

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks

and Contents at a Glance links to access them.

 iii

Contents at a Glance

■ About the Author... xx
■ About the Technical Reviewer ... xxi
■ Acknowledgments .. xxii
■ Preface... xxiii
■ Chapter 1: Application Development... 1
■ Chapter 2: Working With Strings and Numbers .. 49
■ Chapter 3: Working With Object Collections ... 81
■ Chapter 4: File System .. 131
■ Chapter 5: Working With Dates, Times, and Timers.................................... 179
■ Chapter 6: Asynchronous Processing ... 197
■ Chapter 7: Consuming Web Content.. 243
■ Chapter 8: Memory Management.. 261
■ Chapter 9: Working With Object Graphs.. 283
■ Chapter 10: Core Data ... 339
■ Chapter 11: Objective-C Beyond Mac and iOS... 409
■ Index ... 429

1
Chapter

Application
Development
This chapter covers some of the essentials involved with getting an Objective-C
application set up from the command line and Xcode. You will see how to code
command line Mac desktop apps and iOS apps for the iPhone and iPad.

The recipes in this chapter will show you how to:

 Compile an Objective-C program from the command line

 Code a custom class with properties and methods

 Implement both instance and class methods

 Extend existing classes using a category

 Code and compile a Mac command line application

 Use Xcode to set up a Mac application

 Use Xcode to set up an iOS application

 Add user controls to applications using Delegation and
Target-Action patterns

NOTE: Most of this book assumes that you are using a Mac with
Xcode 4.2, which you can obtain from the Mac App Store at
www.apple.com/mac/app-store/.

http://www.apple.com/mac/app-store/

CHAPTER 1: Application Development 2

1.1 Creating a Terminal Application

Problem
You want to use Terminal to build a simple Objective-C program that doesn’t
depend on the extra features that come with Xcode. Your program will use
Objective-C to write out a message to the terminal console window on your
Mac.

Solution
Use your favorite text editor to create a file in your home directory, which is at
/Users/[yourusername]/. You can use the text editor vi from your terminal or the
GUI-based TextEdit program that comes with your Mac. If you use TextEdit,
make sure to save the file that you create as plain text.

In this file, you will add a main function (which, incidentally, would look the same
if written in C), import the Foundation framework, and add Objective-C code to
write out a Hello World message to the console.

To compile this program, you will use a tool called clang to create an executable
file that you can run from your terminal screen.

How It Works
The code that Objective-C needs to start is always located in a function called
main, which takes some arguments and returns an integer value. In the first line
of code, you import Foundation, which is a framework necessary for working
with Objective-C objects.

Inside of your main function you must set up an autorelease pool, which is used
by Objective-C to manage memory. Once you do that, you can use the NSString
class to build a Hello World string and NSLog to write this string to the console
screen.

The terminal command that is used to compile code is called clang and it
compiles Objective-C programs. Here are some options that you may set when
using clang to compile your Objective-C programs:

 -fobj means that Objective-C is the programming language.

 -arc specifies Automatic Reference Counting.

CHAPTER 1: Application Development 3

 -framework is used to link to the Foundation framework.

 -o specifies the name of the executable file that will be
created.

NOTE: If your Mac is running OSX 10.7 or greater, then you can use
Automatic Reference Counting (ARC). ARC is a new feature available
in OSX 10.7 used for memory management and you can get it by
adding –arc to the statement that you use to compile your program. If
you aren’t sure what version of OSX you are using just omit –arc for
now. See Chapter 8 for more details on ARC and memory
management in general.

The Code
This is what the code in your plain text file should look like:

#import <Foundation/Foundation.h>
int main (int argc, const char * argv[]){
 @autoreleasepool {
 NSString *helloString = @"Hello World";
 NSLog(@"%@", helloString);
 }
 return 0;
}

Usage
Open up your terminal and type in the following commands to compile your
code. Make sure to navigate to the location where you placed your code file
before compiling.

clang -fobjc -framework Foundation main.m -o maccommandlineapp

For this example, I’m assuming that the code was placed in a file named main.m
and that the output file will be called maccommandlineapp.

Hit return to compile the code. Once the program is compiled, type in open
maccommandlineapp and press return to run and test your work.

Another window should open up with output that looks like this:

Hello World

CHAPTER 1: Application Development 4

logout

[Process completed]

1.2 Writing to the Console

Problem
As you’re testing code, you would like to be able to write out values to the
console window. Objects and primitive type values can be reported but each
requires specific string formatters to work with NSLog.

Solution
Substitute object and primitives values into NSLog to report the values of these
variables to the console screen.

How It Works
Object and primitive type values may be reported to the console using NSLog.
Each type has a different specifier that must be used as a placeholder for the
value. You type out the string that you would like to appear in the console while
putting in specifiers into the string where you would like to see values reported.
You can put as many specifiers into the string as you like, but you must make
sure to include each value in the call to NSLog.

For example, if you had an integer variable named myInteger and a character
variable named myCharacter and you wanted to report each of these values to
the console, you would do something like this:

NSLog(@"myCharacter = %c and myInteger = %i", myCharacter, myInteger);

WARNING: Each specifier that you include in the NSLog string must
have a corresponding value in the comma-separated list to the right or
the compiler will throw an error more '%' conversions than data
arguments at compile time.

There are a few more specifiers that you may use. See Table 1-1 for a list of
commonly used format specifiers.

CHAPTER 1: Application Development 5

Table 1-1. List of Specifiers Used with NSLog

Specifier Data Type

%@ Objective-C object (looks at description method)

%d, %D, %i Int (signed 32-bit integer)

%u, %U Unsigned int (unsigned 32-bit integer)

%f Double (64-bit floating point number)

%e Double (64-bit floating point number in scientific notation)

%c Unsigned char (unsigned 8-bit character)

%C Unichar (16-bit character)

%p Pointer (printed in hexadecimal)

%% Escape character so you can print the % sign

The Code
Here is how you report the values of various variables to the console using
NSLog:

#import <Foundation/Foundation.h>
int main (int argc, const char * argv[]){
 @autoreleasepool {

 //To print out primitive types:
 int myInteger = 1;
 NSLog(@"myInteger = %i", myInteger);

 float myFloatingPointNumber = 2;
 NSLog(@"myFloatingPointNumber = %f", myFloatingPointNumber);
 NSLog(@"myFloatingPointNumber in scientific notation = %e", 
 myFloatingPointNumber);

 char myCharacter = 'A';
 NSLog(@"myCharacter = %c", myCharacter);

 //To print out the % symbol
 NSLog(@"Percent Sign looks like %%");

CHAPTER 1: Application Development 6

 //To print out Objective-C objects:
 NSString *myString = @"My String";
 NSLog(@"myString = %@", myString);
 NSLog(@"myString's pointer = %p", myString);

 //To print out a series of values
 NSLog(@"myCharacter = %c and myInteger = %i", myCharacter, myInteger);

 }
 return 0;
}

Usage
To test this code, compile the files with clang as you did in Recipe 1-1.

clang -fobjc -framework Foundation main.m -o maccommandlineapp

Run the app by typing open maccommandlineapp in your terminal window and you
should see output that looks like this:

myInteger = 1
myFloatingPointNumber = 2.000000
myFloatingPointNumber in scientific notation = 2.000000e+00
myCharacter = A
Percent Sign looks like %
myString = My String
myString's pointer = 0x105880110
myCharacter = A and myInteger = 1
logout

[Process completed]

NOTE: In your output, the pointer for myString will have a different
value than mine.

CHAPTER 1: Application Development 7

1.3 Creating a New Custom Class

Problem
Object-oriented programmers like to be able to encapsulate functionality in
objects. To do this, you must be able to define a custom class with attributes
and behaviors.

Solution
Classes in Objective-C need interface and implementation definitions. Although
it’s not absolutely required, you typically keep the interface and implementations
in separate files. The file with the interface is named as same as the class itself
but with the .h file extension. The file with the implementation also has the class
name but with the .m file extension.

To use a custom class, you must import the class header file into the code file
where you intend on using the class. Then you can instantiate an object from the
class to use the functionality encapsulated in the class.

How It Works
The first step is to add two files where you will write your custom class code.
You can use your text editor of choice to do this. Let’s assume that you want a
class to represent a car. In this case, you simply add two new files: Car.h and
Car.m. Put these files in the same directory as your main.m file to make it easier
later on to compile these together (see Listings 1-1 through 1-3 for the code).

In the Car.h file, you locate the interface for the Car class. A class interface must
begin with the @interface keyword and end with the @end keyword. Everything
in between these two keywords defines the properties and methods of the
class. The following is the essential code needed to define a Car class:

#import <Foundation/Foundation.h>

@interface Car : NSObject

@end

Notice that in the Car class definition you are importing Foundation again and
right after the name car you have : NSObject. This means that your car is a
subclass of NSObject. In fact, NSObject is the root object in Objective-C and all

CHAPTER 1: Application Development 8

other objects are either a subclass of NSObject or a subclass of another class
that is a subclass of NSObject.

The Car.m file looks similar to the Car.h file. Here you first import the Car.h file
and then use the @implementation keyword to declare that you are
implementing your custom class. All the code you use to implement comes after
the line of code where you declare that you are implementing Car. This is what
the Car class implementation looks like so far:

#import "Car.h"

@implementation Car

@end

In order to use your class, you need to import Car.h and then instantiate an
object from the class. To instantiate an object, you send two messages: alloc
and init. Both of these messages come from the NSObject superclass.

Car *car = [[Car alloc] init];

The Code
Listing 1-1. Car.h

#import <Foundation/Foundation.h>

@interface Car : NSObject

@end

Listing 1-2. Car.m

#import "Car.h"

@implementation Car

@end

Listing 1-3. main.m

#import "Car.h"

int main (int argc, const char * argv[]){
 @autoreleasepool {
 Car *car = [[Car alloc] init];
 NSLog(@"car is %@", car);

CHAPTER 1: Application Development 9

 }
 return 0;
}

Usage
To use this code, compile your files as you did before, except that you need to
include the code file for the Car class in addition to the main.m code file.

clang -fobjc -framework Foundation Car.m main.m -o maccommandlineapp

It may be included right before the main.m file in the command text. When you
open the maccommandlineapp, you will see output that looks something like this:

car is <Car: 0x10c411cd0>
logout

[Process completed]

Of course, Car doesn’t do much until you add your own custom properties and
methods, which you’ll see in the upcoming recipes.

1.4 Code Property Assessors

Problem
Custom classes need to represent the attributes of the entities they are
modeling. You need to know how to define and implement properties in
Objective-C to do this.

Solution
To implement properties for custom classes, you must declare properties in the
class interface and implement these properties in the class implementation.
Once you implement these properties, you can use them in your other code files
by accessing these properties when you need them.

How It Works
The first place you go when adding properties to classes is the custom class
header file. You need two things here: a local instance variable to hold the value
of your property and a property declaration. Here is what an interface looks like:

CHAPTER 1: Application Development 10

#import <Foundation/Foundation.h>

@interface Car : NSObject{
@private
 NSString *name_;
}

@property(strong) NSString *name;

@end

Here the local instance is named name_ and the property declaration starts with
the keyword @property. Notice that the property declaration has the word
strong in parentheses right before the class name. This word is called a
property attribute, and strong is only one of many property descriptors available
to you. See Table 1-2 for a list of property attributes.

Table 1-2. Property Attributes

Attribute Description

readwrite The property needs both a getter and a setter (default).

readonly The property only needs a getter (objects can’t set this property).

strong The property will have a strong relationship (the object will be retained).

weak The property will be set to nil when the destination object is
deallocated.

assign The property will simply use assignment (used with primitive types).

copy The property returns a copy and must implement the NSCopying
protocol.

retain A retain message will be sent in the setter method.

nonatomic This specifies that the property is not atomic (not locked while being
accessed).

The second place you need to go to implement a property is the
implementation, which in your example would be located in Car.m. Here you
need to code your so-called getters and setters.

#import "Car.h"

@implementation Car

CHAPTER 1: Application Development 11

-(void)setName:(NSString *)name{
 name_ = name;
}

-(NSString *) name{
 return name_;
}

@end

You can use properties like this with dot notation to set and get properties
values:

car.name = @"Sports Car";
NSLog(@"car is %@", car.name);

Or you can use properties with standard Objective-C messaging:

[car setName:@"New Car Name"];
NSLog(@"car.name is %@", [car name]);

You will see both examples of accessing properties as you look at more
Objective-C code. Dot notation (the first example) is a relatively new Objective-C
feature that was added with Objective-C 2.0. Note that dot notation has the
advantage of being more familiar to programmers who are used to other
programming languages where dot notation is the standard practice. The
second example, regular Objective-C messaging, is still used often. Choosing
one method over another is mostly a matter of personal preference. See Listings
1-4 through 1-6 for the code.

The Code
Listing 1-4. Car.h

#import <Foundation/Foundation.h>

@interface Car : NSObject{
@private
 NSString *name_;
}

@property(strong) NSString *name;

@end

CHAPTER 1: Application Development 12

Listing 1-5. Car.m

#import "Car.h"

@implementation Car

-(void)setName:(NSString *)name{
 name_ = name;
}

-(NSString *) name{
 return name_;
}

@end

Listing 1-6. main.m

#import "Car.h"
int main (int argc, const char * argv[]){
 @autoreleasepool {
 Car *car = [[Car alloc] init];
 car.name = @"Sports Car";
 NSLog(@"car.name is %@", car.name);

 [car setName:@"New Car Name"];
 NSLog(@"car.name is %@", [car name]);

 }
 return 0;
}

Usage
To use this code, compile your files as you did before.

clang -fobjc-arc -framework Foundation Car.m main.m -o maccommandlineapp

When you open the maccommandlineapp, you will see output that looks
something like this:

car.name is Sports Car
car.name is New Car Name
logout

[Process completed]

CHAPTER 1: Application Development 13

1.5 Code Property Assessors with @synthesize

Problem
Custom classes need to represent the attributes of the entities they are
modeling. You need to know how to define and implement properties in
Objective-C to do this. If you don’t want to code your own getter and setter
methods, you can use the @synthesize as an alternative.

Solution
To implement properties with @synthesize, you still need to declare properties in
the class interface as you did in Recipe 1.4 and implement these properties in
the class implementation. However, instead of writing your own assessor code,
you can use the @synthesize keyword to direct the complier to fill in the code for
you in the background during the compilation process.

How It Works
The first place you go when adding properties to classes is the custom class
header file. All you need to do with this method is to declare a property. Here is
what an interface looks like:

#import <Foundation/Foundation.h>

@interface Car : NSObject

@property(strong) NSString *name;

@end

The second file you need to go to implement a property is the implementation,
which in your example is located in Car.m. All you need to do here is use the
@synthesize keyword and include the property that you want to generate getters
and setters for (after the @implementation keyword).

#import "Car.h"

@implementation Car
@synthesize name;

@end

CHAPTER 1: Application Development 14

You can use properties like this with dot notation to set and get properties
values:

car.name = @"Sports Car";
NSLog(@"car is %@", car.name);

Or you can use properties with standard Objective-C messaging, like so:

[car setName:@"New Car Name"];
NSLog(@"car.name is %@", [car name]);

See Listings 1-7 through 1-9 for the code.

The Code
Listing 1-7. Car.h

#import <Foundation/Foundation.h>

@interface Car : NSObject

@property(strong) NSString *name;

@end

Listing 1-8. Car.m

#import "Car.h"

@implementation Car
@synthesize name;

@end

Listing 1-9. main.m

#import "Car.h"
int main (int argc, const char * argv[]){
 @autoreleasepool {
 Car *car = [[Car alloc] init];
 car.name = @"Sports Car";
 NSLog(@"car.name is %@", car.name);

 [car setName:@"New Car Name"];
 NSLog(@"car.name is %@", [car name]);

 }
 return 0;
}

CHAPTER 1: Application Development 15

Usage
To use this code, compile your files as you did before.

clang -fobjc -framework Foundation Car.m main.m -o maccommandlineapp

When you open the maccommandlineapp, you will see output that looks
something like this:

car.name is Sports Car
car.name is New Car Name
logout

[Process completed]

1.6 Adding a Class Method to a Custom Class

Problem
In Objective-C, you can send messages to either classes or objects to get things
done. If you want your custom class to be able to respond to a message, you
must first code a class method.

Solution
To add a class method, you need to add forward declaration in your header file.
Class methods start with + and a return type like (void), followed by a set of
parameter descriptors (descriptive text that appears before a parameter), data
types, and parameter names. Class methods are implemented in the
implementation file after the @implementation keyword.

How It Works
The first place you go when adding class methods to a class is the custom class
header file. Class methods have a + sign in front of the return type. Here is a
forward declaration for a class method that prints out a description to the
console that includes a date:

+(void)writeDescriptionToLogWithThisDate:(NSDate *)date;

To implement a class method, go to the implementation file for the class, and
after the @implementation keyword, write out the code for the class method.

CHAPTER 1: Application Development 16

+(void)writeDescriptionToLogWithThisDate:(NSDate *)date{
 NSLog(@"Today's date is %@ and this class represents a car", date);
}

To use this method, you simply send a message to the Car class without
worrying about instantiating an object first.

[Car writeDescriptionToLogWithThisDate:[NSDate date]];

See Listings 1-10 through 1-12 for the code.

The Code
Listing 1-10. Car.h

#import <Foundation/Foundation.h>
@interface Car : NSObject

@property(strong) NSString *name;

+(void)writeDescriptionToLogWithThisDate:(NSDate *)date;

@end

Listing 1-11. Car.m

#import "Car.h"

@implementation Car

@synthesize name;

+(void)writeDescriptionToLogWithThisDate:(NSDate *)date{
 NSLog(@"Today's date is %@ and this class represents a car", date);
}

@end

Listing 1-12. main.m

#import "Car.h"
int main (int argc, const char * argv[]){
 @autoreleasepool {
 [Car writeDescriptionToLogWithThisDate:[NSDate date]];
 }
 return 0;
}

CHAPTER 1: Application Development 17

Usage
When you work with class methods, you don’t need to instantiate an object first.
You simply send a message to the class to execute the code in the class
method. To use this code, compile your files as you did before.

clang -fobjc -framework Foundation Car.m main.m -o maccommandlineapp

When you open the maccommandlineapp, you will see output that looks
something like this:

Today's date is 2011-12-19 14:23:11 +0000 and this class represents a car
logout

[Process completed]

1.7 Adding an Instance Method to a Custom
Class

Problem
In Objective-C, you can send messages to either classes or objects to get things
done. If you want objects that have been instantiated from your custom class to
be able to respond to a message, you must first code an instance method.

Solution
To add an instance method, you need to add forward declaration in your header
file. Instance methods start with – and a return type like (void), followed by a
set of parameter descriptors (descriptive text that appears before a parameter),
data types, and parameter names. Instance methods are implemented in the
implementation file after the @implementation keyword.

How It Works
The first place you go when adding instance methods to a class is the custom
class header file. Instance methods have a - sign in front of the return type. Here
is a forward declaration for a class method that prints out a description to the
console that includes a date:

-(void)writeOutThisCarsState;

CHAPTER 1: Application Development 18

To implement a class method, go to the implementation file for the class, and
after the @implementation keyword, write out the code for the class method.

-(void)writeOutThisCarsState{
 NSLog(@"This car is a %@", self.name);
}

Usage
To use this method, you need to first instantiate an object from your Car class
and then set the name property. Then you can send the writeOutThisCarsState
message to execute the code in the instance method.

Car *newCar = [[Car alloc] init];
newCar.name = @"My New Car";
[newCar writeOutThisCarsState];

To test this code, compile your files as you did before from Terminal.

clang -fobjc -framework Foundation Car.m main.m -o maccommandlineapp

When you open the maccommandlineapp, you will see output that looks
something like this:

Today's date is 2011-12-19 14:23:11 +0000 and this car is a My New Car
logout

[Process completed]

1.8 Extending a Class with a Category

Problem
You would like to add methods and behavior to a class, but you would rather
not create an entire new subclass.

Solution
In Objective-C, you can use categories to define and implement properties and
methods that can later be attached to a class. To do this, you need two files: a
header file to list your interface and an implementation file to list your
implementation. When you are ready to use your category, you can import the
category header file; any class that has the category applied to it will have those
properties and methods available for use.

CHAPTER 1: Application Development 19

How It Works
The first thing you need is a header file. Let’s assume that you want to extend
the NSString class to add methods to help you create HTML text. A category
header file has an interface that looks like this:

@interface NSString (HTMLTags)

The class name that comes right after the @interface keyword is the class that
you are extending. This means that the category may only be applied to
NSString (or a subclass of NSString). In the parentheses that come after the
class name you put the name that you are giving to the category.

You locate all the properties and methods for this category after the interface
but before the @end keyword (just like in a regular class interface).

The implementation follows a similar pattern.

@implementation NSString (HTMLTags)

When you want to apply this extended functionality that you define in the
category, you simply import the category header file, and you will be able to use
the additional properties and methods that you have coded. See Listings 1-13
through 1-15 for the code.

The Code
Listing 1-13. HTMLTags.h

#import <Foundation/Foundation.h>

@interface NSString (HTMLTags)

-(NSString *) encloseWithParagraphTags;

@end

Listing 1-14. HTMLTags.m

#import "HTMLTags.h"

@implementation NSString (HTMLTags)

-(NSString *) encloseWithParagraphTags{
 return [NSString stringWithFormat:@"<p>%@</p>",self];
}

@end

CHAPTER 1: Application Development 20

Listing 1-15. main.m

#import "HTMLTags.h"

int main (int argc, const char * argv[]){
 @autoreleasepool {
 NSString *webText = @"This is the first line of my blog post";

 //Print out the string like normal:
 NSLog(@"%@", webText);

 //Print out the string using the category function:
 NSLog(@"%@", [webText encloseWithParagraphTags]);
 }
 return 0;
}

Usage
Categories are typically used in situations where you want to avoid creating a
complex inheritance hierarchy. That is, you would rather not have to rely on
using custom classes that are more than three or four levels removed from the
root class because you don’t want to end up in a situation where making a
change to a class has unintended implications in a class farther down in the
inheritance hierarchy.

Categories also help your code remain readable. For instance, if you use a
category to extend NSString in your projects, most of your code will be familiar
to anyone who has used NSString. The alternative method of subclassing
NSString (with something like NSHTMLString) could cause confusion.

To compile the code in the listings from the command line, make sure to
compile the file with the category in addition to the main.m file.

clang -fobjc-arc -framework Foundation HTMLTags.m main.m -o maccommandlineapp

When you open the maccommandlineapp, you will see output that looks
something like this:

This is the first line of my blog post
<p>This is the first line of my blog post</p>
logout

[Process completed]

CHAPTER 1: Application Development 21

1.9 Creating a Mac Window-Based
Application from Terminal

Problem
You want to create a Mac application that has a user interface from the terminal.
While Xcode is generally used to develop rich window-based applications on
Mac, sometimes it’s easier to see what is happening when you set up an
application without the extra help that Xcode project templates insert into your
code.

Solution
Mac apps need some key components to work. Namely, you need to use the
NSApplication and NSWindow classes to manage the application itself and the
initial user interface. You also need an app delegate class, which you can code
in a separate file. The app delegate acts as a helper for the application by
implementing key methods that the application needs to work.

How It Works
There are two steps to this solution.

App Delegate
Mac apps make use of a design pattern called Delegatation. When you want to
implement Delegation, you designate one object (called the delegate) to act on
behalf of another object. Your Mac application is going to need a helper object
called the app delegate to work.

The app delegate is a class that needs it’s own header and implementation file.
Mac app delegates must import the Cocoa framework and implement the
NSApplicationDelegate protocol. Protocols are a set of properties and methods
that a class must implement in order to act as a delegate. The
NSApplicationDelegate protocol is required for your class to be an app
delegate.

Here is a an example of how you start to define an app delegate:

@interface AppDelegate : NSObject <NSApplicationDelegate>

CHAPTER 1: Application Development 22

You can see you are adopting the NSApplicationDelegate protocol here
because you have this specified between the < and > symbols. The app delegate
should have an NSWindow property and implement the delegate method -
(void)applicationDidFinishLaunching:(NSNotification *)aNotification;.

The NSWindow property is the UI element where you put your user content. The
delegate method is a notification that executes when the application is done
launching to the desktop, which makes it a good place to set up the rest of the
application.

Application
The Mac application itself is set up and launched from the main function as
before. You will need to first get a reference to the NSApplication instance.
NSApplication is a Cocoa class that is implemented using the Singleton design
pattern. This means that you can only have once instance of NSApplication per
application and that you must use a particular procedure to get a reference to
the NSApplication object.

NSApplication *macApp = [NSApplication sharedApplication];

The sharedApplication function is a class method that will either instantiate and
return an instance of NSApplication or simply return the instance that has
already been created. Once you have a reference to the Mac application, you
can create an app delegate and set this as macApp’s delegate.

AppDelegate *appDelegate = [[AppDelegate alloc] init];
macApp.delegate = appDelegate;

This has the effect of saying that the app delegate will now act on behalf of your
Mac application. Next, your application must have a window, so use the
NSWindow class to instantiate a window and set this to the app delegate’s
NSWindow property.

int style = NSClosableWindowMask | NSResizableWindowMask | 
 NSTexturedBackgroundWindowMask | NSTitledWindowMask | 
NSMiniaturizableWindowMask;

 NSWindow *appWindow = [[NSWindow alloc] initWithContentRect:NSMakeRect(50, 50, 600, 400)
 styleMask:style
 backing:NSBackingStoreBuffered
 defer:NO];
appDelegate.window = appWindow;

Now that you are all set up and connected, you can present the window to the
user and run the Mac application.

CHAPTER 1: Application Development 23

[appWindow makeKeyAndOrderFront:appWindow];
[macApp run];

See Listings 1-16 through 1-18 for the code.

The Code
Listing 1-16. AppDelegate.h

#import <Cocoa/Cocoa.h>

@interface AppDelegate : NSObject <NSApplicationDelegate>

@property (assign) NSWindow *window;

@end

Listing 1-17. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate

@synthesize window = _window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification{
 NSLog(@"Mac app finished launching");
}

@end

Listing 1-18. main.m

#import "AppDelegate.h"

int main (int argc, char *argv[]){
 NSApplication *macApp = [NSApplication sharedApplication];
 AppDelegate *appDelegate = [[AppDelegate alloc] init];
 macApp.delegate = appDelegate;

 int style = NSClosableWindowMask | NSResizableWindowMask | 
 NSTexturedBackgroundWindowMask | NSTitledWindowMask | 
NSMiniaturizableWindowMask;

 NSWindow *appWindow = [[NSWindow alloc] initWithContentRect:NSMakeRect(50, 50, 600, 400)
 styleMask:style
 backing:NSBackingStoreBuffered
 defer:NO];
 appDelegate.window = appWindow;

CHAPTER 1: Application Development 24

 [appWindow makeKeyAndOrderFront:appWindow];
 [macApp run];
}

Usage
To compile the code from the command line, make sure to compile the file with
the AppDelegate in addition to the main.m file. For this program, you must also
link to the Cocoa framework since you are using Cocoa to manage your UI
elements for your Mac app.

clang -fobjc -framework Cocoa AppDelegate.m main.m -o macwindowapp

When you open the macwindowapp file, you will see a blank window appear. It
should look like Figure 1-1.

Figure 1-1. Mac application window

CHAPTER 1: Application Development 25

1.10 Adding a User Control to a Mac
Application

Problem
Mac applications need to be able to receive and interpret user intentions. This is
done with user controls like buttons and text fields that you make available for
user input so you can take some action based on what the user wants. You
want to add a button to your app and have something happen when the user
clicks the button.

Solution
To add a button to a Mac app, simply add code to the
applicationDidFinishLaunching delegate method to create the button, set the
necessary button properties, set the action method (the code that executes in
response to a user click), and then add the button to the window. You also want
to code the action method that does something in response to a user click.

How It Works
In a simple Mac application like you coded in Recipe 1.9, you can add a button
to the window to present this control to the user:

button = [[NSButton alloc] initWithFrame:NSMakeRect(230,200,140,40)];
[[self.window contentView] addSubview: button];

This is something that you would do in the app delegate’s didFinishLaunching
delegate method. You can also set up the button UI by setting properties in this
method:

[button setTitle: @"Change Color"];
[button setButtonType:NSMomentaryLightButton];
[button setBezelStyle:NSTexturedSquareBezelStyle];

Buttons use the Target-Action design pattern to respond to user actions like a
button click. Target-Action is a design pattern where the object has the
information necessary to execute an action (a special sort of method). You need
to tell the object which method contains the code that will execute in response
to an action and where the method is located (the target).

[button setTarget:self];
[button setAction:@selector(changeBackgroundColor)];

CHAPTER 1: Application Development 26

Here the target is self (the app delegate) and the method is called
changeBackgroundColor. In the action method where you located the code, you
need to change the background color of the window.

-(void)changeBackgroundColor{
 self.window.backgroundColor = [NSColor blackColor];
}

See Listings 1-19 through 1-21 for the code.

The Code
Listing 1-19. AppDelegate.h

#import <Cocoa/Cocoa.h>

@interface AppDelegate : NSObject <NSApplicationDelegate>

@property (assign) NSWindow *window;

@end

Listing 1-20. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate

@synthesize window = _window;
NSButton *button;

-(void)changeBackgroundColor{
 self.window.backgroundColor = [NSColor blackColor];
}

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification{
 NSLog(@"Mac app finished launching");

 button = [[NSButton alloc] initWithFrame:NSMakeRect(230,200,140,40)];
 [[self.window contentView] addSubview: button];
 [button setTitle: @"Change Color"];
 [button setButtonType:NSMomentaryLightButton];
 [button setBezelStyle:NSTexturedSquareBezelStyle];
 [button setTarget:self];
 [button setAction:@selector(changeBackgroundColor)];
}

@end

CHAPTER 1: Application Development 27

Listing 1-21. main.m

#import "AppDelegate.h"

int main(int argc, char *argv[]){
 NSApplication *macApp = [NSApplication sharedApplication];
 AppDelegate *appDelegate = [[AppDelegate alloc] init];
 macApp.delegate = appDelegate;

 int style = NSClosableWindowMask | NSResizableWindowMask |
 NSTexturedBackgroundWindowMask | NSTitledWindowMask | NSMiniaturizableWindowMask;

 NSWindow *appWindow = [[NSWindow alloc] initWithContentRect:NSMakeRect(50, 50, 600, 400)
 styleMask:style
 backing:NSBackingStoreBuffered
 defer:NO];
 appDelegate.window = appWindow;
[appWindow makeKeyAndOrderFront:appWindow];
 [macApp run];
}

Usage
To compile this code from the command line, make sure to compile the file with
the AppDelegate in addition to the main.m file. For this program, you must also
link to the Cocoa framework since you are using Cocoa to manage your UI
elements for your Mac app.

clang -fobjc -framework Cocoa AppDelegate.m main.m -o macwindowapp

When you open the macwindowapp file, you will see a window like the one in
Figure 1-2.

CHAPTER 1: Application Development 28

Figure 1-2. Mac application window with button

When you click the button, the action method will execute and turn the
window’s background color to black, as you can see in Figure 1-3.

CHAPTER 1: Application Development 29

Figure 1-3. Window after action method executed

1.11 Creating a Mac Window-Based
Application From Xcode

Problem
The recipes so far have simply been using the compiler from the command line
to create Objective-C programs. However, if you want to develop a rich Mac
application, you need to use Xcode to get it ready for the App Store.

NOTE: The Mac App Store is a marketplace where developers can sell
their software directly to users. You can see applications for sale by
other developers by visiting www.apple.com/mac/app-store/.

http://www.apple.com/mac/app-store/

CHAPTER 1: Application Development 30

Solution
Use Xcode to set up your Mac application. You can use Xcode to create
command line apps or Cocoa apps; there are also other options.

NOTE: Cocoa Mac applications have the user interface that
consumers expect (the top menu items, familiar controls, and layouts).
These types of applications require more frameworks, namely Cocoa,
to work as expected. Command-line apps are simplier programs that
are run from the Terminal application. Mac apps that you purchase
from the Mac App Store are always Cocoa apps.

How It Works
Open Xcode and go to File ➤ New ➤ New Project. A dialog box will appear similar
to the one in Figure 1-4.

Figure 1-4. Mac application templates

CHAPTER 1: Application Development 31

Choose Mac OS X ➤ Application ➤ Cocoa Application to set up a Mac application.
Click Next and you will be directed to another dialog box where you can specify
some initial settings (see Figure 1-5).

Figure 1-5. Application settings

See Table 1-3 for some more detail about all the options on this screen.

Table 1-3. Property Attributes

Option Description

Product Name The name of your Xcode project and the default name of your Mac
app.

Company Identifier Identifies your company (usually your domain name reversed).

Class Prefix Xcode will automatically add a prefix to the file templates for this
project.

App Store Category Specifies the category for your app in the App Store.

CHAPTER 1: Application Development 32

Option Description

Create Document-
Based Application

Include the setup that you need to work with an NSDocument-
based application.

Document Extension Document extension associated with this app (for document-based
apps).

Use Core Data Automatically includes the Core Data Stack to be used for data
persistence.

Use Automatic
Reference Counting

Enables ARC for memory management. Use ARC unless you rather
manage memory yourself.

Include Unit Test Automatically includes setup that you need for unit testing your app.

Include Spotlight
Importer

An option for document-based applications to allow the app’s
document files to be referenced by Spotlight.

After you choose your initial settings, click Next to choose your project location.
Here you may choose to use the version control system Git locally.

Once you do all this, Xcode will automatically open with the files that you need
all ready to go. Your code files and other resources will be located on the left.
Click on any code file to see the code in the editor: the key code files will look
similar to what you have worked on in previous recipes: AppDelegate.h,
AppDelegate.m, and main.m (you can see that one by expanding the Supporting
Files folder).

You will also find other resources used for application development like the
MainMenu.xib file (used with Interface Builder), the Frameworks folder (linked
frameworks), and your InfoPlist file (a keyed list of your app settings). See
Listings 1-22 through 1-24 for the code.

The Code
Listing 1-22. AppDelegate.h

#import <Cocoa/Cocoa.h>

@interface AppDelegate : NSObject <NSApplicationDelegate>

@property (assign) IBOutlet NSWindow *window;

@end

CHAPTER 1: Application Development 33

Listing 1-23. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate

@synthesize window = _window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification{
 // Insert code here to initialize your application
}

@end

Listing 1-24. main.m

#import <Cocoa/Cocoa.h>

int main(int argc, char *argv[]){
 return NSApplicationMain(argc, (const char **)argv);
}

Usage
You can test this initial setup by clicking the Run button in the top left hand
corner of Xcode. Xcode will gather all your code and other resources, link them
to the frameworks that you need, and then launch the application. The Mac app
window will appear with a menu aready set up and ready for use.

You can add controls and other UI with Objective-C to a Mac app by following
the example from Recipe 1.10 or you can use the tools that Xcode provides for
creating the UI.

1.12 Creating an iOS Application from Xcode

Problem
You want to build an application that can run on the iPhone, the iPad, or both.
These applications follow similar patterns as Mac apps but they require different
frameworks for the user interface.

CHAPTER 1: Application Development 34

Solution
Use Xcode to set up your iOS application. You can use Xcode to create simple
iOS apps with only one screen or richer applications with navigation, tabs, and
page views. You can also specify whether your app will run on the iPhone, the
iPad, or both. Xcode comes with templates for most of the situtations you will
find.

How It Works
Open Xcode and go File ➤ New ➤ New Project. A dialog box will appear similar to
the one in Figure 1-6.

Figure 1-6. iOS application templates

Choose iOS ➤ Application ➤ Single View Application to set up an iOS application.
Click Next and you will be directed to another dialog box where you can specify
some initial settings (see Figure 1-7).

CHAPTER 1: Application Development 35

Figure 1-7. iOS application settings

See Table 1-4 for some more detail about all the options on this screen.

Table 1-4. Property Attributes

Option Description

Product Name The name of your Xcode project and the default name of your iOS
app.

Company Identifier Identifies your company (usually your domain name reversed).

Class Prefix Xcode will automatically add a prefix to the file templates for this
project.

Device Family Set up project for iPhone, iPad, or Universal (both iPhone and iPad).

Use Automatic
Reference Counting

Enables ARC for memory management. Use ARC unless you rather
manage memory yourself.

Include Unit Tests Automatically includes setup that you need for unit testing your app.

CHAPTER 1: Application Development 36

After you choose your initial settings, click Next to choose your project location.
Here you may choose to use the version control system Git locally.

NOTE: Git is a version control system that is now integrated with
Xcode. If you choose to use version control, all the changes will be
tracked and you will be able to compare all the versions of the code
files that you create. Using Git version control is out of the scope of
this book, but it can be a useful tool as you start to create production
apps.

Once you do all this, you Xcode will automatically open up with the files that you
need all ready to go. Your code files and other resources will be located on the
left. Click on any code file to see the code in the editor. The key code files will
look similar to what you have worked on in previous recipes: AppDelegate.h,
AppDelegate.m, and main.m (you can see that one by expanding the Supporting
Files folder). Since this is a single view application, you will also have code files
for ViewController.h, ViewController.m, and ViewController.xib (an Interface
Builder file).

iOS applications are set up in much the same way as Mac applications: they
have an application class (called UIApplication for iOS) and an app delegate.
The app delegate must adopt the UIApplicationDelegate protocol and have a
window (called UIWindow for iOS). App delegates also have some delegate
method that act as notifications for key events in the app lifecycle such as
applicationDidFinishingLauchingWithOptions.

In the Single View Application template, the window and other user interface
elements are set up in the app delegate’s
applicationDidFinishingLauchingWithOptions delegate method.

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.viewController = [[ViewController alloc] initWithNibName:@"ViewController"
 bundle:nil];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

This template is a little bit different than what you might remember from the Mac
Cocoa Application template (Recipe 1.11). Namely, here you are using a class

CHAPTER 1: Application Development 37

called ViewController (a subclass of UIViewController) and adding this to the
window’s rootViewController property.

This means that the screen that users see first is managed by this view
controller. If you want to make changes to the app’s user interface, you must do
so in this view controller.

You will find other resources used for application development like the
Frameworks folder (linked frameworks) and your InfoPlist file (a keyed list of
your app settings). See Listings 1-25 through 1-29 for the code.

The Code
Listing 1-25. AppDelegate.h

#import <UIKit/UIKit.h>

@class ViewController;

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;
@property (strong, nonatomic) ViewController *viewController;

@end

Listing 1-26. AppDelegate.m

#import "AppDelegate.h"
#import "ViewController.h"

@implementation AppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] 
bounds]];
 self.viewController = [[ViewController alloc] 
initWithNibName:@"ViewController" bundle:nil];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

@end

CHAPTER 1: Application Development 38

Listing 1-27. main.m

#import <UIKit/UIKit.h>
#import "AppDelegate.h"

int main(int argc, char *argv[]){
 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate
 class]));
 }
}

Listing 1-28. ViewController.h

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@end

Listing 1-29. ViewController.h

#import "ViewController.h"

@implementation ViewController

-(void)viewDidLoad{
 [super viewDidLoad];
}

@end

Usage
You can test this initial setup by clicking the Run button in the top left hand
corner of Xcode. Xcode will gather all your code and other resources, link them
to the frameworks that you need, and then launch the application. The iOS app
will appear in the iOS Simulator (a special program to test iOS apps on the Mac),
as shown in Figure 1-8.

CHAPTER 1: Application Development 39

Figure 1-8. iOS Simulator with single view application

You can add controls and other UI with Objective-C to an iOS app (see recipes
1.13 and 1.14) or you can use the tools that Xcode provides for creating the UI.

1.13 Adding User Controls to an iOS
Application with Target-Action

Problem
Now that you have an iOS application set up, you would like to add some user
controls.

Solution
While you can add controls like buttons and labels to the window like you did
with the Mac application in Recipe 1.11, it’s more common to add controls to
views, which are in turn presented in the application window. In this recipe, you
are going to add a label and a button to the single view application from
Recipe 1.12.

CHAPTER 1: Application Development 40

How It Works
Typically, you can think of the controls you want to use on a view controller as
properties and follow the same rules as in Recipe 1.4. Then you instantiate these
properties in the viewDidLoad view controller delegate method. Finally, you code
any necessary action methods and then associated these action methods with
the user controls using the Target-Action design pattern.

In this Recipe, you are going to add a UILabel and UIButton to the view
controller that came with the Xcode template. This is what these property
forward declarations look like:

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property(strong) UILabel *myLabel;
@property(strong) UIButton *myButton;

@end

In the implemenation, you use @synthesize to generate the getters and setters
and set these controls to nil when the view is unloaded.

#import "ViewController.h"

@implementation ViewController
@synthesize myLabel, myButton;

- (void)viewDidLoad{
 [super viewDidLoad];

}

@end

The action method needs a forward declaration in the view controller header file.

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property(strong) UILabel *myLabel;
@property(strong) UIButton *myButton;

-(void)updateLabel;

@end

This action method can be implemented like this to update the label:

CHAPTER 1: Application Development 41

-(void)updateLabel{
 self.myLabel.text = @"The button was pressed...";
}

This is what you want to happen when the user presses the button. Finish the
label and button by instantiating them, setting their properties, and adding them
to the view. The button also needs to use Target-Action, so hook up the
updateLabel action method to the button’s touch up event. All of this happens in
the view controllers viewDidLoad event.

- (void)viewDidLoad{
 [super viewDidLoad];

 //Create label
 self.myLabel = [[UILabel alloc] init];
 self.myLabel.frame = CGRectMake(20, 20, 280, 40);
 self.myLabel.textAlignment = UITextAlignmentCenter;
 self.myLabel.backgroundColor =[UIColor clearColor];
 self.myLabel.text = @"Press the button";
 [self.view addSubview:self.myLabel];

 //Create button
 self.myButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 self.myButton.frame = CGRectMake(110, 200, 100, 50);

 //Add the pressButton action method
 [self.myButton addTarget:self
 action:@selector(updateLabel)
 forControlEvents:UIControlEventTouchUpInside];
 [self.myButton setTitle:@"Press" forState:UIControlStateNormal];

 [self.view addSubview:self.myButton];

}

See Listings 1-30 and 1-31 for the code.

