dropped 
the ball on cognitive overhead. 
“So it’s a barcode? No? It’s a 
website? Ok. But I open websites 
with my web browser, not my 
camera. So I take a picture of it? 
No, I take a picture of it with an 
app? Which app?”

■■ iCloud / PhotoStream — When 
we heard Steve Jobs preach 
the utopian future where all of 
our photos and data would be 
seamlessly synchronized among 
all our devices, we smelled the 
Apple simplicity we’d all grown 
to love. But in practice, iCloud is 
rife with cognitive overhead — it 
only backs up your most recent 
photos, it works on certain select 
apps but not others, you have 
to create an icloud.com email 
account for it to sync your mail 
and notes but not everything else. 
Oh, and it works on new iPhone 
and iPads and Macs running 
OS X v10.7.4 or later, but not 
your PC or Android tablet. Try 
explaining that to your mother.

“We take our ability to cut through cognitive 
overhead for granted; our mental circuits for 
our products’ patterns are well practiced.”



20  STARTUP

Cognitive Simplicity Winners
So which products really nail cogni-
tive simplicity? Here are a couple 
examples:

■■ Shazam — An app that magically 
hears what song is playing and 
tells you what it is? Seems pretty 
complex, and what’s happen-
ing under the covers actually is. 
But Shazam does a phenomenal 
job keeping the user’s cognitive 
burden low. They force people 
to press a button to “start listen-
ing,” show real-time feedback 
that shows the app is hearing 
the sounds, and it buzzes when 
a result is found. Shazam could 
have made the flow faster or 
fewer taps, but it would come at 
the cost of cognitive simplicity.

■■ Nintendo Wii — In most ways, 
the Wii was far more complicated 
than its game console peers in 
2006. It used accelerometers and 
IR blasters and detectors that 
required setup and calibration, 
and it was a departure from the 
mental model most people had 
for video games. But the payoff 
was a system with low cogni-
tive overhead — you swing the 
controller to the left, and the 
little avatar on screen swings his 
racquet to the left. And voila, 
toddlers and grandparents alike 
suddenly became gamers.

Could Go Either Way? 
Finally, a couple of my personal 
favorite daily-use products that 
could be argued either way. What 
do you think?

■■ Dropbox — I love Dropbox. All 
of my stuff is in my Dropbox; 
Dropbox is on all my devices; so 
all my stuff is on all my devices. 
Pretty cognitively simple. But 
there are certainly some poten-
tial cognitive hurdles, or, perhaps 
better put, cognitive activation 
energy required before reach-
ing the low cognitive overhead 
state. Is Dropbox a folder on 
your desktop or a cloud-storage 
website? Oh and it’s a program 
to install on my computer, too? 
When do things get backed up? 
Did it work?

■■ Facebook — Facebook started 
out with very low cognitive 
overhead — it was a digital ver-
sion of the paper Facebooks that 
already commanded high engage-
ment and retention of college 
kids. Question: Has Facebook’s 
cognitive overhead increased or 
decreased as it has expanded to 
the mass market? What cogni-
tive hurdles have arisen recently 
that weren’t present in the past? 
Should this worry Facebook?

How To make Cognitively Simple 
Products 

Make people work more, not less.
Put your user in the middle of 
your flow. Make them press an 
extra button, make them provide 
some inputs, let them be part of 
the service-providing, rather than 
a bystander to it. If they are part of 
the flow, they have a better van-
tage point to see what’s going on. 
Automation is great, but it’s a layer 
of cognitive complexity that should 
be used carefully. (Bump puts the 
user in the middle of the flow quite 
physically. While there were other 
ways to build a scalable solution 
without the physical bump, it’s very 
effective for helping people inter-
nalize exactly what’s going on.)

Give people real-time feedback.
If your user has to wonder, “So, 
did it work?” you’ve failed. Walk 
people through using your product 
like a magician leads the audience 
through an illusion. Point out the 
steps along the way, or whatever 
magic your product is providing 
could be lost to the user.

Slow down your product.
We’ve all heard stories of Google’s 
relentless quest for search-result 
speed, but sometimes you need to 
let your user understand and appre-
ciate what your service is doing 
for them. Studies have shown that 
intentionally slowing down results 
on travel search websites can actu-
ally increase perceived user value — 
people realize and appreciate that 
the service is doing a lot of work 
searching all the different travel 
options on their behalf.



  21

How To Know If You’ve 
Succeeded

Test on the young, the old…and 
the drunk.
The very young and the very old 
are even more sensitive to cogni-
tive overhead, as their brains aren’t 
accustomed to the sort of logi-
cal leaps our products sometimes 
require. Grandparents and children 
make great cognitive overhead 
detectors.

When you can’t find old or 
young people, drunk people are a 
good approximation. In fact, while 
building Bump 3.0, we took teams 
of designers and engineers to bars 
in San Francisco and Palo Alto and 
watched people use Bump, tweak-
ing the product to accommodate.

Ask your users/customers to repeat 
what your product does and how it 
works.
Let people use your product, and 
then ask them to tell you what it 
does. They’ll think you are crazy for 
not knowing already, but what you 
hear can point to cognitive hurdles 
you’ve missed. One technique that 
scales that we use at Bump is to 
show a one question survey to a 
small fraction of users inside the 
app right after they are done bump-
ing, asking “What is Bump for?” 
or “How do you use Bump?” The 
answers help us eliminate cognitive 
hurdles that remain.

There’s never been a time when 
cognitive simplicity matters more. 
As the mobile wave continues over 
the next five years, the world will 
see arguably the most rapid deploy-
ment of any new technology in 
our history. Products that are truly 
mass market will need to simulta-
neously target the Silicon Valley 
early adopter and the kid riding 
on the back of a motor scooter in 
Thailand. Which products will win, 
and which will lose? My money is 
on those that focus on cognitive 
simplicity. n

David Lieb is co-founder and CEO of Bump, 
creators of the popular app that lets people 
share contact information, photos, and 
other content by bumping their phones 
together. Bump has been downloaded 
more than 130 million times.