The Code
Listing 1-30. ViewController.h

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property(strong) UILabel *myLabel;
@property(strong) UIButton *myButton;

-(void)updateLabel;

CHAPTER 1: Application Development 42

@end

Listing 1-31. ViewController.m

#import "ViewController.h"

@implementation ViewController
@synthesize myLabel, myButton;

- (void)viewDidLoad{
 [super viewDidLoad];

 //Create label
 self.myLabel = [[UILabel alloc] init];
 self.myLabel.frame = CGRectMake(20, 20, 280, 40);
 self.myLabel.textAlignment = UITextAlignmentCenter;
 self.myLabel.backgroundColor =[UIColor clearColor];
 self.myLabel.text = @"Press the button";
 [self.view addSubview:self.myLabel];

 //Create button
 self.myButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 self.myButton.frame = CGRectMake(110, 200, 100, 50);

 //Add the pressButton action method
 [self.myButton addTarget:self
 action:@selector(updateLabel)
 forControlEvents:UIControlEventTouchUpInside];
 [self.myButton setTitle:@"Press" forState:UIControlStateNormal];
 [self.view addSubview:self.myButton];

}

-(void)updateLabel{
 self.myLabel.text = @"The button was pressed...";
}

@end

Usage
You can test this initial setup by clicking the Run button in the top left hand
corner of Xcode. Xcode will gather all your code and other resources, link them
to the frameworks that you need, and then launch the application. The iOS app
will appear in the iOS Simulator (a special program to test iOS apps on the Mac),
as shown in Figure 1-9.

CHAPTER 1: Application Development 43

Figure 1-9. iOS Simulator with single view application with user controls

When you touch the button, the action method will execute and update the label
with the text ‘‘The button was pressed…’’.

1.14 Adding User Controls to an iOS
Application with Delegation

Problem
While many user controls follow the Target-Action pattern in the same way as
the button did in Recipe 1.13, other user controls use the Delegation design
pattern. The procedure with working with controls like this is very different, so
you would like to know how to do it.

CHAPTER 1: Application Development 44

Solution
Controls that use Delegation are added to the view controller just like the button
and label, so you need properties to reference these controls. The control in this
recipe that uses Delegation is the UIPickerView. This control presents a list of
selections to users and requires a delegate, which is usually the view controller.
The delegate is responsible for providing the content that appears on the picker
view and taking action when the user makes a selection.

How It Works
Typically, you can think of the controls you want to use on a view controller as
properties and follow the same rules as in Recipe 1.4. Then you instantiate these
properties in the viewDidLoad view controller method.

Controls that use Delegation must use a delegate to adopt the required
protocols. For this Recipe, you are using a UIPickerView, so your view controller
needs to adopt two protocols: UIPickerViewDelegate and
UIPickerViewDataSource.

The view controller needs to implement two required delegate methods that let
the picker view know how many components (another name for columns) and
rows to present.

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView{
 return 1;
}

- (NSInteger)pickerView:(UIPickerView *)pickerView 
numberOfRowsInComponent:(NSInteger)component{
 return 3;
}

These two methods configure your picker view to present one component and
three rows. When the picker view needs to know what content to put in each
row, it aska its delegate for that information as well. Your view controller, as the
delegate, answers with the delegate method titleForRow, like this:

-(NSString *)pickerView:(UIPickerView *)pickerView titleForRow:(NSInteger)row 
forComponent:(NSInteger)component{
 return [NSString stringWithFormat:@"row number %i", row];
}

This delegate method populates each row with text that differs slightly
depending on the row. Finally, the delegate helps you out when a user makes a
selection with the picker view via the didSelectRow delegate method.

CHAPTER 1: Application Development 45

- (void)pickerView:(UIPickerView *)pickerView didSelectRow:(NSInteger)row 
inComponent:(NSInteger)component{
 self.myLabel.text = [NSString stringWithFormat:@"row number %i", row];
}

Once these delegate methods are set up, you can instantiate the picker view,
set the picker view’ delegate property to the view controller, and then add the
picker view to the view. This is the code where you do this:

self.myPickerView = [[UIPickerView alloc]initWithFrame:CGRectMake(0, 250, 325, 250)];

self.myPickerView.showsSelectionIndicator = YES;
self.myPickerView.delegate = self;

[self.view addSubview:self.myPickerView];

See Listings 1-32 and 1-33 for the code.

The Code
Listing 1-32. ViewController.h

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController<UIPickerViewDelegate,
 UIPickerViewDataSource>

@property(strong) UILabel *myLabel;
@property(strong) UIPickerView *myPickerView;

@end

Listing 1-33. ViewController.m

#import "ViewController.h"

@implementation ViewController
@synthesize myLabel, myPickerView;

- (void)viewDidLoad{
 [super viewDidLoad];

 //Create label
 self.myLabel = [[UILabel alloc] init];
 self.myLabel.frame = CGRectMake(20, 20, 280, 40);
 self.myLabel.textAlignment = UITextAlignmentCenter;
 self.myLabel.backgroundColor =[UIColor clearColor];
 self.myLabel.text = @"Make a selection";
 [self.view addSubview:self.myLabel];

CHAPTER 1: Application Development 46

 //Create picker view
 self.myPickerView = [[UIPickerView alloc]initWithFrame:CGRectMake(0, 250, 325, 250)];

 self.myPickerView.showsSelectionIndicator = YES;
 self.myPickerView.delegate = self;

 [self.view addSubview:self.myPickerView];

}

- (NSInteger)numberOfComponentsInPickerView:(UIPickerView *)pickerView{
 return 1;
}

- (NSInteger)pickerView:(UIPickerView *)pickerView 
numberOfRowsInComponent:(NSInteger)component{
 return 3;
}

-(NSString *)pickerView:(UIPickerView *)pickerView titleForRow:(NSInteger)row 
forComponent:(NSInteger)component{
 return [NSString stringWithFormat:@"row number %i", row];
}

- (void)pickerView:(UIPickerView *)pickerView didSelectRow:(NSInteger)row 
inComponent:(NSInteger)component{
 self.myLabel.text = [NSString stringWithFormat:@"row number %i", row];
}

@end

Usage
You can test this initial setup by clicking the Run button in the top left hand
corner of Xcode. Xcode will gather all your code and other resources, link them
to the frameworks that you need, and then launch the application. The iOS app
will appear in the iOS Simulator (a special program to test iOS apps on the Mac),
as shown in Figure 1-10.

CHAPTER 1: Application Development 47

Figure 1-10. iOS Simulator with single view application with a picker view

All the content in the picker view comes from the delegate view controller. When
you make a selection, the delegate is responsible for updating the view.

2
Chapter

Working With Strings
and Numbers
This chapter covers how to work with strings and numbers using the Foundation
framework with Objective-C.

The recipes in this chapter will show you how to:

 Create a string object using NSString

 Read strings from text files on Mac and iOS

 Write strings to text files on Mac and iOS

 Compare strings

 Manipulate strings

 Search through strings

 Create localized strings

 Convert between numbers and strings

 Format numbers for currency and other presentations

NOTE: The recipes in this chapter may be used with any Mac or iOS
app that links to the Foundation framework. Follow one of the recipes
from Chapter 1, such as 1.1, to set up an app to test out the code in
this chapter. Be sure to locate the code in the main function unless the
recipe specifies another location for the code.

CHAPTER 2: Working With Strings and Numbers 50

2.1 Creating a String Object

Problem
Most of your programs will need to represent strings, or arrays of characters. It’s
possible to use the C method of representing strings, but it’s much easier to use
an object-oriented approach to manage them. To get started using strings with
Objective-C, you must first instantiate string objects.

Solution
Use the Foundation NSString class constructors to create string objects that
you can use in your program. NSString comes with a set of constructors that
starts with init and a set of functions that start with string and return string
objects. You may use any of these to create string objects.

How It Works
Typically, you create strings by simply assigning an NSString object to a string
that you typed out, preceded by the @ symbol. The @ symbol tells the compiler
that this is an Objective-C entity; when the @ symbol is in front of quotes, the
complier knows that this is an Objective-C NSString.

Here’s an example of creating a string object:

NSString *myString1 = @"My String One";

At times you may need to instantiate a string object from a C array of UTF8-
encoded bytes. NSString has a function that will return an instance of NSString
given a string encoded in this way.

NSString *myString2 = [NSString stringWithUTF8String:"My String Two"];

As you work more with NSString, you will see that there are many functions that
begin with the word string that return an NSString instance. There are also
many NSString constructors that begin with init that have similar names to the
string functions and basically do the same thing. For instance, you could get an
NSString instance similar to the previous one using alloc and
initWithUTF8String, like this:

NSString *myString3 = [[NSString alloc] initWithUTF8String:"My String Three"];

CHAPTER 2: Working With Strings and Numbers 51

These two ways of returning NSString instances are helpful when you are
managing memory manually. The functions that begin with the word string all
return autoreleased objects, which means they should be treated as temporary.
NSString objects return with alloc and init are retained; they must be released
manually when you are finished with them. If you are using automatic reference
counting (ARC), you don’t need to worry about this; you may use these two
methods interchangeably.

There are a few more constructors and functions that return string instances.
One of the most useful is the stringWithFormat function. This function makes it
really easy to compose a new string by substituting values into placeholders.
You may use the same placeholders that you used in Recipe 1.2 to substitute
values into the strings that were written to the console window. Here is an
example of stringWithFormat:

int number = 4;
NSString *myString4 = [NSString stringWithFormat:@"My String %i", number];

The Code
Here are some examples of how you may experiment with NSString
constructors in a simple Mac application:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSString *myString1 = @"My String One";
 NSLog(@"myString1 = %@", myString1);

 NSString *myString2 = [NSString stringWithUTF8String:"My String Two"];
 NSLog(@"myString2 = %@", myString2);

 NSString *myString3 = [[NSString alloc] initWithUTF8String:"My String Three"];
 NSLog(@"myString3 = %@", myString3);

 int number = 4;
 NSString *myString4 = [NSString stringWithFormat:@"My String %i", number];
 NSLog(@"myString4 = %@", myString4);

 }
 return 0;
}

CHAPTER 2: Working With Strings and Numbers 52

Usage
To use this code, build and run your Mac app from Xcode. You can view the
results of the strings in the console window.

myString1 = My String One
myString2 = My String Two
myString3 = My String Three
myString4 = My String 4

2.2 Reading Strings from Files on a Mac

Problem
You would like to use content stored on your file system to create and use string
objects in your app.

Solution
To create string objects from text files, you need two things: an error object and
the complete file path name of the text file. Once you have these in place, you
may use the NSString function stringWithContentsOfFile:encoding:error: to
return an NSString object filled with the contents of the text file.

How It Works
The NSString class will attempt to read the text file that you specify. If the
operation is successful, a string object with the contents of the text file will be
returned. If the operation is not successful, nil will be returned and an error
object will be generated that you can inspect to find the problem.

The first thing you need is a reference to the file path name. This file path name
is referencing a file named textfile.txt in the Shared folder on my Mac.

NSString *filePathName = @"/Users/Shared/textfile.txt";

CHAPTER 2: Working With Strings and Numbers 53

NOTE: Mac applications can work with the hardcoded file path names
to access any file on your Mac. However, iOS applications are
sandboxed and so only have access to files that come with their app
bundle or are in the iOS app’s documents directory (see Recipe 2.3).

Next, you want an error object to hold error reporting data that you’ll need if the
operation to read the file fails.

NSError *fileError;

The error object doesn’t need to be instantiated here because you pass the
error object to the function by reference, and the function will do all the
necessary setup work on the error object for you.

Finally, you use the NSString function to return the string object to use, like so:

NSString *textFileContents = [NSString stringWithContentsOfFile:filePathName
 encoding:NSASCIIStringEncoding
 error:&fileError];

The string object will be either empty or filled with the contents of the text file.
The first parameter is the file path name and the second requires you to specify
how the file was encoded. The last parameter takes the error object. The & in
front of fileError means that the object is being passed by reference so you
can test the error object to make sure everything worked as expected.

Before you use the string, you should query the error object to make sure that
an error did not occur. Test the error object’s code property to see that the error
code is 0. If it is, go ahead and use the string; otherwise you might want to
report the error in some way or try an alternate file.

if(fileError.code == 0)
 NSLog(@"textfile.txt contents: %@", textFileContents);
else
 NSLog(@"error(%ld): %@", fileError.code, fileError.description);

The Code
#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {
 NSString *filePathName = @"/Users/Shared/textfile.txt";
 NSError *fileError;

CHAPTER 2: Working With Strings and Numbers 54

 NSString *textFileContents = [NSString stringWithContentsOfFile:filePathName
 encoding:NSASCIIStringEncoding
 error:&fileError];
 if(fileError.code == 0)
 NSLog(@"textfile.txt contents: %@", textFileContents);
 else
 NSLog(@"error(%ld): %@", fileError.code, fileError.description);

 }

 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. You can view the text
file content or the error object contents in the console window.

textfile.txt contents: This string comes from a local text file.

2.3 Reading Strings from Files on iOS

Problem
You would like to use content packaged with your iOS app to create and use
string objects in your app.

Solution
iOS apps can’t read text files from your Mac like Mac command line apps can.
However, you can include text files in your iOS app bundle to make them
available for use when your app runs. You can get references to any text files
that you want in your app bundle or your app’s documents directory.

How It Works
To include text files in iOS apps, you need to drag the text file into the
Supporting Files folder in Xcode. When the dialog box pops up, check the box
that says Copy items into destination group’s folder (if needed). Doing this
ensures that the text file will be included with the bundle that will be installed in
the iOS Simulator and included in the App Store app.

CHAPTER 2: Working With Strings and Numbers 55

The NSString class will attempt to read in the text file that you specify. If the
operation is successful, a string object with the contents of the text file will be
returned. If the operation is not successful, nil will be returned and an error
object will be generated that you can inspect to locate the problem.

The first thing you need is a reference to the file path name. In iOS, you need to
get a reference to the bundle folder. Since this is a dynamic folder path, you
can’t hardcode the folder pathname in advance. However, you can use
[[NSBundle mainBundle] resourcePath] to get a reference to the folder where
all the resources are included. Once you have that, you can use the
stringWithFormat method to build a reference to your text file.

NSString *bundlePathName = [[NSBundle mainBundle] resourcePath];
NSString *filePathName = [NSString stringWithFormat:@"%@/textfile.txt", 
bundlePathName];

The file path name here is referencing a file named textfile.txt in the bundle’s
resource folder in the iOS app.

You also need an error object to hold all error reporting data in case the
operation to read the file fails.

NSError *fileError;

The error object doesn’t need to be instantiated here because you pass the
error object to the function by reference and the function does all the necessary
setup work on the error object for you.

Finally, use the NSString function to return the string object to use, like so:

NSString *textFileContents = [NSString stringWithContentsOfFile:filePathName
 encoding:NSASCIIStringEncoding
 error:&fileError];

The string object will be either empty or filled with the contents of the text file.
The first parameter is the file path name and the second requires you to specify
how the file was encoded. The last parameter takes the error object. The & in
front of fileError means that the object is being passed by reference so you
can test the error object to make sure everything worked as expected.

Before you use the string, you should query the error object to find out if an error
occurred. If the code property is 0, you are ok. If everything looks good, go
ahead and use the string; otherwise, you might want to report the error in some
way or try an alternate file.

if(fileError.code == 0)
 NSLog(@"textfile.txt contents: %@", textFileContents);
else
 NSLog(@"error(%ld): %@", fileError.code, fileError.description);

CHAPTER 2: Working With Strings and Numbers 56

See Listing 2-1 for the code.

The Code
Listing 2-1. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate
@synthesize window = _window;

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *bundlePathName = [[NSBundle mainBundle] resourcePath];

 NSString *filePathName = [NSString stringWithFormat:@"%@/textfile.txt",
 bundlePathName];

 NSError *fileError;

 NSString *textFileContents = [NSString stringWithContentsOfFile:filePathName
 encoding:NSASCIIStringEncoding
 error:&fileError];

 if(fileError.code == 0)
 NSLog(@"textfile.txt contents: %@", textFileContents);
 else
 NSLog(@"error(%d): %@", fileError.code, fileError.description);

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] 
bounds]];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

@end

Usage
To try this code out for yourself, you will need an iOS app; see Recipe 1.12 for
instructions. The code in Listing 2-1 is what you should have in your app
delegate code file. The applicationDidFinishLaunchingWithOptions delegate
method is where the significant code is located for the purposes of this recipe.

CHAPTER 2: Working With Strings and Numbers 57

Build and run your app with Xcode and view the console to see the contents of
the text file printed to the log.

textfile.txt contents: This string comes from a local text file.

2.4 Writing Strings to Files on a Mac

Problem
You would like to be able to store text content generated from your Mac app on
the file system to be used later or by other programs.

Solution
NSString comes with built-in methods to write the contents of string objects to
your Mac’s filesystem. Simply send the message
writeToFile:atomically:encoding:error: to a string object and the file
pathname to store the contents in the string object.

How It Works
You can send the message writeToFile:atomically:encoding:error: to save
the contents of a string to the filesystem. If the operation isn’t successful, an
error object will be generated that you can inspect to locate the problem.

The first thing you need is a reference to the file path name. This file path name
is referencing a file named textfile.txt in the Shared folder on my Mac.

NSString *filePathName = @"/Users/Shared/textfile.txt";

CHAPTER 2: Working With Strings and Numbers 58

NOTE: Mac applications can work with the hardcoded file path names
to access any file on your Mac. However, iOS applications are
sandboxed and so only have access to files that come with their app
bundle or are in the iOS app’s documents directory (see Recipe 2.3).

You also want an error object to hold all error reporting data that you’ll need if
the operation to read the file fails.

NSError *fileError;

The error object doesn’t need to be instantiated here because you pass the
error object to the function by reference and the function does all the necessary
setup work on the error object for you.

You need some content in the string to save to the file that will look something
like this:

NSString *textFileContents = @"Content generated from a Mac program.";

Finally, send the message writeToFile:atomically:encoding:error: to save
the contents of a textFileContents to the filesystem.

[textFileContents writeToFile:filePathName
 atomically:YES
 encoding:NSStringEncodingConversionAllowLossy
 error:&fileError];

The first parameter in this message is the full name of the file where you want to
store your string contents. The second parameter, atomically, refers to whether
you would like to write out the contents to an auxiliary file first. When you pass
YES, this auxiliary file is used and you’re guaranteed that the data will not be
corrupted even if the system crashes. The encoding parameter gives you some
control over how the string is stored on the system and the error parameter is
used to report back any errors that happen during the write.

Before you move on in your program, you should query the error object to make
sure everything looks good. If its code is 0, the operation was successful. If so,
go ahead and use the string; if not, you might want to report the error in some
way or try an alternate file.

if(fileError.code == 0)
 NSLog(@"textfile.txt contents: %@", textFileContents);
else
 NSLog(@"error(%ld): %@", fileError.code, fileError.description);

See Listing 2-2 for the code.

CHAPTER 2: Working With Strings and Numbers 59

The Code
Listing 2-2. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]){

 @autoreleasepool {
 NSString *filePathName = @"/Users/Shared/textfile.txt";
 NSError *fileError;
 NSString *textFileContents = @"Content generated from a Mac program.";

 [textFileContents writeToFile:filePathName
 atomically:YES
 encoding:NSStringEncodingConversionAllowLossy
 error:&fileError];

 if(fileError.code == 0)
 NSLog(@"textfile.txt was written successfully with these contents: %@",
 textFileContents);
 else
 NSLog(@"error(%ld): %@", fileError.code, fileError.description);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. You can view the text
file contents or the error object contents in the console window. You should also
be able to open the text file with any text editor to see the contents of the string
object that you wrote out to the file system.

2.5 Writing Strings To Files On iOS

Problem
You would like to be able to store text content generated from your iOS app in
the app’s documents directory to be used later or by other programs.

CHAPTER 2: Working With Strings and Numbers 60

Solution
iOS apps can’t write text files to your Mac like Mac command line apps can.
However, you don’t get a sandboxed area in your iOS application where you can
write to when needed. The place where you store your own content in iOS is
called the documents directory, and you will need a reference to this dynamic
directory to store your string objects.

NOTE: While you may read text files from the bundle resource
directory as discussed in Recipe 2.3, you can’t write to any files in that
directory. If you need to work on a file in your app, you must either
copy the file to your documents directory or simply save the updated
version in the documents directory.

How It Works
You may send the message writeToFile:atomically:encoding:error: to save
the contents of a string to the documents directory. If the operation is not
successful, an error object will be generated that you can inspect to locate the
problem.

The first thing you need is the documents directory. It is dynamically generated
for each app install so you can’t hardcode it. However, you can use this function
to get a reference to the documents directory:

NSString *documentsDirectory = [NSSearchPathForDirectoriesInDomains
(NSDocumentDirectory, NSUserDomainMask, YES) lastObject];

Next, you need to construct a reference to the file path name that you would like
in the documents directory.

NSString *filePathName = [NSString stringWithFormat:@"%@/textfile.txt",
 documentsDirectory];

This file path name is referencing a file named textfile.txt in the iOS app’s
document directory.

You also want an error object to hold any error reporting data that you’ll need in
case the operation to read the file fails.

NSError *fileError;

CHAPTER 2: Working With Strings and Numbers 61

The error object doesn’t need to be instantiated here because you pass the
error object to the function by reference and the function does all the necessary
setup work on the error object for you.

You need some content in the string to save to the file that will look something
like this:

NSString *textFileContents = @"Content generated from an iOS app.";

Finally, send the message writeToFile:atomically:encoding:error: to save
the contents of a textFileContents to the filesystem.

[textFileContents writeToFile:filePathName
 atomically:YES
 encoding:NSStringEncodingConversionAllowLossy
 error:&fileError];

The first parameter in this message is the full name of the file where you want to
store your string contents. The second parameter, atomically, refers to whether
you would like to write out the contents to an auxiliary file first. When you pass
YES, this auxiliary file is used and you’re guaranteed that the data will not be
corrupted even if the system crashes. The encoding parameter gives you some
control over how the string is stored on the system and the error parameter is
used to report back any errors that happen during the write.

Before you move on in your program, you should query the error object. If its
code is 0, the operation was successful. If everything looks good, go ahead and
use the string; otherwise you might want to report the error in some way or try
an alternate file.

if(fileError.code == 0)
 NSLog(@"textfile.txt was written successfully with these contents: %@",
 textFileContents);
else
 NSLog(@"error(%d): %@", fileError.code, fileError.description);

See Listing 2-3 for the code.

The Code
Listing 2-3. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate

@synthesize window = _window;

CHAPTER 2: Working With Strings and Numbers 62

- (BOOL)application:(UIApplication *)application
 didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 NSString *documentsDirectory = [NSSearchPathForDirectoriesInDomains
(NSDocumentDirectory, NSUserDomainMask, YES) lastObject];

 NSString *filePathName = [NSString stringWithFormat:@"%@/textfile.txt",
 documentsDirectory];

 NSError *fileError;

 NSString *textFileContents = @"Content generated from an iOS app.";

 [textFileContents writeToFile:filePathName
 atomically:YES
 encoding:NSStringEncodingConversionAllowLossy
 error:&fileError];

 if(fileError.code == 0)
 NSLog(@"textfile.txt was written successfully with these contents: %@",
 textFileContents);
 else
 NSLog(@"error(%d): %@", fileError.code, fileError.description);

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

@end

Usage
Locate this code in your iOS app delegate in the
applicationDidFinishLaunchingWithOptions delegate method. Build and run
your app with Xcode and view the console to see the contents of the text file
printed to the log. If a problem occurred during the writing process, you will see
the details of the error reported to the log.

Your app now has the contents of the string object stored in the documents
directory and may be used later on by referencing the new text file in documents
directory.

CHAPTER 2: Working With Strings and Numbers 63

2.6 Comparing Strings

Problem
You would like to be able to see if two strings have the same value, but you
can’t simply use the == comparison operator because strings are objects.

Solution
Use the NSString method isEqualToString: to get a Boolean value that
indicates whether the string is the same as the string that you pass as a
parameter. You may use this in if statements as needed.

How It Works
When you have two strings that you want to compare, send the
isEqualToString: message to the first string and pass the second string as a
parameter. A Boolean value will be returned that you can use to evaluate
statements.

BOOL isEqual = [myString1 isEqualToString:myString2];

You can also find out if a string has a matching suffix or prefix. For instance, if
you had a string ‘‘Mr. John Smith, MD’’ you could find out whether the string
had the prefix ‘‘Mr’’ by sending the hasPrefix message to the string.

NSString *name = @"Mr. John Smith, MD";

BOOL hasMrPrefix = [name hasPrefix:@"Mr"];

Similarly, you can find out if the same string has the suffix ‘‘MD’’ by sending the
hasSuffix message.

BOOL hasMDSuffix = [name hasSuffix:@"MD"];

Finally, you can compare a substring by using the NSRange composite type to
define the starting point and length of the substring in question. You first use the
NSRange information to return the substring and then use that to test if the strings
are the same.

NSString *alphabet = @"ABCDEFGHIJKLMONPQRSTUVWXYZ";

NSRange range = NSMakeRange(2, 3);

BOOL lettersInRange = [[alphabet substringWithRange:range] isEqualToString:@"CDE"];

CHAPTER 2: Working With Strings and Numbers 64

See Listing 2-4 for the code.

The Code
Listing 2-4. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]){

 @autoreleasepool {

 NSString *myString1 = @"A";
 NSString *myString2 = @"B";
 NSString *myString3 = @"A";

 BOOL isEqual = [myString1 isEqualToString:myString2];

 if(isEqual)
 NSLog(@"%@ is equal to %@", myString1, myString2);
 else
 NSLog(@"%@ is not equal to %@", myString1, myString2);

 if([myString1 isEqualToString:myString2])
 NSLog(@"%@ is equal to %@", myString1, myString2);
 else
 NSLog(@"%@ is not equal to %@", myString1, myString2);

 if([myString1 isEqualToString:myString3])
 NSLog(@"%@ is equal to %@", myString1, myString3);
 else
 NSLog(@"%@ is not equal to %@", myString1, myString3);

 NSString *name = @"Mr. John Smith, MD";

 BOOL hasMrPrefix = [name hasPrefix:@"Mr"];

 if(hasMrPrefix)
 NSLog(@"%@ has the Mr prefix", name);
 else
 NSLog(@"%@ doesn't have the Mr prefix", name);

 BOOL hasMDSuffix = [name hasSuffix:@"MD"];

 if(hasMDSuffix)
 NSLog(@"%@ has the MD suffix", name);
 else
 NSLog(@"%@ doesn't have the MD suffix", name);

CHAPTER 2: Working With Strings and Numbers 65

 NSString *alphabet = @"ABCDEFGHIJKLMONPQRSTUVWXYZ";

 NSRange range = NSMakeRange(2, 3);

 BOOL lettersInRange = [[alphabet substringWithRange:range] 
isEqualToString:@"CDE"];

 if(lettersInRange)
 NSLog(@"The letters CDE are in alphabet starting at position 2");
 else
 NSLog(@"The letters CDE aren't in alphabet starting at position 2");

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. Check the console to
see the results of the various comparisons. Your output should look like this:

A is not equal to B
A is not equal to B
A is equal to A
Mr. John Smith, MD has the Mr prefix
Mr. John Smith, MD has the MD suffix
The letters CDE are in alphabet starting at position 2

Change the various strings to see how these comparisons work. See if you can
test correctly in the cases when the strings are not equal as well as equal.

2.7 Manipulating Strings

Problem
You would like your app to be able to make changes to your string content, but
NSString objects are immutable and thus can’t be altered in any way.

Solution
Use the NSMutableString class when you want to be able to change the
contents of your string. NSMutableString is a subclass of NSString and so you

CHAPTER 2: Working With Strings and Numbers 66

can use it in the same way as NSString. However, when you work with
NSMutableString you can append, insert, replace, and remove substrings.

How It Works
You can create an NSMutableString with the same constructors that you use for
strings, but make sure to send the message to the NSMutableString class and
not the NSString class. NSMutableString does come with one unique
constructor that lets you set the initial capacity of the string.

NSMutableString *myString = [[NSMutableString alloc] initWithCapacity:26];

You are not limited to the number of characters based on this constructor; you
are simply passing a hint to the compiler to help manage the string more
efficiently. Once you have a mutable string, you can set the string content by
sending the setString message to the mutable string.

[myString setString:@"ABCDEFGHIJKLMONPQRSTUVWXYZ"];

To append a string to your mutable string, send the appendString message.

[myString appendString:@", 0123456789"];

This will append the string to the end of your mutable string. However, if you
want to insert characters into another location of your mutable string, you need
to specify the location where the string will be inserted and use the
insertString message.

[myString insertString:@"abcdefg, "
 atIndex:0];

You can also delete characters from your mutable string by sending the
deleteCharactersInRange message with the range you would like to delete as a
parameter. Use the NSMakeRange function to define a range with the starting
location and length of the range of characters that you would like to delete.

NSRange range = NSMakeRange(9, 3);

[myString deleteCharactersInRange:range];

NSMutableString also comes with a built-in method to replace all the characters
in a range with a different character. So, if you’d rather have the character ‘‘|’’
instead of ‘‘,’’ appear in your string, you could replace all instances of ‘‘,’’ with
‘‘|’’ by using the replaceOccurrencesOfString:withString:options:range:
method.

NSRange rangeOfString = [myString rangeOfString:myString];

CHAPTER 2: Working With Strings and Numbers 67

[myString replaceOccurrencesOfString:@", "
 withString:@"|"
 options:NSCaseInsensitiveSearch
 range:rangeOfString];

Here the rangeOfString message was used to specify the entire string, but you
can define any range that you would like to perform this action.

Another common type of string manipulation is replacing ranges of characters
with other characters. To do this, use the
replaceCharactersInRange:withString: method.

NSRange rangeToReplace = NSMakeRange(0, 4);

[myString replaceCharactersInRange:rangeToReplace
 withString:@"MORE"];

This replaces the first four characters in the string with the word ‘‘MORE.’’ See
Listing 2-5 for the code.

The Code
Listing 2-5. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSMutableString *myString = [[NSMutableString alloc] initWithCapacity:26];

 [myString setString:@"ABCDEFGHIJKLMONPQRSTUVWXYZ"];

 NSLog(@"%@", myString);

 [myString appendString:@", 0123456789"];

 NSLog(@"%@", myString);

 [myString insertString:@"abcdefg, "
 atIndex:0];

 NSLog(@"%@", myString);

 NSRange range = NSMakeRange(9, 3);

 [myString deleteCharactersInRange:range];

CHAPTER 2: Working With Strings and Numbers 68

 NSLog(@"%@", myString);
 NSRange rangeOfString = [myString rangeOfString:myString];

 [myString replaceOccurrencesOfString:@", "
 withString:@"|"
 options:NSCaseInsensitiveSearch
 range:rangeOfString];

 NSLog(@"%@", myString);

 NSRange rangeToReplace = NSMakeRange(0, 4);

 [myString replaceCharactersInRange:rangeToReplace
 withString:@"MORE"];

 NSLog(@"%@", myString);
 }

 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. Check the console to
see the how the string is manipulated.

ABCDEFGHIJKLMONPQRSTUVWXYZ
ABCDEFGHIJKLMONPQRSTUVWXYZ, 0123456789
abcdefg, ABCDEFGHIJKLMONPQRSTUVWXYZ, 0123456789
abcdefg, DEFGHIJKLMONPQRSTUVWXYZ, 0123456789
abcdefg|DEFGHIJKLMONPQRSTUVWXYZ|0123456789
MOREefg|DEFGHIJKLMONPQRSTUVWXYZ|0123456789

2.8 Searching Through Strings

Problem
You want know if the strings that you are working with contain key phrases that
your app needs to know about.

CHAPTER 2: Working With Strings and Numbers 69

Solution
To search a string for another string you can send the message
rangeOfString:options:range: to the string that you want to search. You must
specify the range where you will look along with a search option. This method
will return either NSNotFound and a length of 0 if nothing is found, or it will return
a range with the information you need to locate the string.

How It Works
To search through a string you can simply send the
rangeOfString:options:range: message. You need to specify the search
options that you would like to use and the range of the string that you would like
to search.

NSString *stringToSearch = @"This string is something that you can search.";

NSRange rangeToSearch = [stringToSearch rangeOfString:stringToSearch];

NSRange resultsRange = [stringToSearch rangeOfString:@"something"
 options:NSCaseInsensitiveSearch
 range:rangeToSearch];

When the search is complete you will have the information that you need
contained in the NSRange object that is returned to you. If the NSRange location
property is equal to NSNotFound, the search didn’t turn up any results. Otherwise,
the NSRange object will have the location and length of the string that you are
looking for. You can later use this information as needed. See Listing 2-6 for the
code.

The Code
Listing 2-6. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSString *stringToSearch = @"This string is something that you can search.";

 NSRange rangeToSearch = [stringToSearch rangeOfString:stringToSearch];

CHAPTER 2: Working With Strings and Numbers 70

 NSRange resultsRange = [stringToSearch rangeOfString:@"something"
 options:NSCaseInsensitiveSearch
 range:rangeToSearch];

 if(resultsRange.location != NSNotFound){

 NSLog(@"String found starting at location %lu with a length of %lu",
 resultsRange.location, resultsRange.length);

 NSLog(@"%@", [stringToSearch substringWithRange:resultsRange]);
 }
 else
 NSLog(@"The search didn't turn up any results");

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. Check the console to
see if the search string was found. Test this code further by searching for
different strings and strings that you know are not there.

Here is the output that you would get after running the code as-is:

String found starting at location 15 with a length of 9
something

2.9 Localizing Strings

Problem
You would like to include string content that is appropriate for your audience
language preferences. Hardcoding the string doesn’t work because you can
only include one language.

Solution
To include localized strings in your apps you must add a strings file for each
language that you would like to support. A strings file contains keyed data, and
the system picks which strings file to use depending on the language your user

CHAPTER 2: Working With Strings and Numbers 71

prefers. To include these localized strings you must use the NSFoundation
function NSLocalizedString.

NOTE: This method only works with iOS or Mac apps (not command
line apps) since localizing strings requires the strings files to be
located in an app’s application bundle.

How It Works
Make sure that you have an iOS app (Recipe 1.12) or Mac app (Recipe 1.11) set
up if you intend on following along with this recipe. The code is located in your
app delegate.

First, add a strings file to your application. From Xcode go to File ➤ New ➤ New
File. In the dialog box that appears, choose Mac OS X ➤ Resource ➤ Strings File.
Name your strings file Localizable.strings.

Now you need to add localization to this file, so select the file and make sure
that the identity tab is selected. To add localization to this file, click the + button
in the localization pane and choose a language from the drop-down that
appears (see Figure 2-1).

Figure 2-1. Strings file identity options

CHAPTER 2: Working With Strings and Numbers 72

NOTE: In Xcode 4.2, the first time you click the button, the Identity
Inspector may automatically advance to the next file without giving you
the option to choose a language first. If this happens, go back to the
strings file in the Identity Inspector and add the remaining language
support.

Each language that you intend on supporting will appear in the localization pane
(see Figure 2-2). If you look closely at your strings file in Xcode, you will notice
that you have a strings file for each language that you want to support (you may
need to expand the group folder to see the files).

Figure 2-2. Localized strings files

To add content to each file, you need to specify a key (that you can use later to
look up the content) and the string content itself. For instance, if you want to
add a Hello World! string in French and English, you add this keyed data
starting in the strings file for English (Localizable.strings (English)).

"helloworld" = "Hello World!";

Here helloworld is the key and the string content is included between the
quotes. The line ends with a semicolon.

Next, add the same for the French strings file (Localizable.strings (French)).

CHAPTER 2: Working With Strings and Numbers 73

"helloworld" = "Bonjour tout le monde!";

To get this string into your app, use the NSLocalizedString function to return the
localized string based on the key that you provide.

NSString *localizedString = NSLocalizedString(@"helloworld", @"Hello world in 
localized languages");

In this example, English users will get ‘‘Hello World!’’ and French users will get
‘‘Bonjour tout le monde!’’ See Listing 2-7 for the code.

The Code
Listing 2-7. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate

@synthesize window = _window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification{

 NSString *localizedString = NSLocalizedString(@"helloworld", @"Hello world 
in localized languages");

 NSLog(@"%@", localizedString);

}

@end

Usage
To use this code, build and run your Mac or iOS app from Xcode. Check the
console to see what string was written out to the log. If you have your system
preferences set to English, you will see ‘‘Hello World!’’ in your console.

If you are working with a Mac app and want to see the localized string for
French, go to your Mac’s system preferences, click on ‘‘Language and Text,’’
and drag the word ‘‘Français’’ to the top of the list of languages. If you are
working with an iOS app, use the iOS Simulator’s or device’s Settings app and
then choose General ➤ International ➤ Language ➤ Francais. Then go back to Xcode,
run your app, and look at the console to see the localized string appear.

CHAPTER 2: Working With Strings and Numbers 74

2.10 Converting Numbers to Strings

Problem
You have numbers (either primitive types or NSNumber objects) that you would
like to use as strings.

Solution
You work with numbers in two ways: as primitive types and NSNumber objects.
To use a primitive type as a string, you need to create a new string using the
stringWithFormat constructor and insert the value of the primitive type. Here
you can use the same string formatters as you did in Recipe 1.2.

NSNumber objects can be inserted into new strings in the same way or you can
use NSNumber’s stringValue function to return the string version of a number
directly.

How It Works
If you have a primitive type like a float that you would like to turn into a string,
you need to create a new string with the stringWithFormat constructor.

float fNumber = 12;

NSString *floatToString = [NSString stringWithFormat:@"%f", fNumber];

If the number you want to convert is an NSNumber object, you can simply use the
NSNumber object’s stringValue function.

NSNumber *number = [NSNumber numberWithFloat:30];

NSString *numberToString = [number stringValue];

See Listing 2-8 for the code.

The Code
Listing 2-8. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])

CHAPTER 2: Working With Strings and Numbers 75

{

 @autoreleasepool {

 float fNumber = 12;

 NSString *floatToString = [NSString stringWithFormat:@"%f", fNumber];

 NSLog(@"floatToString = %@", floatToString);

 NSNumber *number = [NSNumber numberWithFloat:30];

 NSString *numberToString = [number stringValue];

 NSLog(@"numberToString = %@", numberToString);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. You can see that the
new strings have been created and used based on the numbers that are
present.

floatToString = 12.000000
numberToString = 30

2.11 Converting Strings to Numbers

Problem
In your app you have numbers that are stored as strings, but you need to use
these numbers for math functions or to apply special formatting using NSNumber.

Solution
If you need to do any math functions like addition or subtraction, you need to
convert any numbers stored as strings into primitive types like float or int.
Happily, NSString comes with built-in functions that make this type of
conversion really easy.

CHAPTER 2: Working With Strings and Numbers 76

But, if you want to use the object-oriented features of NSNumber, then you need
to use NSNumber. Using NSNumber requires that you construct new NSNumber
objects for each number. Do this if you need to store these numbers in an array
or if you want to use the other features built into NSNumber.

How It Works
If you have a number stored in a string that you want to use as a float primitive
type, use the strings floatValue function to get this value.

NSString *aFloatValue = @"12.50";
float f = [aFloatValue floatValue];

If you prefer to convert this string to an NSNumber object, you need to use the
floatValue function in the NSNumber constructer.

NSNumber *aFloatNumber = [NSNumber numberWithFloat:[aFloatValue floatValue]];

See Listing 2-9 for the code.

The Code
Listing 2-9. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSString *aFloatValue = @"12.50";

 float f = [aFloatValue floatValue];

 float result = f * 2 + 45;

 NSLog(@"f = %f and result = %f", f, result);

 NSNumber *aFloatNumber = [NSNumber numberWithFloat:[aFloatValue floatValue]];

 NSLog(@"aFloatNumber = %@", aFloatNumber);

 }
 return 0;
}

CHAPTER 2: Working With Strings and Numbers 77

Usage
To use this code, build and run your Mac app from Xcode. You can write the
numbers out to the log, but you must use the correct string formatters for the
primitive types and %@ for the NSNumber objects.

f = 12.500000 and result = 70.000000
aFloatNumber = 12.5

2.12 Formatting Numbers

Problem
You would like to present numbers to your users that are formatted in the way
they expect. This includes situations when you want to present the number as
currency, scientific notation, or spelled out.

Solution
Use the NSNumberFormatter class to format numbers. You need to instantiate an
NSNumberFormatter object and set some properties to instruct it to display your
number in the way that you would like.

How It Works
Let’s assume that you have a number that you would like to display as currency.

NSNumber *numberToFormat = [NSNumber numberWithFloat:9.99];

First, instantiate a NSNumberFormatter object and set the object’s numberStyle to
present the currency style.

NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];

numberFormatter.numberStyle = NSNumberFormatterCurrencyStyle;

When you are ready to present the number as a string formatted for currency,
use the stringFromNumber function.

NSLog(@"Formatted for currency: %@", [numberFormatter
stringFromNumber:numberToFormat]);

CHAPTER 2: Working With Strings and Numbers 78

This will present the number as currency for the system’s set locale. In the
United States you will see the dollar sign, and in the United Kingdom you will
see the pound sign.

Currency is one of many possible number styles that you may apply to your
numbers. See Table 2-1 for a complete list of number styles. See Listing 2-10
for the code.

Table 2-1. Number Format Styles

Format Description

NSNumberFormatterNoStyle Presents the number without formatting

NSNumberFormatterDecimalStyle Presents the number as a decimal

NSNumberFormatterCurrencyStyle Presents the number as currency

NSNumberFormatterPercentStyle Presents the number as a percentage

NSNumberFormatterScientificStyle Presen ts the number in scientific notation

NSNumberFormatterSpellOutStyle Spells out the number in natural language

The Code
Listing 2-10. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSNumber *numberToFormat = [NSNumber numberWithFloat:9.99];

 NSLog(@"numberToFormat = %@", numberToFormat);

 NSNumberFormatter *numberFormatter = [[NSNumberFormatter alloc] init];

 numberFormatter.numberStyle = NSNumberFormatterCurrencyStyle;

 NSLog(@"Formatted for currency: %@", [numberFormatter 
stringFromNumber:numberToFormat]);

CHAPTER 2: Working With Strings and Numbers 79

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. You can see the
formats applied in the console window.

numberToFormat = 9.99
Formatted for currency: $9.99

3
Chapter

Working with
Object Collections
This chapter will help you work with arrays and dictionaries using the
Foundation framework with Objective-C.

The recipes in this chapter will show you how to:

 Create arrays using NSArray and NSMutableArray

 Add, remove, and insert objects into arrays

 Search and sort arrays

 Use different procedures to iterate through arrays

 Save array contents to the file system

 Create dictionaries using NSDictionary and
NSMutableDictionary

 Add and remove objects from dictionaries

 Use different procedures to iterate through dictionaries

 Save dictionary contents to the file system

 Create sets using NSSet and NSMutableSet

 Compare sets based on their object contents

 Use different procedures to iterate through sets

 Add and remove objects from sets

CHAPTER 3: Working with Object Collections 82

NOTE: There are three types of objects collections to work with in
Objective-C: arrays, dictionaries, and sets. Your choice of collection
will depend on the needs of your app.

Arrays organize objects in lists that are indexed by integers.

Dictionaries organize objects with keys; each object in a dictionary is
associated with a string key that you can use later to retrieve the
object.

Sets contain objects, but don’t assume that they will be in any order
be indexed. Objects in sets also must be unique (no duplicates).
Retrieving objects from sets is very fast because sets don’t have the
overhead of an index so you will see this used in situations where
performance is a consideration.

3.1 Creating an Array

Problem
Your app requires you to group objects together in a list.

Solution
Objective-C has two Foundation classes named NSArray and NSMutableArray
that you can use to create lists of objects. Use NSArray when you have a list that
you know you won’t need to change on the fly and NSMutableArray when you
know you will need to add and remove objects from the array at a later time.

How It Works
Arrays are created in Objective-C like other objects: you use the alloc and init
constructors or convenience functions like arrayWithObjects to create the array.
If you use NSArray to create your array, you can’t make any changes to the array
once the array is created. Use NSMutableArray to create arrays that you can later
modify.

CHAPTER 3: Working with Object Collections 83

Here is an example of creating an array of strings:

NSArray *listOfLetters = [NSArray arrayWithObjects:@"A", @"B", @"C", nil];

When you use arrayWithObjects to create your array, you must pass in the
objects in a comma-separated list that ends with nil. This example used
NSString objects but you can use any object that you like with NSArray and
NSMutableArray, including objects instantiated from your custom classes.

If you choose to use NSMutableArray, you can use the same constructors to
create your arrays (NSMutableArray is a subclass of NSArray). You can also
create your NSMutableArray by using alloc and init since you will likely add
objects to your array at some future point. See Table 3-1 for a complete list of
available constructors for NSArray and NSMutableArray and Listing 3-1 for the
code.

Table 3-1. NSArray and NSMutableArray Constructors

Constructor Description

- (id)initWithObjects:(const id [])objects 
 count:(NSUInteger)cnt;

Initializes an array with the specified
objects and count

- (id)initWithObjects:(id)firstObj, ... 
 NS_REQUIRES_NIL_TERMINATION;

Initializes an array with the specified nil-
terminated list of objects

- (id)initWithArray:(NSArray *)array; Initializes an array using another array

- (id)initWithArray:(NSArray *)array 
 copyItems:(BOOL)flag;

Initializes an array using another array and
creates new copies of each object

- (id)initWithContentsOfFile:(NSString 
 *)path;

Initializes an array with the contents of a
local file

- (id)initWithContentsOfURL:(NSURL *)url; Initializes an array with the contents at a
URL

The Code
Listing 3-1. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

CHAPTER 3: Working with Object Collections 84

 @autoreleasepool {

 NSArray *listOfLetters1 = [NSArray arrayWithObjects:@"A", @"B", @"C", nil];

 NSLog(@"listOfLetters1 = %@", listOfLetters1);

 NSNumber *number1 = [NSNumber numberWithInt:1];
 NSNumber *number2 = [NSNumber numberWithInt:2];
 NSNumber *number3 = [NSNumber numberWithInt:3];

 NSMutableArray *listOfNumbers1 = [[NSMutableArray alloc]
 initWithObjects:number1, number2, number3, nil];

 NSLog(@"listOfNumbers1 = %@", listOfNumbers1);

 id list[3];
 list[0] = @"D";
 list[1] = @"E";
 list[2] = @"F";

 NSMutableArray *listOfLetters2 = [[NSMutableArray alloc] initWithObjects:list
 count:3];

 NSLog(@"listOfLetters2 = %@", listOfLetters2);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. Inspect the log to see
the contents of each array. In the next recipe, you will see how to reference each
of these array elements so you can print out their contents to the log or use
them elsewhere in your programs.

3.2 Referencing Objects in Arrays

Problem
You would like to get references to the objects in your arrays to either access
their properties or to send messages to the objects.

CHAPTER 3: Working with Object Collections 85

Solution
Use the objectAtIndex: method to get a reference to an object in the array that
corresponds to an integer position. You may also get a reference to the last
object in an array using the lastObject function.

How It Works
NSArray organizes objects in a list that is indexed by integers starting with the
number 0. If you want to get a reference to an object in your array and know the
position of the object, you can use the objectAtIndex: function to get a
reference to that object.

NSString *stringObject1 = [listOfLetters objectAtIndex:0];

There is also a very convenient function named lastObject that you can use to
quickly get a reference to the last object in your array.

NSString *stringObject2 = [listOfLetters lastObject];

Often, you won’t know where in the array your object is located. If you already
have a reference to the object in question, you can use the indexOfObject:
function with the object reference as a parameter to find out where in the array
the object is located.

NSUInteger position = [listOfLetters indexOfObject:@"B"];

See Listing 3-2 for the code.

The Code
Listing 3-2. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSMutableArray *listOfLetters = [NSMutableArray arrayWithObjects:@"A", @"B",
 @"C", nil];

 NSString *stringObject1 = [listOfLetters objectAtIndex:0];

 NSLog(@"stringObject1 = %@", stringObject1);

CHAPTER 3: Working with Object Collections 86

 NSString *stringObject2 = [listOfLetters lastObject];

 NSLog(@"stringObject2 = %@", stringObject2);

 NSUInteger position = [listOfLetters indexOfObject:@"B"];

 NSLog(@"position = %lu", position);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. You can see that the
objects were successfully referenced by the output written to the console.

stringObject1 = A
stringObject2 = C
position = 1

3.3 Obtaining the Array Count

Problem
Your app is working with the content in your arrays and you need to know how
many elements are in the array in order to present your content appropriately.

Solution
NSArray objects have a count property that you can use to find out how many
elements are in the array.

How It Works
To use the count property, you can use dot notation (listOfLetters.count) on
any array object or you can send the count message ([listOfLetters count]) to
find out how many elements are in the array. See Listing 3-3 for the code.

CHAPTER 3: Working with Object Collections 87

The Code
Listing 3-3. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSMutableArray *listOfLetters = [NSMutableArray arrayWithObjects:@"A", @"B",
 @"C", nil];

 NSLog(@"listOfLetters has %lu elements", listOfLetters.count);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. The log message will
present the number of elements.

listOfLetters has 3 elements

3.4 Iterating Through an Array

Problem
You have an array of objects and you would like to be able to send the same
message or access the same property for every object in the array.

Solution
NSArray objects come with three built-in ways to iterate through a list of objects.
Many people use a for-each loop to iterate through each element in the array.
This structure gives you the ability to set up lines of code that will be applied to
each element in the array.

CHAPTER 3: Working with Object Collections 88

You can also use a method named makeObjectsPerformSelector:withObject:
where you can pass in the name of the method that you want each object to
perform along with one parameter.

Finally, you now have the option of using blocks of code as a parameter that will
be applied to each object in the array using the enumerateObjectsUsingBlock:
method. This method gives you the same thing as a for-each loop, but you
don’t need to write the code for the loop itself and you get a parameter that will
help you keep track of the current element’s index.

How It Works
Since you need content to use as an example for this recipe, create three
NSMutableString objects to put into a new array.

NSMutableString *string1 = [NSMutableString stringWithString:@"A"];
NSMutableString *string2 = [NSMutableString stringWithString:@"B"];
NSMutableString *string3 = [NSMutableString stringWithString:@"C"];

NSArray *listOfObjects = [NSArray arrayWithObjects:string1, string2, string3, nil];

To go through this array with a for-each loop, you need to set up the loop and
provide a local variable that you can reference that will represent the current
object within the array. You also need to add the code that will execute for each
object in your list.

for(NSMutableString *s in listOfObjects){
 NSLog(@"This string in lowercase is %@", [s lowercaseString]);
}

In this for-each loop, you go through each mutable string in the array and write
out a message to the log. The lowercaseString function is an NSString function
that returns the string but in all lowercase letters.

You can send a message to each object in your array without using a for-each
loop by sending the makeObjectsPerformSelector:withObject: message. You
need to pass in the method by using the @selector keyword and the name of
the method in parentheses. Pass in the parameter value after the property
decoration withObject:.

[listOfObjects makeObjectsPerformSelector:@selector(appendString:)
 withObject:@"-MORE"];

What you are doing here is sending the appendString message with the string
parameter @’’-MORE’’ to every mutable string in the array. So now each string
has been changed to include the extra characters at the end.

CHAPTER 3: Working with Object Collections 89

WARNING: Make sure that the objects in your array are capable of
responding to the messages that you are trying to send. If you attempt
to send a message to an object in your array that the object can’t
respond to, your program will crash and you will get an unrecognized
selector sent to instance error message.

You can use blocks to define a block of code that you can apply to each object
in the array. Blocks are a way to encapsulate code so that the code can be
treated as an object and therefore passed to another object as a parameter. The
NSArray method enumerateObjectsUsingBlock: gives you the ability to execute a
block of code for each element in an array.

[listOfObjects enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop)
{
 NSLog(@"object(%lu)'s description is %@",idx, [obj description]);
}];

This essentially gives you the same thing as the for-each loop but you only need
to use one line of code. Also, the block comes with built-in parameters for the
object that you need to reference and an index to help you keep track of your
position in the array. In this example, you are using blocks to write out a
message to the log for each object in the list using the object’s description
function and the index parameter. See Listing 3-4 for the code.

The Code
Listing 3-4. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSMutableString *string1 = [NSMutableString stringWithString:@"A"];
 NSMutableString *string2 = [NSMutableString stringWithString:@"B"];
 NSMutableString *string3 = [NSMutableString stringWithString:@"C"];

 NSArray *listOfObjects = [NSArray arrayWithObjects:string1, string2, string3,
 nil];

 for(NSMutableString *s in listOfObjects){

CHAPTER 3: Working with Object Collections 90

 NSLog(@"This string in lowercase is %@", [s lowercaseString]);
 }

 [listOfObjects makeObjectsPerformSelector:@selector(appendString:)
 withObject:@"-MORE"];

 [listOfObjects enumerateObjectsUsingBlock:^(id obj, NSUInteger idx,
 BOOL *stop) {
 NSLog(@"object(%lu)'s description is %@",idx, [obj description]);
 }];

 }

 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. The log message will
present the results of each way of iterating through the array that was created at
the beginning.

This string in lowercase is a
This string in lowercase is b
This string in lowercase is c
object(0)'s description is A-MORE
object(1)'s description is B-MORE
object(2)'s description is C-MORE

3.5 Sorting an Array

Problem
You are using arrays to group your custom objects and you would like the
objects to appear in lists sorted by the values of the object’s properties.

Solution
Create one NSSortDescriptor object for each property that you want to use to
sort your array. Put all these NSSortDescriptor objects into an array, which you
will use as a parameter in the next step. Use the NSArray
sortedArrayUsingDescriptors: method and pass the array of NSSortDescriptor

CHAPTER 3: Working with Object Collections 91

objects as a parameter to return an array sorted by the properties that you
specified.

How It Works
This recipe uses Person objects. See Listing 3-5 for the class definition of a
Person object. While you can use this recipe to sort objects like strings or
numbers, you can really see the power behind NSSortDescriptor when you use
it with custom objects.

Your custom class is named Person and has three properties: firstName,
lastName, and age. Your Person class also has two methods: reportState and
initWithFirstName:lastName:andAge, which is a custom constructor.

First, create an array of Person objects.

//Instantiate Person objects and add them all to an array:
Person *p1 = [[Person alloc] initWithFirstName:@"Rebecca"
 lastName:@"Smith"
 andAge:33];
Person *p2 = [[Person alloc] initWithFirstName:@"Albert"
 lastName:@"Case"
 andAge:24];
Person *p3 = [[Person alloc] initWithFirstName:@"Anton"
 lastName:@"Belfey"
 andAge:45];
Person *p4 = [[Person alloc] initWithFirstName:@"Tom"
 lastName:@"Gun"
 andAge:17];
Person *p5 = [[Person alloc] initWithFirstName:@"Cindy"
 lastName:@"Lou"
 andAge:6];
Person *p6 = [[Person alloc] initWithFirstName:@"Yanno"
 lastName:@"Dirst"
 andAge:76];

NSArray *listOfObjects = [NSArray arrayWithObjects:p1, p2, p3, p4, p5, p6, nil];

If you print out each element in this array, the objects will appear in the order
that you put them into the array. If you want to sort this array by each person’s
age, last name, and first name, you can use NSSortDescriptor objects. You
need one sort descriptor for each Person property that you’re using to sort.

//Create three sort descriptors and add to an array:
NSSortDescriptor *sd1 = [NSSortDescriptor sortDescriptorWithKey:@"age"
 ascending:YES];

CHAPTER 3: Working with Object Collections 92

NSSortDescriptor *sd2 = [NSSortDescriptor sortDescriptorWithKey:@"lastName"
 ascending:YES];

NSSortDescriptor *sd3 = [NSSortDescriptor sortDescriptorWithKey:@"firstName"
 ascending:YES];

NSArray *sdArray1 = [NSArray arrayWithObjects:sd1, sd2, sd3, nil];

You must pass in the name of the property as a string and specify whether you
want that property sorted ascending or descending. Finally, all the sort
descriptors need to be in an array.

The position of each sort descriptor in the array determines the order in which
the objects will be sorted. So, if you want the array sorted by age and then last
name, make sure you add the sort descriptor corresponding to age before the
sort descriptor corresponding to last name.

To get your sorted array, send the sortedArrayUsingDescriptors message to
the array that you want to sort and pass the array of sort descriptors as a
parameter.

NSArray *sortedArray1 = [listOfObjects sortedArrayUsingDescriptors:sdArray1];

To see the results, use the makeObjectsPerformSelector method to have each
object in the sorted array report its state to the log.

[sortedArray1 makeObjectsPerformSelector:@selector(reportState)];

This will print out the details of each Person object to the log in the order that
was specified by the sort descriptors (age, last name, first name). See Listings
3-5 through 3-7 for the code.

The Code
Listing 3-5. Person.h

#import <Foundation/Foundation.h>

@interface Person : NSObject

@property(strong) NSString *firstName;
@property(strong) NSString *lastName;
@property(assign) int age;

-(id)initWithFirstName:(NSString *)fName lastName:(NSString *)lName andAge:(int)a;

-(void)reportState;

@end

CHAPTER 3: Working with Object Collections 93

Listing 3-6. Person.m

#import "Person.h"

@implementation Person

@synthesize firstName, lastName, age;

-(id)initWithFirstName:(NSString *)fName lastName:(NSString *)lName andAge:(int)a{
 self = [super init];
 if (self) {
 self.firstName = fName;
 self.lastName = lName;
 self.age = a;
 }
 return self;
}

-(void)reportState{
 NSLog(@"This person's name is %@ %@ who is %i years old", firstName, lastName, age);
}

@end

Listing 3-7. main.m

#import <Foundation/Foundation.h>
#import "Person.h"

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 //Instantiate Person objects and add them all to an array:
 Person *p1 = [[Person alloc] initWithFirstName:@"Rebecca"
 lastName:@"Smith"
 andAge:33];

 Person *p2 = [[Person alloc] initWithFirstName:@"Albert"
 lastName:@"Case"
 andAge:24];

 Person *p3 = [[Person alloc] initWithFirstName:@"Anton"
 lastName:@"Belfey"
 andAge:45];

 Person *p4 = [[Person alloc] initWithFirstName:@"Tom"
 lastName:@"Gun"
 andAge:17];

CHAPTER 3: Working with Object Collections 94

 Person *p5 = [[Person alloc] initWithFirstName:@"Cindy"
 lastName:@"Lou"
 andAge:6];

 Person *p6 = [[Person alloc] initWithFirstName:@"Yanno"
 lastName:@"Dirst"
 andAge:76];

 NSArray *listOfObjects = [NSArray arrayWithObjects:p1, p2, p3, p4, p5, p6,
 nil];

 NSLog(@"PRINT OUT ARRAY UNSORTED");

 [listOfObjects makeObjectsPerformSelector:@selector(reportState)];

 //Create three sort descriptors and add to an array:
 NSSortDescriptor *sd1 = [NSSortDescriptor sortDescriptorWithKey:@"age"
 ascending:YES];

 NSSortDescriptor *sd2 = [NSSortDescriptor sortDescriptorWithKey:@"lastName"
 ascending:YES];

 NSSortDescriptor *sd3 = [NSSortDescriptor sortDescriptorWithKey:@"firstName"
 ascending:YES];

 NSArray *sdArray1 = [NSArray arrayWithObjects:sd1, sd2, sd3, nil];

 NSLog(@"PRINT OUT SORTED ARRAY (AGE,LASTNAME,FIRSTNAME)");

 NSArray *sortedArray1 = [listOfObjects sortedArrayUsingDescriptors:sdArray1];

 [sortedArray1 makeObjectsPerformSelector:@selector(reportState)];

 NSArray *sdArray2 = [NSArray arrayWithObjects:sd2, sd1, sd3, nil];

 NSArray *sortedArray2 = [listOfObjects sortedArrayUsingDescriptors:sdArray2];

 NSLog(@"PRINT OUT SORTED ARRAY (LASTNAME,FIRSTNAME,AGE)");

 [sortedArray2 makeObjectsPerformSelector:@selector(reportState)];

 }
 return 0;
}

CHAPTER 3: Working with Object Collections 95

Usage
To use this code, you need to create a file for the Person class. This is an
Objective-C class, and you may use the Xcode file templates to start it. The
Person class must be imported into code located in main.m (for Mac command
line apps). Build and run the project and then inspect the console log to see the
results of the sorted arrays.

PRINT OUT ARRAY UNSORTED
This person's name is Rebecca Smith who is 33 years old
This person's name is Albert Case who is 24 years old
This person's name is Anton Belfey who is 45 years old
This person's name is Tom Gun who is 17 years old
This person's name is Cindy Lou who is 6 years old
This person's name is Yanno Dirst who is 76 years old
PRINT OUT SORTED ARRAY (AGE,LASTNAME,FIRSTNAME)
This person's name is Cindy Lou who is 6 years old
This person's name is Tom Gun who is 17 years old
This person's name is Albert Case who is 24 years old
This person's name is Rebecca Smith who is 33 years old
This person's name is Anton Belfey who is 45 years old
This person's name is Yanno Dirst who is 76 years old
PRINT OUT SORTED ARRAY (LASTNAME,FIRSTNAME,AGE)
This person's name is Anton Belfey who is 45 years old
This person's name is Albert Case who is 24 years old
This person's name is Yanno Dirst who is 76 years old
This person's name is Tom Gun who is 17 years old
This person's name is Cindy Lou who is 6 years old
This person's name is Rebecca Smith who is 33 years old

3.6 Querying an Array

Problem
You have a significant array full of objects and you would like to select a subset
of this array based on some criteria to use in controls like the search bar in the
table of an iOS app.

Solution
The first thing that you need is an NSPredicate object. NSPredicate is used to
define a search query. Next, you can use the original array’s

CHAPTER 3: Working with Object Collections 96

filteredArrayUsingPredicate function to return a subset of the original array
based on the specifications of the NSPredicate: object that you defined.

How It Works
For this recipe, use the same Person objects as you did in Recipe 3.5. You are
going to define a predicate to return an array containing only Person objects with
an age greater than 30.

NSPredicate *predicate = [NSPredicate predicateWithFormat:@"age > 30"];

Predicates require a logical expression to apply to the objects in the array. Here
age is a property that must be part of the objects in the array that you are
querying. You use the same comparison operators that you use in programming
(see Table 3-2 for a complete list of NSPredicate operators).

Table 3-2. NSPredicate Comparison Operators

Basic Comparisons Operators Description

=, == Left side is equal to the right side.

>=, => Left side is greater than or equal to the right side.

<=, =< Left side is less than or equal to the right side.

> Left side is greater than the right side.

< Left side is less than the right side.

!=, <> Left side is not equal to the right side.

BETWEEN Left side is between the value specified on the right
side.

CHAPTER 3: Working with Object Collections 97

Basic Comparisons Operators Description

AND, && Logical AND

OR, || Logical OR

Compound Predicates

NOT, ! Logical NOT

BEGINSWITH Left side begins with the right side expression.

CONTAINS Left side contains the right side expression.

ENDSWITH Left side ends with the right side expression.

LIKE Left side equals right side (? and * are allowed as
wildcards).

String Comparisons

MATCHES Left side matches right side using regex-style
expression.

ANY, SOME Specifies any elements in the right side expression

ALL Specifies all elements in the right side expression

NONE Specifies none of the elements in the right side
expression

Aggregate Operations

IN Left side must appear in the collection specified by
the right side.

Once you have your predicate set up, all you need to do is get the subset of the
array by using the filteredArrayUsingPredicate: function while passing the
NSPredicate object as a parameter.

NSArray *arraySubset = [listOfObjects filteredArrayUsingPredicate:predicate];

You will end up with another array that has only those objects that match the
specifications that you coded in the NSPredicate object. See Listings 3-8
through 3-10 for the code.

CHAPTER 3: Working with Object Collections 98

The Code
Listing 3-8. Person.h

#import <Foundation/Foundation.h>

@interface Person : NSObject

@property(strong) NSString *firstName;
@property(strong) NSString *lastName;
@property(assign) int age;

-(id)initWithFirstName:(NSString *)fName lastName:(NSString *)lName andAge:(int)a;

-(void)reportState;

@end

Listing 3-9. Person.m

#import "Person.h"

@implementation Person

@synthesize firstName, lastName, age;

-(id)initWithFirstName:(NSString *)fName lastName:(NSString *)lName
andAge:(int)a{
 self = [super init];
 if (self) {
 self.firstName = fName;
 self.lastName = lName;
 self.age = a;
 }
 return self;
}

-(void)reportState{
 NSLog(@"This person's name is %@ %@ who is %i years old", firstName, lastName, age);
}

@end

CHAPTER 3: Working with Object Collections 99

Listing 3-10. main.m

#import <Foundation/Foundation.h>
#import "Person.h"

int main (int argc, const char * argv[])
{

 @autoreleasepool {
 //Instantiate Person objects and add them all to an array:
 Person *p1 = [[Person alloc] initWithFirstName:@"Rebecca"
 lastName:@"Smith"
 andAge:33];
 Person *p2 = [[Person alloc] initWithFirstName:@"Albert"
 lastName:@"Case"
 andAge:24];
 Person *p3 = [[Person alloc] initWithFirstName:@"Anton"
 lastName:@"Belfey"
 andAge:45];
 Person *p4 = [[Person alloc] initWithFirstName:@"Tom"
 lastName:@"Gun"
 andAge:17];
 Person *p5 = [[Person alloc] initWithFirstName:@"Cindy"
 lastName:@"Lou"
 andAge:6];
 Person *p6 = [[Person alloc] initWithFirstName:@"Yanno"
 lastName:@"Dirst"
 andAge:76];

 NSArray *listOfObjects = [NSArray arrayWithObjects:p1, p2, p3, p4, p5, p6,
 nil];

 NSPredicate *predicate = [NSPredicate predicateWithFormat:@"age > 30"];

 NSArray *arraySubset = [listOfObjects filteredArrayUsingPredicate:predicate];

 NSLog(@"PRINT OUT ARRAY SUBSET");

 [arraySubset makeObjectsPerformSelector:@selector(reportState)];

 }
 return 0;
}

CHAPTER 3: Working with Object Collections 100

Usage
To use this code, build and run your Mac app from Xcode. Check the console to
see the results of the query made by the NSPredicate object.

PRINT OUT ARRAY SUBSET
This person's name is Rebecca Smith who is 33 years old
This person's name is Anton Belfey who is 45 years old
This person's name is Yanno Dirst who is 76 years old

3.7 Manipulating Array Contents

Problem
You want your array content to be more dynamic so that you or your users can
add, remove, and insert objects into arrays. However, NSArray is an immutable
class, so once you create an NSArray you can’t make any changes to its
contents.

Solution
If you know that your array needs to be dynamic, use NSMutableArray.
NSMutableArray is a subclass of NSArray, so you can work with NSMutableArray
as you would with NSArray. But NSMutableArray provides methods that let you
add, remove, and insert objects into the array list.

How It Works
First, instantiate a NSMutableArray object. You can use any constructor to do
this. To create a new empty NSMutableArray, you may simply use alloc and
init.

NSMutableArray *listOfLetters = [[NSMutableArray alloc] init];

To add objects to this array, you must send the addObject: message to the
array with the object that you are adding to the array as a parameter.

[listOfLetters addObject:@"A"];

[listOfLetters addObject:@"B"];

[listOfLetters addObject:@"C"];

CHAPTER 3: Working with Object Collections 101

When you use addObject: you are always adding objects to the end of the array
list. If you would like to insert an object into another postion in the array, you
need to use the insertObject:atIndex: method.

[listOfLetters insertObject:@"a"
 atIndex:0];

This will insert the object into the first position in the array.

If you want to completely replace one object with another object at a particular
index, you can use the replaceObjectAtIndex:withObject: method. Here is how
to replace the string C with the lowercase c:

[listOfLetters replaceObjectAtIndex:2
 withObject:@"c"];

To have two objects in the array exchange places, you can use the
exchangeObjectAtIndex:withObjectAtIndex: method.

[listOfLetters exchangeObjectAtIndex:0
 withObjectAtIndex:2];

When you need to remove objects from your array, you have a few different
methods to choose from. You can remove an object at a specified index, you
can remove the last object in the array, and you can remove all objects from the
list. If you have a reference to the object on hand, you can also use that object
reference to remove that object from the array. Here are some examples of
removing objects:

[listOfLetters removeObject:@"A"];

[listOfLetters removeObjectAtIndex:1];

[listOfLetters removeLastObject];

[listOfLetters removeAllObjects];

See Listing 3-11 for the code.

The Code
Listing 3-11. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

CHAPTER 3: Working with Object Collections 102

 NSMutableArray *listOfLetters = [[NSMutableArray alloc] init];

 [listOfLetters addObject:@"A"];

 [listOfLetters addObject:@"B"];

 [listOfLetters addObject:@"C"];

 NSLog(@"OBJECTS ADDED TO ARRAY: %@", listOfLetters);

 [listOfLetters insertObject:@"a"
 atIndex:0];

 NSLog(@"OBJECT 'a' INSERTED INTO ARRAY: %@", listOfLetters);

 [listOfLetters replaceObjectAtIndex:2
 withObject:@"c"];

 NSLog(@"OBJECT 'c' REPLACED 'C' IN ARRAY: %@", listOfLetters);

 [listOfLetters exchangeObjectAtIndex:0
 withObjectAtIndex:2];

 NSLog(@"OBJECT AT INDEX 1 EXCHANGED WITH OBJECT AT INDEX 2 IN ARRAY: %@", 
 listOfLetters);

 [listOfLetters removeObject:@"A"];

 NSLog(@"OBJECT 'A' REMOVED IN ARRAY: %@", listOfLetters);

 [listOfLetters removeObjectAtIndex:1];

 NSLog(@"OBJECT AT INDEX 1 REMOVED IN ARRAY: %@", listOfLetters);

 [listOfLetters removeLastObject];

 NSLog(@"LAST OBJECT REMOVED IN ARRAY: %@", listOfLetters);

 [listOfLetters removeAllObjects];

 NSLog(@"ALL OBJECTS REMOVED IN ARRAY: %@", listOfLetters);

 }
 return 0;
}

CHAPTER 3: Working with Object Collections 103

Usage
To use this code, build and run your Mac app from Xcode. Check the console to
see what happens to the array after each operation is applied.

OBJECTS ADDED TO ARRAY: (
 A,
 B,
 C
)
OBJECT 'a' INSERTED INTO ARRAY: (
 a,
 A,
 B,
 C
)
OBJECT 'c' REPLACED 'C' IN ARRAY: (
 a,
 A,
 B,
 c
)
OBJECT AT INDEX 1 EXCHANGED WITH OBJECT AT INDEX 2 IN ARRAY: (
 B,
 A,
 a,
 c
)
OBJECT 'A' REMOVED IN ARRAY: (
 B,
 a,
 c
)
OBJECT AT INDEX 1 REMOVED IN ARRAY: (
 B,
 c
)
LAST OBJECT REMOVED IN ARRAY: (
 B
)
ALL OBJECTS REMOVED IN ARRAY: (
)

CHAPTER 3: Working with Object Collections 104

3.8 Saving Arrays to the File System

Problem
You want to save the objects in your array to the file system to be used later or
by another program.

Solution
If your array contains lists of number or string objects, you can save all of these
to your file system to be used later. Use the writeToFile:atomically: method
to do this. Note that this does not work with custom objects. Custom objects
require you to adopt the NSCoding protocol and use an archiving class (Chapter
9) or Core Data (Chapter 10).

How It Works
For this recipe, create an array filled up with strings and numbers.

NSArray *listOfObjects = [NSArray arrayWithObjects:@"A", @"B", @"C", [NSNumber 
 numberWithInt:1], [NSNumber numberWithInt:2], [NSNumber numberWithInt:3], nil];

To save this to the file system, you first need a file reference.

NSString *filePathName = @"/Users/Shared/array.txt";

NOTE: This recipe assumes that you are trying this from a Mac app.
iOS file references work differently; see Recipe 2.5 for examples of
how to get iOS file references.

Now you can use the writeToFile:atomically: method to write the contents of
this array to the Mac’s file system.

[listOfObjects writeToFile:filePathName
 atomically:YES];

See Listing 3-12 for the code.

CHAPTER 3: Working with Object Collections 105

The Code
Listing 3-12. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSArray *listOfObjects = [NSArray arrayWithObjects:@"A", @"B", @"C", [NSNumber
 numberWithInt:1], [NSNumber numberWithInt:2], [NSNumber numberWithInt:3], nil];

 NSString *filePathName = @"/Users/Shared/array.txt";

 [listOfObjects writeToFile:filePathName
 atomically:YES];

 }

 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. Use Finder to locate
the file that was created, which will be at /Users/Shared/array.txt. Here is
what the contents of the text file will look like:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<array>
 <string>A</string>
 <string>B</string>
 <string>C</string>
 <integer>1</integer>
 <integer>2</integer>
 <integer>3</integer>
</array>
</plist>

The data is organized in XML format as a property list (an Objective-C format to
store keyed data).

http://www.apple.com/DTDs/PropertyList-1.0.dtd

CHAPTER 3: Working with Object Collections 106

3.9 Reading Arrays from the File System

Problem
You have files available to your app that contain content organized like an array
and you want to use this content in your application.

Solution
If you have a file from an array that was saved using the
writeToFile:atomically: method, use the initWithContentsOfFile:
constructor to instantiate a new array populated with the contents from the file.

How It Works
For this recipe, use the file from Recipe 3.8 where you saved the contents of an
array to the file system. So, use the same file path name here:

NSString *filePathName = @"/Users/Shared/array.txt";

NOTE: This recipe assumes that you are trying this from a Mac app.
iOS file references work differently; see Recipe 2.5 for examples of
how to get iOS file references.

Once you have that, you can use the initWithContentsOfFile: constructor to
create a new array populated with the content from the file.

NSArray *listOfObjects = [[NSArray alloc] initWithContentsOfFile:filePathName];

See Listing 3-13 for the code.

The Code
Listing 3-13. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

CHAPTER 3: Working with Object Collections 107

 NSString *filePathName = @"/Users/Shared/array.txt";

 NSArray *listOfObjects = [[NSArray alloc] initWithContentsOfFile:filePathName];

 NSLog(@"%@", listOfObjects);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. Inspect the log to see
the contents of the array.

(
 A,
 B,
 C,
 1,
 2,
 3
)

3.10 Creating a Dictionary

Problem
Your app requires you to group objects together in a list and you want to be
able to reference the objects using a key.

Solution
Objective-C has two Foundation classes named NSDictionary and
NSMutableDictionary that you can use to create lists of objects with keys. Use
NSDictionary when you want a list that you know you won’t need to change on
the fly and NSMutableDictionary when you know you will need to add and
remove objects from the dictionary later.

CHAPTER 3: Working with Object Collections 108

How It Works
Dictionaries are created in Objective-C like other objects: you can use the alloc
and init constructors or convenience functions like
dictionaryWithObjects:forKeys: to create the dictionary. If you use
NSDictionary to create your dictionary, you can’t make any changes to the
dictionary once the dictionary is created. Use NSMutableDictionary to create
dictionaries that you can later modify.

Here is an example of creating a dictionary that contains Hello World in different
languages. Each version of the phrase is keyed to its language.

NSArray *listOfObjects = [NSArray arrayWithObjects:@"Hello World", @"Bonjour tout le
 monde", @"Hola Mundo", nil];

NSArray *listOfKeys = [NSArray arrayWithObjects:@"english", @"french", @"spanish", nil];

NSDictionary *dictionary2 = [NSDictionary dictionaryWithObjects:listOfObjects
 forKeys:listOfKeys];

The NSDictionary constructor arrayWithObjects:forKeys: requires two arrays
as parameters. The first array must contain the objects to be stored while the
second array must contain the keys associated with the objects.

If you choose to use NSMutableDictionary, you can use the same constructors
to create your arrays (NSMutableDictionary is a subclass of NSDictionary). You
can also create your NSMutableDictionary by using alloc and init since you
will likely add objects to your array at some future point. See Table 3-3 for a
complete list of available constructors for NSDictionary and
NSMutableDictionary and Listing 3-14 for the code.

Table 3-3. NSDictionary and NSMutableDictionary Constructors

Constructor Description

- (id)initWithObjects:(const id [])objects 
 forKeys:(const id [])keys
count:(NSUInteger)cnt;

Initializes a dictionary with the
specified objects, keys, and count

- (id)initWithObjectsAndKeys:(id)firstObject, 
 NS_REQUIRES_NIL_TERMINATION;

Initializes a dictionary with the
specified nil-terminated list of paired
objects and keys

- (id)initWithDictionary:(NSDictionary 
 *)otherDictionary;

Initializes a dictionary using another
dictionary

CHAPTER 3: Working with Object Collections 109

Constructor Description

- (id)initWithDictionary:(NSDictionary 
 *)otherDictionary copyItems:(BOOL)flag;

Initializes a dictionary using another
dictionary and optionally creates new
copies of each object

- (id)initWithObjects:(NSArray *)objects 
 forKeys:(NSArray *)keys;

Initializes a dictionary with the
specified objects and keys

- (id)initWithContentsOfFile:(NSString *)path; Initializes a dictionary with the
contents of a local file

- (id)initWithContentsOfURL:(NSURL *)url; Initializes a dictionary with the
contents at a URL

The Code
Listing 3-14. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSDictionary *dictionary1 = [[NSDictionary alloc] init];

 NSArray *listOfObjects = [NSArray arrayWithObjects:@"Hello World", 
@"Bonjour tout le monde", @"Hola Mundo", nil];

 NSArray *listOfKeys = [NSArray arrayWithObjects:@"english", @"french",
 @"spanish", nil];

 NSDictionary *dictionary2 = [NSDictionary dictionaryWithObjects:listOfObject
 forKeys:listOfKeys];

 NSLog(@"dictionary2 = %@", dictionary2);

 }
 return 0;
}

CHAPTER 3: Working with Object Collections 110

Usage
To use this code, build and run your Mac app from Xcode. You can set a
breakpoint and use the Xcode debugger to inspect the contents of these
dictionaries. In the next recipe, you will see how to reference each of these
dictionary elements so you can print out their contents to the log or use them
elsewhere in your programs. You can see the entire contents of the dictionary
printed out in your log.

dictionary2 = {
 english = "Hello World";
 french = "Bonjour tout le monde";
 spanish = "Hola Mundo";
}

3.11 Referencing Objects in Arrays

Problem
You would like to get references to the objects in your dictionaries to either
access their properties or to send messages to the objects.

Solution
Use the objectForKey: method to get a reference to the object referenced by
the key that you supply.

How It Works
NSDictionary objects keep lists of objects organized based on the keys that you
provide. This makes it very easy and fast to look up any object of interest.
Simply use objectForKey: and provide the key for the object that you want to
look up to get the reference that you need.

NSString *helloWorld = [dictionary objectForKey:@"english"];

See Listing 3-15 for the code.

CHAPTER 3: Working with Object Collections 111

The Code
Listing 3-15. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSArray *listOfObjects = [NSArray arrayWithObjects:@"Hello World", 
@"Bonjour tout le monde", @"Hola Mundo", nil];

 NSArray *listOfKeys = [NSArray arrayWithObjects:@"english", @"french",
 @"spanish", nil];

 NSDictionary *dictionary = [NSDictionary dictionaryWithObjects:listOfObjects
 forKeys:listOfKeys];

 NSString *helloWorld = [dictionary objectForKey:@"english"];

 NSLog(@"%@", helloWorld);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. The hello world
message that prints out is the one keyed to English.

Hello World

To see the hello world message in French, add this code to your application:

helloWorld = [dictionary objectForKey:@"french"];

NSLog(@"%@", helloWorld);

Run the app again and take a look at the last console message to see the
French hello world message. You can do the same for Spanish as well.

CHAPTER 3: Working with Object Collections 112

3.12 Obtaining the Dictionary Count

Problem
Your app is working with the content in your dictionaries and you need to know
how many elements are in the dictionary to present your content appropriately.

Solution
NSDictionary objects have a count property that you can use to find out how
many elements are in the dictionary.

How It Works
To use the count property, you can use dot notation (dictionary.count) on any
dictionary object or you can send the count message ([dictionary count]) to
find out how many elements are in the dictionary. See Listing 3-16 for the code.

The Code
Listing 3-16. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSArray *listOfObjects = [NSArray arrayWithObjects:@"Hello World", 
@"Bonjour tout le monde", @"Hola Mundo", nil];

 NSArray *listOfKeys = [NSArray arrayWithObjects:@"english", @"french",
 @"spanish", nil];

 NSDictionary *dictionary = [NSDictionary dictionaryWithObjects:listOfObjects
 forKeys:listOfKeys];
 NSUInteger count = dictionary.count;

 NSLog(@"The dictionary contains %lu items", count);

 }

CHAPTER 3: Working with Object Collections 113

 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. The log message will
present the number of elements.

The dictionary contains 3 items

3.13 Iterating Through a Dictionary

Problem
You have a dictionary of objects and you would like to be able to send the same
message or access the same property for every object in the dictionary.

Solution
Use the allValues NSDictionary function to convert the dictionary to an array
that you can use with a for-each loop. Or use
enumerateKeysAndObjectsUsingBlock: to work with each object in the dictionary.

How It Works
NSDictionary objects come with one built-in way to iterate through a list of
objects. However, you can temporarily convert the dictionary key and object
contents to arrays if you would rather use the methods described in Recipe 3.4.
For instance, to iterate through the objects in a dictionary using a for-each loop,
you could do something like this:

for (NSString *s in [dictionary allValues]) {
 NSLog(@"value: %@", s);
}

The allValues NSDictionary function is what gives you the objects organized
like an array instead of a dictionary. There is also an allKeys function that gives
you all the key values as an array.

CHAPTER 3: Working with Object Collections 114

for (NSString *s in [dictionary allKeys]) {
 NSLog(@"key: %@", s);
}

You can also use blocks to execute code for each object in a dictionary by using
the enumerateKeysAndObjectsUsingBlock: method. You can use this to define a
block of code that will be applied to each object in the dictionary without setting
up a for-each loop or getting references to the array version of the dictionary.

[dictionary enumerateKeysAndObjectsUsingBlock:^(id key, id obj, BOOL *stop) {
 NSLog(@"key = %@ and obj = %@", key, obj);
}];

See Listing 3-17 for the code.

The Code
Listing 3-17. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSArray *listOfObjects = [NSArray arrayWithObjects:@"Hello World", 
@"Bonjour tout le monde", @"Hola Mundo", nil];

 NSArray *listOfKeys = [NSArray arrayWithObjects:@"english", @"french",
 @"spanish", nil];

 NSDictionary *dictionary = [NSDictionary dictionaryWithObjects:listOfObjects
 forKeys:listOfKeys];

 for (NSString *s in [dictionary allValues]) {
 NSLog(@"value: %@", s);
 }

 for (NSString *s in [dictionary allKeys]) {
 NSLog(@"key: %@", s);
 }

 [dictionary enumerateKeysAndObjectsUsingBlock:^(id key, id obj, BOOL *stop) {
 NSLog(@"key = %@ and obj = %@", key, obj);
 }];

CHAPTER 3: Working with Object Collections 115

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. The log message will
present the results of each way of iterating through the dictionary.

value: Hello World
value: Bonjour tout le monde
value: Hola Mundo
key: english
key: french
key: spanish
key = english and obj = Hello World
key = french and obj = Bonjour tout le monde
key = spanish and obj = Hola Mundo

3.14 Manipulating Dictionary Contents

Problem
You want your dictionary content to be more dynamic so that you or users can
add, remove, and insert objects into dictionaries. However, NSDictionary is an
immutable class, so once you create an NSDictionary you can’t make any
changes to its contents.