Reprinted with permission of the original author. 
First appeared in hn.my/cognitive (techcrunch.com)

http://hn.my/cognitive


22  PROGRAMMING

PROGRAMMING

By Chris Taylor

In this article, I’ll explain why Haskell’s data types 
are called algebraic — without mentioning cat-
egory theory or advanced math.

The algebra you learned in high school starts with 
numbers (e.g. 1, 2, 3…) and operators (e.g. addition 
and multiplication). The operators give you a way to 
combine numbers and make new numbers from them. 
For example, combining 1 and 2 with the operation of 
addition gives you another number, 3 — a fact that we 
normally express as

1+2=3

When you get a little older you are introduced to 
variables (e.g. x, y, z …) which can stand for numbers. 
Further still, and you learn about the laws that algebra 
obeys. Laws like

0+x=x 
1·x=x

which hold for all values of x. There are other laws as 
well, which define properties of numbers or of operations.

When mathematicians talk about algebra, they mean 
something more general than this. A mathematical 
algebra has three parts:

■■ Objects are the “things” of the algebra. The collec-
tion of objects defines what we’re talking about.

■■ Operations give us ways to combine old things to 
make new things.

■■ Laws are relationships between the objects and the 
operations.

In high school algebra the objects are numbers and 
the operations are addition, multiplication and friends.

The algebra of Haskell types
In the algebra of Haskell types, the objects are types, 
for example Bool and Int. The operators take types 
that already exist and generate new types from them. 
An example is the type constructor Maybe. It’s not a 
type itself, but you use it to create types; for example 
Maybe Bool and Maybe Int, which are types. Another 
example is Either, which creates a new type from two 
old types; for example Either Int Bool.

Counting
A connection to the more familiar algebra of numbers 
can be seen by counting the possible values that a type 
has. Take Bool, defined by

data Bool = False | True

There are two values that an object of type Bool can 
have — it is either False or True (technically it could 
also be undefined — a fact that I’m going to ignore 
for the rest of the post). Loosely, the type Bool corre-
sponds to the number “2” in the algebra of numbers.

If Bool is 2, then what is 1? It should be a type with 
only one value. In the computer science literature such 
a type is often called Unit and defined as

data Unit = Unit

The Algebra of 
Algebraic Data Types



  23

In Haskell there is already a type with only one value 
— it’s called () (pronounced “unit”). You can’t define it 
yourself, but if you could it would look like

data () = ()

Using this counting analogy, Int corresponds to the 
number 232, as this is the number of values of type 
Int.

Addition
In principle we could types corresponding to 3, 4, 5 
and so on. Sometimes we might have a genuine need to 
do this — for example, the type corresponding to 7 is 
useful for encoding days of the week. But it would be 
nicer if we could build up new types from old. This is 
where the operators of the algebra come in.

A type corresponding to addition is

data Add a b = AddL a | AddR b

That is, the type a + b is a tagged union, holding 
either an a or a b. To see why this corresponds to addi-
tion, we can revisit the counting argument. Let’s say 
that a is Bool and b is (), so that there are 2 values a 
and 1 value for b. How many values of type Add Bool 
() are there? We can list them out:

addValues = [AddL False, AddL True, AddR ()]

There are three values, and 3 = 2 + 1. This is often 
called a sum type. In Haskell the sum type is often 
called Either, defined as

data Either a b = Left a | Right b

but I’ll stick with Add.

Multiplication
A type corresponding to multiplication is

data Mul a b = Mul a b

That is, the type a · b is a container holding both an a 
and a b. The counting argument justifies the correspon-
dence with multiplication — if we fix a and b to both be 
Bool, the possible values of the type Mul Bool Bool are

mulValues = [Mul False False, Mul False True, 
Mul True False, Mul True True]

There are four values, and 4 = 2 x 2. This is often called 
a product type. In Haskell the product is the pair type:

data (,) a b = (a, b)

but I’ll stick with Mul.

Zero
Using addition and multiplication we can generate 
types corresponding to all the numbers from 1 upwards 
— but what about 0? That would be a type with no 
values. It sounds odd, but you can define such a type:

data Void

Notice that there are no constructors in the data 
definition, so you can’t ever construct a value of type 
Void — it has zero values, just as we wanted!

Laws in the algebra of Haskell types
What are the laws for the types we’ve just defined? 
Just like in the algebra of numbers, a law will assert the 
equality of two objects — in our case, the objects will 
be types.

However, when I talk about equality, I don’t mean 
Haskell equality, in the sense of the (==) function. 
Instead, I mean that the two types are in one-to-one 
correspondence — that is, when I say that two types 
a and b are equal, I mean that you could write two 
functions

from :: a -> b 
to   :: b -> a

that pair up values of a with values of b, so that the fol-
lowing equations always hold (here the == is genuine, 
Haskell-flavored equality):

to (from a) == a 
from (to b) == b

For example, I contend that the types Bool and Add 
() () are equivalent. I can demonstrate the equiva-
lence with the following functions:

to :: Bool -> Add () () 
to False = AddL () 
to True  = AddR () 
 
from :: Add () () -> Bool 
from (AddL _) = False 
from (AddR _) = True

I’ll use the triple equality symbol, ===, to denote this 
kind of equivalence between types.



24  PROGRAMMING

Laws for sum types
Here are two laws for addition:

Add Void a === a

which says that there are as many values of type Add 
Void a as there are of type a, and

Add a b === Add b a

which says that it doesn’t matter which order you add 
things in. These laws are probably more familiar to you 
in the algebra of numbers as

0+x=x 
x+y=y+x

If you fancy an exercise, you can demonstrate the 
correctness of the laws in the Haskell algebra — either 
with a counting argument, or by writing the functions 
from and to.