Solution
When you know that your dictionary needs to be dynamic, use
NSMutableDictionary. It is a subclass of NSDictionary, which means that you
can work with NSMutableDictionary as you would with NSDictionary. But
NSMutableDictionary gives you methods that let you add, remove, and insert
objects into the dictionary.

How It Works
First, you must instantiate an NSMutableDictionary object. You can use any
constructor to do this. To create a new empty NSMutableDictionary, you may
simply use alloc and init.

CHAPTER 3: Working with Object Collections 116

NSMutableDictionary *dictionary = [[NSMutableDictionary alloc] init];

To add objects to this array, you must send the setObject:forKey: message to
the dictionary with the object that you are adding and the key that goes with the
object.

[dictionary setObject:@"Hello World"
 forKey:@"english"];

[dictionary setObject:@"Bonjour tout le monde"
 forKey:@"french"];

[dictionary setObject:@"Hola Mundo
 forKey:@"spanish"];

When you use setObject:forKey you are always adding objects to the dictionary
indexed by the key that you provide.

To remove an object from a dictionary, you must have the key that is matched to
the object. If you have the key, you can use the removeObjectForKey: method to
remove an object.

[dictionary removeObjectForKey:@"french"];

Finally, you can remove all the objects from the dictionary at once by using the
removeAllObjects method. See Listing 3-18 for the code.

The Code
Listing 3-18. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSMutableDictionary *dictionary = [[NSMutableDictionary alloc] init];

 [dictionary setObject:@"Hello World"
 forKey:@"english"];

 [dictionary setObject:@"Bonjour tout le monde"
 forKey:@"french"];

 [dictionary setObject:@"Hola Mundo"
 forKey:@"spanish"];

CHAPTER 3: Working with Object Collections 117

 NSLog(@"OBJECTS ADDED TO DICTIONARY: %@", dictionary);

 [dictionary removeObjectForKey:@"french"];

 NSLog(@"OBJECT REMOVED FROM DICTIONARY: %@", dictionary);

 [dictionary removeAllObjects];

 NSLog(@"ALL OBJECTS REMOVED FROM DICTIONARY: %@", dictionary);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. Check the log
console to see what happens to the dictionary after each operation is applied.

OBJECTS ADDED TO DICTIONARY: {
 english = "Hello World";
 french = "Bonjour tout le monde";
 spanish = "Hola Mundo";
}
OBJECT REMOVED FROM DICTIONARY: {
 english = "Hello World";
 spanish = "Hola Mundo";
}
ALL OBJECTS REMOVED FROM DICTIONARY: {
}

3.15 Saving Dictionaries to the File System

Problem
You want to save the objects in your dictionary to the file system to be used
later on or by another program.

Solution
If your dictionary contains lists of number or string objects, you can save all of
these to your file system to be used later. Use the writeToFile:atomically:
method to do this. Note that this does not work with custom objects.

CHAPTER 3: Working with Object Collections 118

How It Works
For this recipe, set up a dictionary with phrases matched to keys.

NSArray *listOfObjects = [NSArray arrayWithObjects:@"Hello World", 
@"Bonjour tout le monde", @"Hola Mundo", nil];

NSArray *listOfKeys = [NSArray arrayWithObjects:@"english", @"french", @"spanish", nil];

NSDictionary *dictionary = [NSDictionary dictionaryWithObjects:listOfObjects
 forKeys:listOfKeys];

To save this to the file system, you first need a file reference.

NSString *filePathName = @"/Users/Shared/dictionary.txt";

NOTE: This recipe assumes that you are trying this from a Mac app.
iOS file references work differently; see Recipe 2.5 for examples of
how to get iOS file references.

Now you can use the writeToFile:atomically: method to write the contents of
this dictionary to the Mac’s file system.

[dictionary writeToFile:filePathName
 atomically:YES];

See Listing 3-19 for the code.

The Code
Listing 3-19. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSArray *listOfObjects = [NSArray arrayWithObjects:@"Hello World", 
 @"Bonjour tout le monde", @"Hola Mundo", nil];

 NSArray *listOfKeys = [NSArray arrayWithObjects:@"english", @"french",
 @"spanish", nil];

CHAPTER 3: Working with Object Collections 119

 NSDictionary *dictionary = [NSDictionary dictionaryWithObjects:listOfObjects
 forKeys:listOfKeys];

 NSString *filePathName = @"/Users/Shared/dictionary.txt";

 [dictionary writeToFile:filePathName
 atomically:YES];

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. Use Finder to locate
the file that was created (which will be at /Users/Shared/dictionary.txt). Here
is what the contents of the text file will look like:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
 "http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>english</key>
 <string>Hello World</string>
 <key>french</key>
 <string>Bonjour tout le monde</string>
 <key>spanish</key>
 <string>Hola Mundo</string>
</dict>
</plist>

The data is organized in XML format as a property list (an Objective-C format to
store keyed data).

3.16 Reading Dictionaries from the File
System

Problem
You have files available to your app that contain content organized like a
dictionary and you want to use this content in your application.

http://www.apple.com/DTDs/PropertyList-1.0.dtd

CHAPTER 3: Working with Object Collections 120

Solution
If you have a file from a dictionary that was saved using the
writeToFile:atomically: method, use the initWithContentsOfFile:
constructor to instantiate a new dictionary populated with the contents from the
file.

How It Works
For this recipe, use the file from Recipe 3.15 with the contents of that dictionary
on the file system. So, you can use the same file path name here:

NSString *filePathName = @"/Users/Shared/dictionary.txt";

NOTE: This recipe assumes that you are trying this from a Mac app.
iOS file references work differently; see Recipe 2.5 for examples of
how to get iOS file references.

Once you have that, you can use the initWithContentsOfFile: constructor to
create a new dictionary populated with the content from the file.

NSDictionary *dictionary = [[NSDictionary alloc]
initWithContentsOfFile:filePathName];

See Listing 3-20 for the code.

The Code
Listing 3-20. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSString *filePathName = @"/Users/Shared/dictionary.txt";

 NSDictionary *dictionary = [[NSDictionary alloc]
 initWithContentsOfFile:filePathName];

 NSLog(@"dictionary: %@", dictionary);

CHAPTER 3: Working with Object Collections 121

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. Inspect the log to see
the contents of the dictionary.

dictionary: {
 english = "Hello World";
 french = "Bonjour tout le monde";
 spanish = "Hola Mundo";
}

3.17 Creating a Set

Problem
Your app requires you to group objects together in an unordered collection or a
set.

Solution
Objective-C has two Foundation classes named NSSet and NSMutableSet that
you can use to create sets. Use NSSet when you have a set that you know you
won’t need to change on the fly and NSMutableSet when you know you will need
to add and remove objects from the set later.

How It Works
Sets are created in Objective-C like other objects: use the alloc and init
constructors or convenience functions like setWithObjects: to create the set. If
you use NSSet to create your set, you can’t make any changes to the dictionary
once the set is created. Use NSMutableSet to create sets that you can later
modify.

CHAPTER 3: Working with Object Collections 122

Here is an example of creating a set that contains Hello World in different
languages:

NSSet *set = [NSSet setWithObjects:@"Hello World", @"Bonjour tout le monde", @"Hola
 Mundo", nil];

The NSSet constructor setWithObjects: requires a nil-terminated array with the
objects that will appear in the set.

If you choose to use NSMutableSet, you can use the same constructors to create
your sets (NSMutableSet is a subclass of NSSet). You can also create your
NSMutableSet by using alloc and init since you will likely add objects to your
set at some future point. See Table 3-4 for a complete list of available
constructors for NSSet and NSMutableSet and Listing 3-21 for the code.

Table 3-4. NSSet and NSMutableSet Constructors

Constructor Description

- (id)initWithObjects:(const id *)objects 
 count:(NSUInteger)cnt;

Initializes a set with the specified
objects and count

- (id)initWithObjects:(id)firstObj, ... 
 NS_REQUIRES_NIL_TERMINATION;

Initializes a set with the specified nil-
terminated list of objects

- (id)initWithSet:(NSSet *)set; Initializes a set using another set

- (id)initWithSet:(NSSet *)set 
 copyItems:(BOOL)flag;

Initializes a set using another set and
optionally creates new copies of each
object

- (id)initWithArray:(NSArray *)array; Initializes a set with the specified
objects

The Code
Listing 3-21. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSSet *set = [NSSet setWithObjects:@"Hello World", @"Bonjour tout le monde", 

CHAPTER 3: Working with Object Collections 123

@"Hola Mundo", nil];

 NSLog(@"set: %@",set);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. In your log you can
see the entire contents of the set printed out.

set: {(
 "Bonjour tout le monde",
 "Hello World",
 "Hola Mundo"
)}

3.18 Obtaining the Set Count

Problem
Your app is working with the content in your sets and you need to know how
many elements are in the set to present your content appropriately.

Solution
NSSet objects have a count property that you can use to find out how many
elements are in the set.

How It Works
To use the count property, you can use dot notation (set.count) on any set
object or you can send the count message ([set count]) to find out how many
elements are in the set. See Listing 3-22 for the code.

CHAPTER 3: Working with Object Collections 124

The Code
Listing 3-22. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSSet *set = [NSSet setWithObjects:@"Hello World", @"Bonjour tout le monde", 
@"Hola Mundo", nil];

 NSUInteger count = set.count;

 NSLog(@"The set contains %lu items", count);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. The log message will
present the number of elements.

The set contains 3 items

3.19 Comparing Sets

Problem
You work with many sets in your app and you would like to find out more
information about each set and what objects are in each of your sets.

Solution
NSSet comes with some built-in methods that you can use to compare sets. You
can find out if two sets intercept (they have some elements in common). You
can find out if one set is a subset of another (one set is composed of objects

CHAPTER 3: Working with Object Collections 125

that are entirely in another set). You can also find out if one set is equal to
another or if an object is already in a set.

How It Works
For this recipe, you need two sets. These sets should simply have string objects
for letters in the alphabet.

NSSet *set1 = [NSSet setWithObjects:@"A", @"B", @"C", @"D", @"E", nil];

NSSet *set2 = [NSSet setWithObjects:@"D", @"E", @"F", @"G", @"H", nil];

If you want to see if these sets have objects that overlap (the sets intersect), you
can use the intersectsSet: function to return a BOOL.

BOOL setsIntersect = [set1 intersectsSet:set2];

To find out if one set contains objects that are entirely in another set, use the
isSubsetOfSet: function.

BOOL set2IsSubset = [set2 isSubsetOfSet:set1];

To test whether two sets are identical, use the isEqualToSet: function.

BOOL set1IsEqualToSet2 = [set1 isEqualToSet:set2];

Finally, if you want to know whether an object is already in a set, use
containsObject: to find out.

BOOL set1ContainsD = [set1 containsObject:@"D"];

See Listing 3-23 for the code.

The Code
Listing 3-23. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSSet *set1 = [NSSet setWithObjects:@"A", @"B", @"C", @"D", @"E", nil];

 NSSet *set2 = [NSSet setWithObjects:@"D", @"E", @"F", @"G", @"H", nil];

 NSLog(@"set1 contains:%@", set1);

CHAPTER 3: Working with Object Collections 126

 NSLog(@"set2 contains:%@", set2);

 BOOL setsIntersect = [set1 intersectsSet:set2];

 BOOL set2IsSubset = [set2 isSubsetOfSet:set1];

 BOOL set1IsEqualToSet2 = [set1 isEqualToSet:set2];

 BOOL set1ContainsD = [set1 containsObject:@"D"];

 NSLog(@"setsIntersect = %i, set2IsSubset = %i, set1IsEqualToSet2 = %i,
 set1ContainsD = %i", setsIntersect, set2IsSubset, set1IsEqualToSet2, set1ContainsD);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. The log message will
present the sets and the results of the various tests. The log will print out 1 when
a BOOL is YES and 0 when a BOOL is NO.

set1 contains:{(
 A,
 D,
 B,
 E,
 C
)}
set2 contains:{(
 H,
 F,
 D,
 G,
 E
)}
setsIntersect = 1, set2IsSubset = 0, set1IsEqualToSet2 = 0, set1ContainsD = 1

CHAPTER 3: Working with Object Collections 127

3.20 Iterating Through a Set

Problem
You have a set of objects and you would like to be able to send the same
message or access the same property for every object in the set.

Solution
Use the allObjects NSSet function to convert the set to an array and then you
can use a for-each loop. Or use enumerateObjectsUsingBlock: to work with
each object in the set. NSSet also supports makeObjectsPerformSelector:, which
is great when you specifically want each object to execute just one method.

How It Works
You can temporarily convert the set contents to an array if you would like to use
the methods described in Recipe 3.4. For instance, to iterate through the
objects in a set using a for-each loop, you could do something like this:

for (NSString *s in [set allObjects]) {
 NSLog(@"value: %@", s);
}

You can also use blocks to execute code for each object in a set by using the
enumerateObjectsUsingBlock: method. You can use this to define a block of
code that will be applied to each object in the dictionary without setting up a
for-each loop or getting references to the array version of the set.

[set enumerateObjectsUsingBlock:^(id obj, BOOL *stop) {
 NSLog(@"obj = %@", obj);
}];

If you want to simply perform one action on each object and that action is a
method coded in the object’s class definition, you can use
makeObjectsPerformSelector:.

[set makeObjectsPerformSelector:@selector(description)];

CHAPTER 3: Working with Object Collections 128

See Listing 3-24 for the code.

The Code
Listing 3-24. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSSet *set = [NSSet setWithObjects:@"Hello World", @"Bonjour tout le monde", 
@"Hola Mundo", nil];

 for (NSString *s in [set allObjects]) {
 NSLog(@"value: %@", s);
 }

 [set enumerateObjectsUsingBlock:^(id obj, BOOL *stop) {
 NSLog(@"obj = %@", obj);
 }];

 [set makeObjectsPerformSelector:@selector(description)];

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. The log message will
present the results of each way of iterating through the set.

value: Bonjour tout le monde
value: Hello World
value: Hola Mundo
obj = Bonjour tout le monde
obj = Hello World
obj = Hola Mundo

CHAPTER 3: Working with Object Collections 129

3.21 Manipulating Set Contents

Problem
You want your set contents to be more dynamic so that you or your users can
add objects to sets and remove objects from sets. However, NSSet is an
immutable class, so once you create an NSSet you can’t make any changes to
its contents.

Solution
When you know that your set needs to be dynamic, use NSMutableSet. It is a
subclass of NSSet and so you can work with NSMutableArray as you would with
NSSet. But NSMutableSet provides methods to add and remove objects.

How It Works
First, instantiate a NSMutableSet object. You can use any constructor to do this.
To create a new empty NSMutableSet, you can use alloc and init.

NSMutableSet *set = [[NSMutableSet alloc] init];

To add objects to this set, you must send the addObject: message to the set
with the object that you are adding as a parameter.

[set addObject:@"Hello World"];

[set addObject:@"Bonjour tout le monde"];

[set addObject:@"Hola Mundo"];

To remove an object from a set, you must already have a reference to the
object. If you have this, then you can use removeObject.

[set removeObject:@"Bonjour tout le monde"];

Finally, you can remove all the objects from the set at once by using the
removeAllObjects method. See Listing 3-25 for the code.

CHAPTER 3: Working with Object Collections 130

The Code
Listing 3-25. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSMutableSet *set = [[NSMutableSet alloc] init];

 [set addObject:@"Hello World"];

 [set addObject:@"Bonjour tout le monde"];

 [set addObject:@"Hola Mundo"];

 NSLog(@"Objects added to set:%@", set);

 [set removeObject:@"Bonjour tout le monde"];

 NSLog(@"Object removed from set:%@", set);

 [set removeAllObjects];

 NSLog(@"All objects removed from set:%@", set);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. Check the console to
see what happens to the set after each operation is applied.

Objects added to set:{(
 "Bonjour tout le monde",
 "Hello World",
 "Hola Mundo"
)}
Object removed from set:{(
 "Hello World",
 "Hola Mundo"
)}
All objects removed from set:{(
)}

4
Chapter

File System
This chapter covers working with the file system on Mac and iOS.

The recipes in this chapter will show you how to:

 Get a reference to the file manager

 Reference key directories for Mac and iOS

 Discover and change a file’s attributes

 Get a listing of files in a given directory

 Manage files and directories

 Use delegation with file manager

 Work with data using the NSData class

 Manage caching objects that take up lots of memory

4.1 Referencing and Using the File Manager

Problem
You need to work with your app’s file system.

Solution
Get a reference to your app’s NSFileManager to work with the file system.

CHAPTER 4: File System 132

How It Works
NSFileManager is an Objective-C singleton object (see the note below for an
explanation of singleton) that you use to deal with the file system. You can use
NSFileManager in both iOS and Mac applications, but be aware that folder
locations in iOS apps are restricted to the iOS app’s documents directory
because iOS apps are sandboxed. Mac apps may reference any folder on the
user’s computer.

NOTE: Singleton is a design pattern that restricts a class to only one
instantiation. Singleton is seen in a few places in Objective-C,
including UIApplication and NSApplication.

To work with the file system using NSFileManager, you first need to get a
reference to the file manager for this application. You can use the
defaultManager function to get this reference.

NSFileManager *fileManager = [NSFileManager defaultManager];

Once you have this reference, you can perform the operations that you expect.
For instance, to find out the current directory, you can access the
currentDirectoryPath property of the file manager.

NSString *currentDirectoryPath = [fileManager currentDirectoryPath];

To change the current directory, send the changeCurrentDirectoryPath
message to the file manager.

[fileManager changeCurrentDirectoryPath:@"/Users/Shared"];

This line of code will change the current directory path to the Mac’s shared
folder. See Listing 4-1 for the code.

The Code
Listing 4-1. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSFileManager *fileManager = [NSFileManager defaultManager];

CHAPTER 4: File System 133

 NSString *currentDirectoryPath = [fileManager currentDirectoryPath];

 NSLog(@"currentDirectoryPath = %@", currentDirectoryPath);

 [fileManager changeCurrentDirectoryPath:@"/Users/Shared"];

 currentDirectoryPath = [fileManager currentDirectoryPath];

 NSLog(@"currentDirectoryPath = %@", currentDirectoryPath);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. View the log to see
the current directory before and after the current directory was changed.

currentDirectoryPath = /Users/[YOUR-USER-NAME]/Library/Developer/Xcode
/DerivedData/GetFileManagerReference-
bdycvqvpjxccqqfvchrjapqmvgpj/Build/Products/Debug

currentDirectoryPath = /Users/Shared

4.2 Getting Mac System Directory References

Problem
Your Mac application needs to reference key directories such as the user’s
documents and downloads directories.

Solution
Use NSSearchPathForDirectoriesInDomains to get the information your app
needs to reference your user’s key directories. Use NSBundle to get a reference
to the application bundle, which is where you include files that will be distributed
with your applications.

CHAPTER 4: File System 134

How It Works
To get a reference to your application’s bundle, you can use the main bundle’s
bundlePath function.

NSString *bundlePath = [[NSBundle mainBundle] bundlePath];

The main bundle is a singleton that you can get by using the NSBundle function
mainBundle.

NSSearchPathForDirectoriesInDomains is a function that returns back a
directory reference based on three parameters: the directory that you are
interested in, the domain (user, machine, network, all), and a BOOL indicating
whether you want the tilde expanded.

For instance, if you want to find the location of the user’s documents directory,
you do this:

NSString *directoryPathName = [NSSearchPathForDirectoriesInDomains
(NSDocumentDirectory,NSAllDomainsMask, YES) lastObject];

The first parameter specifies the directory in which you are interested. See Table
4-1 for a listing of the directory constants you can use here.

Table 4-1. Mac System Directory Constants

Directory Constant Description

NSApplicationDirectory Applications directory

NSDemoApplicationDirectory Demos directory

NSAdminApplicationDirectory System applications

NSLibraryDirectory Documentation directory

NSUserDirectory The user’s directory

NSDocumentDirectory The user’s documents directory

NSAutosavedInformationDirectory Directory of auto-saved documents

NSDesktopDirectory The user’s desktop

NSCachesDirectory Directory for temporary cache files

NSDownloadsDirectory The user’s downloads directory

CHAPTER 4: File System 135

Directory Constant Description

NSMoviesDirectory The user’s movies directory

NSMusicDirectory The user’s music directory

NSPicturesDirectory The user’s pictures directory

NSSharedPublicDirectory The user’s public sharing directory

The second parameter is used to specify what domain that you want included in
the search. See Table 4-2 for a listing of the domains that you can search on.
The last parameter gives you the option to expand the tilde character (~).

Table 4-2. Available Domain Masks

Domain Mask Description

NSUserDomainMask The user’s home directory

NSLocalDomainMask The machine’s directory (for all users)

NSNetworkDomainMask Publically available location on network

NSSystemDomainMask Apple’s system directories

NSAllDomainsMask All of the aforementioned domains

NSSearchPathForDirectoriesInDomains returns an array. Listing 4-2 uses the
NSArray lastObject function to return the last object in the array and assign this
to the string.

The Code
Listing 4-2. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSString *bundlePath = [[NSBundle mainBundle] bundlePath];

CHAPTER 4: File System 136

 NSLog(@"bundlePath = %@", bundlePath);

 NSString *directoryPathName = [NSSearchPathForDirectoriesInDomains
(NSDocumentDirectory, NSAllDomainsMask, YES) lastObject];

 NSLog(@"directoryPathName = %@", directoryPathName);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. You can see the
location of the documents directory and the application bundle reflected in the
console log.

bundlePath = /Users/[YOUR-USER-NAME]/Library/Developer/Xcode
/DerivedData/GetKeyMacFolderReferences-
belypecqtyqdumeenpjlbpeeaxun/Build/Products/Debug

directoryPathName = /Users/[YOUR-USER-NAME]/Documents

4.3 Getting Key iOS Directory References

Problem
Your iOS application needs to reference key directories like the app documents
directory and the bundle directory.

Solution
Your application bundle contains the resources that you include with your app.
Use NSBundle to get a reference to this directory so that you can extract your
resources as needed. To get references to iOS directories designated for
documents, libraries, and caches, use NSSearchPathForDirectoriesInDomains,
as in Recipe 4.2.

CHAPTER 4: File System 137

NOTE: iOS apps can’t reference all your Mac directories because iOS
apps can only run in the iOS Simulator or on an iOS device and
therefore can only access the simulator’s or device’s directories.

How It Works
To get a reference to your application’s bundle, you can use the main bundle’s
bundlePath function.

NSString *bundlePath = [[NSBundle mainBundle] bundlePath];

The main bundle is a singleton that you can get by using the NSBundle function
mainBundle. If you look up this directory in Finder, you will find your app name
with the .app extension. Control+click this app name and choose ‘‘Show
Package Contents’’ to see your app executable and the supporting files
(including any that you added yourself). This package is what ultimately gets
posted to the app store.

NOTE: iOS app bundle directories are read-only so you must copy any
files from the app bundle and place them into a writeable directory in
the app sandbox before modifying the files.

NSSearchPathForDirectoriesInDomains returns back a directory reference based
on three parameters: the directory that you are interested in, the domain (user,
machine, network, all), and a BOOL indicating whether you want the tilde
expanded.

For instance, if you want to find the location of the user’s documents directory,
you do this:

NSString *documentsDirectory = [NSSearchPathForDirectoriesInDomains
(NSDocumentDirectory, NSUserDomainMask, YES) lastObject];

See Table 4-3 for a list of the directories that you can reference with this
function and Listing 4-3 for the code.

CHAPTER 4: File System 138

Table 4-3. iOS System Directories

NSSearchPathDirectory Usage

NSDocumentDirectory Location for user-generated content (read-write, backed up)

NSLibraryDirectory The app’s library directory (read-write, backed up)

NSCachesDirectory A directory for cached files (read-write, not backed up)

Apple provides automatic backup with both iTunes and iCloud for some of these
directories. Generally, you use the documents directory for user-generated
content that you want backed up, the library directory to store information that
your app needs as a reference, and the cache directory to store temporary files
(the cache is not backed up).

The Code
Listing 4-3. main.m

#import "AppDelegate.h"

@implementation AppDelegate

@synthesize window = _window;

- (BOOL)application:(UIApplication *)application 
didFinishLaunchingWithOptions:(NSDictionary*)launchOptions{

 //app bundle not backed up, readonly
 NSString *bundlePath = [[NSBundle mainBundle] bundlePath];

 NSLog(@"bundlePath = %@", bundlePath);

 //documents directory is backed up
 NSString *documentsDirectory = [NSSearchPathForDirectoriesInDomains
(NSDocumentDirectory, NSUserDomainMask, YES) lastObject];

 NSLog(@"documentsDirectory = %@", documentsDirectory);

 //Library directory is backed up
 NSString *libraryDirectory = [NSSearchPathForDirectoriesInDomains
(NSLibraryDirectory, NSUserDomainMask, YES) lastObject];

 NSLog(@"libraryDirectory = %@", libraryDirectory);

4

CHAPTER 4: File System 139

 //Cache directory is not backe up
 NSString *cacheDirectory = [NSSearchPathForDirectoriesInDomains
(NSCachesDirectory, NSUserDomainMask, YES) lastObject];

 NSLog(@"cacheDirectory = %@", cacheDirectory);

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];

 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

@end

Usage
This code must be located in an iOS app to work as expected; I put the code
into the app delegate’s didFinishLaunchingWithOptions: method. Build your
app to see the directory strings being written out to your log.

bundlePath = /Users/[YOUR-USER-NAME]/Library/Application Support/iPhone 
Simulator/5.0/Applications/18AF23E1-9CAB-4FA6-9D5D-
39994AD355D7/GetiOSDirectories.app

documentsDirectory = /Users/[YOUR-USER-NAME]/Library/Application Support/iPhone 
Simulator/5.0/Applications/18AF23E1-9CAB-4FA6-9D5D-39994AD355D7/Documents

libraryDirectory = /Users/[YOUR-USER-NAME]/Library/Application Support/iPhone 
Simulator/5.0/Applications/18AF23E1-9CAB-4FA6-9D5D-39994AD355D7/Library

cacheDirectory = /Users/[YOUR-USER-NAME]/Library/Application Support/iPhone 
Simulator/5.0/Applications/18AF23E1-9CAB-4FA6-9D5D-39994AD355D7/Library/Caches

You can also copy and paste these directory strings into Finder to be directed to
the location on your Mac that iOS Simulator temporarily used for these
directories. For instance, copy and paste the app bundle pathname from your
log, go to Finder ➤ Go ➤ Go to Folder, and then paste the pathname into the dialog
box and click Go. You will see all the temporary directories that the iOS
Simulator created for your app here.

CHAPTER 4: File System 140

4.4 Getting File Attributes

Problem
Your application needs information about files and folders such as creation date,
modification date, and file type.

Solution
Use the NSFileManager attributesOfItemAtPath:error: function to return a
dictionary listing all the attributes for the file or folder of interest.

How It Works
This recipe assumes that you have a file reference handy that you can inspect.
You will need a reference to the file manager and the file (or folder) to follow
along.

NSFileManager *fileManager = [NSFileManager defaultManager];

NSString *filePathName = @"/Users/Shared/textfile.txt";

Next you need an error object. You will find that when you are working with the
file system it often pays to use an error object. This gives your app a good
chance to recover from common problems like wrong filenames.

NSError *error = nil;

Now you need a dictionary, which you can get by using the file manager’s
attributesOfItemAtPath:error: function. You need to give this function the file
path name and a reference to the error object. The reference to the error object
requires the & to indicate that the error object is being passed by reference (so
you can test it later to see if an error occurred).

NSDictionary *fileAttributes = [fileManager attributesOfItemAtPath:filePathName
 error:&error];

In the next step, you check to make sure there is no error and then use a key to
retrieve the desired information from the dictionary that you just retrieved.

if(!error){

 NSDate *dateFileCreated = [fileAttributes valueForKey:NSFileCreationDate];

 NSString *fileType = [fileAttributes valueForKey:NSFileType];

CHAPTER 4: File System 141

}

You look up the file creation date as well as the file type. See Table 4-4 for a list
of file attribute keys and Listing 4-4 for the code.

Table 4-4. File Attribute Keys

Directory Constant Description

NSFileType File type

NSFileSize File size in bytes

NSFileModificationDate Last time file was modified

NSFileReferenceCount File’s reference count

NSFileDeviceIdentifier Identifier of the device where file is located

NSFileOwnerAccountName File owner’s name

NSFileGroupOwnerAccountName Group name of the file owner

NSFilePosixPermissions File’s POSIX permissions

NSFileSystemNumber Directory for temporary cache files

NSFileSystemFileNumber File’s file system number

NSFileExtensionHidden File’s extension is hidden

NSFileHFSCreatorCode File’s HFS creator code

NSFileHFSTypeCode File’s HFS type code

NSFileImmutable Indicates if file is immutable

NSFileAppendOnly File is read-only

NSFileCreationDate Date file was created

NSFileOwnerAccountID File owner’s account ID

NSFileGroupOwnerAccountID File group ID

CHAPTER 4: File System 142

Directory Constant Description

NSFileBusy File is busy

The Code
Listing 4-4. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {
 NSFileManager *fileManager = [NSFileManager defaultManager];

 NSString *filePathName = @"/Users/Shared/textfile.txt";

 NSError *error = nil;

 NSDictionary *fileAttributes = [fileManager attributesOfItemAtPath:filePathName
 error:&error];

 if(!error){

 NSDate *dateFileCreated = [fileAttributes valueForKey:NSFileCreationDate];
 NSString *fileType = [fileAttributes valueForKey:NSFileType];

 NSLog(@"This %@ file was created on %@",fileType, dateFileCreated);

 }

 }
 return 0;
}

Usage
To use this code, replace the file reference that I used with one from your own
Mac. Then build and run your Mac app from Xcode. View the log to see the file
attributes.

This NSFileTypeRegular file was created on 2012-01-03 15:21:47 +0000

CHAPTER 4: File System 143

4.5 Getting the List of Files and Sub-
Directories in a Directory

Problem
You want to find out what files and folders are in a given directory.

Solution
Use the NSFileManager contentsOfDirectoryAtPath:error: to get an array of all
the file and folder path names contained in a directory. To get a listing of all the
files and folders in a directory and all subdirectories, use NSFileManager
subpathsOfDirectoryAtPath: function.

How It Works
This recipe assumes that you have a directory reference handy that you can
inspect. You will need a reference to the file manager and a directory to follow
along.

NSFileManager *fileManager = [NSFileManager defaultManager];

NSString *sharedDirectory = @"/Users/Shared";

To simply get a listing of all the contents in a directory, you can use
contentsOfDirectoryAtPath:error: to get an array of file path names. Note that
you will get path names for all the files in the directory as well as all the sub-
directories in the directory.

NSError *error = nil;

NSArray *listOfFiles = [fileManager contentsOfDirectoryAtPath:sharedDirectory
 error:&error];

As with most file system operations, you should use an NSError object, which
you should test before working on the results of a file system operation. This
function just provides files and directory paths for the top level of the directory
that you specified.

To recursively get all the file and directory path names starting from the
directory that you specify, you can use subpathsOfDirectoryAtPath:error.

CHAPTER 4: File System 144

NSArray *listOfSubPaths = [fileManager subpathsOfDirectoryAtPath:sharedDirectory
 error:&error];

See Listing 4-5 for the code.

The Code
Listing 4-5. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSFileManager *fileManager = [NSFileManager defaultManager];

 NSString *sharedDirectory = @"/Users/Shared";

 NSError *error = nil;

 NSArray *listOfFiles = [fileManagercontentsOfDirectoryAtPath:sharedDirectory
 error:&error];

 if(!error)
 NSLog(@"Contents of shared directory: %@", listOfFiles);

 NSArray *listOfSubPaths = [fileManager subpathsOfDirectoryAtPath:sharedDirectory
 error:&error];

 if(!error)
 NSLog(@"Sub Paths of shared directory”: %@", listOfSubPaths);

 }
 return 0;
}

Usage
To use this code, replace the directory reference that I used with one from your
own Mac. Then build and run your Mac app from Xcode. Here is the output from
my run; I edited out some of the sub-directories because the listing became very
long.

Contents of shared directory: (

CHAPTER 4: File System 145

 "array.txt",
 "dictionary.txt",
 "textfile.txt"
 [EDITED SUB-DIRECTORIES OUT]
)
Sub Paths of shared directory: (
 ".DS_Store",
 ".ioSharedDefaults.W80152WTAGV",
 ".ioSharedDefaults.W8815GRB0P0",
 ".localized",
 ".localized (from old Mac)",
 ".SharedUserDB",
 "array.txt",

 [EDITED SUB-DIRECTORIES OUT]

 subversion,
 "subversion/.DS_Store",
 "subversion/HelloWorld",

 [EDITED SUB-DIRECTORIES OUT]

 "textfile.txt"
)

NOTE: Be careful when recursively getting these pathnames of every
subdirectory. Complex directory hierarchies can make this an
expensive proposition.

4.6 Managing Directories

Problem
Your application needs to add, move, copy, and remove directories.

Solution
Use the NSFileManager
createDirectoryAtPath:withIntermediateDirectories:attributes:error: to
create a new directory, moveItemAtPath:toPath:error: to move a directory,

CHAPTER 4: File System 146

removeItemAtPath:error: to remove a directory, and
copyItemAtPath:toPath:error: to copy a directory.

How It Works
You will need a reference to the file manager and the directory that you want to
create to follow along.

NSFileManager *fileManager = [NSFileManager defaultManager];

NSString *sharedDirectory = @"/Users/Shared/NewDirectory1/NewSubDirectory1";

As with most of the NSFileManager functions, you need an error object.

NSError *error = nil;

Use createDirectoryAtPath:withIntermediateDirectories:attributes:error:
to create a new directory. This function needs the new directory path name to
create, a BOOL indicating whether you want to create any intermediate directories
in the path name that do not yet exist, a dictionary of attributes to be applied to
the new directory, and an error object reference.

BOOL directoryCreated = [fileManager createDirectoryAtPath:newDirectory
 withIntermediateDirectories:YES
 attributes:nil
 error:&error];

The function returns a BOOL, which tells you whether the operation was
successful, but you should use the error object to test it just to be safe. In this
recipe, I left the attributes parameter as nil but you can supply an NSDictionary
object filled with file attributes here if need. See Table 4-4 (in Recipe 4.4) for a
list of file attributes that you can use here.

You can also move a directory with the moveItemAtPath:toPath:error function.
You need to specify the old and new directory locations along with an error
object reference.

NSString *directoryMovedTo = @"/Users/Shared/NewSubDirectory1";

BOOL directoryMoved = [fileManager moveItemAtPath:newDirectory
 toPath:directoryMovedTo
 error:&error];

To remove a directory, use the file manager’s removeItemAtPath:error function.
Pass the directory to be removed along with a reference to an error object.

NSString *directoryToRemove = @"/Users/Shared/NewDirectory1";

CHAPTER 4: File System 147

BOOL directoryRemoved =[fileManager removeItemAtPath:directoryToRemove
 error:&error];

To copy a directory, use copyItemAtPath:toPath:error: from your file manager.

NSString *directoryToCopy = @"/Users/Shared/NewSubDirectory1";
NSString *directoryToCopyTo = @"/Users/Shared/CopiedDirectory";

BOOL directoryCopied =[fileManager copyItemAtPath:directoryToCopy
 toPath:directoryToCopyTo
 error:&error];

See Listing 4-6 for the code.

The Code
Listing 4-6. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSFileManager *fileManager = [NSFileManager defaultManager];

 NSString *newDirectory =
@"/Users/Shared/NewDirectory1/NewSubDirectory1";

 NSError *error = nil;

 BOOL directoryCreated = [fileManager createDirectoryAtPath:newDirectory
 withIntermediateDirectories:YES
 attributes:nil
 error:&error];
 if(!error)
 NSLog(@"directoryCreated = %i with no error", directoryCreated);
 else
 NSLog(@"directoryCreated = %i with error %@", directoryCreated, error);

 NSString *directoryMovedTo = @"/Users/Shared/NewSubDirectory1";

 BOOL directoryMoved = [fileManager moveItemAtPath:newDirectory
 toPath:directoryMovedTo
 error:&error];

 if(!error)

CHAPTER 4: File System 148

 NSLog(@"directoryMoved = %i with no error", directoryMoved);
 else
 NSLog(@"directoryMoved = %i with error %@", directoryMoved, error);

 NSString *directoryToRemove = @"/Users/Shared/NewDirectory1";

 BOOL directoryRemoved =[fileManager removeItemAtPath:directoryToRemove
 error:&error];

 if(!error)
 NSLog(@"directoryRemoved = %i with no error", directoryRemoved);
 else
 NSLog(@"directoryRemoved = %i with error %@", directoryRemoved, error);

 NSString *directoryToCopy = @"/Users/Shared/NewSubDirectory1";
 NSString *directoryToCopyTo = @"/Users/Shared/CopiedDirectory";

 BOOL directoryCopied =[fileManager copyItemAtPath:directoryToCopy
 toPath:directoryToCopyTo
 error:&error];

 if(!error)
 NSLog(@"directoryCopied = %i with no error", directoryCopied);
 else
 NSLog(@"directoryCopied = %i with error %@", directoryCopied, error);
 }
 return 0;
}

Usage
To use this code, replace the directory reference that I used with one from your
own Mac. Then build and run your Mac app from Xcode. Use Finder to see if
your directories modified in the way you expected. You can also view the
console log output to see if the operations were successful.

directoryCreated = 1 with no error
directoryMoved = 1 with no error
directoryRemoved = 1 with no error
directoryCopied = 1 with no error

CHAPTER 4: File System 149

4.7 Managing Files

Problem
Your application needs to add, move, copy, and remove files.

Solution
Use the NSFileManager createFileAtPath:contents:attributes: to create a
new file, moveItemAtPath:toPath:error: to move a file,
removeItemAtPath:error: to remove a file, and copyItemAtPath:toPath:error:
to copy a file.

How It Works
You will need a reference to the file manager before you can do anything else.

NSFileManager *fileManager = [NSFileManager defaultManager];

To create a file, you need to use NSData, which is used to work with data and
content. For this recipe, I’m going to use NSData to get a picture from my blog.
To do this, I need to start with NSURL so I can reference this resource.

NSURL *url = [NSURL URLWithString:@"http://howtomakeiphoneapps.com/wp- 
content/uploads/2012/01/apples-oranges.jpg"];

Once I have the NSURL object, I can use the NSData function
dataWithContentsOfURL to download the content directly into my app.

NSData *dataObject = [NSData dataWithContentsOfURL:url];

With this data object set up for use, I can now use the file manager function
createFileAtPath:contents:attributes: to create the file on the Mac’s file
system.

NSString *newFile = @"/Users/Shared/apples-oranges.jpg";

BOOL fileCreated = [fileManager createFileAtPath:newFile
 contents:dataObject
 attributes:nil];

This function uses the data stored in the NSData object along with any attributes
that you would like to specify and stores the data as a file.

CHAPTER 4: File System 150

You can also move a file with the moveItemAtPath:toPath:error function. You
need to specify the old and new file path names along with an error object
reference.

NSError *error = nil;

NSString *fileMovedTo = @"/Users/Shared/apples-oranges-moved.jpg";

BOOL fileMoved = [fileManager moveItemAtPath:newFile
 toPath:fileMovedTo
 error:&error];

To remove a file, use the file manager’s removeItemAtPath:error function. Pass
the file to be removed along with a reference to an error object.

NSString *fileToRemove = @"/Users/Shared/apples-oranges-moved.jpg";

BOOL fileRemoved =[fileManager removeItemAtPath:fileToRemove
 error:&error];

To copy a file, use copyItemAtPath:toPath:error: from your file manager.

NSString *fileToCopy = @"/Users/Shared/apples-oranges-moved.jpg";
NSString *copiedFileName = @"/Users/Shared/apples-oranges-backup-copy.jpg";

BOOL fileCopied = [fileManager copyItemAtPath:fileToCopy
 toPath:copiedFileName
 error:&error];

See Listing 4-7 for the code.

The Code
Listing 4-7. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSFileManager *fileManager = [NSFileManager defaultManager];

 NSURL *url = [NSURL URLWithString:@"http://howtomakeiphoneapps.com/wp-
content/uploads/2012/01/apples-oranges.jpg"];

 NSData *dataObject = [NSData dataWithContentsOfURL:url];

CHAPTER 4: File System 151

 NSString *newFile = @"/Users/Shared/apples-oranges.jpg";

 BOOL fileCreated = [fileManager createFileAtPath:newFile
 contents:dataObject
 attributes:nil];

 NSLog(@"fileCreated = %i with no error", fileCreated);

 NSError *error = nil;

 NSString *fileMovedTo = @"/Users/Shared/apples-oranges-moved.jpg";

 BOOL fileMoved = [fileManager moveItemAtPath:newFile
 toPath:fileMovedTo
 error:&error];

 if(!error)
 NSLog(@"fileMoved = %i with no error", fileMoved);
 else
 NSLog(@"fileMoved = %i with error %@", fileMoved, error);

 NSString *fileToCopy = @"/Users/Shared/apples-oranges-moved.jpg";
 NSString *copiedFileName = @"/Users/Shared/apples-oranges-backup-copy.jpg";

 BOOL fileCopied = [fileManager copyItemAtPath:fileToCopy
 toPath:copiedFileName
 error:&error];

 if(!error)
 NSLog(@"fileCopied = %i with no error", fileCopied);
 else
 NSLog(@"fileCopied = %i with error %@", fileCopied, error);

 NSString *fileToRemove = @"/Users/Shared/apples-oranges-moved.jpg";

 BOOL fileRemoved =[fileManager removeItemAtPath:fileToRemove
 error:&error];

 if(!error)
 NSLog(@"fileRemoved = %i with no error", fileRemoved);
 else
 NSLog(@"fileRemoved = %i with error %@", fileRemoved, error);

 }
 return 0;
}

CHAPTER 4: File System 152

Usage
To use this code, replace the directory reference with the file that I used with a
directory that will work from your own Mac. Then build and run your Mac app
from Xcode. Use Finder to see if your directories modified in the way you
expected. You can also view the console log output to see if the operations
were successful.

fileCreated = 1 with no error
fileMoved = 1 with no error
fileCopied = 1 with no error
fileRemoved = 1 with no error

4.8 Checking File Status

Problem
You want to know if the file you’re interested in is writeable or if it even exists at
all before you attempt to work on it.

Solution
Use the appropriate NSFileManager functions to test for various states of
interest. Each of these functions returns a BOOL indicating the state of the file in
question:

 fileExistsAtPath:

 isReadableFileAtPath:

 isWritableFileAtPath:

 isExecutableFileAtPath:

 isDeletableFileAtPath:.

CHAPTER 4: File System 153

NOTE: Be careful if you are using these functions to predicate the
behavior of your app based solely on the results of these functions. In
Apple’s documentation, it’s recommended that you use these in
conjunction with the proper error handling with NSError. You will find
examples of NSError in Recipes 4.6 and 4.7.

How It Works
To follow this recipe, you will need a reference to a file on your Mac, like the one
I’m using below. You also need a reference to the file manager.

NSFileManager *fileManager = [NSFileManager defaultManager];

NSString *filePathName = @"/Users/Shared/textfile.txt";

The first thing that you are going to test is whether the file exists at this location.
Use the fileExistsAtPath: function and assign the results to a BOOL variable
that you can later use to test.

BOOL fileExists = [fileManager fileExistsAtPath:filePathName];

To find out if the file can be read, use isReadableFileAtPath:.

BOOL fileIsReadable = [fileManager isReadableFileAtPath:filePathName];

Follow the same pattern to find out if the file can be written to using
isWriteableFileAtPath:.

BOOL fileIsWriteable = [fileManager isWritableFileAtPath:filePathName];

To find out if the file is an executable, use the function
isExecutableFileAtPath:.

Finally, to figure out whether you can delete the file, use the
isDeletableFileAtPath: function and follow the same pattern as before.

BOOL fileIsDeleteable = [fileManager isDeletableFileAtPath:filePathName];

See Listing 4-8 for the code.

The Code
Listing 4-8. main.m

#import <Foundation/Foundation.h>

CHAPTER 4: File System 154

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSFileManager *fileManager = [NSFileManager defaultManager];

 NSString *filePathName = @"/Users/Shared/textfile.txt";

 BOOL fileExists = [fileManager fileExistsAtPath:filePathName];

 if(fileExists)
 NSLog(@"%@ exists", filePathName);
 else
 NSLog(@"%@ doesn't exist", filePathName);

 BOOL fileIsReadable = [fileManager isReadableFileAtPath:filePathName];

 if(fileIsReadable)
 NSLog(@"%@ is readable", filePathName);
 else
 NSLog(@"%@ isn't readable", filePathName);

 BOOL fileIsWriteable = [fileManager isWritableFileAtPath:filePathName];

 if(fileIsWriteable)
 NSLog(@"%@ is writable", filePathName);
 else
 NSLog(@"%@ isn't writable", filePathName);

 BOOL fileIsExecutable = [fileManager isExecutableFileAtPath:filePathName];

 if(fileIsExecutable)
 NSLog(@"%@ is an executable", filePathName);
 else
 NSLog(@"%@ isn't an executable", filePathName);

 BOOL fileIsDeleteable = [fileManager isDeletableFileAtPath:filePathName];

 if(fileIsDeleteable)
 NSLog(@"%@ is deletable", filePathName);
 else
 NSLog(@"%@ isn't an deletable", filePathName);

 }
 return 0;
}

CHAPTER 4: File System 155

Usage
Build and run this code from a Mac command line app to test. Each test of the
file status has a corresponding log entry printed out based on the results of the
test. Here is my output:

/Users/Shared/textfile.txt exists
/Users/Shared/textfile.txt is readable
/Users/Shared/textfile.txt is writable
/Users/Shared/textfile.txt isn't an executable
/Users/Shared/textfile.txt is deletable

4.9 Changing File Attributes

Problem
Your application needs to change a file’s attributes.

Solution
Use the file manager’s setAttributes:ofItemAtPath:error: function to change
the attributes of a file or directory.

How It Works
You will need a reference to the file manager, a file, and an error object.

NSFileManager *fileManager = [NSFileManager defaultManager];

NSString *filePathName = @"/Users/Shared/textfile.txt";

NSError *error = nil;

The first step is to set up a dictionary with the file attributes that you want to
apply to the file. See Table 4-4 (in Recipe 4.4) for a list of file attributes.

NSMutableDictionary *attributes = [[NSMutableDictionary alloc] init];

[attributes setObject:[NSDate date] forKey:NSFileModificationDate];

For this recipe, you are going to change just the file modification date. Use the
NSFileManager function setAttributes:ofItemPath:error: and pass the
dictionary, file path name, and error object as parameters.

CHAPTER 4: File System 156

BOOL attributeChanged = [fileManager setAttributes:attributes
 ofItemAtPath:filePathName
 error:&error];

Make sure to check the error object and returned BOOL value when you use this
function. See Listing 4-9 for the code.

The Code
Listing 4-9. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSFileManager *fileManager = [NSFileManager defaultManager];

 NSString *filePathName = @"/Users/Shared/textfile.txt";

 NSError *error = nil;

 //Get the file attributes so you can compare later on:
 NSDictionary *fileAttributes = [fileManager attributesOfItemAtPath:filePathName
 error:&error];

 if(!error)
 NSLog(@"%@ file attributes (before): %@",filePathName, fileAttributes);

 NSMutableDictionary *attributes = [[NSMutableDictionary alloc] init];

 [attributes setObject:[NSDate date] forKey:NSFileModificationDate];

 BOOL attributeChanged = [fileManager setAttributes:attributes
 ofItemAtPath:filePathName
 error:&error];

 if(error)
 NSLog(@"There was an error: %@", error);
 else{
 NSLog(@"attributeChanged = %i", attributeChanged);

 //Get the file attributes to see the change:
 NSDictionary *fileAttributes = [fileManager 

CHAPTER 4: File System 157

attributesOfItemAtPath:filePathName
 error:&error];

 if(!error)
 NSLog(@"%@ file attributes (after): %@",filePathName, fileAttributes);
 }

 }
 return 0;
}

Usage
Build and run this code from a Mac command line app to test. View the log
output to see if an error occurred and to see if the file attribute was changed in
the way that you expected.

/Users/Shared/textfile.txt file attributes (before): {
 NSFileCreationDate = "2012-01-26 14:17:04 +0000";
 NSFileExtensionHidden = 0;
 NSFileGroupOwnerAccountID = 0;
 NSFileGroupOwnerAccountName = wheel;
 NSFileHFSCreatorCode = 0;
 NSFileHFSTypeCode = 0;
 NSFileModificationDate = "2012-01-07 13:09:03 +0000";
 NSFileOwnerAccountID = 502;
 NSFileOwnerAccountName = [YOUR-USER-NAME];
 NSFilePosixPermissions = 511;
 NSFileReferenceCount = 1;
 NSFileSize = 37;
 NSFileSystemFileNumber = 40320513;
 NSFileSystemNumber = 234881026;
 NSFileType = NSFileTypeRegular;
}
attributeChanged = 1
/Users/Shared/textfile.txt file attributes (after): {
 NSFileCreationDate = "2012-01-26 14:17:04 +0000";
 NSFileExtensionHidden = 0;
 NSFileGroupOwnerAccountID = 0;
 NSFileGroupOwnerAccountName = wheel;
 NSFileHFSCreatorCode = 0;
 NSFileHFSTypeCode = 0;
 NSFileModificationDate = "2012-01-26 15:03:18 +0000";
 NSFileOwnerAccountID = 502;
 NSFileOwnerAccountName = [YOUR-USER-NAME];
 NSFilePosixPermissions = 511;
 NSFileReferenceCount = 1;
 NSFileSize = 37;

CHAPTER 4: File System 158

 NSFileSystemFileNumber = 40320513;
 NSFileSystemNumber = 234881026;
 NSFileType = NSFileTypeRegular;
}

4.10 Using Delegation with NSFileManager

Problem
You want more control over file system operations like copying and moving files
and directories, and you need to make an additional action when a file is about
to be copied or moved.

Solution
Create your own instance of NSFileManager instead of using the default file
manager that is associated with your process. You must set your file manager’s
delegate to an object that has been instantiated from a class that implements
the NSFileManagerDelegate protocol. Implement the delegate methods in the
class that has adopted the NSFileManagerDelegate protocol to get more control
over copy, move, and remove operations.

How It Works
Using NSFileManager in this way requires you to have a class available that can
adopt the NSFileManagerDelegate protocol because you will be using the
Delegation design pattern. This means that you need an object that will act on
behalf of the file manager. Often this is simply a view controller or other class
that you are using already. But, since you are only using a command line Mac
app in this recipe, you need to add a custom class just for the file manager.

For the purposes of this recipe, let’s assume that your application needs more
control over the copy operation than you get from the NSFileManager’s
copyItemAtPath:toPath:error: function. You’re going to intercept this operation
and test to make sure you are not copying into your ‘‘protected’’ directory.

The first step is to add a new class to the application that has a file manager
property (see Recipe 1.3 for more details on how to add custom classes). The
header for such a class looks like this:

#import <Foundation/Foundation.h>

CHAPTER 4: File System 159

@interface MyFileManager : NSObject

@property(strong)NSFileManager *fileManager;

@end

The implementation for this class looks like this:

#import "MyFileManager.h"

@implementation MyFileManager
@synthesize fileManager;

@end

Note that your class is called MyFileManager and is acting mostly as a container
for a file manager.

Now you want to adopt the NSFileManagerDelegate protocol so that this class
can act on behalf of the file manager. You do this in the interface located in the
header file.

#import <Foundation/Foundation.h>

@interface MyFileManager : NSObject<NSFileManagerDelegate>

@property(strong)NSFileManager *fileManager;

@end

The code <NSFileManagerDelegate> above means that this class is adopting the
NSFileManagerDelegate protocol and objects instantiated from this class may
act on behalf of NSFileManager objects. This protocol has no required methods,
but there is an optional method that you want to implement because you are
interested in getting a little bit more control over the copy operation.

So, implement the delegate method
fileManager:shouldCopyItemAtPath:toPath:. This delegate method executes
right before the file is copied, which gives you a chance to test to see if the copy
operation should happen. From within this function you can return a BOOL
indicating whether it’s ok to go through with the copy operation or not.

This code belongs in the implementation file for MyFileManager.

- (BOOL)fileManager:(NSFileManager *)fileManager shouldCopyItemAtPath:
 (NSString *)srcPath toPath:(NSString *)dstPath{

 if([dstPath hasPrefix:@"/Users/Shared/Book/Protected"]){

CHAPTER 4: File System 160

 NSLog(@"We cannot copy files into the protected folder and so this file was
 not copied");

 return NO;
 }
 else{

 NSLog(@"We just copied a file successfully");

 return YES;
 }
}

What you’re doing here is testing to see if the destination directory matches the
protected directory by using the NSString function hasPrefix (see Recipe 2.6).
Based on these findings, the function returns YES or NO and writes out a
message to the log.

You can override the MyFileManager init method to add your custom
initialization code so you can instantiate a new file manager here and set the file
manager’s delegate to MyFileManager using the self keyword.

Of course, this also belongs in MyFileManager’s implementation.

- (id)init {
 self = [super init];
 if (self) {
 self.fileManager = [[NSFileManager alloc] init];
 self.fileManager.delegate = self;
 }
 return self;
}

NOTE: I suggest that you look over Listings 4-10 through 4-12. It will
be much clearer to see the code in context once you understand the
general pattern I’m following here.

What you’ve done so far is essentially wrap up a file manager in your own
custom class that supports the delegation pattern that you require. Now you can
move on to main.m and use the class you just created.

#import <Foundation/Foundation.h>
#import "MyFileManager.h"

int main (int argc, const char * argv[])
{

CHAPTER 4: File System 161

 @autoreleasepool {
 MyFileManager *myFileManager = [[MyFileManager alloc] init];

 NSString *protectedDirectory = @"/Users/Shared/Book/Protected";

 NSString *cacheDirectory = @"/Users/Shared/Book/Cache";

 NSString *fileSource = @"/Users/Shared/Book/textfile.txt";

 NSString *fileDestination1 = @"/Users/Shared/Book/Protected/textfile.txt";

 NSString *fileDestination2 = @"/Users/Shared/Book/Cache/textfile.txt";

 NSError *error = nil;

 }
 return 0;
}

The key points in this code are the import statement for myFileManager and the
instantiation of the myFileManager object. The rest of the code is simply file and
directory references as well as the error object you always need when using the
file manager.

Now, instead of using the default file manager directly, you will be using your
own file manager that you can reference via myFileManager.

BOOL fileCopied1 = [myFileManager.fileManager copyItemAtPath:fileSource
 toPath:fileDestination1
 error:&error];

As you can see, you use the same file manager functions as in the other recipes.
But you now reference the file manager property myFileManager and you can
expect the corresponding delegate method that you just implemented to
execute right before the item is copied.

NOTE: This method clearly is more labor intensive than simply using
the default file manager, but it does give a tad more control over the
process as well as error handling.

CHAPTER 4: File System 162

The Code
Listing 4-10. MyFileManager.h

#import <Foundation/Foundation.h>

@interface MyFileManager : NSObject<NSFileManagerDelegate>

@property(strong)NSFileManager *fileManager;

@end

Listing 4.11. MyFileManager.m

#import "MyFileManager.h"

@implementation MyFileManager
@synthesize fileManager;

- (id)init {
 self = [super init];
 if (self) {
 self.fileManager = [[NSFileManager alloc] init];
 self.fileManager.delegate = self;
 }
 return self;
}

- (BOOL)fileManager:(NSFileManager *)fileManager shouldCopyItemAtPath: 
(NSString *)srcPath toPath:(NSString *)dstPath{

 if([dstPath hasPrefix:@"/Users/Shared/Book/Protected"]){

 NSLog(@"We cannot copy files into the protected folder and so this file was 
not copied");

 return NO;
 }
 else{

 NSLog(@"We just copied a file successfully");

 return YES;
 }
}

@end

CHAPTER 4: File System 163

Listing 4-12. main.m

#import <Foundation/Foundation.h>
#import "MyFileManager.h"

int main (int argc, const char * argv[])
{

 @autoreleasepool {
 MyFileManager *myFileManager = [[MyFileManager alloc] init];

 NSString *protectedDirectory = @"/Users/Shared/Book/Protected";

 NSString *cacheDirectory = @"/Users/Shared/Book/Cache";

 NSString *fileSource = @"/Users/Shared/Book/textfile.txt";

 NSString *fileDestination1 =
@"/Users/Shared/Book/Protected/textfile.txt";

 NSString *fileDestination2 = @"/Users/Shared/Book/Cache/textfile.txt";

 NSError *error = nil;

 NSArray *listOfFiles;

 NSLog(@"Look at directories BEFORE attempting to copy");

 listOfFiles = [myFileManager.fileManager 
contentsOfDirectoryAtPath:protectedDirectory
 error:&error];

 NSLog(@"List of files in protected directory (before):%@", listOfFiles);

 listOfFiles = [myFileManager.fileManager 
contentsOfDirectoryAtPath:cacheDirectory
 error:&error];

 NSLog(@"List of files in cache directory (before):%@", listOfFiles);

 //Attempt to copy into protected folder:
 BOOL fileCopied1 = [myFileManager.fileManager copyItemAtPath:fileSource
 toPath:fileDestination1
 error:&error];

 if(error)
 NSLog(@"There was an error, %@. fileCopied1 = %i", error, fileCopied1);

 //Attempt to copy into cache folder:

CHAPTER 4: File System 164

 BOOL fileCopied2 = [myFileManager.fileManager copyItemAtPath:fileSource
 toPath:fileDestination2
 error:&error];

 if(error)
 NSLog(@"There was an error, %@. fileCopied2 = %i", error, fileCopied2);

 NSLog(@"Look at directories AFTER attempting to copy");

 listOfFiles = [myFileManager.fileManager 
contentsOfDirectoryAtPath:protectedDirectory
 error:&error];

 NSLog(@"List of files in protected directory (after):%@", listOfFiles);

 listOfFiles = [myFileManager.fileManager 
contentsOfDirectoryAtPath:cacheDirectory
 error:&error];

 NSLog(@"List of files in cache directory (after):%@", listOfFiles);

 }
 return 0;
}

Usage
Build and run this code from a Mac command line app to test. View the log
output to see the log messages that print out the before and after directory
listings to see if and when the file was copied. Also note the log entries that print
out from the delegate method located in the MyFileManager implementation.

Look at directories BEFORE attempting to copy

List of files in protected directory (before):(
 ".DS_Store",
 "AAAA.txt"
)

List of files in cache directory (before):(
 ".DS_Store",
 "1.txt",
 "2.txt"
)

We cannot copy files into the protected folder and so this file was not copied

CHAPTER 4: File System 165

We just copied a file successfully

Look at directories AFTER attempting to copy

List of files in protected directory (after):(
 ".DS_Store",
 "AAAA.txt"
)

List of files in cache directory (after):(
 ".DS_Store",
 "1.txt",
 "2.txt",
 "textfile.txt"
)

4.11 Working with Data Using NSData

Problem
You need to work with data from files and other sources from within your
application.

Solution
Use NSData and NSMutableData to work data from many sources. NSData brings
data into your app via files, URLs, bytes, and other NSData objects. You can use
NSMutableData to modify data, and you can save NSData objects back to the file
system. NSData is also used with many other Foundation classes.

How It Works
This recipe demonstrates using NSData and NSMutableData by using these
classes to combine two character arrays together and then saving them as a file
to the file system.

The first thing you need is two arrays that you can use as your data source.

NSUInteger length = 3;

char bytes1[length];

CHAPTER 4: File System 166

bytes1[0] = 'A';
bytes1[1] = 'B';
bytes1[2] = 'C';

char bytes2[length];
bytes2[0] = 'D';
bytes2[1] = 'E';
bytes2[2] = 'F';

NOTE: These arrays are both things are you would code in regular C.
Don’t confuse the arrays here with the NSArray and NSMutableArray
Foundation classes, which are both object-oriented collections that
work with objects only. The byte1 and byte2 arrays here only work
with primitive types. You can do this because Objective-C is a
superset of the C programming language, and you can use C code in
conjunction with Objective-C code at any time.

Now that you have data, you’re ready to start using a data object. For this
recipe, you use NSMutableData because you want to be able to modify the data.

NSMutableData *mutableData = [[NSMutableData alloc] init];

NSData and NSMutableData have other constructors that you will find helpful as
you work with different data sources. See Table 4-5 for a complete list.

Table 4-5. List of NSData Constructors

Constructor Description

- (id)initWithBytes:(const void *)bytes 
length:(NSUInteger)length;

Creates NSData object with the
provided bytes with a specified
length

- (id)initWithBytesNoCopy:(void *)bytes 
length:(NSUInteger)length;

Creates NSData object with the
provided bytes with a specified
length without copying

- (id)initWithBytesNoCopy:(void *)bytes 
length:(NSUInteger)length 
freeWhenDone:(BOOL)flag;

Creates NSData object with the
provided bytes with a specified
length without copying and freeing
memory when finished

CHAPTER 4: File System 167

Constructor Description

- (id)initWithContentsOfFile:(NSString *)path 
options:(NSDataReadingOptions)readOptionsMask 
error:(NSError **)errorPtr;

Creates NSData object from a file
with the specified options

- (id)initWithContentsOfURL:(NSURL *)url 
options:(NSDataReadingOptions)readOptionsMask 
error:(NSError **)errorPtr;

Creates NSData object from a URL
with the specified options

- (id)initWithContentsOfFile:(NSString *)path; Creates NSData object from a file

- (id)initWithContentsOfURL:(NSURL *)url; Creates NSData object from a URL

- (id)initWithData:(NSData *)data; Creates NSData object from another
NSData object

Now you can move on to modifying the data object. Use the NSMutableData
function appendBytes:length: to add the first byte array to the data object.

[mutableData appendBytes:bytes1
 length:length];

This adds the characters A, B, C to the data object. To add the remaining
characters, repeat the process with the next byte array.

[mutableData appendBytes:bytes2
 length:length];

At this point, the data object contains both byte arrays. Appending bytes is one
way of modifying a data object, but there are more things you can do to modify
data with mutable data objects. See Table 4-6 for complete list.

Table 4-6. NSMutableData Mutation Methods

Method Description

- (void)appendBytes:(const void *)bytes 
length:(NSUInteger)length;

Appends bytes to the data object

- (void)appendData:(NSData *)other; Appends a data object to the
data object

- (void)increaseLengthBy:(NSUInteger)extraLength; Adds to the length of the data
object

CHAPTER 4: File System 168

Method Description

- (void)replaceBytesInRange:(NSRange)range 
withBytes:(const void *)bytes;

Replaces a byte array in the
given range

- (void)resetBytesInRange:(NSRange)range; Resets a byte array in the given
range

- (void)setData:(NSData *)data; Sets the state of the data object

- (void)replaceBytesInRange:(NSRange)range 
withBytes:(const void *)replacementBytes 
length:(NSUInteger)replacementLength;

Replaces bytes in a range with a
specified range

If you need to use the new array in your application, you can retrieve the new
array using the NSData byte function.

char *bytesFromData = (char *)[mutableData bytes];

To save the contents of the data object to the file system, you can use the
writeToFile:options:error: function and supply a file path name, an options
parameter, and an error object.

NSError *error = nil;

BOOL dataSaved = [mutableData writeToFile:@"/Users/Shared/Book/datadump.txt"
 options:NSDataWritingAtomic
 error:&error];

See Listing 4-13 for the code.

The Code
Listing 4-13. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSUInteger length = 3;

 char bytes1[length];
 bytes1[0] = 'A';
 bytes1[1] = 'B';

CHAPTER 4: File System 169

 bytes1[2] = 'C';

 for (int i=0;i<sizeof(bytes1);i++)
 NSLog(@"bytes1[%i] = %c", i, bytes1[i]);

 char bytes2[length];
 bytes2[0] = 'D';
 bytes2[1] = 'E';
 bytes2[2] = 'F';

 for (int i=0;i<sizeof(bytes2);i++)
 NSLog(@"bytes2[%i] = %c", i, bytes2[i]);

 NSMutableData *mutableData = [[NSMutableData alloc] init];

 [mutableData appendBytes:bytes1
 length:length];

 [mutableData appendBytes:bytes2
 length:length];

 NSLog(@"mutableData = %@", mutableData);

 char *bytesFromData = (char *)[mutableData bytes];

 for (int i=0;i<length*2;i++)
 NSLog(@"bytesFromData[%i] = %c", i, bytesFromData[i]);

 NSError *error = nil;

 BOOL dataSaved = [mutableData writeToFile:@"/Users/Shared/datadump.txt"
 options:NSDataWritingAtomic
 error:&error];

 if(dataSaved)
 NSLog(@"mutableData successfully wrote contents to file system");
 else
 NSLog(@"mutableData was unsuccesful in writing out data because of 
%@", error);

 }
 return 0;
}

Usage
Build and run this code from a Mac command line app to test. View the log
output to see the log messages to view the contents of the various data objects.

CHAPTER 4: File System 170

Use a text editor to inspect the file that was created to see the content written to
the file system.

bytes1[0] = A
bytes1[1] = B
bytes1[2] = C
bytes2[0] = D
bytes2[1] = E
bytes2[2] = F

mutableData = <41424344 4546>

bytesFromData[0] = A
bytesFromData[1] = B
bytesFromData[2] = C
bytesFromData[3] = D
bytesFromData[4] = E
bytesFromData[5] = F

mutableData successfully wrote contents to file system

4.12 Caching Content with NSCache

Problem
Your application has to operate in limited memory conditions so you need to be
able to cache content.

Solution
Use NSCache to maintain a collection of objects that may be cached in memory.
When used with NSPurgeableData, NSCache will keep an object in memory until
the device or desktop application needs to reclaim the memory.

How It Works
NSCache works like NSDictionary in that NSCache stores objects that are indexed
with keys. What is different about NSCache is that NSCache will get rid of objects
when certain conditions are met. Usually, NSCache will react to low memory
conditions but you can define other conditions if desired.

CHAPTER 4: File System 171

NOTE: The behavior described here only works when the objects in
the cache adopt the NSDiscardableContent protocol. The easiest way
to make sure that a class adopts this protocol is to use the
NSPurgeableData class, which adopts this protocol and can be used
like NSData.

What makes NSCache very useful is that while it will get rid of objects smartly, it
will also keep the key to the object in place. This gives you a chance to attempt
to retrieve the object and then test to see if a nil value came back (indicating
that an object has either been removed or not created yet). If the return value is
nil, then you have the opportunity to recreate or reload the object.

NOTE: When using NSCache to retrieve objects, make sure to test to
see if the object is still cached. If the object is not cached anymore,
then include code to recreate the object and insert the object back
into the cache.

This recipe assumes that you have an iOS app set up with a view controller. See
Listings 4-14 through 4-17 to see exactly how the user interface was set up. To
get more information on how to set up iOS apps and user controls, see Recipes
1.12 and 1.13. For now, take a look at the view controller header file so you can
see that the NSCache object is included as a property.

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property (strong) NSCache *cache;
@property (assign) BOOL regularLogo;
@property (strong) UIImageView *myImageView;
@property (strong) UIButton *loadImageButton;

- (void)presentImage;

@end

First, you need to instantiate the NSCache object itself. Here, you do this in the
view controller viewDidLoad delegate method.

#import "ViewController.h"

@implementation ViewController

CHAPTER 4: File System 172

-(void)viewDidLoad{
 [super viewDidLoad];

 //set up the cache
 self.cache = [[NSCache alloc] init];

}

@end

NOTE: You may locate your NSCache object anywhere in your
application. One popular location is the app delegate because you can
get a reference to the app delegate anywhere in your app so it’s easy
to share the cache. To keep this recipe as simple as possible, the
cache is simply located in the view controllers as a property.

Putting the cache in the view controller as a property and instantiating the cache
in viewDidLoad means that you can use the cache as long as the view controller
is active.

Now you can retrieve an object from the cache. You need a key, which can be a
string, and you can use this key with the cache’s objectForKey: function to
attempt to retrieve the object.

NSString *key = @"regular-logo";
NSPurgeableData *data = [cache objectForKey:key];

Here you are trying to retrieve an NSPurgeableData object from the cache. In the
next step, you must immediately test the object that comes back to see if a nil
value was returned. You use an if statement to do this.

if(!data){

}

!data means that the data object is equal to nil. If the object is nil, you can
recreate the object in the code that is between the curly braces. The data that
you want to retrieve here is an image that is stored in the app bundle. So, you
need to reference the app bundle (see Recipe 4.3 for more on this) and to
construct the image file’s path name.

NSString *key = @"regular-logo";
NSPurgeableData *data = [cache objectForKey:key];
if(!data){
 NSString *bundlePath = [[NSBundle mainBundle] bundlePath];

CHAPTER 4: File System 173

 NSString *imagePath = [NSString stringWithFormat:@"%@/MobileAppMastery-Log.png", 
bundlePath];

}

Once you have the file path reference, you can use it to instantiate an
NSPurgeableData object with the contents of the file. Then you insert that object
into the cache.

NSString *key = @"regular-logo";
NSPurgeableData *data = [cache objectForKey:key];
if(!data){
 NSString *bundlePath = [[NSBundle mainBundle] bundlePath];
 NSString *imagePath = [NSString stringWithFormat:@"%@/MobileAppMastery-Log.png", 
bundlePath];

 data = [NSPurgeableData dataWithContentsOfFile:imagePath];
 [cache setObject:data forKey:key];
}

Now the object is cached and available to be used again whenever you ask for it
with the key. If something happens and the object needs to be purged, you can
still ask for the object with the key but you will get a nil result so you have to
repeat the object creation process again.

The Code
Listing 4-14. AppDelegate.h

#import <UIKit/UIKit.h>

@class ViewController;

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) ViewController *viewController;

@end

Listing 4-15. AppDelegate.m

#import "AppDelegate.h"

#import "ViewController.h"

@implementation AppDelegate

CHAPTER 4: File System 174

@synthesize window = _window;
@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application 
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 self.viewController = [[ViewController alloc]
initWithNibName:@"ViewController"
 bundle:nil];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];
 return YES;
}

@end

Listing 4-16. ViewController.h

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property (strong) NSCache *cache;
@property (assign) BOOL regularLogo;
@property (strong) UIImageView *myImageView;
@property (strong) UIButton *loadImageButton;

- (void)presentImage;

@end

Listing 4-17. ViewController.m

#import "ViewController.h"

@implementation ViewController
@synthesize cache, regularLogo, myImageView, loadImageButton;

-(void)viewDidLoad{
 [super viewDidLoad];

 //Change the view's background color to white
 self.view.backgroundColor = [UIColor whiteColor];

 //Load the regular logo first
 self.regularLogo = YES;

CHAPTER 4: File System 175

 //set up the cache
 self.cache = [[NSCache alloc] init];

 //Setup the button
 self.loadImageButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 self.loadImageButton.frame = CGRectMake(20, 415, 280, 37);
 [self.loadImageButton addTarget:self
 action:@selector(presentImage)
 forControlEvents:UIControlEventTouchUpInside];
 [loadImageButton setTitle:@"Present Image" forState:UIControlStateNormal];
 [self.view addSubview:loadImageButton];

 //Setup the UIImageView
 self.myImageView = [[UIImageView alloc] init];
 self.myImageView.frame = CGRectMake(0, 0, 320, 407);
 self.myImageView.contentMode = UIViewContentModeScaleAspectFit;
 [self.view addSubview:self.myImageView];
}

- (void)presentImage{
 if(regularLogo){
 NSString *key = @"regular-logo";
 NSPurgeableData *data = [cache objectForKey:key];
 if(!data){
 NSString *bundlePath = [[NSBundle mainBundle] bundlePath];
 NSString *imagePath = [NSString stringWithFormat:
@"%@/MobileAppMastery-Log.png", bundlePath];
 data = [NSPurgeableData dataWithContentsOfFile:imagePath];
 [cache setObject:data forKey:key];
 NSLog(@"Retrieved resource(%@) and added to cache", key);
 }
 else
 NSLog(@"Just retrieved resource(%@)", key);;
 self.myImageView.image = [UIImage imageWithData:data];
 regularLogo = NO;
 }
 else{
 NSString *key = @"greyscale-logo";
 NSPurgeableData *data = [cache objectForKey:key];
 if(!data){
 NSString *bundlePath = [[NSBundle mainBundle] bundlePath];
 NSString *imagePath = [NSString 
stringWithFormat:@"%@/MAM_Logo_Square_No_Words_Grayscale.png", bundlePath];
 data = [NSPurgeableData dataWithContentsOfFile:imagePath];
 [cache setObject:data forKey:key];
 NSLog(@"Retrieved resource(%@) and added to cache", key);
 }
 else
 NSLog(@"Just retrieved resource(%@)", key);

CHAPTER 4: File System 176

 self.myImageView.image = [UIImage imageWithData:data];
 regularLogo = YES;
 }
}

@end

Usage
The application used in this recipe is an iOS single view application. This
application type was chosen because the iOS Simulator has the ability to
simulate a low memory situation, which makes it possible to see how the
NSCache works under this condition. If you need to know how to build your own
iOS single view application, see Recipe 1.12.

This example also uses two user controls: a button and an image view. If you
want to know more about how to add and use user controls like these, see
Recipe 1.13. The images used in the example are mine; if you want to try with
your own images, all you need to do is drag your image files into the Supporting
Files folder in your Xcode project. Make sure to click ‘‘Copy into destination
folder’’ to ensure that the image files are included in the application bundle.

How this application works in general is that the user is presented with a blank
screen with a button at the bottom. Each time the user presses the button one
of two images is presented. You can see what the application looks like in
Figure 4-1.

Figure 4-1. iOS application UI

CHAPTER 4: File System 177

Each time the user touches the button, one of the two images is retrieved from
the cache. The code knows which image to choose based on the BOOL variable
regularLogo.

To test this code once you have everything set up, run the iOS application in the
iOS Simulator and then press the Present Image button twice to see both
images loaded. If you check in the log, you should see two messages indicating
that the images were created for the first time.

Retrieved resource(regular-logo) and added to cache
Retrieved resource(greyscale-logo) and added to cache

Now press the button twice again. You should see the images presented again
in sequence. Check the log again how this worked.

Just retrieved resource(regular-logo)
Just retrieved resource(greyscale-logo)

This time the images didn’t need to be created at all and they were just retrieved
from the cache.

Now, let’s create a low memory situation in the iOS Simulator to see how the
cache helps you. Go to iOS Simulator ➤ Hardware ➤ Simulate Memory Warning. Press
the button two times again to see the results.

Received memory warning.
Retrieved resource(regular-logo) and added to cache
Just retrieved resource(greyscale-logo)

As you can see from this output, the regular-logo image had to be re-created
because NSCache removed the object when the memory warning was received.
The second image didn’t get removed (because it was still retained by the image
view).

5
Chapter

Working With Dates,
Times, and Timers
This chapter covers how to work with dates and timers using the Foundation
framework with Objective-C.

The recipes in this chapter will show you how to:

 Create today’s date using NSDate

 Create custom dates using NSDateComponents

 Compare dates

 Convert strings to dates

 Format dates for display on user interfaces

 Add and subtract dates

 Use a timer to schedule repeating and non-repeating code

5.1 Creating a Date Object for Today

Problem
You need to represent today’s date in your application.

CHAPTER 5: Working With Dates, Times, and Timers 180

Solution
Use the NSDate class method date to create a date object instance for the
current date.

How It Works
NSDate is a class that is generally used with other classes (covered in the
upcoming recipes). By itself, NSDate can get today’s date, which you can use to
present to the console or to the user. To get today’s date, use the date function
and assign the results of that to an NSDate object variable.

NSDate *todaysDate = [NSDate date];

See Listing 5-1 for the code.

The Code
Listing 5-1. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSDate *todaysDate = [NSDate date];

 NSLog(@"Today's date is %@", todaysDate);

}
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. View the log to see
today’s date printed out.

Today's date is 2012-06-27 13:14:30 +0000

CHAPTER 5: Working With Dates, Times, and Timers 181

5.2 Creating Custom Dates by Component

Problem
You need to reference dates other than the current date in your application.

Solution
Use NSDateComponents to define a specific date and then use NSCalendar with
your date components to return an NSDate object reference that you can use in
your application.

How It Works
To create custom dates, you need to use three Foundation classes: NSDate,
NSDateComponents, and NSCalendar. NSDate acts as the most basic class here to
represent dates.

The NSDateComponents class represents the details that make up a date and
time: day, month, year, and hour. NSDateComponents has many date and time
details that you can set to completely customize your date.

The NSCalendar class is used to represent a real world calendar. This is used to
manage the complexities involved with working with calendars. You can specify
what calendar to use or simply get the calendar in use by the users’ system.
Usually, you can assume that you are working with the Gregorian calendar, but
you may specify other calendars like the Hebrew or Islamic calendar instead.

To create a custom date, the first thing you do is create a new instance of
NSDateComponents.

NSDateComponents *dateComponents = [[NSDateComponents alloc] init];

Then you set all the properties of interest for the custom date. In this recipe, I’m
setting the components necessary to represent the original iPhone release date
in California, USA.

dateComponents.year = 2007;
dateComponents.month = 6;
dateComponents.day = 29;
dateComponents.hour = 12;
dateComponents.minute = 01;
dateComponents.second = 31;
dateComponents.timeZone = [NSTimeZone timeZoneWithAbbreviation:@"PDT"];

CHAPTER 5: Working With Dates, Times, and Timers 182

All you need to do here is use dot notation to set the date properties that you
are interested in. The last property requires a special NSTimeZone object. You
can specify any time zone that you wish or simply leave this property alone to
use the system time zone.

Finally, to actually create your NSDate object, you need a reference to a calendar
(usually the current system calendar). You get this reference with the
currentCalendar message, [NSCalendar currentCalendar]. Once you have that,
you use the dateWithComponents: function to get the date object that matches
the specifications that you set out with your date components.

NSDate *iPhoneReleaseDate = [[NSCalendar currentCalendar] 
dateFromComponents:dateComponents];

See Listing 5-2 for the code.

The Code
Listing 5-2. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSDateComponents *dateComponents = [[NSDateComponents alloc] init];
 dateComponents.year = 2007;
 dateComponents.month = 6;
 dateComponents.day = 29;
 dateComponents.hour = 12;
 dateComponents.minute = 01;
 dateComponents.second = 31;
 dateComponents.timeZone = [NSTimeZone timeZoneWithAbbreviation:@"PDT"];

 NSDate *iPhoneReleaseDate = [[NSCalendar currentCalendar] 
dateFromComponents:dateComponents];

 NSLog(@"The original iPhone went on sale: %@", iPhoneReleaseDate);

 }
 return 0;
}

CHAPTER 5: Working With Dates, Times, and Timers 183

Usage
To use this code, build and run your Mac app from Xcode. You can see the
printout of the iPhone release date by inspecting the log.

The original iPhone went on sale: 2007-06-29 19:01:31 +0000

5.3 Comparing Two Dates

Problem
In your application, you have at least two dates and you need to know how they
relate to each other. For instance, did one date come before another? How
many days separate these two dates?

Solution
For simple comparisons, use the built-in NSDate comparison functions. To figure
out how many days have passed since another date, you need a reference to
the system calendar as well as both dates.

How It Works
For this recipe, I’m going to assume that you have the iPhone release date set
up still from Recipe 5.2. Let’s compare it to today’s date. You can get today’s
date by using the NSDate function date.

The first comparison is whether the iPhone release date was today or not. To
find that out, use the isEqualToDate: function and pass it the date that you
would like to compare. This function returns a BOOL.

NSDate *todaysDate = [NSDate date];

if([todaysDate isEqualToDate:iPhoneReleaseDate])
 NSLog(@"The iPhone was released today!");
else
 NSLog(@"The iPhone was released on some other date");

To find out if your date is earlier than another date, use the earlierDate:
function with the other date as a parameter. This function returns whatever date
is the earlier date.

CHAPTER 5: Working With Dates, Times, and Timers 184

NSDate *earlierDateIs = [todaysDate earlierDate:iPhoneReleaseDate];

You can also do the reverse to find out which date is the later date.

NSDate *laterDateIs = [todaysDate laterDate:iPhoneReleaseDate];

To find out the number of seconds that separate one date from another, use
timeIntervalSinceDate: passing the second date as a parameter. You get a
double value equal to the number of seconds between both dates. This is a
typedef called NSTimeInterval (you will see NSTimeInterval referenced in other
date methods).

You can get richer detail in date comparisons by using the system calendar
along with the NSDateComponents class. This gives you the time between two
dates in the format that you need. So, if you want to know the number of days,
hours, minutes, years, months, or some combination of these, you are in luck.

The first step is getting a reference to the user’s system calendar.

NSCalendar *systemCalendar = [NSCalendar currentCalendar];

Next, specify the units you want to use via a bitwise OR of NSCalendar
constants.

unsigned int unitFlags = NSYearCalendarUnit | NSMonthCalendarUnit |
NSDayCalendarUnit;

NOTE: Bitwise operations are a way of working with information at a
very low level in binary. As you may know, computers represent
information in a series of ones and zeros (such as 00000011 for the
number three). Bitwise operators compare binary representations of
two pieces of information and create a result based on these
comparisons. Bitwise OR means that result has a one if either of the
pieces of information has a one.

In other words, I want to see the time separating my two dates by year, month,
and day. See Table 5-1 for a list of constants that you can use here.

Table 5-1. NSCalendar Constants

Constant Description

NSEraCalendarUnit Specifies eras

NSYearCalendarUnit Specifies years

CHAPTER 5: Working With Dates, Times, and Timers 185

Constant Description

NSMonthCalendarUnit Specifies months

NSDayCalendarUnit Specifies days

NSHourCalendarUnit Specifies hours

NSMinuteCalendarUnit Specifies minutes

NSSecondCalendarUnit Specifies seconds

NSWeekCalendarUnit Specifies weeks

NSWeekdayCalendarUnit Specifies weekdays

You can use the NSCalendar function components:fromDate:toDate:options to
return an NSDateComponents object filled with data that describes the time
difference between the two dates based on what NSCalendar constants you
specified.

NSDateComponents *dateComparisonComponents = [systemCalendar components:unitFlags
 fromDate:iPhoneReleaseDate
 toDate:todaysDate
 options:NSWrapCalendarComponents];

You can access the corresponding properties to get the information you need.
For instance, to get the number of years, look at the
dateComparisonComponents.year property. See Listing 5-3 for the code.