Laws for product types
There are three useful laws for multiplication:

Mul Void a === Void

which says that if you multiply anything by Void, you 
get Void back,

Mul () a === a

which says that if you multiply by () you don’t change 
anything, and

Mul a b === Mul b a

which says that it doesn’t matter which order you mul-
tiply in. The more familiar forms of these laws are:

0·x=0 
1·x=x 
x·y=y·x

Two more exercises: (i) prove the validity of these 
laws in the Haskell algebra, and (ii) explain why we 
don’t need laws of the form:

Mul a Void === Void 
Mul a ()   === a

There’s also a law that relates the addition and mul-
tiplication operators:

Mul a (Add b c) === Add (Mul a b) (Mul a c)

This one is a bit trickier to reason about, but writ-
ing the corresponding from and to functions isn’t 
too hard. The arithmetic version of this law is the 
friendlier-looking

a·(b+c)=a·b+a·c

called the distributive law.

Function types
As well as concrete types like Int and Bool, in Haskell 
you also have function types, like Int -> Bool or 
Double -> String. How do these fit into the algebra?

To figure this out we can go back to the counting 
argument. How many functions of type a·b are there?

Let’s be concrete, and fix a and b to both be Bool. 
The value False can map to either False or True, and 
similarly for the value True — thus there are 2·2=22=4 
possible functions Bool -> Bool. To be really explicit, 
we could enumerate them:

f1 :: Bool -> Bool -- equivalent to 'id' 
f1 True  = True 
f1 False = False 
 
f2 :: Bool -> Bool -- equivalent to 'const 
False' 
f2 _     = False 
 
f3 :: Bool -> Bool -- equivalent to 'const True' 
f3 _     = True 
 
f4 :: Bool -> Bool -- equivalent to 'not' 
f4 True  = False 
f4 False = True

What happens if b is still Bool (with two values) and 
a is a type with three values, say:

data Trio = First | Second | Third

Then each of First, Second, and Third can map to 
two possible values, and in total there are 2·2·2=23=8 
functions of type Trio -> Bool.

The same argument holds in general. If there are 
A values of type a, and B values of type b, then the 
number of values of type a · b is

BA

This justifies the common terminology for function 
types as exponential types.



  25

Laws for functions
There are two laws for function types that involve the 
unit type. They are:

() -> a === a

which says that there are as many functions () -> a as 
there are values of type a, and

a -> () === ()

which says that there is only one function a -> () — 
in particular, it is const (). The arithmetic versions of 
these laws are

a1=a 
1a=1

There is also a law that allows factoring out of 
common arguments:

(a -> b, a -> c) === a -> (b,c)

whose arithmetic form is

ba·ca=(bc)a

and a law about functions that return other functions:

a -> (b -> c) === (b,a) -> c

whose arithmetic form is

(cb)a=cb·a

This last law may be more familiar when the order 
of the variables in the pair on the right-hand side is 
switched, and the parens on the left hand side are 
removed:

a -> b -> c === (a,b) -> c

which just says that we can curry and uncurry func-
tions. Again, it’s an interesting exercise to prove all of 
these laws by writing the corresponding to and from 
functions. n

Chris Taylor is a researcher at a London hedge fund. He is inter-
ested in using mathematics to write safer and more composable 
programs.

Reprinted with permission of the original author. 
First appeared in hn.my/algebraic (chris-taylor.github.io)

http://hn.my/algebraic


26  PROGRAMMING

In my years of programming in Python and roam-
ing around GitHub’s Explore section, I’ve come 
across a few libraries that stood out to me as being 

particularly enjoyable to use. This article is an effort to 
further spread that knowledge.

I specifically excluded awesome libs like requests, 
SQLAlchemy, Flask, fabric, etc. because I think they’re 
already pretty “mainstream.” If you know what you’re 
trying to do, it’s almost guaranteed that you’ll stumble 
over the aforementioned. This is a list of libraries that 
in my opinion should be better known, but aren’t.

➊ pyquery (with lxml)

pip install pyquery

For parsing HTML in Python, Beautiful Soup 
[hn.my/soup] is oft recommended and it does a great 
job. It sports a good Pythonic API and it’s easy to find 
introductory guides on the web. All is good in parsing-
land…until you want to parse more than a dozen docu-
ments at a time and immediately run head-first into per-
formance problems. It’s — simply put — very, very slow.

Just how slow? Check out this chart from the excel-
lent Python HTML Parser comparison Ian Bicking 
compiled in 2008:

 What immediately stands out is how fast lxml is. 
Compared to Beautiful Soup, the lxml docs are pretty 
sparse and that’s what originally kept me from adopt-
ing this mustang of a parsing library. lxml is pretty 
clunky to use. Yeah, you can learn and use Xpath or 
cssselect to select specific elements out of the tree 
and it becomes kind of tolerable. But once you’ve 
selected the elements that you actually want to get, 
you have to navigate the labyrinth of attributes lxml 
exposes, some containing the bits you want to get 
at, but the vast majority just returning None. This 
becomes easier after a couple dozen uses, but it 
remains unintuitive.

So either slow and easy to use or fast and hard to 
use, right?

Wrong!

Enter PyQuery
Oh, PyQuery, you beautiful seductress:

from pyquery import PyQuery 
page = PyQuery(some_html) 
 
last_red_anchor = page('#container > 
a.red:last')

Easy as pie. It’s ever-beloved jQuery but in Python!
There are some gotchas. For example, PyQuery, like 

jQuery, exposes its internals upon iteration, forcing you 
to re-wrap:

By Dominik Dabrowski

Python Libraries You 
Should Know About



  27

for paragraph in page('#container > p'): 
    paragraph = PyQuery(paragraph) 
    text = paragraph.text()

That’s a wart the PyQuery creators ported over from 
jQuery (where they’d fix it if it didn’t break compat-
ibility). Understandable but still unfortunate for such a 
great library.

➋ dateutil

pip install python-dateutil

Handling dates is a pain. Thank god dateutil exists. 
I won’t even go near parsing dates without trying 
dateutil.parser first:

from dateutil.parser import parse 
 
>>> parse('Mon, 11 Jul 2011 10:01:56 +0200 
(CEST)') 
datetime.datetime(2011, 7, 11, 10, 1, 56, 
tzinfo=tzlocal()) 
 
# fuzzy ignores unknown tokens 
 
>>> s = """Today is 25 of September of 2003, 
exactly 
...        at 10:49:41 with timezone -03:00.""" 
>>> parse(s, fuzzy=True) 
datetime.datetime(2003, 9, 25, 10, 49, 41, 
                  tzinfo=tzoffset(None, -10800))

Another thing that dateutil does for you that would 
be a total pain to do manually is recurrence:

>>> list(rrule(DAILY, count=3, 
byweekday=(TU,TH), 
...            dtstart=datetime(2007,1,1))) 
[datetime.datetime(2007, 1, 2, 0, 0), 
 datetime.datetime(2007, 1, 4, 0, 0), 
 datetime.datetime(2007, 1, 9, 0, 0)]

➌ fuzzywuzzy

pip install fuzzywuzzy

fuzzywuzzy allows you to do fuzzy comparison on 
wuzzes strings. This has a whole host of use cases and 
is especially nice when you have to deal with human-
generated data.

Consider the following code that uses the Levensh-
tein distance comparing some user input to an array 
of possible choices.

from Levenshtein import distance 
 
countries = ['Canada', 'Antarctica', 'Togo', 
...] 
 
def choose_least_distant(element, choices): 
    'Return the one element of choices that is 
most similar to element' 
    return min(choices, key=lambda s: 
distance(element, s)) 
 
user_input = 'canaderp' 
choose_least_distant(user_input, countries) 
>>> 'Canada'

This is all nice and dandy, but we can do better. The 
ocean of 3rd party libs in Python is so vast, that in most 
cases we can just import something and be on our way:

from fuzzywuzzy import process 
 
process.extractOne("canaderp", countries) 
>>> ("Canada", 97)

➍ watchdog

pip install watchdog

watchdog is a Python API and shell utilities to moni-
tor file system events. This means you can watch some 
directory and define a “push based” system. Watchdog 
supports all kinds of problems. A solid piece of engi-
neering that does it much better than the 5 or so librar-
ies I tried before finding out about it.



28  PROGRAMMING

➎ sh

pip install sh

sh allows you to call any program as if it were a 
function:

from sh import git, ls, wc 
 
# checkout master branch 
git(checkout="master") 
 
# print(the contents of this directory 
print(ls("-l")) 
 
# get the longest line of this file 
longest_line = wc(__file__, "-L")

➏ pattern

pip install pattern

This behemoth of a library advertises itself quite 
modestly:

Pattern is a web mining module for the Python program-
ming language.

... that does Data Mining, Natural Language Process-
ing, Machine Learning and Network Analysis all in one. 
I myself have yet to play with it, but a friend’s verdict 
was very positive.

➐ path.py

pip install path.py

When I first learned Python, os.path was my least 
favorite part of the stdlib.

Even something as simple as creating a list of files in 
a directory turned out to be grating:

import os 
 
some_dir = '/some_dir' 
files = [] 
 
for f in os.listdir(some_dir): 
    files.append(os.path.joinpath(some_dir, f))

That listdir is in os and not os.path is unfortu-
nate and unexpected, and one would really hope for 
more from such a prominent module. And then all this 
manual fiddling for what really should be as simple as 
possible.

But with the power of path, handling file paths 
becomes fun again:

from path import path 
 
some_dir = path('/some_dir') 
 
files = some_dir.files()

Done!
Other goodies include:

>>> path('/').owner 
'root' 
 
>>> path('a/b/c').splitall() 
[path(''), 'a', 'b', 'c'] 
 
# overriding __div__ 
>>> path('a') / 'b' / 'c' 
path('a/b/c') 
 
>>> path('ab/c').relpathto('ab/d/f') 
path('../d/f')

Best part of it all? path subclasses Python’s str so 
you can use it completely guilt-free without constantly 
being forced to cast it to str and worrying about librar-
ies that check isinstance(s, basestring) (or even 
worse isinstance(s, str)).

 That’s it! I hope I was able to introduce you to some 
libraries you didn’t know before. n

Dominik grew up in Austria and started his first business at 
sixteen, helping to repair gaming consoles. He then studied CS 
in Vienna for a year before dropping out, instead graduating from 
HackerSchool batch #3 and now works as a Software engineer 
at Smarkets.

Reprinted with permission of the original author. 
First appeared in hn.my/pylab (doda.co)

http://hn.my/pylab


Accept payments online.

http://stripe.com


30  PROGRAMMING

By Mike Krieger

As we’ve scaled Instagram to an ever-growing 
number of active users, Postgres has con-
tinued to be our solid foundation and the 

canonical data storage for most of the data created by 
our users. While less than a year ago, we blogged about 
how we “stored a lot of data” at Instagram at 90 likes 
per second, we’re now pushing over 10,000 likes per 
second at peak — and our fundamental storage tech-
nology hasn’t changed. 

Over the last two and a half years, we’ve picked 
up a few tips and tools about scaling Postgres that we 
wanted to share — things we wish we knew when we 
first launched Instagram. Some of these are Postgres-
specific while others are present in other databases 
as well. For background on how we’ve horizontally 
partitioned Postgres, check out our Sharding and IDs 
[hn.my/sharding] at Instagram post.

➊ Partial Indexes
If you find yourself frequently filtering your 

queries by a particular characteristic, and that char-
acteristic is present in a minority of your rows, partial 
indexes may be a big win.