The Code
Listing 5-3. Caption

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSDateComponents *dateComponents = [[NSDateComponents alloc] init];
 dateComponents.year = 2007;
 dateComponents.month = 6;
 dateComponents.day = 29;
 dateComponents.hour = 12;

CHAPTER 5: Working With Dates, Times, and Timers 186

 dateComponents.minute = 01;
 dateComponents.second = 31;
 dateComponents.timeZone = [NSTimeZone timeZoneWithAbbreviation:@"PDT"];

 NSDate *iPhoneReleaseDate = [[NSCalendar currentCalendar] 
dateFromComponents:dateComponents];

 NSLog(@"The original iPhone went on sale: %@", iPhoneReleaseDate);

 NSDate *todaysDate = [NSDate date];

 NSLog(@"Today's date is: %@", todaysDate);

 if([todaysDate isEqualToDate:iPhoneReleaseDate])
 NSLog(@"The iPhone was released today!");
 else
 NSLog(@"The iPhone was released on some other date");

 NSDate *earlierDateIs = [todaysDate earlierDate:iPhoneReleaseDate];

 NSLog(@"The earlier date is: %@", earlierDateIs);

 NSDate *laterDateIs = [todaysDate laterDate:iPhoneReleaseDate];

 NSLog(@"The later date is: %@", laterDateIs);

 NSTimeInterval timeBetweenDates = [todaysDate
 timeIntervalSinceDate:iPhoneReleaseDate];

 NSLog(@"The iPhone was released %f seconds ago", timeBetweenDates);

 NSCalendar *systemCalendar = [NSCalendar currentCalendar];

 unsigned int unitFlags = NSYearCalendarUnit | NSMonthCalendarUnit|
 NSDayCalendarUnit;

 NSDateComponents *dateComparisonComponents = 
 [systemCalendar components:unitFlags
 fromDate:iPhoneReleaseDate
 toDate:todaysDate
 options:NSWrapCalendarComponents];

 NSLog(@"The iPhone was released %ld years, %ld months and %ld days ago",
 dateComparisonComponents.year,
 dateComparisonComponents.month,
 dateComparisonComponents.day
);

 }
 return 0;

CHAPTER 5: Working With Dates, Times, and Timers 187

}

Usage
To use this code, build and run your Mac app from Xcode. View the log
messages to see the dates and the results of the comparisons between them.

The original iPhone went on sale: 2007-06-29 19:01:31 +0000
Today's date is: 2012-06-27 20:54:56 +0000
The earlier date is: 2007-06-29 19:01:31 +0000
The later date is: 2012-06-27 20:54:56 +0000
The iPhone was released on some other date
The iPhone was released 143776405.074785 seconds ago
The iPhone was released 4 years, 6 months and 20 days ago

Note that your output messages will look different than mine because you will
be running this code at a different date than me.

5.4 Converting a String to a Date

Problem
You have a string with date information from a strings file and you would like to
use this information as a date object.

Solution
Use NSDateFormatter to specify the string format and create the new date
object.

How It Works
For this recipe, let’s assume that you have date information stored as a string.

NSString *dateString = @"02/14/2012";

First, you need a date formatter, so use the NSDateFormatter class to create
one.

NSDateFormatter *df = [[NSDateFormatter alloc] init];

Then set the dateFormat property with the format of your string.

df.dateFormat = @"MM/dd/yyyy";

CHAPTER 5: Working With Dates, Times, and Timers 188

NOTE: Date formatters use the Unicode date format patterns. See
http://unicode.org/reports/tr35/tr35-

10.html#Date_Format_Patterns for a complete list of the available date
format patterns.

To create the date object, use the dateFromString: date formatter function.

NSDate *valentinesDay = [df dateFromString:dateString];

See Listing 5-4 for the code.

The Code
Listing 5-4. Caption

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSString *dateString = @"02/14/2012";

 NSDateFormatter *df = [[NSDateFormatter alloc] init];

 df.dateFormat = @"MM/dd/yyyy";

 NSDate *valentinesDay = [df dateFromString:dateString];

 NSLog(@"Valentine's Day = %@", valentinesDay);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. View the log
message to see the date object that was created from the string.

Valentine's Day = 2012-02-14 05:02:00 +0000

http://unicode.org/reports/tr35/tr35-10.html#Date_Format_Patterns
http://unicode.org/reports/tr35/tr35-10.html#Date_Format_Patterns

CHAPTER 5: Working With Dates, Times, and Timers 189

Your result may appear different than mine as this is based on your local
timezone.

5.5 Formatting Dates for Display

Problem
You would like to present your date objects to your user in a format that they
recognize and one that looks good in your user interface.

Solution
Use NSDateFormatter to create date formats and get data objects formatted as
strings that you can present to your users.

How It Works
You specify date formatter dates using the same Unicode data format patterns
that you used in Recipe 5.4. So, if you have the date from Recipe 5.4 already in
but you want a different format presented to the user, you can set the date
format like this:

df.dateFormat = @"EEEE, MMMM d";

This presents the weekday name of the week, the name of the month, and the
numerical day that this date falls on.

To see the results, use the NSDateFormatter’s stringFromDate: function.

NSLog(@"Another Formatted Valentine's Day = %@", [df
stringFromDate:valentinesDay]);

This presents the date in a format like this:

Tuesday, February 14

See Listing 5-5 for the code.

CHAPTER 5: Working With Dates, Times, and Timers 190

The Code
Listing 5-5. Caption

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSString *dateString = @"02/14/2012";

 NSDateFormatter *df = [[NSDateFormatter alloc] init];

 df.dateFormat = @"MM/dd/yyyy";

 NSDate *valentinesDay = [df dateFromString:dateString];

 NSLog(@"Unformatted Valentine's Day = %@", valentinesDay);

 NSLog(@"Formatted Valentine's Day = %@", [df stringFromDate:valentinesDay]);

 df.dateFormat = @"EEEE, MMMM d";

 NSLog(@"Another Formatted Valentine's Day = %@", 
[df stringFromDate:valentinesDay]);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. View the log
message to see the formatted date objects.

Unformatted Valentine's Day = 2012-02-14 05:00:00 +0000
Formatted Valentine's Day = 02/14/2012
Another Formatted Valentine's Day = Tuesday, February 14

CHAPTER 5: Working With Dates, Times, and Timers 191

5.6 Adding and Subtracting Dates

Problem
You want to add or subtract dates in your application.

Solution
Use the NSDateComponents and NSCalendar classes along with your date object
to add or subtract dates. NSDateComponents specifies a time length (one day, one
week, or another time interval). NSCalendar gives you a method to create a new
date using the user’s calendar along with the specification that you set up in the
date components object.

How It Works
Let’s keep working with the Valentine’s Day date that you created in Recipe 5.4.
For this example, you want to get the date for one week before Valentine’s Day
(perhaps to use as a shopping day).

The first thing you need is a date components object. The alloc and init
constructor is used to create this.

NSDateComponents *weekBeforeDateComponents = [[NSDateComponents alloc] init];

To work with the interval, you can set any of the properties that you need. For
this example, you are only interested in subtracting one week so set the week
property of the date components object to -1.

weekBeforeDateComponents.week = -1;

Now you can get the date for one week in the past by using the user’s calendar
and the dateByAddingComponents:toDate:options: function.

NSDate *vDayShoppingDay = [[NSCalendar currentCalendar] 
 dateByAddingComponents:weekBeforeDateComponents
 toDate:valentinesDay
 options:0];

This function returns a new date for the previous week. Also, note that to
subtract dates you use this function with negative integers (there is no
dateBySubtractingComponents). See Listing 5-6 for the code.

CHAPTER 5: Working With Dates, Times, and Timers 192

The Code
Listing 5-6. Caption

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[])
{

 @autoreleasepool {

 NSString *dateString = @"02/14/2012";

 NSDateFormatter *df = [[NSDateFormatter alloc] init];

 df.dateFormat = @"MM/dd/yyyy";

 NSDate *valentinesDay = [df dateFromString:dateString];

 NSLog(@"Valentine's Day = %@", valentinesDay);

 NSDateComponents *weekBeforeDateComponents = [[NSDateComponents alloc] init];

 weekBeforeDateComponents.week = -1;

 NSDate *vDayShoppingDay = [[NSCalendar currentCalendar] 
 dateByAddingComponents:weekBeforeDateComponents
 toDate:valentinesDay
 options:0];

 NSLog(@"Shop for Valentine's Day by %@", vDayShoppingDay);

 }
 return 0;
}

Usage
To use this code, build and run your Mac app from Xcode. Check the console to
see the result of the date subtraction.

Valentine's Day = 2012-02-14 05:00:00 +0000
Shop for Valentine's Day by 2012-02-07 05:00:00 +0000

CHAPTER 5: Working With Dates, Times, and Timers 193

5.7 Using a Timer to Schedule and Repeat
Tasks

Problem
Your app needs to schedule code to execute at a particular time. You also want
to repeat this task.

Solution
Use NSTimer to schedule code to run at a particular time. NSTimer needs a date
object and a reference to the run loop of an application to work.

NOTE: NSTimer requires a run loop, which you will have if you are
using your timer from a Mac or iOS app. This recipe requires an app
with a run loop. See Recipes 1.11 and 1.12 for procedures on creating
Mac and iOS apps, respectively.

How It Works
For this recipe, I will locate the code in the app delegate. Often you will locate
timers in custom classes or your app controllers.

Timers work by sending messages to objects starting at a particular date and
time. Timers may send messages at intervals if you require repetition in your
app. First, you need a date object to represent the date and time the timer will
start sending the message to the object.

NSDate *scheduledTime = [NSDate dateWithTimeIntervalSinceNow:10.0];

This scheduled time is ten seconds after this line of code is reached. You may
use any date that you wish here.

Next, create the timer by using the
initWithFireDate:interval:target:selector:userInfo:repeats: constructor.

NSString *customUserObject = @"To demo userInfo";

NSTimer *timer = [[NSTimer alloc] initWithFireDate:scheduledTime
 interval:2

CHAPTER 5: Working With Dates, Times, and Timers 194

 target:self
 selector:@selector(task)
 userInfo:customUserObject
 repeats:YES];

There are a few things going on here that need some explanation. The first
parameter is the date object, which specifies when you want your timer to
become active. Next, you have interval, which is the number of seconds the
timer will wait before sending the message again. And after that is the target
parameter descriptor. The target is the object where the method is located. The
selector parameter requires the name of the method in parentheses preceded
by the @selector keyword. Since you have the method coded right in the app
delegate in the same place as the timer, you can use the self keyword here.

The userInfo is something you can use for custom specifications for the timer.
You can put any object in here and you will have the ability to get a reference to
the object in the message that you are executing (the selector parameter above).
Here I use a string, but it’s common to use a dictionary or other collection for
more complex activities.

The repeats parameter is where you can specify whether this timer will send the
message one time or repeat based on the time interval you provided in the
second parameter.

The next thing that you need is a reference to the run loop. You can do that via
the NSRunLoop currentRunLoop function.

NSRunLoop *runLoop = [NSRunLoop currentRunLoop];

Now, it’s just a matter of adding the timer to the run loop.

[runLoop addTimer:timer forMode:NSDefaultRunLoopMode];

After ten seconds, the timer will start sending the task message to the app
every two seconds.

To stop a timer after you have set it up, you can send the timer the invalidate
message. This removes the timer from the run loop. It looks like this:

[timer invalidate];

See Listing 5-7 for the code.

The Code
Listing 5-7. Caption

#import "AppDelegate.h"

CHAPTER 5: Working With Dates, Times, and Timers 195

@implementation AppDelegate

@synthesize window = _window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification{

 NSDate *scheduledTime = [NSDate dateWithTimeIntervalSinceNow:10.0];

 NSString *customUserObject = @"To demo userInfo";

 NSTimer *timer = [[NSTimer alloc] initWithFireDate:scheduledTime
 interval:2
 target:self
 selector:@selector(task)
 userInfo:customUserObject
 repeats:YES];

 NSRunLoop *runLoop = [NSRunLoop currentRunLoop];

 [runLoop addTimer:timer forMode:NSDefaultRunLoopMode];

}

-(void)task:(id)sender{
 NSTimer *localTimer = (NSTimer *)sender;

 NSLog(@"Schedule task has executed with this user info: %@", [localTimer userInfo]);
}

@end

Usage
To use this code, build and run your Mac app from Xcode. Pay attention to the
console window and notice when the messages start to get written to the log.
I’ve left in the time stamps so you can see how the time interval worked when I
did this recipe.

2012-01-19 15:23:28.651 Timer[31067:707] Schedule task has executed with this user 
info: To demo userInfo
2012-01-19 15:23:30.651 Timer[31067:707] Schedule task has executed with this user 
info: To demo userInfo
2012-01-19 15:23:32.651 Timer[31067:707] Schedule task has executed with this user 
info: To demo userInfo

6
Chapter

Asynchronous Processing
This chapter covers how to add costly tasks to your applications without interrupting the
main thread of operations. Objective-C supports many different options to solve this
problem and this chapter covers the three most important: NSThread, Grand Central
Dispatch, and NSOperationQueue.

The recipes in this chapter will show you how to:

 Create a new thread for a background process

 Send messages to the main thread in order to update the user
interface

 Lock threads to keep data structures in sync

 Use Grand Central Dispatch (GCD) to implement asynchronous
processing

 Use operation queues to implement asynchronous processing using a
more object-oriented approach

 Use serial queues to protect data structures without locking threads to
increase multithread performance

CHAPTER 6: Asynchronous Processing 198

NOTE: The topics in this chapter can be complex because multithreading is a
difficult problem for software developers. The underlying technology that
facilitates multithreading has evolved rapidly over the last few years, which is
why you will see a few alternatives here that you can use to solve the problems
involved with asynchronous processing.

6.1 Running a Process in a New Thread

Problem
Your application needs to execute a task that will take a long time, but you would like
the user interface to remain responsive and otherwise unaffected by the new operation.

Solution
Put the long task into a method and then use NSThread to create a thread separate from
the main thread where the new operation is taking place.

How It Works
We refer to executable program like applications as processes when they are being
executed by the operating system (here either iOS or OSX). Processes are made up of
threads in which operations are executed at the same time. These operations could
have happened at the same time on different processors or on the same processor
using a time-sharing strategy (each thread takes a turn using the computer’s processor).

All programs have at least one primary thread referred to as the main thread.
Applications use the main thread to manage the user interface, but there may be other
threads working at the same time doing tasks that are not directly related to the user
interface or generally part of the main thread.

CHAPTER 6: Asynchronous Processing 199

NOTE: To follow along with this recipe, you will need to have a Single View
iPhone application with a button and an activity view. For general information
on how to use iPhone applications and user controls, see Recipe 1.12 and
Recipe 1.13. See the complete code listings here for the details on setting up
the user interface.

To create a new thread in Objective-C, you can use the NSThread class, but first you
need to put all the code that you want to run on the separate thread in a method.

-(void) bigTask{
 for(int i=0;i<40000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 }
 [self.myActivityIndicator stopAnimating];
}

This method, bigTask, loops 40,000 times. During each loop a new string is constructed
and then written out to the log. After all this, a message is sent to the activity indicator to
stop spinning, which indicates that the task is complete.

Autorelease
There is one more thing that you should do with bigTask before you move on. It has to
do with memory management, which is covered in more detail in Chapter 8, and is
important when you are dealing with threads. You need to put the code in bigTask into
an autoreleasepool. Autoreleasepool allows Objective-C to use memory resources and
then dispose of the resources as needed. Every thread requires an autoreleasepool or
you will find memory leaks in your app.

To add an autoreleasepool to bigTask, enclose all of bigTask’s code in a block starting
with the @autorelease keyword.

-(void) bigTask{
 @autoreleasepool {
 for(int i=0;i<40000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 }
 [self.myActivityIndicator stopAnimating];
 }
}

CHAPTER 6: Asynchronous Processing 200

You could simply execute this method directly by assigning bigTask as an action
associated with a touch event to a button. However, if you did so, your user interface
would be completely unresponsive until the task was complete.

A better way to execute the bigTask is to create a new method for the task of setting up
the user interface and then executing the bigTask. You will ultimately assign this method
to a button action. Call it bitTaskAction and start the method like this:

-(void)bigTaskAction{
 [self.myActivityIndicator startAnimating];
}

So far, bigTaskAction just sets up the user interface by sending a message to the
activity indicator to start spinning. To execute the big task, use the NSThread class
method detachNewThreadSelector:toTarget:withObject:.

-(void)bigTaskAction{
 [self.myActivityIndicator startAnimating];

 [NSThread detachNewThreadSelector:@selector(bigTask)
 toTarget:self
 withObject:nil];

}

This will make a new thread and execute the code in the method that you specify with
the @selector keyword. You can also specify the target object, which must be the object
where the method from the first parameter is located. If the method accepts a
parameter, then you can pass an object using the last parameter in the method. Yours
doesn’t require a parameter so you simply pass nil.

To make this work with an application, assign the method that spawns the thread as an
action to a user control. If you add this to an iPhone app, make sure to add
bigTaskAction to the action method.

[self.myButton addTarget:self
 action:@selector(bigTaskAction)
 forControlEvents:UIControlEventTouchUpInside];

When a user touches a button on an app like this, the big task will execute in its own
thread and not interrupt the user interface at all. See Listings 6-1 through
6-4 for the code.

The Code
Listing 6-1. AppDelegate.h

#import <UIKit/UIKit.h>

CHAPTER 6: Asynchronous Processing 201

@class ViewController;

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) ViewController *viewController;

@end

Listing 6-2. AppDelegate.m

#import "AppDelegate.h"

#import "ViewController.h"

@implementation AppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 self.viewController = [[ViewController alloc] initWithNibName:@"ViewController"
 bundle:nil];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];

 return YES;
}

@end

CHAPTER 6: Asynchronous Processing 202

Listing 6-3. ViewController.h

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property(strong) UIButton *myButton;
@property(strong) UIActivityIndicatorView *myActivityIndicator;

@end

Listing 6-4. ViewController.m

#import "ViewController.h"

@implementation ViewController
@synthesize myButton, myActivityIndicator;

-(void) bigTask{
 @autoreleasepool {
 for(int i=0;i<40000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 }
 [self.myActivityIndicator stopAnimating];
 }
}
/*
 //do task without using a new thread (watch UI to see how this works)
 -(void)bigTaskAction{
 [self.myActivityIndicator startAnimating];
 [self bigTask];
 }
 */

//do task by detaching a new thread (watch UI to see how this works)
-(void)bigTaskAction{
 [self.myActivityIndicator startAnimating];

 [NSThread detachNewThreadSelector:@selector(bigTask)
 toTarget:self
 withObject:nil];

}

- (void)viewDidLoad{
 [super viewDidLoad];

 //Create button
 self.myButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];

CHAPTER 6: Asynchronous Processing 203

 self.myButton.frame = CGRectMake(20, 403, 280, 37);
 [self.myButton addTarget:self
 action:@selector(bigTaskAction)
 forControlEvents:UIControlEventTouchUpInside];
 [self.myButton setTitle:@"Do Long Task"
 forState:UIControlStateNormal];

 [self.view addSubview:self.myButton];

 //Create activity indicator
 self.myActivityIndicator = [[UIActivityIndicatorView alloc] init];
 self.myActivityIndicator.frame = CGRectMake(142, 211, 37, 37);
 self.myActivityIndicator.activityIndicatorViewStyle = 
UIActivityIndicatorViewStyleWhiteLarge;
 self.myActivityIndicator.hidesWhenStopped = NO;

 [self.view addSubview:self.myActivityIndicator];

}

@end

Usage
To use this code, start by setting up a Single View based application in Xcode, like you
did in Recipe 1.12. Next, add the code from Listing 6-4 to your own ViewController
class.

Run the application. In the iOS Simulator you should see an app with one button and a
white activity indicator in the middle of the view. Touch the button and examine the log.
You should see the for loop executing and the activity indicator spinning in the iOS app
view. When bigTask is complete, the activity indicator will stop spinning.

To compare what would happen without using a new thread, comment out
bigTaskAction from Listing 6-4 and then comment in the alternate bigTask method. See
the comments in Listing 6-4 if you are unsure of what method to choose.

Run the application with the alternate bigTaskAction and observe how the main thread
gets locked up. You will not be able to use the interface, but the for loop will continue to
execute and you will see the results in the log.

CHAPTER 6: Asynchronous Processing 204

6.2 Communicating Between the Main Thread and
a Background Thread

Problem
When you attempt to update the user interface from a background thread, the changes
don’t occur until the background thread is finished processing, which makes
components like progress bars useless. You would like to update your user on the
progress of background tasks.

Solution
Use the NSObject method performSelectorOnMainThread:withObject:waitUntilDone: to
execute a method on the main thread. You will need to put the code that updates your
user interface (or otherwise works with the main thread) in its own method.

How It Works
This recipe continues the work you started in Recipe 6.1. However, you are going to add
a UIProgressView object property to your application.

UIProgressView is a UIKit class that you can use to create a user interface element that
presents the progress of a task from 0% to 100% and looks like a blue bar that moves
across the screen. You are going to use the progress view to show your users how
much of the bigTask has been completed.

Here is where you will put the UIProgressView object in your ViewController class. This
property belongs in the header file.

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property(strong) UIButton *myButton;
@property(strong) UIActivityIndicatorView *myActivityIndicator;
@property(strong) UIProgressView *myProgressView;

@end

The property myProgressView must also be added to the @synthesize statement in the
ViewController implementation file.

#import "ViewController.h"

CHAPTER 6: Asynchronous Processing 205

@implementation ViewController
@synthesize myButton, myActivityIndicator, myProgressView;

...

@end

Note that the entire ViewController implementation is not reproduced here. Take a look
at Listing 6-7 to see a complete listing of the code in ViewController in context.

Now, create a method that will update the progress view. This method must be separate
from the method where you put the code for the background thread, which is bigTask in
this example application.

Name your method updateProgressViewWithPercentage:. The parameter is an NSNumber
object indicating how much of the task is complete.

-(void)updateProgressViewWithPercentage:(NSNumber *)percentDone{

}

Make sure to add this method to your ViewController implementation but before the
bigTask method. Alternatively, you can add updateProgressViewWithPercentage: to the
ViewController header file as a forward declaration if you’d rather locate the actual
method after bigTask.

Next, add the code to update the progress view to the new method. You only need to
send one message here to the progress view with the updated information.

-(void)updateProgressViewWithPercentage:(NSNumber *)percentDone{
 [self.myProgressView setProgress:[percentDone floatValue]
 animated:YES];
}

As you can see, you are setting the state of the progress view to the percentage that you
are getting from the percentDone parameter. setProgress is actually expecting a
primitive float type, which means that you must use the NSNumber floatValue method to
return the float value version of the NSNumber object. The second parameter allows you
to control whether the progress view will update with animation.

This is the method that you will be calling from your background thread. As in Recipe
6.1, you have a method called bigTask where the background thread code is located.
There is a slight change in this code: the number to count to is reduced to 10,000 from
40,000 because counting to 40,000 just took too long while testing this code. Here is the
updated bigTask:

-(void) bigTask{
 @autoreleasepool {
 for(int i=0;i<10000;i++){

CHAPTER 6: Asynchronous Processing 206

 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 }
 [self.myActivityIndicator stopAnimating];
 }
}

Again, the code for bigTask is located in the ViewController implementation. Before you
instruct the user interface to update back on the main thread, you need a few things in
place. Since you don’t want the interface updating for every single action in the thread,
here are some rules to determine when the interface is updated.

You want the interface to update as you reach every 10% of the total task completion
time. Since you are counting to 10,000, you can simply update the interface every 1,000
counts. You’ll need an integer to help keep track of this, so add it now and assign the
initial value to 1000.

-(void) bigTask{
 @autoreleasepool {
 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 }
 [self.myActivityIndicator stopAnimating];
 }
}

Next, you need to test when your count has reached the value in updateUIWhen. You also
need to increment updateUIWhen once you do reach 1,000. Here is one way to do that:

-(void) bigTask{
 @autoreleasepool {
 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 updateUIWhen = updateUIWhen + 1000;
 }
 }
 [self.myActivityIndicator stopAnimating];
 }
}

Now you can figure out the percentage complete by dividing i by 10,000. Put that line of
code at the first spot after the opening of the if statement.

-(void) bigTask{
 @autoreleasepool {

CHAPTER 6: Asynchronous Processing 207

 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;

 updateUIWhen = updateUIWhen + 1000;
 }
 }
 [self.myActivityIndicator stopAnimating];
 }
}

If you look closely at the new line of code, you will see that i has (float) in front of it.
This is called a type cast. In this case, you are treating i (which is an integer) as a float
type so that you can assign the division result to a float type. You need a float type
because your progress view is going to need a value between 0 and 1.

Next, create an NSNumber object because that is what the method that will execute on
the main thread will need as a parameter.

-(void) bigTask{
 @autoreleasepool {
 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];

 updateUIWhen = updateUIWhen + 1000;
 }
 }
 [self.myActivityIndicator stopAnimating];
 }
}

You now have everything you need to send your message to the user interface back on
the main thread. To send a message to the main thread, you can use the NSObject
method performSelectorOnMainThread:withObject:waitUntilDone:. You need a method
to pass with the @selector keyword, an object that will serve as a parameter to the
method (the NSNumber you just created) and a BOOL indicating whether you want to block
the current thread until the method has completed.

This code will send that message:

-(void) bigTask{
 @autoreleasepool {

CHAPTER 6: Asynchronous Processing 208

 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];
 [self performSelectorOnMainThread: 
 @selector(updateProgressViewWithPercentage:)
 withObject:percentDone
 waitUntilDone:YES];
 updateUIWhen = updateUIWhen + 1000;
 }
 }
 [self.myActivityIndicator stopAnimating];
 }
}

Here you are sending a message to the main thread where the user interface is
executing with a parameter that has information about how much of the task is
complete. All the code needed to update the progress view is located in the
updateProgressViewWithPercentage: method.

Next, you need to send yet another message to the main thread after the task is
complete just to make sure the progress view is completely filled up when you are done.
This message looks similar to what you just did.

-(void) bigTask{
 @autoreleasepool {
 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];
 [self performSelectorOnMainThread: 
 @selector(updateProgressViewWithPercentage:)
 withObject:percentDone
 waitUntilDone:YES];
 updateUIWhen = updateUIWhen + 1000;
 }
 }
 [self performSelectorOnMainThread:@selector(updateProgressViewWithPercentage:)
 withObject:[NSNumber numberWithFloat:1.0]
 waitUntilDone:YES];
 [self.myActivityIndicator stopAnimating];
 }
}

CHAPTER 6: Asynchronous Processing 209

See Listings 6-5 through 6-8 for the code.

The Code
Listing 6-5. AppDelegate.h

#import <UIKit/UIKit.h>

@class ViewController;

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) ViewController *viewController;

@end

Listing 6-6. AppDelegate.m

#import "AppDelegate.h"

#import "ViewController.h"

@implementation AppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 self.viewController = [[ViewController alloc] initWithNibName:@"ViewController"
 bundle:nil];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];

CHAPTER 6: Asynchronous Processing 210

 return YES;
}

@end

Listing 6-7. ViewController.h

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property(strong) UIButton *myButton;
@property(strong) UIActivityIndicatorView *myActivityIndicator;
@property(strong) UIProgressView *myProgressView;

@end

Listing 6-8. ViewController.m

#import "ViewController.h"

@implementation ViewController
@synthesize myButton, myActivityIndicator, myProgressView;

-(void)updateProgressViewWithPercentage:(NSNumber *)percentDone{
 [self.myProgressView setProgress:[percentDone floatValue]
 animated:YES];
}

-(void) bigTask{
 @autoreleasepool {
 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];
 [self performSelectorOnMainThread:
 @selector(updateProgressViewWithPercentage:)
 withObject:percentDone
 waitUntilDone:YES];
 updateUIWhen = updateUIWhen + 1000;
 }
 }
 [self performSelectorOnMainThread:@selector(updateProgressViewWithPercentage:)
 withObject:[NSNumber numberWithFloat:1.0]
 waitUntilDone:YES];
 [self.myActivityIndicator stopAnimating];
 }

CHAPTER 6: Asynchronous Processing 211

}

//do task by detaching a new thread (watch UI to see how this works)
-(void)bigTaskAction{
 [self.myActivityIndicator startAnimating];

 [NSThread detachNewThreadSelector:@selector(bigTask)
 toTarget:self
 withObject:nil];

}

- (void)viewDidLoad{
 [super viewDidLoad];

 //Create button
 self.myButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 self.myButton.frame = CGRectMake(20, 403, 280, 37);
 [self.myButton addTarget:self
 action:@selector(bigTaskAction)
 forControlEvents:UIControlEventTouchUpInside];
 [self.myButton setTitle:@"Do Long Task"
 forState:UIControlStateNormal];
 [self.view addSubview:self.myButton];

 //Create activity indicator
 self.myActivityIndicator = [[UIActivityIndicatorView alloc] init];
 self.myActivityIndicator.frame = CGRectMake(142, 211, 37, 37);
 self.myActivityIndicator.activityIndicatorViewStyle = 
UIActivityIndicatorViewStyleWhiteLarge;
 self.myActivityIndicator.hidesWhenStopped = NO;
 [self.view addSubview:self.myActivityIndicator];

 //Create label
 self.myProgressView = [[UIProgressView alloc] init];
 self.myProgressView.frame = CGRectMake(20, 20, 280, 9);
 [self.view addSubview:self.myProgressView];

}

@end

Usage
To use this code, start by setting up a Single View based application in Xcode, like you
did in Recipe 1.12. Next, add the code from Listing 6-8tk to your own ViewController
class.

CHAPTER 6: Asynchronous Processing 212

Run the application. In the iOS Simulator you should see an app with one button and an
empty progress view. You will also see a white activity indicator in the middle of the
view. Touch the button to start bigTask in the background thread and examine the log.
As bigTask runs, you should see the progress view filling up in 10% increments until the
task is complete.

6.3 Locking Threads with NSLock

Problem
Your application uses multiple threads, but at times you need to make sure two threads
are not attempting to use the same block of code. Your application could cause
conflicts that may result in user confusion or files being accessed too many times.

For example, try to run the application from Recipe 6.2 but touch the button a second
time after the progress view starts to fill from the first task. If you look closely, the
progress view will start to jump back and forth as each thread changes the progress
view’s value to the current percentage for that particular thread.

Solution
Use NSLock to make other threads wait until the thread is done processing for key blocks
of code.

How It Works
For this example, let’s assume that you are starting with the application from Recipe 6.2
and your app behaves as described in the Problem section. What you want to do is
make sure that bigTask only executes in one thread at a time. This will make each
thread wait its turn.

The first thing you need to do is add an NSLock object to your view controller. The
following is an example of setting this up as a property:

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property(strong) UIButton *myButton;
@property(strong) UIActivityIndicatorView *myActivityIndicator;
@property(strong) UIProgressView *myProgressView;
@property(strong) NSLock *threadLock;

CHAPTER 6: Asynchronous Processing 213

@end

This property must also be included with the @synthesize statement in the view
controller’s implementation.

#import "ViewController.h"

@implementation ViewController
@synthesize myButton, myActivityIndicator, myProgressView, threadLock;

@end

NOTE: It is not absolutely necessary to include objects like this as properties.
You may also simply add them as a local instance in your view controller
implementation. This is a design decision that you must make. I included
NSLock like this to stay as consistent as possible with the earlier recipes.

Before you use NSLock, you need to instantiate an object and assign this to the property
that you have in place. The best place to do this in a view controller is in the viewDidLoad
method.

#import "ViewController.h"

@implementation ViewController
@synthesize myButton, myActivityIndicator, myProgressView, threadLock;

- (void)viewDidLoad{
 [super viewDidLoad];

 //Create the NSLock object
 self.threadLock = [[NSLock alloc] init];
}

@end

All the code for the view controller is not listed here, but you can see it in
Listing 6-11.

Now that you have an NSLock object, all you need to do is lock down your thread. To do
this, use the lock message to the NSLock object at the beginning of the thread’s code
and an unlock message at the end of the thread’s code.

This code goes in your bigTask method, which is located in the view controller’s
implementation.

-(void) bigTask{

CHAPTER 6: Asynchronous Processing 214

 [self.threadLock lock];
 @autoreleasepool {
 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];
 [self performSelectorOnMainThread:
 @selector(updateProgressViewWithPercentage:)
 withObject:percentDone
 waitUntilDone:YES];
 updateUIWhen = updateUIWhen + 1000;
 }
 }
 [self performSelectorOnMainThread:@selector(updateProgressViewWithPercentage:)
 withObject:[NSNumber numberWithFloat:1.0]
 waitUntilDone:YES];
 [self.myActivityIndicator stopAnimating];
 }
 [self.threadLock unlock];
}

Now you can be sure that this thread will be locked until the thread is done executing.
See Listings 6-9 through 6-12 for the code.

The Code
Listing 6-9. AppDelegate.h

#import <UIKit/UIKit.h>

@class ViewController;

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) ViewController *viewController;

@end

Listing 6-10. AppDelegate.m

#import "AppDelegate.h"

#import "ViewController.h"

CHAPTER 6: Asynchronous Processing 215

@implementation AppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 self.viewController = [[ViewController alloc] initWithNibName:@"ViewController"
 bundle:nil];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];

 return YES;
}

@end

Listing 6-11. ViewController.h

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property(strong) UIButton *myButton;
@property(strong) UIActivityIndicatorView *myActivityIndicator;
@property(strong) UIProgressView *myProgressView;
@property(strong) NSLock *threadLock;

@end

Listing 6-12. ViewController.m

#import "ViewController.h"

@implementation ViewController
@synthesize myButton, myActivityIndicator, myProgressView, threadLock;

-(void)updateProgressViewWithPercentage:(NSNumber *)percentDone{
 [self.myProgressView setProgress:[percentDone floatValue]
 animated:YES];
}

-(void) bigTask{
 [self.threadLock lock];
 @autoreleasepool {
 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){

CHAPTER 6: Asynchronous Processing 216

 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];
 [self performSelectorOnMainThread:
 @selector(updateProgressViewWithPercentage:)
 withObject:percentDone
 waitUntilDone:YES];
 updateUIWhen = updateUIWhen + 1000;
 }
 }
 [self performSelectorOnMainThread:@selector(updateProgressViewWithPercentage:)
 withObject:[NSNumber numberWithFloat:1.0]
 waitUntilDone:YES];
 [self.myActivityIndicator stopAnimating];
 }
 [self.threadLock unlock];

}

//do task by detaching a new thread (watch UI to see how this works)
-(void)bigTaskAction{
 [self.myActivityIndicator startAnimating];

 [NSThread detachNewThreadSelector:@selector(bigTask)
 toTarget:self
 withObject:nil];

}

- (void)viewDidLoad{
 [super viewDidLoad];

 //Create the NSLock object
 self.threadLock = [[NSLock alloc] init];

 //Create button
 self.myButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 self.myButton.frame = CGRectMake(20, 403, 280, 37);
 [self.myButton addTarget:self
 action:@selector(bigTaskAction)
 forControlEvents:UIControlEventTouchUpInside];
 [self.myButton setTitle:@"Do Long Task"
 forState:UIControlStateNormal];
 [self.view addSubview:self.myButton];

 //Create activity indicator
 self.myActivityIndicator = [[UIActivityIndicatorView alloc] init];
 self.myActivityIndicator.frame = CGRectMake(142, 211, 37, 37);

CHAPTER 6: Asynchronous Processing 217

 self.myActivityIndicator.activityIndicatorViewStyle = 
UIActivityIndicatorViewStyleWhiteLarge;
 self.myActivityIndicator.hidesWhenStopped = NO;
 [self.view addSubview:self.myActivityIndicator];

 //Create label
 self.myProgressView = [[UIProgressView alloc] init];
 self.myProgressView.frame = CGRectMake(20, 20, 280, 9);
 [self.view addSubview:self.myProgressView];

}

@end

Usage
To test this code, start by setting up a Single View based application in Xcode, like you
did in Recipe 1.12. Next, add the code from Listing 6-12 to your own ViewController
class.

Run the application. In the iOS Simulator you should see an app with one button and an
empty progress view. You will also see a white activity indicator in the middle of the
view. Touch the button two times to start bigTask running in two background threads.

As bigTask runs, you should see the progress view filling up in 10% increments until the
task is complete. Observe that the progress view fills up to 100% before going back to
0% and progressing again to 100%. NSLock is doing what it’s supposed to do.

6.4 Locking Threads with @synchronized

Problem
Your application uses multiple threads, but at times you need to make sure two threads
are not attempting to use the same block of code, and you would like an alternative to
NSLock.

NOTE: @synchronized and NSLock solve the same problem with threads, so
this recipe will look very similar to Recipe 6.3. These two approaches, while
similar, are implemented differently to allow @synchronized the ability to handle

CHAPTER 6: Asynchronous Processing 218

exceptions. This also causes @synchronized to have more of a performance
hit than NSLock.

Use the application from Recipe 6.2 as a starting point. The application from Recipe 6.2
will execute the thread as many times as you touch the button, causing the progress
view to behave unexpectedly.

Solution
To make sure that only one thread may use a block of code at a time, enclose the entire
block of code in curly braces preceded by the @synchronized directive.

How It Works
For this example, let’s assume that you are starting with the application from Recipe 6.2
and that your app behaves as described in the Problem section. You want to make sure
that bigTask only executes in one thread at a time. This will make each thread wait its
turn.

All the code for the view controller is not listed here, but you can see it in
Listing 6-15.

Unlike Recipe 6.3, you will not need to add any property code. All you need to do is
enclose the code in the bigTask in curly braces with the @synchronized directive.

-(void) bigTask{
 @synchronized(self){
 @autoreleasepool {
 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];
 [self performSelectorOnMainThread:
 @selector(updateProgressViewWithPercentage:)
 withObject:percentDone
 waitUntilDone:YES];
 updateUIWhen = updateUIWhen + 1000;
 }
 }
 [self performSelectorOnMainThread:
 @selector(updateProgressViewWithPercentage:)
 withObject:[NSNumber numberWithFloat:1.0]

CHAPTER 6: Asynchronous Processing 219

 waitUntilDone:YES];
 [self.myActivityIndicator stopAnimating];
 }
 }
}

See Listings 6-13 through 6-16 for the code.

The Code
Listing 6-13. AppDelegate.h

#import <UIKit/UIKit.h>

@class ViewController;

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) ViewController *viewController;

@end

Listing 6-14. AppDelegate.m

#import "AppDelegate.h"

#import "ViewController.h"

@implementation AppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 self.viewController = [[ViewController alloc] initWithNibName:@"ViewController"
 bundle:nil];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];

 return YES;
}

@end

CHAPTER 6: Asynchronous Processing 220

Listing 6-15. ViewController.h

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property(strong) UIButton *myButton;
@property(strong) UIActivityIndicatorView *myActivityIndicator;
@property(strong) UIProgressView *myProgressView;

@end

Listing 6-16. ViewController.m

#import "ViewController.h"

@implementation ViewController
@synthesize myButton, myActivityIndicator, myProgressView;

-(void)updateProgressViewWithPercentage:(NSNumber *)percentDone{
 [self.myProgressView setProgress:[percentDone floatValue]
 animated:YES];
}

-(void) bigTask{
 @synchronized(self){
 @autoreleasepool {
 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];
 [self performSelectorOnMainThread:
 @selector(updateProgressViewWithPercentage:)
 withObject:percentDone
 waitUntilDone:YES];
 updateUIWhen = updateUIWhen + 1000;
 }
 }
 [self performSelectorOnMainThread:
 @selector(updateProgressViewWithPercentage:)
 withObject:[NSNumber numberWithFloat:1.0]
 waitUntilDone:YES];
 [self.myActivityIndicator stopAnimating];
 }
 }
}

CHAPTER 6: Asynchronous Processing 221

//do task by detaching a new thread (watch UI to see how this works)
-(void)bigTaskAction{
 [self.myActivityIndicator startAnimating];

 [NSThread detachNewThreadSelector:@selector(bigTask)
 toTarget:self
 withObject:nil];

}

- (void)viewDidLoad{
 [super viewDidLoad];

 //Create button
 self.myButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 self.myButton.frame = CGRectMake(20, 403, 280, 37);
 [self.myButton addTarget:self
 action:@selector(bigTaskAction)
 forControlEvents:UIControlEventTouchUpInside];
 [self.myButton setTitle:@"Do Long Task"
 forState:UIControlStateNormal];
 [self.view addSubview:self.myButton];

 //Create activity indicator
 self.myActivityIndicator = [[UIActivityIndicatorView alloc] init];
 self.myActivityIndicator.frame = CGRectMake(142, 211, 37, 37);
 self.myActivityIndicator.activityIndicatorViewStyle = 
UIActivityIndicatorViewStyleWhiteLarge;
 self.myActivityIndicator.hidesWhenStopped = NO;
 [self.view addSubview:self.myActivityIndicator];

 //Create label
 self.myProgressView = [[UIProgressView alloc] init];
 self.myProgressView.frame = CGRectMake(20, 20, 280, 9);
 [self.view addSubview:self.myProgressView];

}

@end

Usage
To test this code, start by setting up a Single View based application in Xcode, like you
did in Recipe 1.12. Next, add the code from Listing 6-16 to your own ViewController
class.

Run the application. In the iOS Simulator you should see an app with one button and an
empty progress view at the top of the view. You will also see a white activity indicator in

CHAPTER 6: Asynchronous Processing 222

the middle of the view. Touch the button two times to start bigTask running in two
background threads.

As bigTask runs, you should see the progress view filling up in 10% increments until the
task is complete. Observe that the progress view fills up to 100% before going back to
0% and progressing again to 100%. @synchronized is doing what it’s supposed to do.

6.5 Asynchronous Processing with Grand Central
Dispatch (GCD)

Problem
You want to implement asynchronous processing in your application, you plan on
supporting your application on newer OSX and iOS systems, and you would rather not
use NSThread with the various locking mechanisms required to make your app thread
safe.

g

CHAPTER 6: Asynchronous Processing 223

NOTE: Applications that use multiple threads can become more complicated
and sometimes slower because developers need to worry about situations
where regions of code, resources, or data structures may be accessed by
more than one thread at the same time. Keeping threads locked for short
periods of time (as in Recipes 6.3 and 6.4) helps to make code thread safe
(safe for use by multiple threads). However, this can prevent applications from
making full use of the available resources.

Solution
Consider using Grand Central Dispatch (GCD) as an alternative to NSThread if you know
your users have updated systems (or if you choose to support updated systems only).
GCD solves the same problems as NSThread and follows the same basic idea of
executing code asynchronously. GCD is a newer technology that is more efficient in
computers that have multiple processors. GCD was introduced for OSX in version 10.6
and iOS in version 4.

You don’t need to do anything special to add GCD support to your application if you are
developing with a version of OSX that supports GCD. GCD does require the use of a
programming technique called blocks, which can take some getting used to.