As an example, when searching tags on Instagram, 
we try to surface tags that are likely to have many 
photos in them. While we use technologies like Elas-
ticSearch for fancier searches in our application, this 
is one case where the database was good enough. Let’s 
see what Postgres does when searching tag names and 
ordering by number of photos:

EXPLAIN ANALYZE SELECT id from tags WHERE name 
LIKE 'snow%' ORDER BY media_count DESC LIMIT 10;       
QUERY PLAN    
---------                                                                   
 Limit  (cost=1780.73..1780.75 rows=10 width=32) 
(actual time=215.211..215.228 rows=10 loops=1) 
   ->  Sort  (cost=1780.73..1819.36 rows=15455 
width=32) (actual time=215.209..215.215 rows=10 
loops=1) 
         Sort Key: media_count 
         Sort Method:  top-N heapsort  Memory: 
25kB 
         ->  Index Scan using tags_search 
on tags_tag  (cost=0.00..1446.75 rows=15455 
width=32) (actual time=0.020..162.708 rows=64572 
loops=1) 
               Index Cond: (((name)::text 
~>=~ 'snow'::text) AND ((name)::text ~<~ 
'snox'::text)) 
               Filter: ((name)::text ~~ 
'snow%'::text) 
 Total runtime: 215.275 ms 
(8 rows)

Notice how Postgres had to sort through 15,000 
rows to get the right result. Since tags (for example) 
exhibit a long-tail pattern, we can instead first try a 
query against tags with over 100 photos; we’ll do:

Handling Growth with Postgres
5 Tips From Instagram Engineering

http://hn.my/sharding


  31

CREATE INDEX CONCURRENTLY on tags (name text_
pattern_ops) WHERE media_count >= 100 
Now the query plan looks like: 
EXPLAIN ANALYZE SELECT * from tags WHERE name 
LIKE 'snow%' AND media_count >= 100 ORDER BY 
media_count DESC LIMIT 10; 
 
QUERY PLAN 
 Limit  (cost=224.73..224.75 rows=10 width=32) 
(actual time=3.088..3.105 rows=10 loops=1) 
   ->  Sort  (cost=224.73..225.15 rows=169 
width=32) (actual time=3.086..3.090 rows=10 
loops=1) 
         Sort Key: media_count 
         Sort Method:  top-N heapsort  Memory: 
25kB 
         ->  Index Scan using tags_tag_name_
idx on tags_tag  (cost=0.00..221.07 rows=169 
width=32) (actual time=0.021..2.360 rows=924 
loops=1) 
               Index Cond: (((name)::text 
~>=~ 'snow'::text) AND ((name)::text ~<~ 
'snox'::text)) 
               Filter: ((name)::text ~~ 
'snow%'::text) 
 Total runtime: 3.137 ms 
(8 rows)

Notice that Postgres only had to visit 169 rows, 
which was way faster. Postgres’ query planner is pretty 
good at evaluating constraints too; if you later decided 
that you wanted to query tags with over 500 photos, 
since those are a subset of this index, it will still use the 
right partial index.

➋ Functional Indexes
On some of our tables, we need to index strings 

(for example, 64 character base 64 tokens) that are 
quite long, and creating an index on those strings ends 
up duplicating a lot of data. For these, Postgres’ func-
tional index feature can be very helpful:

CREATE INDEX CONCURRENTLY on tokens 
(substr(token), 0, 8)

While there will be multiple rows that match that 
prefix, having Postgres match those prefixes and then 
filter down is quick, and the resulting index was 1/10th 
the size it would have been had we indexed the entire 
string.

➌ pg_reorg For Compaction
Over time, Postgres tables can become frag-

mented on disk (due to Postgres’ MVCC concurrency 
model, for example). Also, most of the time, row inser-
tion order does not match the order in which you want 
rows returned. For example, if you’re often querying 
for all likes created by one user, it’s helpful to have 
those likes be contiguous on disk, to minimize disk 
seeks.

Our solution to this is to use pg_reorg, which does a 
3-step process to “compact” a table:

1.	 Acquire an exclusive lock on the table

2.	 Create a temporary table to accumulate changes, 
and add a trigger on the original table that repli-
cates any changes to this temp table

3.	 Do a CREATE TABLE using a SELECT FROM…
ORDER BY, which will create a new table in index 
order on disk

4.	 Sync the changes from the temp table that hap-
pened after the SELECT FROM started

5.	 Cut over to the new table

There are some details in there around lock acquisi-
tion etc, but that’s the general approach. We vetted 
the tool and tried several test runs before running in 
production, and we’ve run dozens of reorgs across hun-
dreds of machines without issues.

➍ WAL-E for WAL archiving and backups
We use and contribute code to WAL-E 

[hn.my/wale], Heroku’s toolkit for continuous 
archiving of Postgres Write-Ahead Log files. Using 
WAL-E has simplified our backup and new-replica 
bootstrap process significantly.

At its core, WAL-E is a program that archives every 
WAL files generated by your PG server to Amazon’s 
S3, using Postgres’ archive_command. These WAL files 
can then be used, in combination with a base backup, 
to restore a DB to any point since that base backup. 
The combination of regular base backups and the WAL 
archiving means we can quickly bootstrap a new read-
replica or failover slave, too.

We’ve made our simple wrapper script for moni-
toring repeated failures to archive a file available on 
GitHub. [gist.github.com/4550560]

http://hn.my/wale
http://gist.github.com/4550560


32  PROGRAMMING

➎ Autocommit mode and async mode in 
psycopg2

Over time, we’ve started using more advanced features 
in psycopg2, the Python driver for Postgres.

The first is autocommit mode; in this mode, 
psycopg2 won’t issue BEGIN/COMMIT for any 
queries; instead, every query runs in its own single-
statement transaction. This is particularly useful for 
read-only queries where transaction semantics aren’t 
needed. It’s as easy as doing:

connection.autocommit = True

This lowered chatter between our application servers 
and DBs significantly, and lowered system CPU as well 
on the database boxes. Further, since we use PGBouncer 
for our connection pooling, this change allows connec-
tions to be returned to the pool sooner.

Another useful psycopg2 feature is the ability to 
register a wait_callback for coroutine support. Using 
this allows for concurrent querying across multiple 
connections at once, which is useful for fan-out queries 
that hit multiple nodes — the socket will wake up and 
notify when there’s data to be read (we use Python’s 
select module for handling the wake-ups). This also 
plays well with cooperative multi-threading libraries 
like eventlet or gevent; check out psycogreen [hn.my/
psycogreen] for an example implementation.

Overall, we’ve been very happy with Postgres’ per-
formance and reliability. If you’re interested in working 
on one of the world’s largest Postgres installations with 
a small team of infrastructure hackers, get in touch at 
infrajobs@instagram.com n

Mike Krieger is a Brazilian entrepreneur and software engineer 
best known as the co-founder of Instagram, along with Kevin 
Systrom. Born in São Paulo, Brazil, Krieger moved to California in 
2004 to attend Stanford University. At Stanford, where he studied 
symbolic systems, he met Kevin Systrom. The two of them co-
founded Instagram in 2010.

Reprinted with permission of the original author. 
First appeared in hn.my/instagres (instagram-engineering.tumblr.com)

http://hn.my/psycogreen
http://hn.my/psycogreen
http://hn.my/instagres
http://mandrill.com


  33

http://mandrill.com


34  SPECIAL

SPECIAL

By Andrew wulf

How Hotel Reservations Work 

A recent complaint from 
a small hotel operator 
which was posted on 

Hacker News [hn.my/complain]
made me decide to talk about the 
whole process of reserving a room 
in a hotel.

I work for an OTA (which stands 
for online travel aggregator) which 
provides flight, hotel, car, and cruise 
reservations. The major players 
are Priceline, Expedia, Orbitz and 
Travelocity. These own many other 
familiar brands (like lastminute.com 
is owned by Travelocity, and 
booking.com is owned by Price-
line); plus there are many smaller 
brands which target niche markets 
and sometimes provide booking 
through a major player. Other 
companies like Kayak and Tripadvi-
sor provide information but handle 
booking through others as well.

In the U.S. alone there are around 
400,000 hotels, motels, lodges, and 
bed-and-breakfasts alone. World-
wide I have no idea but I am sure 
there are millions of places to stay. 
All of them want customers to fill 
their rooms. Many of them have 
access to computerized reserva-
tion systems, but many still operate 
on phone calls and fax machines. 
The challenge as an OTA is how to 
make this all work. It’s pretty crazy.

The average hotel in the U.S. 
has around 200 rooms. These are 
available for 365 days a year, so the 
total room-nights is around 73,000 
per year. Each one is a potential res-
ervation. Hotels generally average 
around 70% occupancy for tonight, 
which is the only night that really 
matters, the one where someone is 
occupying a room. Unlike people 
selling widgets, who can make 
fewer widgets or more depend-
ing on demand, hotels have a fixed 
supply. An empty room brings in 
nothing. A room with guests paying 
anything is better than an empty 

room. So the challenge is getting 
people to sleep in your beds. Over a 
years’ time you need a lot of those 
people to make it work (that “aver-
age” hotel needs 50,000).

The difficulty with making this 
work from an OTA’s perspective is 
how to allow people to make res-
ervations at, for example, 200,000 
properties over the next year. That 
is 14 billion potential room nights. 
Now the properties may be part of 
a large chain, like Marriott, that has 
a massive reservation system, or a 
mom and pop motor court operat-
ing with a fax machine. Each hotel 
has a certain number of rooms of 
different types (queen, king, etc) 
and these types may be broken 
down into different rates based on 
any number of parameters (free 
breakfast, mobile special rates, 
multi-night discounts, etc.). Some-
how the details have to wind up at 
the OTA so it can provide them to 
potential customers. This is where 
ugly happens.

http://hn.my/complain


  35

Note that even with fancy 
reservations systems, ultimately an 
individual hotel manager is respon-
sible for all the data and even the 
rates. So each one of those proper-
ties has someone who decides what 
rates there will be, and how often 
they can change. Even at the large 
chains, individual managers may 
ignore or trump the chain’s rules in 
order to maximize their potential 
sales. Now OTA’s have what are 
generally called market managers 
(either employees or contractors), 
whose job it is to deal with the 
hotels, usually directly, to negotiate 
special rates or deals or simply sign 
them up. Some hotels and chains 
are exclusive to one OTA but 
many make deals with all of them. 
Sometimes the deals are compli-
cated. OTA’s can either negotiate a 
discount and sell the rooms them-
selves and collect the money, then 
pay the hotel or chain; sometimes 
they negotiate a commission and 
get paid later when the guest pays 
their bill after their stay; sometimes 

they will reserve actual rooms at 
a discount and hope to sell them 
all. The latter is more risky for the 
OTA since you can get stuck with 
the rooms, but you have the most 
flexibility on pricing.

In any case, the hotel is either 
paid immediately upon the guest 
making the reservation (which is 
often preferable) or they have to 
wait until the end of the stay and 
then send the commission later 
(usually much later). Both have 
advantages, but hotels generally like 
to get money as soon as possible, as 
does the OTA. But like all con-
tracted things, the reality might be 
complicated.

Now if you decide you would 
rather avoid the OTA, you have to 
realize that is not so cut and dry 
either. Often a direct hotel reser-
vation number may not go to the 
individual hotel, but to a chain 
reservation line, which is unlikely 
to give you any special pricing. 
Often hotels are franchises and are 
restricted in what they can offer, 

usually to avoid having related 
franchises try to kill each other in a 
local market. Hotels know people 
hope to get better deals direct and 
might sell you a room at what 
you imagine is a discount, except 
it isn’t. Comparing rates between 
OTA’s, chains and comparison sites 
is always a good idea for hotels 
(but rarely for flights, that’s a much 
uglier can of worms for another 
day).

So how does a hotel search 
work? Firstly, OTAs have to get 
the hotel descriptions and room 
type information and prices from 
the hotels. This can range from 
a real-time connection to a full 
reservation system which is used 
by all the chain’s properties all the 
way to a fax machine and a daily 
or even weekly update. Availability, 
which is what we call what rooms 
are available for a particular date 
or date range, is always based on 
cached data. If we had to query 
external systems to get informa-
tion for searches we would never 

“Even with fancy reservations systems,  
ultimately an individual hotel manager is  
responsible for all the data and even the rates.”



36  SPECIAL

return anything. Like any cached 
system, this creates the possibility 
for stale data. The staleness can be 
both availability (we say the hotel 
has a room) and price (we tell you 
it’s $100). For searching to work we 
have to ask the hotel’s system peri-
odically for updates or even wait 
on a weekly fax, and then update 
the caches. Once you have done a 
search and have chosen a potential 
hotel, you are shown the available 
room types and rates, which can 
range from one type/rate to dozens 
at some properties. You then pick 
a room and express a desire to pos-
sibly book it. At this point the OTA 
system will query the real-time 
hotel system if available, or the “fax 
cache” and see if the room is actu-
ally available and what the current 
rate is. Now we will either tell you 
the room is not really available or 
note the real price. Sometimes if 
the room is not available you can 
choose a different room; sometimes 
there are no rooms available at 
all. It’s also possible the hotel has 
rooms but is not making them avail-
able to the OTA.