Blocks are regions of code that are treated like objects. This means that you can put
lines of code between curly brackets and then treat them like an object. Usually, you will
see blocks used as a parameter to a method, and that is how blocks are used in GCD.
You will see how blocks are used with GCD in the following section.

How It Works
For this recipe, you are going to solve the same problem as you did in Recipes 6.1, 6.2,
and 6.3. Essentially, you have an iOS app with a button that sets off a long task and you
want to keep the user interface responsive and let the progress view fill up as the task
executes. This time you will use GCD to fix this problem.

GCD uses blocks instead of methods (with the @selector directive). This means that you
don’t need to put all the code that you want to execute into a new method. Instead, you
will pass the code into a GCD function as a parameter right from the action method
bigTaskAction. Use the GCD function dispatch_async to do this.

-(void)bigTaskAction{
 [self.myActivityIndicator startAnimating];

CHAPTER 6: Asynchronous Processing 224

 dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];

 updateUIWhen = updateUIWhen + 1000;
 }
 }

 });
}

Let’s look at the first line of code with that GCD function.

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

The first part is the name of the function is dispatch_async, which is a GCD function that
executes asynchronously. There is also a similar function that executes code
synchronously called dispatch_sync. The first parameter that the function requires is a
dispatch queue.

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

You are supplying another function that in turn returns the default dispatch queue for
this application.

NOTE: GCD has a concept of code queues that are scheduled to run on the
next available processor. When you use GCD you need to specify what queue
that you want your code to be put into. You are using the default queue here,
which you can use for background processing too. You can also use the main
queue, which is like the main thread for the user interface.

The next parameter in this function is the code block. You know that you are working
with a code block because it starts off with the ^ symbol and has a beginning curly
bracket.

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

CHAPTER 6: Asynchronous Processing 225

All the lines of code that come after are part of the block parameter. This code is
scheduled to execute when the next processor is available. The entire GCD function
ends with the code);.

So far, all you are doing is scheduling this big task to execute in the background. But,
you still want to update the user interface as the task progresses. Instead of performing
a selector on the main thread, you can use another GCD function to update the user
interface on the main thread. This task should be done synchronously, so use the GCD
function along with a main dispatch queue.

dispatch_sync(dispatch_get_main_queue(), ^{
 [self.myProgressView setProgress:[percentDone floatValue]
 animated:YES];

});

This takes the place of the method you had to code before. You can just use the
variables on hand without worrying about passing parameters, as you can see when you
put this GCD call into the context of the entire code block.

-(void)bigTaskAction{
 [self.myActivityIndicator startAnimating];

 dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];

 dispatch_sync(dispatch_get_main_queue(), ^{
 [self.myProgressView setProgress:[percentDone floatValue]
 animated:YES];

 });

 updateUIWhen = updateUIWhen + 1000;
 }
 }

 });
}

CHAPTER 6: Asynchronous Processing 226

NOTE: With GCD dispatch queues you don’t know for sure what order code
blocks will execute when you use dispatch_async. The system picks the most
efficient way. So, if order is important (like when you are updating your
interface), use dispatch_sync.

Finally, just to be complete, you want to finish filling the progress view when the task is
complete and stop the activity indicator. Use GCD again to do this by scheduling
another task for the main queue at the end of the block of code.

-(void)bigTaskAction{
 [self.myActivityIndicator startAnimating];

 dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];

 dispatch_sync(dispatch_get_main_queue(), ^{
 [self.myProgressView setProgress:[percentDone floatValue]
 animated:YES];

 });

 updateUIWhen = updateUIWhen + 1000;
 }
 }

 dispatch_sync(dispatch_get_main_queue(), ^{

 [self.myProgressView setProgress:1.0
 animated:YES];
 [self.myActivityIndicator stopAnimating];

 });

 });
}

See Listings 6-17 through 6-20 for the code.

CHAPTER 6: Asynchronous Processing 227

The Code
Listing 6-17. AppDelegate.h

#import <UIKit/UIKit.h>

@class ViewController;

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) ViewController *viewController;

@end

Listing 6-18. AppDelegate.m

#import "AppDelegate.h"

#import "ViewController.h"

@implementation AppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 self.viewController = [[ViewController alloc] initWithNibName:@"ViewController"
 bundle:nil];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];

 return YES;
}

@end

Listing 6-19. ViewController.h

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property(strong) UIButton *myButton;
@property(strong) UIActivityIndicatorView *myActivityIndicator;

CHAPTER 6: Asynchronous Processing 228

@property(strong) UIProgressView *myProgressView;

@end

Listing 6-20. ViewController.m

#import "ViewController.h"

@implementation ViewController
@synthesize myButton, myActivityIndicator, myProgressView;

-(void)bigTaskAction{
 [self.myActivityIndicator startAnimating];

 dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];

 dispatch_sync(dispatch_get_main_queue(), ^{
 [self.myProgressView setProgress:[percentDone floatValue]
 animated:YES];

 });

 updateUIWhen = updateUIWhen + 1000;
 }
 }

 dispatch_sync(dispatch_get_main_queue(), ^{

 [self.myProgressView setProgress:1.0
 animated:YES];
 [self.myActivityIndicator stopAnimating];

 });

 });
}

- (void)viewDidLoad{
 [super viewDidLoad];

 //Create button
 self.myButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];

CHAPTER 6: Asynchronous Processing 229

 self.myButton.frame = CGRectMake(20, 403, 280, 37);
 [self.myButton addTarget:self
 action:@selector(bigTaskAction)
 forControlEvents:UIControlEventTouchUpInside];
 [self.myButton setTitle:@"Do Long Task"
 forState:UIControlStateNormal];
 [self.view addSubview:self.myButton];

 //Create activity indicator
 self.myActivityIndicator = [[UIActivityIndicatorView alloc] init];
 self.myActivityIndicator.frame = CGRectMake(142, 211, 37, 37);
 self.myActivityIndicator.activityIndicatorViewStyle = 
UIActivityIndicatorViewStyleWhiteLarge;
 self.myActivityIndicator.hidesWhenStopped = NO;
 [self.view addSubview:self.myActivityIndicator];

 //Create label
 self.myProgressView = [[UIProgressView alloc] init];
 self.myProgressView.frame = CGRectMake(20, 20, 280, 9);
 [self.view addSubview:self.myProgressView];

}

@end

Usage
To test this code, start by setting up a Single View based application in Xcode, like you
did in Recipe 1.12. Next, add the code from Listing 6-20tk to your own ViewController
class.

Run the application. In the iOS Simulator you should see an app with one button and an
empty progress view. You will also see a white activity indicator in the middle of the
view. Touch the button to start the bigTask running. As bigTask runs, you should see the
progress view filling up in 10% increments until the task is complete.

Generally speaking, GCD is the preferred way to do background processing. If you are
targeting newer systems, GCD should be your first choice when deciding what
technology to implement. GCD has been optimized for multi-core applications so you
will see a large boast in your application’s performance when using GCD on multi-core
Macs.

GCD is simpler to use as compared to NSThread since there is no need for an additional
object nor is there a need to code an additional method as you would for NSThread.
However, you will see plenty of examples of NSThread to do background processing, and
that option is available to you.

CHAPTER 6: Asynchronous Processing 230

6.6 Using Serial Queues in GCD

Problem
You use GCD to perform asynchronous processing and you have a situation where you
require blocks to execute one at a time in the order in which they are encountered in
code. For example, in Recipe 6.5 you run into the same problem as you did earlier in this
chapter when users touch the button after the long task is running (the progress view
bounces back and forth).

Previously, you solved this problem using NSLock or @synchronized() but these come at
a cost, which negates some of the benefits of using GCD in the first place.

Solution
Instead of locking the code, use a GCD serial queue to load up the code blocks to be
executed in the order in which the code blocks were placed in the queue. You can use
the GCD function dispatch_queue_create(DISPATCH_QUEUE_SERIAL, 0) to create a serial
queue. Make sure that the serial queue stays in scope for the lifetime of the object it
serves.

How It Works
For the purposes of this recipe, you’ll alter Recipe 6.5 to use a serial queue to fix the
problem that you run into. The first thing you need is a property for the serial queue.

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property(strong) UIButton *myButton;
@property(strong) UIActivityIndicatorView *myActivityIndicator;
@property(strong) UIProgressView *myProgressView;
@property(assign) dispatch_queue_t serialQueue;

@end

This could also be a local instance in the view controller, as long as the queue stays in
scope as long as needed.

You need to make sure that the serial queue is implemented in the view controller’s
@synthesize statement as well.

#import "ViewController.h"

CHAPTER 6: Asynchronous Processing 231

@implementation ViewController
@synthesize myButton, myActivityIndicator, myProgressView, serialQueue;

@end

The viewDidLoad view controller method is a great place to locate the code required to
create the serial queue.

#import "ViewController.h"

@implementation ViewController
@synthesize myButton, myActivityIndicator, myProgressView, serialQueue;

...

- (void)viewDidLoad{
 [super viewDidLoad];

 self.serialQueue = dispatch_queue_create(DISPATCH_QUEUE_SERIAL, 0);

}

...

@end

This function requires a parameter to specify the type of queue to create. Here you are
using DISPATCH_QUEUE_SERIAL because you want a serial queue that ensures that only
one block of code executes at a time in the order that each block of code was placed in
the queue. Some of the view controller code has been left out; see Listing 6-23 for the
entire view controller code.

The next change that you need to make to the Recipe 6.5 code is to replace the default
queue used before with the serial queue you just created. This happens in the
bigTaskAction method.

#import "ViewController.h"

@implementation ViewController
@synthesize myButton, myActivityIndicator, myProgressView, serialQueue;

...

-(void)bigTaskAction{

 dispatch_async(self.serialQueue, ^{

 dispatch_sync(dispatch_get_main_queue(), ^{
 [self.myActivityIndicator startAnimating];

CHAPTER 6: Asynchronous Processing 232

 });

 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];

 dispatch_sync(dispatch_get_main_queue(), ^{
 [self.myProgressView setProgress:[percentDone floatValue]
 animated:YES];

 });

 updateUIWhen = updateUIWhen + 1000;
 }
 }

 dispatch_sync(dispatch_get_main_queue(), ^{

 [self.myProgressView setProgress:1.0
 animated:YES];
 [self.myActivityIndicator stopAnimating];

 });
 });

}

...

@end

As you can see, you moved the message to start animating the activity indicator to be
inside the main block for this action. You also put it into the main queue because it
involved updating the user interface. The reasoning is that you want the activity indicator
to start spinning each time a block like this executes in the serial queue. See Listings 6-
21 through 6-24 for the code.

The Code
Listing 6-21. AppDelegate.h

#import <UIKit/UIKit.h>

@class ViewController;

CHAPTER 6: Asynchronous Processing 233

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) ViewController *viewController;

@end

Listing 6-22. AppDelegate.m

#import "AppDelegate.h"

#import "ViewController.h"

@implementation AppDelegate

@synthesize window = _window;
@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 self.viewController = [[ViewController alloc] initWithNibName:@"ViewController"
 bundle:nil];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];

 return YES;
}

@end

Listing 6-23. ViewController.h

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property(strong) UIButton *myButton;
@property(strong) UIActivityIndicatorView *myActivityIndicator;
@property(strong) UIProgressView *myProgressView;
@property(assign) dispatch_queue_t serialQueue;

@end

Listing 6-24. ViewController.m

#import "ViewController.h"

CHAPTER 6: Asynchronous Processing 234

@implementation ViewController
@synthesize myButton, myActivityIndicator, myProgressView, serialQueue;

-(void)bigTaskAction{

 dispatch_async(self.serialQueue, ^{

 dispatch_sync(dispatch_get_main_queue(), ^{
 [self.myActivityIndicator startAnimating];
 });

 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];

 dispatch_sync(dispatch_get_main_queue(), ^{
 [self.myProgressView setProgress:[percentDone floatValue]
 animated:YES];

 });

 updateUIWhen = updateUIWhen + 1000;
 }
 }

 dispatch_sync(dispatch_get_main_queue(), ^{

 [self.myProgressView setProgress:1.0
 animated:YES];
 [self.myActivityIndicator stopAnimating];

 });
 });

}

- (void)viewDidLoad{
 [super viewDidLoad];

 self.serialQueue = dispatch_queue_create(DISPATCH_QUEUE_SERIAL, 0);

 //Create button
 self.myButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 self.myButton.frame = CGRectMake(20, 403, 280, 37);
 [self.myButton addTarget:self

CHAPTER 6: Asynchronous Processing 235

 action:@selector(bigTaskAction)
 forControlEvents:UIControlEventTouchUpInside];
 [self.myButton setTitle:@"Do Long Task"
 forState:UIControlStateNormal];
 [self.view addSubview:self.myButton];

 //Create activity indicator
 self.myActivityIndicator = [[UIActivityIndicatorView alloc] init];
 self.myActivityIndicator.frame = CGRectMake(142, 211, 37, 37);
 self.myActivityIndicator.activityIndicatorViewStyle = 
UIActivityIndicatorViewStyleWhiteLarge;
 self.myActivityIndicator.hidesWhenStopped = NO;
 [self.view addSubview:self.myActivityIndicator];

 //Create label
 self.myProgressView = [[UIProgressView alloc] init];
 self.myProgressView.frame = CGRectMake(20, 20, 280, 9);
 [self.view addSubview:self.myProgressView];

}

@end

Usage
To test out this code, start by setting up an application like the one in
Recipe 6.5.

Run the application. In the iOS Simulator you should see an app with one button and an
empty progress view. You will also see a white activity indicator in the middle of the
view. Touch the button two times to start bigTask running in two background threads.

As bigTask runs, you should see the progress view filling up in 10% increments until the
task is complete. This process will repeat based on the amount of times you touch the
button. The progress view should not keep jumping back and forth.

6.7 Implement Asynchronous Processing Using
NSOperationQueue

Problem
You would like to add asynchronous processing to your app, but you prefer to use a
more object-oriented approach than the GCD approach.

CHAPTER 6: Asynchronous Processing 236

Solution
Use NSOperationQueue if you want to use GCD but would rather not use the GCD library
directly.

NOTE: NSOperationQueue is available for iOS 2 and above and OSX 10.5 and
above. This makes NSOperationQueue ideal when you want to support
applications that run on older systems and you would rather not use NSThread
with thread locking. When you use NSOperationQueue, the details of the
implementation are hidden from you. Older systems will support
NSOperationQueue with threads while newer systems will use GCD.

NSOperationQueue represents a queue of code that will execute. You can use
NSOperationQueue to run code in the background or in a main queue for user interface
actions.

NSOperationQueue can add code in a few ways. If the OS supports blocks (iOS 4 and
above and OSX 10.6 and above), you can just add code directly to a queue using the
addOperationWithBlock: method.

If not, you must set up the code that you want to execute as a separate subclass that is
a subclass of NSOperation. A subclass of NSOperation will act like a block in that the
class will encapsulate data and code that will execute in a queue.

How It Works
For this recipe, you are going to solve the same problem that was presented in Recipe
6.3. But, instead of using threads that you must lock, you will use an operation queue
and the main queue to dispatch code asynchronously. Again, start with Recipe 6.2 as a
template and change it to use operation queues (see Listings 6-25 through 6-28 for the
complete code in context).

First, add local instances for the main queue and a serial queue right in the view
controller’s implementation.

#import "ViewController.h"

@implementation ViewController
@synthesize myButton, myActivityIndicator, myProgressView;
NSOperationQueue *serialQueue;
NSOperationQueue *mainQueue;

@end

CHAPTER 6: Asynchronous Processing 237

The main queue is where the user interface gets its instructions. The serial queue
executes code blocks one at a time in the order in which they are received, just like the
GCD serial queue in Recipe 6.6.

The viewDidLoad method is the ideal place to instantiate these two queue objects.

#import "ViewController.h"

@implementation ViewController
@synthesize myButton, myActivityIndicator, myProgressView;
NSOperationQueue *serialQueue;
NSOperationQueue *mainQueue;

- (void)viewDidLoad{
 [super viewDidLoad];

 //Create the operation queues
 mainQueue = [NSOperationQueue mainQueue];

 serialQueue = [[NSOperationQueue alloc] init];
 serialQueue.maxConcurrentOperationCount = 1;

}

@end

You can just get a reference to the main queue by using the NSOperationQueue
mainQueue method. This is a Singleton that always returns an instance of the main
queue. You set up the serial queue using the alloc and init constructor. By setting the
maxConcurrentOperationCount to one, you are making this a serial queue because it may
only do one operation at a time.

Once you have the queues set up, you can use them to schedule your blocks right from
the bigTaskAction method.

-(void)bigTaskAction{

 [serialQueue addOperationWithBlock: ^{

 [mainQueue addOperationWithBlock: ^{

 [self.myActivityIndicator startAnimating];

 }];

 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){

CHAPTER 6: Asynchronous Processing 238

 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];

 [mainQueue addOperationWithBlock: ^{
 [self.myProgressView setProgress:[percentDone floatValue]
 animated:YES];

 }];

 updateUIWhen = updateUIWhen + 1000;
 }
 }

 [mainQueue addOperationWithBlock: ^{

 [self.myProgressView setProgress:1.0
 animated:YES];
 [self.myActivityIndicator stopAnimating];

 }];
 }];
}

If you went through Recipe 6.6, you can see that this is essentially following the same
pattern as what you did with GCD. See Listings 6-25 through 6-28 for the code.

The Code
Listing 6-25. AppDelegate.h

#import <UIKit/UIKit.h>

@class ViewController;

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@property (strong, nonatomic) ViewController *viewController;

@end

Listing 6-26. AppDelegate.m

#import "AppDelegate.h"

#import "ViewController.h"

@implementation AppDelegate

CHAPTER 6: Asynchronous Processing 239

@synthesize window = _window;
@synthesize viewController = _viewController;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 // Override point for customization after application launch.
 self.viewController = [[ViewController alloc] initWithNibName:@"ViewController"
 bundle:nil];
 self.window.rootViewController = self.viewController;
 [self.window makeKeyAndVisible];

 return YES;
}

@end

Listing 6-27. ViewController.h

#import <UIKit/UIKit.h>

@interface ViewController : UIViewController

@property(strong) UIButton *myButton;
@property(strong) UIActivityIndicatorView *myActivityIndicator;
@property(strong) UIProgressView *myProgressView;

@end

Listing 6-28. ViewController.m

#import "ViewController.h"

@implementation ViewController
@synthesize myButton, myActivityIndicator, myProgressView;
NSOperationQueue *serialQueue;
NSOperationQueue *mainQueue;

-(void)bigTaskAction{

 [serialQueue addOperationWithBlock: ^{

 [mainQueue addOperationWithBlock: ^{

 [self.myActivityIndicator startAnimating];

 }];

CHAPTER 6: Asynchronous Processing 240

 int updateUIWhen = 1000;
 for(int i=0;i<10000;i++){
 NSString *newString = [NSString stringWithFormat:@"i = %i", i];
 NSLog(@"%@", newString);
 if(i == updateUIWhen){
 float f = (float)i/10000;
 NSNumber *percentDone = [NSNumber numberWithFloat:f];

 [mainQueue addOperationWithBlock: ^{
 [self.myProgressView setProgress:[percentDone floatValue]
 animated:YES];

 }];

 updateUIWhen = updateUIWhen + 1000;
 }
 }

 [mainQueue addOperationWithBlock: ^{

 [self.myProgressView setProgress:1.0
 animated:YES];
 [self.myActivityIndicator stopAnimating];

 }];
 }];
}

- (void)viewDidLoad{
 [super viewDidLoad];

 //Create the operation queues
 mainQueue = [NSOperationQueue mainQueue];

 serialQueue = [[NSOperationQueue alloc] init];
 serialQueue.maxConcurrentOperationCount = 1;

 //Create button
 self.myButton = [UIButton buttonWithType:UIButtonTypeRoundedRect];
 self.myButton.frame = CGRectMake(20, 403, 280, 37);
 [self.myButton addTarget:self
 action:@selector(bigTaskAction)
 forControlEvents:UIControlEventTouchUpInside];
 [self.myButton setTitle:@"Do Long Task"
 forState:UIControlStateNormal];
 [self.view addSubview:self.myButton];

 //Create activity indicator
 self.myActivityIndicator = [[UIActivityIndicatorView alloc] init];
 self.myActivityIndicator.frame = CGRectMake(142, 211, 37, 37);

CHAPTER 6: Asynchronous Processing 241

 self.myActivityIndicator.activityIndicatorViewStyle = 
UIActivityIndicatorViewStyleWhiteLarge;
 self.myActivityIndicator.hidesWhenStopped = NO;
 [self.view addSubview:self.myActivityIndicator];

 //Create label
 self.myProgressView = [[UIProgressView alloc] init];
 self.myProgressView.frame = CGRectMake(20, 20, 280, 9);
 [self.view addSubview:self.myProgressView];

}

@end

Usage
Run the application. In the iOS Simulator you should see an app with one button and an
empty progress view. You will also see a white activity indicator in the middle of the
view. Touch the button two times to start bigTask running in two background threads.

As bigTask runs, you should see the progress view filling up in 10% increments until the
task is complete. This process will repeat based on the number of times you touched
the button. The progress view should not keep jumping back and forth.

7
Chapter

Consuming Web
Content
This chapter covers how to use web content with Objective-C.

The recipes in this chapter will show you how to:

 Download files with NSURL

 Use web services with XML and JSON

 Parse both XML and JSON data

 Use NSURLConnection to asynchronously consume web
content

7.1 Downloading a File

Problem
You want to download a file from the Internet.

Solution
Use NSURL to specify a URL for a file and then use NSData to download the
contents of that file into your file system.

CHAPTER 7: Consuming Web Content 244

NOTE: URL stands for Uniform Resource Locator. A URL is a
character string that specifies the location of an Internet resource.
NSURL is a Foundation class that lets you use URLs in Objective-C.

How It Works
For this solution you must have a file available on the Internet that you can
download. I posted a text file to my blog to use in this example. The URL of that
file is:

http://howtomakeiphoneapps.com/wp-content/uploads/2012/03/objective-c-recipes-
example-file.txt

The first part of this process requires you to create a new NSURL object with the
URL of the resource that you want to download. Using the URL just provided, it
looks like this:

NSURL *remoteTextFileURL = [NSURL 
URLWithString:@"http://howtomakeiphoneapps.com/wp-
content/uploads/2012/03/objective-c-recipes-example-file.txt"];

Next, create a new NSData object with the contents of the NSURL object.

NSData *remoteTextFileData = [NSData dataWithContentsOfURL:remoteTextFileURL];

You can use the NSData object right in your Objective-C program (see Recipe
4.11 for examples of working with NSData) or save it to the file system like this:

[remoteTextFileData writeToFile:@"/Users/Shared/objective-c-recipes-example-file.txt"
 atomically:YES];

See Listing 7-1 for the code.

The Code
Listing 7-1. main.m

#import <Foundation/Foundation.h>
int main (int argc, const char * argv[]){
 @autoreleasepool {
 NSURL *remoteTextFileURL = [NSURL URLWithString:
@"http://howtomakeiphoneapps.com/wp-content/uploads/2012/03/objective-c-recipes-
example-file.txt"];
 NSData *remoteTextFileData = [NSData dataWithContentsOfURL:remoteTextFileURL];
 [remoteTextFileData writeToFile:@"/Users/Shared/objective-c-recipes-

http://howtomakeiphoneapps.com/wp-content/uploads/2012/03/objective-c-recipes-%EF%83%89%EF%80%A0

CHAPTER 7: Consuming Web Content 245

example-file.txt"
 atomically:YES];

 }
 return 0;
}

Usage
To try this recipe out, set up a Mac command-line Xcode project and change
the code in your main.m file to look like the code in Listing 7-1. Build and run the
command-line app to download the file into this location on your Mac:

/Users/Shared/objective-c-recipes-example-file.txt

Locate and open this file to see if the download was successful.

7.2 Consuming a Web Service Using XML

Problem
You would like to add web services that use XML data to your application.

NOTE: Internet companies publish web services to allow developers
to include their services in the developer’s applications. Web services
work like a web browser. In a web browser, you type in a web address
(the request), hit return, and wait for a response from a remote
computer on the Internet. When that response comes back, the web
browser uses the rules and content in the response to present a web
page to you. Web services work the same way except that the
application sends the request and gets the response.

Internet companies do their best to formulate web service requests
and responses using standard formats that make it easier for the
applications to use their services. Web requests are strings of
characters (like a web address) while web responses are strings of
characters formatted as XML or JSON. XML and JSON will be
discussed in full later.

CHAPTER 7: Consuming Web Content 246

Solution
Formulate a request string based on the documentation that the publisher of the
web service provides. Create an NSURL object based on the request string and
NSData to download the response from the web service. Use NSXMLParser to go
through the XML document that you get back.

How It Works
For this recipe, you are going to learn how to consume a web service that is
provided by a company called bitly. This company publishes a web service that
you can use to shorten a long URL. All you have to do is send a request to the
bitly web service with the long URL along with your bitly credentials in the
format that they expect; bitly sends you an XML file with the shortened URL
included in the contents.

NOTE: To follow along with this recipe, you need to create a (free)
account with bitly and get your own API key and API username. Go to
https://bit.ly to get your account.

I’m going to work through this recipe with a command line-based Mac
application in Xcode, but you can follow with any project type that you like.
Since NSXMLParser uses the Delegation design pattern, you need to locate your
code in a class that can adopt a protocol and otherwise support Delegation.
Add a new class to your project by going to File ➤ New File ➤ Objective-C class.
Name the class LinkShortener.

The interface for LinkShortener needs to include a forward declaration for an
NSMutableString named recorderString that will record the data you get from
the web service. LinkShortener also needs a string for keeping track of the area
in the XML file where the XML parser is currently looking. Call that variable
currentElement and make both currentElement and recorderString private.
Also, you need a forward declaration for the function that you call when you
want this object to shorten a URL; call this function
getTheShortUrlVersionOfThisLongURL. The interface for LinkShortener should
look like this:

#import <Foundation/Foundation.h>

@interface LinkShortener : NSObject{
 @private
 NSMutableString *recorderString;

https://bit.ly

CHAPTER 7: Consuming Web Content 247

 NSString *currentElement;
}

-(NSString *)getTheShortURLVersionOfThisLongURL:(NSString *)longURL;

@end

How XML Parsing Works
Before we move on, let’s discuss what XML is and how NSXMLParser reads XML
documents. XML stands for EXtensible Markup Language and it’s used to store
and transport data. XML works by enclosing data with opening and closing tags.
Opening tags are characters surrounded by the characters < and >. Closing tags
are characters surrounded by the characters </ and >. The tags and data
together are referred to as an element.

For example, if I had an XML data type for a person, I might use an opening tag
like <Person>. The closing tag would look like </Person>. The characters in the
middle are the data. The whole thing together looks like this:

<Person>Matthew J. Campbell</Person>

XML tags are intended to be descriptive so it’s obvious what the tags mean. An
entire document will have many tags with data and can be arranged in a
hierarchy. So you may have tagged data within other tagged data, like this:

<Person>
 <Name>Matthew J. Campbell</Name>
 <Gender>Male</Gender>
</Person>

NSXMLParser reads through an XML document starting from the beginning,
reading element by element until it reaches the end. If NSXMLParser was reading
the XML above, it would start with the Person element, and then move on to the
Name element, and then the Gender element. This method of parsing XML is
called Simple API for XML (SAX).

You’re going to use delegation to parse the XML data that you get from bitly. As
the parser looks at each element in the document, it sends a message to the
delegate LinkShortener object, giving you a chance to extract the data from
each element.

So LinkShortener needs to be able to act as a delegate for NSXMLParser and this
means that you need LinkShortener to adopt the NSXMLParserDelegate protocol.
Do this by including the protocol name right after the NSObject superclass.

CHAPTER 7: Consuming Web Content 248

#import <Foundation/Foundation.h>

@interface LinkShortener : NSObject<NSXMLParserDelegate>{
 @private
 NSMutableString *recorderString;
 NSString *currentElement;
}

-(NSString *)getTheShortURLVersionOfThisLongURL:(NSString *)longURL;

@end

Now that you have adopted this protocol, you need to implement at least these
two delegate methods:
parser:didStartElement:namespaceURI:qualifiedName:attributes: and
parser:foundCharacters:.

Since your application only needs data from one element in the XML file, you
can get away with only these two delegate methods. But, if necessary, you can
always implement parser:didEndElement:namespaceURI:qualifiedName: if you
want to be notified when the parser encounters a closing tag in the XML data.

Open LinkShortener.m to implement the first delegate method.

- (void) parser:(NSXMLParser *)parser
didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName
 attributes:(NSDictionary *)attributeDict{

 currentElement = [elementName copy];
 if ([elementName isEqualToString:@"shortUrl"]) {
 recorderString = [[NSMutableString alloc] init];
 }
}

Remember that this delegate method executes each time a new XML element is
reached (most XML files have lots of elements in them). For this reason, make a
copy of the parameter elementName and put it into currentElement. You want to
be able to keep track of what element you are in when the other delegate
methods execute.

The other significant part of this code is the if statement where you test to see
if you are in the element that corresponds to shortUrl. This is the element where
bitly puts the shortened URL string. If you do encounter the shortULR element,
you will create and initialize a new NSMutableString to be used later to record
what is found in the element.

CHAPTER 7: Consuming Web Content 249

Now you can implement the next delegate method. This delegate method
executes each time characters are encountered in an XML element in the file.
You can test to see if the XML parser is in the shortUrl element. If the answer is
yes, append the characters that are found to the recorderString
NSMutableString.

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string{
 if ([currentElement isEqualToString:@"shortUrl"])
 [recorderString appendString:string];

}

All of this prepares LinkShortener to receive the XML data. Now you can
prepare the request and send that off to the web server to download the
response. All of this takes place in the function
getTheShortUrlVersionOfThisLongURL:, which you can start coding in the
LinkShortener implementation file.

-(NSString *)getTheShortUrlVersionOfThisLongURL:(NSString *)longURL{

}

The first thing you want to do in this function is to compose the request string.
To do this, you compose a string based on the request string that bitly requires
along with the longURL parameter and your own API key and API login.

#warning Get your API Login from https://bitly.com/a/your_api_key and put it here before 
running
NSString *APILogin = @"[YOUR API LOGIN]";
#warning Get your API key from https://bitly.com/a/your_api_key and put it here before 
running
NSString *APIKey = @"[YOUR API KEY]";

NSString *requestString = [[NSString alloc] initWithFormat:
@"http://api.bit.ly/shorten?version=2.0.1&longUrl=%@&login=%@&apiKey=%@&format=xml",
 longURL, APILogin, APIKey];

I’ve included warnings in the example code so that you remember to include
your own credentials here. Also, if you look closely at the first part of the request
string you’ll see that there is a format parameter with the value of xml being
returned, (format=xml). This is how you tell bitly that you want the response to
come back as XML.

Next, you need an NSURL object, which you can make based on the request
string.

NSURL *requestURL = [NSURL URLWithString:requestString];

To download the data, use NSData as you did in Recipe 7.1.

https://bitly.com/a/your_api_key
https://bitly.com/a/your_api_key

CHAPTER 7: Consuming Web Content 250

recorderString = nil;
NSData *responseData = [NSData dataWithContentsOfURL:requestURL];

Here is a good place to set recorderString to nil just in case this function has
been used before in this object’s lifetime. Now that you’ve downloaded the data,
you may use NSXMLParser to go through the XML and pick out the content
included in the shortUrl element.

To do this, instantiate a new NSXMLParser with the downloaded NSData object,
set this object’s delegate to self, and then send the parse message to the
NSXMLParser object.

NSXMLParser *xmlParser = [[NSXMLParser alloc] initWithData:responseData];
xmlParser.delegate = self;
[xmlParser parse];

At this point, the XML parser looks through the data and uses the delegate
methods previously coded to pick out the meaningful content. Everything that
the XML parser finds is recorded in recorderString. Once the XML parser is
finished, you can return the results back to the caller.

if(recorderString)
 return [recorderString copy];
else
 return nil;

You can use an if statement here to send a copy of recorderString if any data
was found.

Finally, to use the function from another part of your program, you need to
import the LinkShortener header file, instantiate a LinkShortener object, and
then use the function with a long URL. Here is how to do this from main.m:

#import <Foundation/Foundation.h>
#import "LinkShortener.h"

int main(int argc, const char * argv[]){
 @autoreleasepool {

 NSString *longURL = @"http://howtomakeiphoneapps.com/how-to-
asynchronously-add-web-content-to-uitableview-in-ios/1732/";

 LinkShortener *linkShortener = [[LinkShortener alloc] init];

 NSString *shortURL = [linkShortener getTheShortURLVersionOfThisLongURL:longURL];

 NSLog(@"shortURL = %@", shortURL);

 }
 return 0;

http://howtomakeiphoneapps.com/how-to-%EF%83%89asynchronously-add-web-content-to-uitableview-in-ios/1732/%00
http://howtomakeiphoneapps.com/how-to-%EF%83%89asynchronously-add-web-content-to-uitableview-in-ios/1732/%00

CHAPTER 7: Consuming Web Content 251

}

See Listings 7-2 through 7-4 for the code.

The Code
Listing 7-2. LinkShortener.h

#import <Foundation/Foundation.h>

@interface LinkShortener : NSObject<NSXMLParserDelegate>{
 @private
 NSMutableString *recorderString;
 NSString *currentElement;
}

-(NSString *)getTheShortURLVersionOfThisLongURL:(NSString *)longURL;

@end

Listing 7-3. LinkShortener.m

#import "LinkShortener.h"

@implementation LinkShortener

-(NSString *)getTheShortURLVersionOfThisLongURL:(NSString *)longURL{

 #warning Get your API Login from https://bitly.com/ and put it here before running
 NSString *APILogin = @"[YOUR API LOGIN]";
 #warning Get your API key from https://bitly.com/ and put it here before running
 NSString *APIKey = @"[YOUR API KEY]";

 NSString *requestString = [[NSString alloc] initWithFormat:
@"http://api.bit.ly/shorten?version=2.0.1
&longUrl=%@&login=%@&apiKey=%@&format=xml",
longURL, APILogin, APIKey];

 NSURL *requestURL = [NSURL URLWithString:requestString];
 recorderString = nil;
 NSData *responseData = [NSData dataWithContentsOfURL:requestURL];
 NSXMLParser *xmlParser = [[NSXMLParser alloc] initWithData:responseData];
 xmlParser.delegate = self;
 [xmlParser parse];

 if(recorderString)
 return [recorderString copy];
 else
 return nil;;

https://bitly.com/
https://bitly.com/

CHAPTER 7: Consuming Web Content 252

}

- (void) parser:(NSXMLParser *)parser
didStartElement:(NSString *)elementName
 namespaceURI:(NSString *)namespaceURI
 qualifiedName:(NSString *)qName
 attributes:(NSDictionary *)attributeDict{

 currentElement = [elementName copy];
 if ([elementName isEqualToString:@"shortUrl"]) {
 recorderString = [[NSMutableString alloc] init];
 }
}

- (void)parser:(NSXMLParser *)parser foundCharacters:(NSString *)string{
 if ([currentElement isEqualToString:@"shortUrl"])
 [recorderString appendString:string];

}

@end

Listing 7-4. main.m

#import <Foundation/Foundation.h>
#import "LinkShortener.h"

int main(int argc, const char * argv[]){
 @autoreleasepool {

 NSString *longURL = @"http://howtomakeiphoneapps.com/
how-to-asynchronously-add-web-content-to-uitableview-in-ios/1732/";

 LinkShortener *linkShortener = [[LinkShortener alloc] init];

 NSString *shortURL = [linkShortener getTheShortURLVersionOfThisLongURL:longURL];

 NSLog(@"shortURL = %@", shortURL);

 }
 return 0;
}

Usage
To use the URL shortener function, import the header file into the class where
you want to use the functionality. Then instantiate a LinkShortener object from
the LinkShortener class. Finally, to use the function, send the message

http://howtomakeiphoneapps.com/%EF%83%89how-to-asynchronously-add-web-content-to-uitableview-in-ios/1732/%00
http://howtomakeiphoneapps.com/%EF%83%89how-to-asynchronously-add-web-content-to-uitableview-in-ios/1732/%00

CHAPTER 7: Consuming Web Content 253

getTheShortURLVersionOfThisLongURL: with the long URL as a parameter to the
LinkShortener object. The function will return the shortened URL if the web
request was successful and nil if the request was not successful. Here is what
you should see in your own console log:

shortURL = http://bit.ly/yFmJFh

NOTE: The shortened URL that you receive back from bitly may not
look exactly like the one I received when I tested this code.

7.3 Consuming a Web Service Using JSON

Problem
You would like to add web services that use JSON data to your application.

NOTE: JSON is an alternative to XML that many Internet companies
use when implementing web services. JSON stands for JavaScript
Object Notation and is used for data storage and transportation. Web
services that are implemented as REST (REpresentational State
Transfer) web services provide both XML and JSON response data.
Other types of web services may only provide one or the other.

Solution
As in Recipe 7.2, formulate a request string based on the documentation that
the publisher of the web service provides. Create an NSURL object based on the
request string and NSData to download the response from the web service. Use
NSJSONSerialization to parse the JSON data that you get back.

NOTE: NSJSONSerialization is available starting with Mac OSX 10.7
and iOS 5.0.

http://bit.ly/yFmJFh

CHAPTER 7: Consuming Web Content 254

How It Works
This recipe uses the same bitly web service and requires the same process to
request and download the results as was shown in Recipe 7.2. However,
NSJSONSerialization doesn’t use delegation, so you don’t need to add a new
file or class to accommodate JSON parsing with NSJSONSerialization.

Since you don’t need a separate class for this, you can locate the code needed
to construct the request string wherever in your application you need to use the
web service. If you continue to use a command-line Mac app, this code could
go right into the main.m file. Here is how to construct the request string:

NSString *longURL = @"http://howtomakeiphoneapps.com/
how-to-asynchronously-add-web-content-to-uitableview-in-ios/1732/";

#warning Get your API Login from https://bitly.com/ and put it here before running
NSString *APILogin = @"[YOUR API LOGIN]";
#warning Get your API key from https://bitly.com/ and put it here before running
NSString *APIKey = @"[YOUR API KEY]";

NSString *requestString = [[NSString alloc] initWithFormat:
@"http://api.bit.ly/shorten?version=2.0.1
&longUrl=%@&login=%@&apiKey=%@&format=json", longURL, APILogin, APIKey];

Then you can use NSURL and NSData to get the response based on this request
string.

NSURL *requestURL = [NSURL URLWithString:requestString];

NSData *responseData = [NSData dataWithContentsOfURL:requestURL];

JSON Parsing
Next you’ll see how to parse JSON. Instead of the tagged data scheme that
XML uses, JSON organizes content based on two structures: a collection of
name-value pairs and an ordered list of values. A JSON collection of name-value
pairs follows the same pattern as an Objective-C NSDictionary while a JSON
order list of values corresponds to an Objective-C NSArray.

If you look at a JSON file, you will see these types of structures organized by
curly braces instead of the tagged data in an XML file. For example, the JSON
version of the Person element described in Recipe 7.2 looks like this:

{"Person":"Matthew J. Campbell","Gender":"Male"}

Since JSON data is keyed in this way, and the dictionary and array structures
map so well to programming languages, JSON is generally much easier to

http://howtomakeiphoneapps.com/%EF%83%89how-to-asynchronously-add-web-content-to-uitableview-in-ios/1732/%00
http://howtomakeiphoneapps.com/%EF%83%89how-to-asynchronously-add-web-content-to-uitableview-in-ios/1732/%00
https://bitly.com/
https://bitly.com/

CHAPTER 7: Consuming Web Content 255

parse. As you’ll see in a moment, you have a Foundation function at your
disposal that simply turns your JSON response into an NSDictionary with the
JSON content ready for you to use.

The first thing you need is an NSError object, which you pass with the
JSONObjectWithData:options:error: message that must be sent to
NSJSONSerialization.

NSError *error = nil;
NSDictionary *bitlyJSON = [NSJSONSerialization JSONObjectWithData:responseData
 options:0
 error:&error];

The result of this function is assigned to an NSDictionary that holds the
contents of the JSON data. To get to the content that you need, simply access
the various objects that are in the dictionary. This often requires you to reference
nested dictionaries, arrays, and objects. You need to examine the response data
to figure out precisely what you need. Here is what you do to get the bitly short
URL from your response data:

if(!error){
 NSDictionary *results = [bitlyJSON objectForKey:@"results"];
 NSDictionary *resultsForLongURL = [results objectForKey:longURL];
 NSString *shortURL = [resultsForLongURL objectForKey:@"shortUrl"];
 NSLog(@"shortURL = %@", shortURL);
}
else{
 NSLog(@"There was an error parsing the JSON");
}

See Listing 7-5 for the code.