Now you go ahead and either pay 
for the reservation or at least hold 
it (depending on the three types I 
mentioned above). At this point, 
assuming the payment is approved 
if we are collecting the money, we 
call the real-time system again and 
request an actual reservation, or at 
least mark the “fax cache” to fax 
the data. At this point it can still 
fail as perhaps the last room was 
reserved while you were filling out 
the form. The hotel system can also 
fail, or data connections fail, and 
you might not get the room either. 
We generally don’t consider the 
reservation assured unless the hotel 
system tells us. Of course with the 
mom and pop hotel, the reservation 

might get lost or they had no rooms 
available or any number of prob-
lems might greet you when you 
show up. Always a good idea to call 
ahead and confirm.

Once you have your reserva-
tion, you assume everything will be 
smooth, and it usually is. Booking 
a hotel via an OTA usually means 
there is a hotel reservation number 
that you will receive in the confir-
mation or perhaps in a later email. 
Still, even if a major hotel chain 
gives you one, it’s still possible for 
the local hotel to lose things or 
perhaps their local system crashed 
or their inventory is not exactly up 
to date. Hotels can also have fires 
and other issues which might make 
a reservation become unavailable.

Now, the price you pay is clearly 
a highly variable thing. We try to 
negotiate with hotels for special 
rates; sometimes they might favor 
one OTA over another. Of course, 
hotels are competing with each 
other. Even franchise or chain 
hotels will often ignore their fran-
chise or chain rules and price things 
themselves. It’s a complicated game 
of trying to get more people in their 
beds. Remember a paying customer 
at any rate is better than an empty 
room. Managers will do almost any-
thing to improve their bookings.

Hotels are the only thing (maybe 
cruises) where an OTA makes real 
money. Cars and flights pay very 
little and the price differences 
there are fairly minimal. Billions of 
room nights make for an appealing 
marketplace, but also a challenging 
one to manage. Even a small hotel 
can make a lot of money if it can 
attract enough customers, since the 
supply is fixed and their cost is basi-
cally fixed as wel;l the difference is 
filling the rooms. OTA’s can make a 
lot of money as well, but at the cost 

of a complicated mass of connected 
systems of various levels of quality. 
Now add in multiple countries with 
all sorts of different rules, mix in 
contracted market managers who 
may have their own agendas (which 
is what it sounds like in Cancun) 
and hotels desperate to fill their 
rooms plus all the competing inter-
ests like OTA’s trying to book your 
reservations and you have a volatile 
mix of players.

I work on the customer end 
(mobile) so some of this is way out 
of my area, but I’ve learned enough 
about the back end to understand 
how complicated it can be.

This is nothing at all compared to 
flights, which is mighty ugly stuff. 
But that’s another story. n

In 3 decades of programming Andrew 
has worked on almost every kind of soft-
ware. Currently he works in mobile at a 
well known travel brand and writes in his 
blog, thecodist.com

Reprinted with permission of the original author. 
First appeared in hn.my/hotel (thecodist.com)

http://thecodist.com
http://hn.my/hotel


  37

Six months ago, I died.
I have no recollection of 

the event, but I’ve heard the 
story retold so many times that I 
may as well have seen it all. I was at 
the gym in my apartment complex 
with my roommate, Sam. I was run-
ning on the treadmill when I turned 
and told him I was going to faint. I 
collapsed and fell onto the still-
moving belt, which tore the skin off 
my knee and pushed me onto the 
floor. Sam was shocked. He called 
for help. A personal trainer and her 
client ran over, called an ambulance, 
and assisted Sam in giving me CPR 
while my body slowly drained of 
color.

My heart had gone into ventricu-
lar fibrillation. “Vfib,” as I heard 
numerous doctors call it, is a type 
of arrhythmia — a series of irregu-
lar electrical signals in the ventricle 
chamber of the heart. Instead of 
beating normally, the walls quiver 
erratically, like they’re having a 
seizure. The heart quickly becomes 
unable to pump blood to other 
organs. I had suffered from what is 
officially, and somewhat morbidly, 
termed “Sudden Cardiac Death.”

The paramedics arrived and 
walked slowly down the length 
of the pool to the gym. This was 
procedure, they later told me; 
they didn’t want to run and cause 
alarm. When they reached me, they 
defibrillated my heart by strap-
ping patches to my abdomen and 
running a strong electrical current 
through my body. I was told that 

after the first administration my 
heart had remained in arrhythmia. 
After the second, it started beating 
regularly.

For those 4 minutes and 30 sec-
onds, I was clinically dead.

I spent the next two days in a 
coma while the doctors cooled 
my body to 32 degrees in order to 
avoid brain damage. During this 
time I developed a pulmonary 
embolism and pneumonia. When-
ever I visit a doctor now they are 
always surprised — “Each of those 
alone could have killed you. It’s a 
miracle you survived all three!” I 
survived by sitting through hours 
of MRIs with oxygen in my nose, 
three IVs in my arm and ten pills 
a day for weeks. Sam and my two 
mothers, Laurie and Kerrie, rarely 
left my side.

The stories you hear about 
people dying usually end with 

tunnels, lights, flashbacks, God, 
and big epiphanies. That isn’t what 
happened to me.

After finally regaining enough 
consciousness to understand my 
situation, I sat for hours staring at 
the hospital walls. I didn’t have any 
life changing realizations. I wasn’t 
regretful. In fact, I couldn’t think 
of anything in my life I wanted to 
change at all. Being trapped alone 
in that sterile room with wires 
hanging off my chest only made me 
think about everything in my life I 
wanted back.

Most people I tell this story to 
think I’m unlucky because I had a 
cardiac arrest at 21 years old. But 
I don’t think so. Only five percent 
of people who suffer ventricular 
fibrillation out of the hospital 
survive. Of those that do survive, 
more than half of them have brain 
damage. That means only two and a 
half percent fully recover. Not only 
did I fully recover, but I did so in 
the company of the people closest 
to me.

If there is one lesson I took away 
from the experience, it is not to 
“live life to the fullest” or “have no 
regrets.” It is to feel lucky. Feeling 
lucky means you are appreciating 
the things in your life that some-
times go unnoticed. It means you 
are achieving more than think you 
deserve. Feeling lucky requires a cer-
tain humility we often lose sight of.

For me, it took losing everything 
to remember how lucky I am. n

Sash MacKinnon is an Australian who 
moved to Silicon Valley to make games. 
He worked at Zynga as Mark Pincus’ tech-
nical assistant for a year before joining 
MinoMonsters. Also he died.

What It’s Like To Die
By Sash Mackinnon

Reprinted with permission of the original author. 
First appeared in hn.my/sash (sashmackinnon.com)

http://hn.my/sash


Tealeaf Academy
an online school for developers

{
    join: 'Intensive Online Bootcamp',
    learn: 'Web Development',
    goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails  |  Level up Skills  |  Launch Products  |  Get a Job

38  SPECIAL

By Jon Bell

McDonald’s Theory Of 
Bad Ideas

I use a trick with co-workers 
when we’re trying to decide 
where to eat for lunch and no 

one has any ideas. I recommend 
McDonald’s.

An interesting thing happens. 
Everyone unanimously agrees that 
we can’t possibly go to McDon-
ald’s and better lunch suggestions 
emerge. Magic!

It’s as if we’ve broken the ice 
with the worst possible idea, and 
now that the discussion has started, 
people suddenly get very creative. I 
call it the McDonald’s Theory: 

People are inspired to come up with 
good ideas to ward off bad ones.

This is a technique I use a lot 
at work. Projects start in different 
ways. Sometimes you’re handed a 
formal brief. Sometimes you hear 
a rumor that something might be 
coming so you start thinking about 
it early. Other times you’ve been 
playing with an idea for months 
or years before sharing with your 
team. There’s no defined process for 
all creative work, but I’ve come to 
believe that all creative endeavors 
share one thing: the second step is 
easier than the first. Always.

Anne Lamott advocates “shitty 
first drafts,” Nike tells us to “Just Do 
It,” and I recommend McDonald’s 
just to get people so grossed out 
they come up with a better idea. 
It’s all the same thing. Lamott, 
Nike, and the McDonald’s Theory 
are all saying that the first step isn’t 
as hard as we make it out to be. 
Once, I got an email from Steve 
Jobs and it was just one word: “Go!” 
Exactly. Dive in. Do. Stop over-
thinking it.

The next time you have an idea 
rolling around in your head, find 
the courage to quiet your inner 
critic just long enough to get a 
piece of paper and a pen, then just 
start sketching it. “But I don’t have 
a long time for this!” you might 
think. Or, “The idea is probably 
stupid,” or, “Maybe I’ll go online and 
click around for — ”

No. Shut up. Stop sabotaging 
yourself.

The same goes for groups of 
people at work. The next time a 
project is being discussed in its 
early stages, grab a marker, go to 
the board, and throw something 
up there. The idea will probably 
be stupid, but that’s good! The 

McDonald’s Theory teaches us that 
it will trigger the group into action.

It takes a crazy kind of courage, 
of focus, of foolhardy persever-
ance to quiet all those doubts long 
enough to move forward. But it’s 
possible — you just have to start. 
Bust down that first barrier and just 
get things on the page. It’s not the 
kind of thing you can do in your 
head; you have to write something, 
sketch something, do something, 
and then revise off it. 

Not sure how to start? Sketch a 
few shapes, then label them. Say, 
“This is probably crazy, but what 
if we.…” and try to make your 
sketch fit the problem you’re trying 
to solve. Like a magic spell, the 
moment you put the stuff on the 
board, something incredible will 
happen. The room will see your 
ideas, will offer their own, will 
revise your thinking, and by the end 
of 15 minutes, 30 minutes, an hour, 
you’ll have made progress. 

That’s how it’s done.  n

Jon Bell is a designer living in Seattle. He 
writes more about himself on lot23.com

Reprinted with permission of the original author. 
First appeared in hn.my/mcd (medium.com)

http://gotealeaf.com
http://hn.my/mcd


Tealeaf Academy
an online school for developers

{
    join: 'Intensive Online Bootcamp',
    learn: 'Web Development',
    goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails  |  Level up Skills  |  Launch Products  |  Get a Job

  39

Tealeaf Academy
an online school for developers

{
    join: 'Intensive Online Bootcamp',
    learn: 'Web Development',
    goto: 'http://www.gotealeaf.com'
}

Learn Ruby on Rails  |  Level up Skills  |  Launch Products  |  Get a Job

http://gotealeaf.com
http://gotealeaf.com


Rent your IT infrastructure from 
Memset and discover the incredible 
bene�ts of cloud computing.

Find out more about us at 
www.memset.com

hosting

HOSTING

HOSTING

SCAN THE CODE FOR
MORE INFORMATION

$0.091/GByte/month or less
99.999999% object durability
99.995% availability guarantee
RESTful API, FTP/SFTP and CDN Service 

From $0.020/hour 
to 4 x  2.9 GHz Xeon cores
31 GBytes RAM
2.5TB RAID(1) disk

or chat to our sales team on 
0800 634 9270.

C

M

Y

CM

MY

CY

CMY

K

http://memset.com

	Contents
	FEATURES
	The Jellyfish Entrepreneur
	How To Land An Airplane If You Are Not A Pilot

	STARTUP
	Inventing Chromebook
	Cognitive Overhead

	PROGRAMMING
	The Algebra of Algebraic Data Types
	Python Libraries You Should Know About
	Handling Growth with Postgres

	SPECIAL
	How Hotel Reservations Work 
	What It’s Like To Die
	McDonald’s Theory Of Bad Ideas