The Code
Listing 7-5. main.m

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]){
 @autoreleasepool {

 NSString *longURL = @"http://howtomakeiphoneapps.com/
how-to-asynchronously-add-web-content-to-uitableview-in-ios/1732/";

 #warning Get your API Login from https://bitly.com/ and put it here before 
running
 NSString *APILogin = @"[YOUR API LOGIN]";
 #warning Get your API key from https://bitly.com/ and put it here before 

http://howtomakeiphoneapps.com/%EF%83%89%EF%80%A0how-to-asynchronously-add-web-content-to-uitableview-in-ios/1732/%00
http://howtomakeiphoneapps.com/%EF%83%89%EF%80%A0how-to-asynchronously-add-web-content-to-uitableview-in-ios/1732/%00
https://bitly.com/
https://bitly.com/

CHAPTER 7: Consuming Web Content 256

 running
 NSString *APIKey = @"[YOUR API KEY]";

 NSString *requestString = [[NSString alloc] initWithFormat:
@"http://api.bit.ly/shorten?version=2.0.1
&longUrl=%@&login=%@&apiKey=%@&format=json", 
longURL, APILogin, APIKey];

 NSURL *requestURL = [NSURL URLWithString:requestString];
 NSData *responseData = [NSData dataWithContentsOfURL:requestURL];

 NSError *error = nil;
 NSDictionary *bitlyJSON = [NSJSONSerialization JSONObjectWithData:responseData
 options:0
 error:&error];
 if(!error){
 NSDictionary *results = [bitlyJSON objectForKey:@"results"];
 NSDictionary *resultsForLongURL = [results objectForKey:longURL];
 NSString *shortURL = [resultsForLongURL objectForKey:@"shortUrl"];
 NSLog(@"shortURL = %@", shortURL);
 }
 else{
 NSLog(@"There was an error parsing the JSON");
 }

 }
 return 0;
}

Usage
You can use this code from any area in your application. If you are testing this
with a Mac command-line application, you can simply include this code in your
main.m file, but you need to obtain an API login and API login from bitly. Examine
the console log window to see the results of the web service request. You
should see something like this:

shortURL = http://bit.ly/yFmJFh

NOTE: JSON requires far fewer steps than XML and will probably be
your first choice when working with web services (when available).
However, be aware that JSON may not always be available from the
web service and that you must be using Mac OSX 10.7 or iOS 5 or
greater to use JSON.

http://bit.ly/yFmJFh

CHAPTER 7: Consuming Web Content 257

7.4 Asynchronously Consuming Web Content

Problem
You want to be able to consume web content as a background process so that
the network activity doesn’t affect your user interface.

Solution
Use NSURLConnection and NSURLRequest when you want to work with the
network asynchronously or if you need more control over the process of using
network connections and web requests.

How It Works
The first thing you need is a request string to send to a web server. You could
use a request string for a web service (as you did in Recipes 7.2 and 7.3) or you
could even put in a web page. For this example, I’ll use the RSS feed for my
blog since I know it will provide some XML data to download.

NOTE: RSS stands for Really Simple Syndication. RSS is used for
publishing content like blog posts and podcasts. RSS files are usually
large files that are based on XML but also follow additional
specifications that help when publishing content. Adding an RSS feed
to your application is an easy way to publish information to your users
since most blogging software comes with built-in RSS features.

For this recipe, I’m going to use a Mac Cocoa application. You could also use
an iOS application here, but you will have problems if you attempt to use a
command-line Mac application. This is because the asynchronous methods
used with NSURLConnection may take longer to execute than the Mac command-
line application’s lifecycle, so you may never see the results in the console log.

The code is located in the Mac Cocoa application’s AppDelegate.m file right in
the applicationDidFinishLaunching: delegate method. The first thing you need
is the request string (which, in this example, is my blog’s RSS feed).

NSString *requestString = @"http://www.howtomakeiphoneapps.com/feed/";

http://www.howtomakeiphoneapps.com/feed/

CHAPTER 7: Consuming Web Content 258

Then you can construct an NSURL object based on the request string.

NSURL *requestURL = [NSURL URLWithString:requestString];

Use the requestURL object to instantiate a new NSURLRequest.

NSURLRequest *request = [[NSURLRequest alloc] initWithURL:requestURL
 cachePolicy:NSURLRequestReload
IgnoringLocalCacheData
 timeoutInterval:10];

You also get a chance to specify how you want the request to handle caching
and a timeout interval. Next, you need to set up an NSOperationQueue, which will
be used with NSURLConnection to execute the web request.

NSOperationQueue *backgroundQueue =[[NSOperationQueue alloc] init];

Finally, use a class method to execute your web request asynchronously. You
need three parameters: the NSURLRequest object, the NSOperationQueue object,
and a code block. The code block gives you chance to let NSURLConnection
know what code to execute after the data is retrieved.

[NSURLConnection sendAsynchronousRequest:request
 queue:backgroundQueue
 completionHandler:^(NSURLResponse *response, NSData *data, 
NSError *error) {

 if(!error){
 NSString *requestResults = [[NSString alloc] initWithData:data
 encoding:NSStringEncodingConversionAllowLossy];

 NSLog(@"requestResults=%@", requestResults);
 }
 else
 NSLog(@"error=%@", error);

 }];

NOTE: This feature is only available starting with Mac OSX 10.7 and
iOS 5.0.

Take a close look at the completionHandler block to see how to handle the
NSData object that is returned. Usually you test the NSError object to see if
everything went well before processing the data. Here all you are doing is writing
out the entire RSS feed to the console log, but if you want to process the RSS
feed, you can set up an XML parser like the one detailed in Recipe 7.2. See
Listings 7-6 through 7-8 for the code.

CHAPTER 7: Consuming Web Content 259

The Code
Listing 7-6. main.m

#import <Cocoa/Cocoa.h>

int main(int argc, char *argv[]){
 return NSApplicationMain(argc, (const char **)argv);
}

Listing 7-7. AppDelegate.h

#import <Cocoa/Cocoa.h>

@interface AppDelegate : NSObject <NSApplicationDelegate>

@property (assign) IBOutlet NSWindow *window;

@end

Listing 7-8. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate

@synthesize window = _window;

- (void)applicationDidFinishLaunching:(NSNotification *)aNotification{

 NSString *requestString = @"http://www.howtomakeiphoneapps.com/feed/";

 NSURL *requestURL = [NSURL URLWithString:requestString];

 NSURLRequest *request = [[NSURLRequest alloc] initWithURL:
requestURL cachePolicy:NSURLRequestReloadIgnoringLocalCacheData timeoutInterval:10];

 NSOperationQueue *backgroundQueue =[[NSOperationQueue alloc] init];

 [NSURLConnection sendAsynchronousRequest:request
 queue:backgroundQueue
 completionHandler:^(NSURLResponse *response, NSData *data, 
NSError *error) {

 if(!error){
 NSString *requestResults = [[NSString alloc] initWithData:data
encoding:NSStringEncodingConversionAllowLossy];
 NSLog(@"requestResults=%@", requestResults);
 }

http://www.howtomakeiphoneapps.com/feed/

CHAPTER 7: Consuming Web Content 260

 else{
 NSLog(@"error=%@", error);
 }

 }];
}

@end

Usage
To try this recipe out, include the code in the app delegate of a Mac or iOS
application. Inspect the log to see the data that was downloaded from the Web.
To test the error handling, disconnect your Mac from the network and inspect
the log to see what the error object reports. If your web request was successful,
you should see something like this appear in your console log:

requestResults=<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0"
 xmlns:content="http://purl.org/rss/1.0/modules/content/"
 xmlns:wfw="http://wellformedweb.org/CommentAPI/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:atom="http://www.w3.org/2005/Atom"
 xmlns:sy="http://purl.org/rss/1.0/modules/syndication/"
 xmlns:slash="http://purl.org/rss/1.0/modules/slash/"
 >

<channel>
 <title>How to Make iPhone Apps</title>
 <atom:link href="http://howtomakeiphoneapps.com/feed/" rel="self"
 type="application/rss+xml" />

. . .

This code can be included anywhere in your application where you want to
consume web content, but don’t interfere with or block other processes like
your user interface.

http://purl.org/rss/1.0/modules/content/
http://wellformedweb.org/CommentAPI/
http://purl.org/dc/elements/1.1/
http://www.w3.org/2005/Atom
http://purl.org/rss/1.0/modules/syndication/
http://purl.org/rss/1.0/modules/slash/
http://howtomakeiphoneapps.com/feed/

8
Chapter

Memory Management
This chapter explores how to manage memory with Objective-C.

The recipes in this chapter will show you how to:

 Understand memory management

 Use reference counting to manage memory

 Use Automatic Reference Counting (ARC) to manage memory

 Use garbage collection (GC) to manage memory on the Mac

8.1 Understanding Memory Management

Problem
You want to understand how to manage memory effectively in your Objective-C
applications.

Solution
Memory is one of the finite resources that your Objective-C application requires.
Every variable and object that you use in Objective-C takes up some memory.
Since memory is a finite resource, it’s possible to use up all the memory that you
have available.

Programmers who work in C-based programming languages like Objective-C
need to think about how to manage memory effectively. This is something new

CHAPTER 8: Memory Management 262

to many programmers who work in Java or with scripting languages. Managing
memory is one of the toughest problems we deal with in Objective-C.

The consequences for applications with mismanaged memory are severe:
applications can become slow or the system may even shut down an
application that is using too much memory. Applications can also leak memory.
Memory leaks are caused when objects have memory assigned to them that
doesn’t get reclaimed by the system even though the object can no longer be
reached in the application’s code.

Let’s go over some of the things to think about when deciding how to deal with
memory management.

Object Lifecycle
Just like objects in the real world, Objective-C objects are created, live, and then
go away. This is the object lifecycle.

In terms of memory management, when an object is born, you set aside memory
for the object to use. As the object goes on doing what you have programmed it
to do, the object continues to require that memory. Once you no longer need the
object, you let the object go away. You can reclaim the memory for that object
once it has gone away.

Object Ownership
Object ownership is the concept where one entity is responsible for another.
When an entity owns an object, the entity is responsible for cleaning the object
up when the entity is done with it. For example, if an object was created and
used in the main function, then the main function is responsible for the object.
This means that it’s the main function’s responsibility to clean up the object.

What makes this concept a bit more complicated is that objects can be owned
by more than one entity. So, an object may be created and owned in the main
function and also be used by another entity that will claim ownership of the
object.

A common situation where you will see multiple object ownership is when you
use arrays. Arrays are indexed lists of objects, and when you put an object into
an array, the array claims ownership of the object. So, if I create an object in the
main function and then put that object into an array, both the main function and
the array will claim ownership of the object-----and both are responsible for
cleaning up the object.

CHAPTER 8: Memory Management 263

Clearly, keeping track of all the possible object relationships that could happen
can quickly become daunting without some kind of system to help. Objective-C
does provide a system called reference counting that can help you keep track of
object lifecycles and object ownerships.

Reference Counting
Reference counting is a system for keeping track of how many entities are
claiming ownership of an object. Each object has a special number called the
reference count associated with the object. The reference count represents how
many objects claim ownership over the object.

When an object is created, the object gets assigned a reference count of one.
This represents the ownership claim of the entity that just created the object. For
each entity that claims ownership of the object, the object’s reference count
gets increased by one.

Once an entity no longer requires ownership of an object, the entity can
decrease the reference count of the object. When an object’s reference count
reaches zero, the system will automatically destroy the object and the system
will be able to reclaim the memory.

With reference counting, Objective-C takes care of the actual object destruction.
Owner objects are only responsible for releasing their claim of ownership on the
object.

Autorelease
There are situations where this reference counting system breaks down because
it’s unclear who is supposed to claim ownership of an object. For example,
some classes provide convenient objects that are meant to be temporary
through functions. In such cases, the object creator can’t claim ownership
because the creator class will never get the chance to release ownership, and
you can’t assume that the receiver will take responsibility of the created object.

Objective-C helps by providing a way to relinquish ownership of an object in a
deferred way. So I can create an object and say that at some point in the
relatively near future the object can be destroyed. This is called autorelease.

Automatic Reference Counting (ARC)
Automatic Reference Counting, or ARC, is a compiler-level system that
automates the process of reference counting. ARC is available starting with iOS

CHAPTER 8: Memory Management 264

5 and Mac OSX 10.6. with Xcode 4.2 for iOS and Xcode 4.3 for Mac. The
recipes in this book have mostly been written using ARC.

ARC essentially automates what you will be doing in this chapter. Before your
Objective-C program is compiled, all the code needed for reference counting to
work is inserted into your program.

Garbage Collection
Garbage collection is another type of memory management system that is used
to automate memory management. This method has the concept of a garbage
collector that periodically looks for objects that are no longer being used and
then takes them away.

Garbage collection is only available for Mac OSX starting with version 10.5. Note
that iOS applications can’t use garbage collection.

In garbage collection, objects can have either a strong or weak reference to a
root object. The root object is usually a top-level application object. For
example, a Mac application has an object of type NSApplication that is
responsible for the application as a whole. Every other object is contained in the
NSApplication object, making the NSApplication object the root object. Objects
with a strong reference to the root object can be reached by the root object,
while objects with a weak reference can’t be reached by the root object.

Periodically, the garbage collection mechanism is activated and any objects with
a weak reference are destroyed.

Memory Management Options
With Objective-C, you have three options when you want to implement memory
management: manual memory management using reference counting,
automatic reference counting (ARC), or garbage collection (excluding iOS
applications).

Manual memory management is something that any Objective-C program can
use. However, as you’ll see in this chapter, manual memory management is a
detailed and time-consuming task.

Automatic Reference Counting is available for Mac and iOS but only for more
recent versions of the operating systems. Generally, I recommend using ARC if
you’re developing a new application because it’s efficient and it will work on
both Mac and iOS. Garbage collection is an option if you are just working on
Mac apps.

CHAPTER 8: Memory Management 265

NOTE: In this chapter, you will see how to do manual memory
management as well as garbage collection. ARC isn’t specifically
covered since it’s used in the recipes in the other chapters.

8.2 Setting up an Application without ARC

Problem
You want to set up an application that doesn’t use ARC to manage memory.

Solution
When you set up a new Xcode project, you will be presented with a screen that
is titled ‘‘Choose options for your new project.’’ One of the options is a
checkbox that says ‘‘Use Automatic Reference Counting.’’ Make sure that this
option is left unchecked.

You can set up your project like this for a Mac application, Mac command-line
applications, or any iOS application. For the purposes of most of the recipes in
this chapter (except for the one on garbage collection), I’ll use an iOS
application.

How It Works
Xcode sets up your project based on the settings that you provide. When you
choose to not use ARC in the options screen, Xcode remembers to compile your
project with the compiler setting that indicates to not use ARC. Xcode also
allows you to send particular messages required for memory management.

These messages are retain, release, autorelease, and dealloc. If you try to
use these messages in an ARC project, you will get a compiler error, but with
this non-ARC project you’ll use these messages to implement the reference
counting system.

In fact, if you look at the AppDelegate.m file, you will see an example of a
dealloc method that Xcode automatically coded for you. This dealloc method
includes some memory management code that I’ll cover in the next recipe. See
Listings 8-1 through 8-3 for the code.

CHAPTER 8: Memory Management 266

- (void)dealloc{
 [_window release];
 [super dealloc];
}

The Code
Listing 8-1. main.m

#import <UIKit/UIKit.h>

#import "AppDelegate.h"

int main(int argc, char *argv[]){
 @autoreleasepool {
 return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate 
class]));
 }
}

Listing 8-2. AppDelegate.h

#import <UIKit/UIKit.h>

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@end

Listing 8-3. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate

@synthesize window = _window;

- (void)dealloc{
 [_window release];
 [super dealloc];
}

- (BOOL)application:(UIApplication *)application 
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{
 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]] 
autorelease];
 self.window.backgroundColor = [UIColor whiteColor];

CHAPTER 8: Memory Management 267

 [self.window makeKeyAndVisible];
 return YES;
}

@end

Usage
You use this project like any of the others. For now, just take a look at some of
the differences in the app delegate that Xcode created for you. The dealloc
method is included here. If you look closely at the constructor for the window
property in the application:applicationDidFinishLaunchingWithOptions:
method, you can see that the window object was sent an autorelease message.
Both of these are examples of what you’ll be doing in the next few recipes for
memory management.

8.3 Using Reference Counting to Manage
Memory

Problem
You want to use an object in your application and need to make sure that the
object’s memory is being managed effectively.

Solution
When an object is created using the messages alloc, new, or copy, the entity
where the constructor code is located claims ownership of the object and the
object’s reference count is set to one. When the object is no longer needed, the
owner is responsible for sending a release message to the object.

How It Works
After you create and use an object, send a release message. For example, if I
create an NSObject with alloc and init, I use the object. When I finish, I send
the release message to let Objective-C destroy the object.

NSObject *obj = [[NSObject alloc] init];

CHAPTER 8: Memory Management 268

NSLog(@"obj's description is %@", [obj description]);

[obj release];

In the first line, I use alloc to create an NSObject that has a reference count of
one. The reference count is still one when I use the object to write out a
message to the log. After the third line of code when I sent the release message,
the object’s reference count becomes zero and Objective-C automatically
destroys the object.

That’s really all that you need to do. Effective memory management comes
down to consistency and absolutely following a series of simple rules. This code
reflects the following rule:

RULE: Always match alloc, new, and copy with a release message.

While it’s not really needed in this example, it is possible to increment an
object’s reference count. You can do this by sending the retain message to the
object. The retain message means that an entity is claiming ownership of an
object. If you sent a retain message to obj, you would increase the reference
count of obj to two.

NSObject *obj = [[NSObject alloc] init];

NSLog(@"obj's description is %@", [obj description]);

[obj retain];

[obj release];

In effect, you are claiming double ownership of this object. If you just left this
code alone, you would have a problem. The object’s reference count starts off
as one and then goes to two after the retain message. Then the reference count
goes back down to one when you release it. But, if you leave the code as-is,
Objective-C will never be able to destroy the object because the reference count
never reaches zero.

When this happens, you get a memory leak. As mentioned, memory leaks are
caused by objects that use memory and never let the system reclaim the
memory. If left unchecked, memory leaks can cause your application to slow
down or crash.

To fix this problem, you must send another release message to obj when you’re
finished with it.

CHAPTER 8: Memory Management 269

NSObject *obj = [[NSObject alloc] init];

NSLog(@"obj's description is %@", [obj description]);

[obj retain];

[obj release];

[obj release];

This leads to another memory management rule.

RULE: Always match each retain with a release.

Basically, you want to make sure your object’s reference count is zero when you
are finished with the object. See Listing 8-4 for the code.

The Code
Listing 8-4. main.m

#import <UIKit/UIKit.h>

#import "AppDelegate.h"

int main(int argc, char *argv[]){
 @autoreleasepool {

 NSObject *obj = [[NSObject alloc] init];

 NSLog(@"obj's description is %@", [obj description]);

 [obj retain];

 [obj release];

 [obj release];

 return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate 
class]));
 }
}

CHAPTER 8: Memory Management 270

Usage
You can include the code from Listing 8-4 in your own main function to test it
out. By itself, the code doesn’t do much other than write to the log, but you
need to follow this pattern whenever you use objects while managing memory
manually.

8.4 Adding Memory Management to Your
Custom Classes

Problem
You have custom classes that could claim ownership of objects and you want to
make sure that they will manage memory correctly.

Solution
There are two major situations where memory management becomes an issue
in a custom class: property getter and setter code, and the dealloc method.
Properties need to be configured to claim ownership of objects that are
assigned to the instance variables that hold the reference to the object. The
dealloc method is a special method that Objective-C calls right before an object
is destroyed. You need to implement a dealloc method for each custom class.

How It Works
The example used in this recipe expands on the Car class that you coded back
in Recipes 1.4 and 1.6. You are going to add the necessary code to this class to
make sure that you are following the memory management rules mentioned in
Recipe 8.3.

In case you forgot, here is how to use the Car class. Note that I put in a release
message this time since you’re not using ARC.

#import <UIKit/UIKit.h>
#import "AppDelegate.h"
#import "Car.h"

int main(int argc, char *argv[]){
 @autoreleasepool {

CHAPTER 8: Memory Management 271

 [Car writeDescriptionToLogWithThisDate:[NSDate date]];

 Car *c = [[Car alloc] init];

 c.name = @"New Car Name";

 [c writeOutThisCarsState];

 [c release];

 return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate 
class]));
 }
}

Strong Property References
The first thing that you need to look at here is the property declaration for name.
When you originally coded this, you declared the property like this:

@property(strong) NSString *name;

The strong keyword means that you are going to take ownership of any object
that is assigned to the name property here.

NOTE: Before ARC was introduced, you would use the retain
keyword here instead of the strong keyword. You can still use retain
here if you wish since retain has the same meaning as strong. The
reason that retain was used before was because this meant that a
retain message was to be sent to the object after it was assigned.
You will see both retain and strong.

What you need to do is go back to the getter and setter code and make sure
that you are taking ownership of these objects by sending a retain message.
Right now you have this setter code in the Car implementation:

-(void)setName:(NSString *)name{
 name_ = name;
}

As you can see, name is not being retained, so you aren’t taking ownership of
name. It is possible that you could have a situation where your name property is
assigned to you but then gets released by the other object owners. When you
attempt to use name, you will get a memory warning and your app will crash.

CHAPTER 8: Memory Management 272

To fix this problem, you must take ownership of name by sending a retain
message to name before assigning name to your local instance name_.

-(void)setName:(NSString *)name{
 [name retain];
 [name_ release];
 name_ = name;
}

As you can see, you also sent a release message to name_ before assigning the
new name object to name_. The idea here is that you want to relinquish ownership
of any previous name objects you had a claim to and claim ownership of the new
name object.

NOTE: You may also use the @synthesize directive here instead of
coding your own assessors, and Objective-C will automatically handle
the retain and release for you behind the scenes.

The dealloc Method
The dealloc method is called by Objective-C right before an object is destroyed.
The purpose of dealloc is to give you a chance to release any objects that you
have ownership of before the owner object is destroyed. You need to override
the dealloc method for each custom class that you create. You release each of
your local instances and then set them to nil.

Here is how you could code a dealloc method for your Car class:

-(void)dealloc{
 NSLog(@"%@'s dealloc is executing", self.name);
 [super dealloc];
 [name_ release];
 name_ = nil;
}

As you can see, you must send the dealloc method to the superclass first
because anything that your parent object is holding on to must be released as
well. Here it’s very important to release any objects that are marked with a
strong reference. You should also set any object to nil here. See Listings 8-5
through 8-7 for the code.

CHAPTER 8: Memory Management 273

The Code
Listing 8-5. Car.h

#import <Foundation/Foundation.h>

@interface Car : NSObject{
@private
 NSString *name_;
}

@property(strong) NSString *name;

+(void)writeDescriptionToLogWithThisDate:(NSDate *)date;

-(void)writeOutThisCarsState;

@end

Listing 8-6. Car.m

#import "Car.h"

@implementation Car

-(void)setName:(NSString *)name{
 [name retain];
 [name_ release];
 name_ = name;
}

-(NSString *) name{
 return name_;
}

+(void)writeDescriptionToLogWithThisDate:(NSDate *)date{
 NSLog(@"Today's date is %@ and this class represents a car", date);
}

-(void)writeOutThisCarsState{
 NSLog(@"This car is a %@", self.name);
}

-(void)dealloc{
 NSLog(@"%@'s dealloc is executing", self.name);
 [super dealloc];
 [name_ release];
 name_ = nil;
}

CHAPTER 8: Memory Management 274

@end

Listing 8-7. main.m

#import <UIKit/UIKit.h>
#import "AppDelegate.h"
#import "Car.h"

int main(int argc, char *argv[]){
 @autoreleasepool {

 [Car writeDescriptionToLogWithThisDate:[NSDate date]];

 Car *c = [[Car alloc] init];

 c.name = @"New Car Name";

 [c writeOutThisCarsState];

 [c release];

 return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate 
class]));
 }
}

Usage
To use this code, add the Car class from the listings to your Xcode project. You
can add the code that creates the Car objects right into your own main.m file to
test out this recipe for yourself. Build and run the project to see the results of the
program. You can see when the dealloc has executed if you examine the log.

This car is a New Car Name
New Car Name's dealloc is executing

If you comment out the release message that you sent to c in the main.m file
and re-run your Xcode project, you’ll see that dealloc was never reached and
that the objects in c were never released.

CHAPTER 8: Memory Management 275

8.5 Using Autorelease

Problem
You want to return an object that was created with an alloc, new, or copy from a
function on a custom class. You can’t release the object before you return the
object to the caller because if the caller attempts to use the object, it will get a
memory error and the application will crash. If you don’t release the object, you
violate the first memory management rule and risk causing a memory leak.

Solution
Before returning an object to a caller, send the autorelease message to the
object. This is a way to send a deferred release message to an object. The idea
is that you don’t want the object destroyed immediately because the caller
needs the object temporarily, but you do want the object to eventually be
released and destroyed. Or you may want the caller to claim ownership of the
object by sending a retain message.

How It Works
Autorelease is used in Foundation objects that provide functions that return
objects but without the usual alloc and init messages. For instance, NSDate
has a function date that returns an NSDate object populated with the current
date and time. Although you can see this for yourself, in the NSDate date function
code an autorelease message is sent to the object before being returned to
you.

NSDate *today = [NSDate date];
NSLog(@"Today's date is %@", today);

You can use this object and you don’t need to worry about releasing the object
because you never used the alloc, new, or copy functions to create the today
object. For your purposes, the reference count is zero and you are not violating
the first memory management rule. But you also can’t assume that this today
object will not be destroyed sometime in the future unless you claim ownership.

If you wanted to claim ownership of the today object, you could send a retain
message to the today object. This would make the reference count of date equal
to one and the object would remain with you even when the deferred release
message is sent to the object.

CHAPTER 8: Memory Management 276

For example, if you want to ensure that today would remain for a bit longer, you
could do something like this:

NSDate *today = [NSDate date];
NSLog(@"Today's date is %@", today);
[today retain];

//do other things...

[today release];

Now you know that you can use the today object until you’re finished. And
you’re staying in line with the second memory management rule.

When you create functions like the NSDate date function, you also need to use
autorelease. To see how to use autorelease, add a function to the Car class
from Recipe 8.4. What you want to do is code a function that will return a Car
object to the caller based on a name parameter that the caller provides.

The first thing you need to do is provide a forward declaration in the Car.h file.

+(Car *)carWithThisName:(NSString *)carName;

You can see that this is a class function because the function starts off with a
plus sign. Also, the class Car is specified as the return type, so you know that
this function will be returning a Car object. You also have a parameter to allow
the caller to specify the name for the Car object that they will get back.

When you move on to the implementation, your first instinct might be to create a
new Car object with alloc and init and assign the name property before
returning the new object to the caller. Here’s what might end up in the
implementation (Car.m):

+(Car *)carWithThisName:(NSString *)carName{
 Car *car = [[Car alloc] init];
 car.name = carName;

 return car;
}

What you’re doing is creating a new object and claiming ownership over the
object when you use the alloc message. Then you return the object without
releasing the object, so you’re violating the first rule of memory management.
Your caller has no way of knowing that the returned object has a reference
count of one, so right now you would end up with a memory leak.

To fix this, all you need to do is send the autorelease message before returning
the object to the caller.

+(Car *)carWithThisName:(NSString *)carName{

CHAPTER 8: Memory Management 277

 Car *car = [[Car alloc] init];
 car.name = carName;
 [car autorelease];

 return car;
}

This gives the Car a deferred release message, which makes Car a temporary
object.

This example also implies yet another memory management rule.

RULE: Always send an autorelease message to objects in functions
before returning them to callers.

There is a complementary rule that goes along with this one.

RULE: Always assume that objects returned from functions are
autoreleased and therefore temporary unless retained.

Here is how you could use the Car object:

Car *tempCar = [Car carWithThisName:@"Temporary Car"];

[tempCar writeOutThisCarsState];

See Listings 8-8 through 8-12 for the code.

The Code
Listing 8-8. Car.h

#import <Foundation/Foundation.h>

@interface Car : NSObject{
@private
 NSString *name_;
}

@property(strong) NSString *name;

+(void)writeDescriptionToLogWithThisDate:(NSDate *)date;

-(void)writeOutThisCarsState;

CHAPTER 8: Memory Management 278

+(Car *)carWithThisName:(NSString *)carName;

@end

Listing 8-9. Car.m

#import "Car.h"

@implementation Car

-(void)setName:(NSString *)name{
 [name retain];
 [name_ release];
 name_ = name;
}

-(NSString *) name{
 return name_;
}

+(void)writeDescriptionToLogWithThisDate:(NSDate *)date{
 NSLog(@"Today's date is %@ and this class represents a car", date);
}

-(void)writeOutThisCarsState{
 NSLog(@"This car is a %@", self.name);
}

-(void)dealloc{
 NSLog(@"%@'s dealloc is executing", self.name);
 [super dealloc];
 [name_ release];
 name_ = nil;
}

+(Car *)carWithThisName:(NSString *)carName{
 Car *car = [[Car alloc] init];
 car.name = carName;
 [car autorelease];

 return car;
}

@end

Listing 8-10. AppDelegate.h

#import <UIKit/UIKit.h>
#import "Car.h"

CHAPTER 8: Memory Management 279

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@end

Listing 8-11. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate

@synthesize window = _window;

- (void)dealloc{
 [_window release];
 [super dealloc];
}

- (BOOL)application:(UIApplication *)application 
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 Car *tempCar = [Car carWithThisName:@"Temporary Car"];

 [tempCar writeOutThisCarsState];

 self.window = [[[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]] 
autorelease];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

@end

Listing 8-12. main.m

#import <UIKit/UIKit.h>
#import "AppDelegate.h"

int main(int argc, char *argv[])
{
 @autoreleasepool {
 NSDate *today = [NSDate date];
 NSLog(@"Today's date is %@", today);
 [today retain];

 //do other things...

 [today release];

CHAPTER 8: Memory Management 280

 return UIApplicationMain(argc, argv, nil, NSStringFromClass([AppDelegate 
class]));
 }
}

Usage
Add the Car.h and Car.m files to your Xcode project and then include the same
code that I did in the app delegation’s
application:didFinishLaunchingWithOptions: method. Remember that the
dealloc method that you coded in Recipe 8.4 writes out a message to the log
right before Objective-C destroys a Car object. So you can use this to test if
sending the autorelease message really lets the object be destroyed.

When this application runs, you will see the message from the dealloc printed
out to the log:

Today's date is 2012-06-27 14:29:21 +0000
This car is a Temporary Car
Applications are expected to have a root view controller at the end of application 
launch
Temporary Car's dealloc is executing

You can see that the Car object’s state was written out and that the dealloc
executed, even though you never sent a release message.

8.6 Enabling Garbage Collection for Mac
Applications

Problem
You want to enable garbage collection on your Mac application as an alternative
to manual memory management or ARC.

Solution
Enable garbage collection by changing your Xcode project’s Objective-C
Garbage Collection Setting build setting to either Supported (-fobjc---gc) or
Required (-fobjc-gc-only).

CHAPTER 8: Memory Management 281

How It Works
To enable garbage collection in your Mac application, select your project and
your target (see Figure 8-1 for a reference). Then choose the Build Settings tab
and look for the Objective-C Garbage Collection build setting. You can use the
search box in the upper right hand corner to find this setting more easily.
Choose the option Supported (-fobjc-gc) in both spots.

Figure 8-1. Setting the Objective-C Garbage Collection build setting

You may also choose the Required (-fobjc-gc-only) option here. The Support
option allows you to mix manual memory management with garbage collected
memory management while the Required option forces you to use only garbage
collection. Once you do this, you can write your code without worrying about
manual memory management.

That's all you need to know to get started using garbage collection on the Mac.
For the most part, you can treat your Mac applications that are using garbage
collection like you would your ARC apps. That is, you can stop worrying about
manual memory management.

9
Chapter

Working with Object
Graphs
The object graph refers to the objects in an application along with all the
object’s relationships. In most applications, you will have many objects with
many relationships and these can become a bit difficult to manage without
some help.

Objective-C comes with some nice features that help you make the most of your
object graph. The recipes in this chapter will show you how to:

 Create an object graph

 Use key-value coding (KVC) to dynamically access property
values

 Use key paths to access objects in a hierarchy in the object
graph

 Use the Observer pattern with key-value observing (KVO) to
get notifications when property values change

 Use inspection

 Archive and retrieve object graphs

Object-Orientated Vocabulary
Understanding object graphs will be much easier if you recall some object-
oriented vocabulary first.

Entity
An entity is the abstraction of something that you are working on. Usually, this is
something from the real world or a metaphor for an abstract problem. In this

CHAPTER 9: Working with Object Graphs 284

chapter, the word ‘‘entity’’ refers to the abstraction itself and not to any
particular implementation in code.

Entities are usually described in terms of attributes and behaviors. So, a car
entity would have attributes like the color red, four tires, and sport trim. Car
behavior would include driving, braking, and turning.

Class
A class is the code used to represent an entity inside of your application. This is
where you define what an entity is and does inside of your application. The
process involves thinking of the entity and using code to represent the entity as
an interface and implementation. You code an entity’s attributes in a class as
properties and an entity’s behavior in a class as methods. Many people
compare class definitions to blueprints. Coding classes are discussed in detail
in Chapter 1 in Recipe 1.3 through Recipe 1.7.

Objects
By itself, a class is just a definition of something and doesn’t do much. To use a
class, you must instantiate an object from a class. An object is a particular
instance of a class. You will usually have many objects created from a class
definition. Objects are composed of other objects as specified in the object’s
class definition. You can see a detailed example of creating and using an object
from a custom class in Recipe 1.3.

The Object Graph
The object graph is an application’s network of objects and their relationships.
These are the objects that are created and used when a user is actively using an
application. The object graph can quickly become very rich and complicated as
the user starts to create objects from your class definitions. You can think of
your object graph in terms of every object in your application, including system
and user interface objects. More likely, you can think of your object graph as the
objects that are part of your data model.

CHAPTER 9: Working with Object Graphs 285

NOTE: The data model refers to the Model part of a design pattern
called Model-View-Controller (MVC) that splits the responsibilities of
an application into three areas: the Model (your representation of the
entities you are working with), the View (the user interface), and the
Controller (the connection between the Model and the View).

Let’s move on to the recipes, beginning with the creation of an object graph.

9.1 Creating an Object Graph

Problem
Your application is working with a rich set of models and you need to set up an
object graph that is complex enough to manage your application.

Solution
Use classes to define the properties, methods, and relationships of entities that
are necessary to make your application work.

How It Works
For the recipes on KVC, you need a richer object graph to work with. So, let’s
set up an object graph for an application like a task manager. For such an
application, you need a few classes that you can use to set up some objects
and relationships.

Working with an Object Graph
In order to make your object graph sufficiently rich, let’s set up classes for three
entities: Project, Task, and Worker. Project is a class that represents a project
that you are working on. A project includes a list of tasks and a worker. Task is a
class that represents one thing that you have to do for a project. Worker is a
class that represents a person that can do work on a project or task. Let’s look
at the interfaces for each of these classes so you’ll know what you are working
with.

CHAPTER 9: Working with Object Graphs 286

Worker
#import <Foundation/Foundation.h>

@interface Wrker : NSObject

@property(strong)NSString *name;
@property(strong)NSString *role;

@end

Worker holds data for a worker’s name and role. In the implementation of Worker,
you can override the description function so you can use it later to identify a
particular Worker.

#import "Worker.h"

@implementation Worker
@synthesize name, role;

-(NSString *)description{
 return [NSString stringWithFormat:@"%@, %@", name, role];
}

@end

NOTE: Overriding means that you are replacing a method or function
that was defined in the superclass with a new version of that method
or function. NSObject already has a function called description that is
used when you need a string description of an object. For instance,
when you use the %@ format identifier to insert an object into a string,
the description function is responsible for providing the string.
Overriding description here is an easy way to make sure you can get a
sensible description written to the log later.

Task
A task is one activity that needs to be completed for a project. The following is
what a header file looks like for the Task class:

#import <Foundation/Foundation.h>
#import "Worker.h"

@interface Task : NSObject

CHAPTER 9: Working with Object Graphs 287

@property(strong)NSString *name;
@property(strong)NSString *details;
@property(strong)NSDate *dueDate;
@property(assign)int priority;
@property(strong)Worker *assignedWorker;

-(void)writeReportToLog;

@end

NOTE: Remember that the strong keyword is used for objects that
you want to claim ownership over, while assign is used for primitive
types.

As you can see, Task has quite a few properties. The first four are what you
might expect to make up a task: the task’s name, the task’s details, the date the
task is due, and the priority. The remaining property, assignedWorker,
establishes a one-to-one relationship with a Worker object that represents a
person assigned to complete this task.

NOTE: Remember that the object graph represents your objects and
their relationships. When you add properties to a class that are
singular entities, you are establishing a one-to-one relationship. Since
you have a Worker object as a property, this means that you can have
one worker assigned to each task.

The implementation of Worker includes a report method to write out the status of
a task object to the log. Note that I’m leaving some spaces before the content in
the log statements so that the output will appear indented when used in
conjunction with the Project object’s log report output, like so:

#import "Task.h"

@implementation Task
@synthesize name, details, dueDate, priority, assignedWorker;

-(void)writeReportToLog{
 NSLog(@" name = %@", self.name);
 NSLog(@" description = %@", self.details);
 NSLog(@" dueDate = %@", self.dueDate);
 NSLog(@" priority = %i", self.priority);
 NSLog(@" assignedWorker = %@", self.assignedWorker);

CHAPTER 9: Working with Object Graphs 288

}

@end

Project
Project is a higher level entity that has data associated with the project entity
itself and relationships with other entities. You can describe a Project entity by
its name, due date, and description. Like a task, projects have a one-to-one
relationship with a worker who is in charge of the project as a whole. Projects
also have a one-to-many relationship with a list of tasks, since you need to
complete a whole series of tasks to get one project finished.

NOTE: You can represent one-to-many relationships in your object
graph as well as one-to-one relationships. When you add properties to
a class that are collections (like sets, arrays, or dictionaries) you are
establishing a one-to-many relationship. Since you have an
NSMutableArray object called listOfTasks that follows Project as a
property, this means that you can have a collection of tasks
associated with a project.

Here is the interface for Project:

#import <Foundation/Foundation.h>
#import "Task.h"
#import "Worker.h"

@interface Project : NSObject

@property(strong)NSString *name;
@property(strong)NSString *description;
@property(strong)NSDate *dueDate;
@property(strong)NSMutableArray *listOfTasks;
@property(strong)Worker *personInCharge;

-(void)writeReportToLog;

@end

Note again how the two relationships here are established: listOfTasks is the
NSMutableArray that is establishing a one-to-many relationship between Project
and Task and personInCharge is establishing a one-to-one relationship between
Project and Worker.

CHAPTER 9: Working with Object Graphs 289

The implementation for Project has the code needed to write out a report to the
log.

#import "Project.h"

@implementation Project
@synthesize name, description, dueDate, listOfTasks, personInCharge;

- (id)init{
 self = [super init];
 if (self) {
 self.listOfTasks = [[NSMutableArray alloc] init];
 }
 return self;
}

-(void)writeReportToLog{
 NSLog(@"PROJECT");
 NSLog(@" name = %@", self.name);
 NSLog(@" description = %@", self.description);
 NSLog(@" dueDate = %@", self.dueDate);
 NSLog(@" personInCharge = %@", self.personInCharge);
 NSLog(@"TASKS");
 [self.listOfTasks enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 [obj writeReportToLog];
 }];
}

@end

Also, you need to override the init function so you can make sure that the
NSMutableArray is created and ready to add tasks.

Initializing the Object Graph
To actually use the object graph, you need to create the necessary objects and
then assign each to the object relationship to which it belongs. You can do this
all in the main.m file of a Mac command-line application to model a simple
version of an object graph; you will use this in the remaining recipes for this
chapter.

The first thing you should do is set up the root object. Every object graph needs
to start with at least one root (or first) object. For your example, that is a
Project.

Project *workProject01 =[[Project alloc] init];
workProject01.name = @"Make iOS App";
workProject01.description = @"Make an iOS application for the iPad";
workProject01.dueDate = [NSDate date];

CHAPTER 9: Working with Object Graphs 290

This instantiates a Project object called workProject01 and sets the initial
properties. Next, you are going to start to establish your first relationship by first
creating a Worker object for the manager who will be in charge of this project.

Worker *personInCharge = [[Worker alloc] init];
personInCharge.name = @"Jane Smith";
personInCharge.role = @"Manager";

As you can see, you just create the object and assign some properties to the
new Worker object. Now, you can assign this worker to the
wordProject01.personInCharge property and establish the relationship between
this worker and this project.

workProject01.personInCharge = personInCharge;

Now that this relationship is established, you can use dot notation to either print
out the entire Worker object or just one of the property values, like role.

//Write using description for object
NSLog(@"workProject01.personInCharge = %@", workProject01.personInCharge);
//Just write out role of person in charge
NSLog(@"workProject01.personInCharge.role = %@",
workProject01.personInCharge.role);

These two statements print out the following to the log:

workProject01.personInCharge = Jane Smith, Manager
workProject01.personInCharge.role = Manager

The next part of this exercise takes place in three parts: you create a new task,
create a new worker to assign to the task, and then you add the new task to the
project’s list of tasks. So, you are establishing two relationships this time
around.

For the first part, instantiate a new Task and set up the property values for it.
This part is pretty simple.

Task *task01 = [[Task alloc] init];
task01.name = @"Learn Objective-C";
task01.details = @"Learn Objective-C to make Mac apps";
task01.priority = 1;
task01.dueDate = [NSDate date];

This just creates the task and sets up some values. Next, you need to do
something similar for the new worker.

Worker *employee = [[Worker alloc] init];
employee.name = @"David Done";
employee.role = @"Programmer";

CHAPTER 9: Working with Object Graphs 291

Finally, you can establish a one-to-one relationship between this task and the
new worker. You establish this relationship by assigning employee to task01, like
so:

task01.assignedWorker = employee;

Now, navigate through to the employee object properties using dot notation in a
similar way as you did for the personInCharge object.

//Write using description for object
NSLog(@"task01.assignedWorker = %@", task01.assignedWorker);
//Just write out role of the employee
NSLog(@"task01.assignedWorker.role = %@", task01.assignedWorker.role);

These log statements present the following:

task01.assignedWorker = David Done, Programmer
task01.assignedWorker.role = Programmer

Finally, you are ready to add the task that you just created to the project that
you created at the beginning. To do this, you simply add the task to the
NSMutableArray listOfTasks.

[workProject01.listOfTasks addObject:task01];

This means that you have one project that has one task associated with the
project. You can create as many projects as you like and add them to the list
since the relationship between Project and Task is a one-to-many relationship.
See Listing 9-xx for an example of adding a few more tasks to this project.

When you want to reference one of the tasks in this project, you can start by
getting a reference to the array. Then select the object either by sending an
objectAtIndex: message or a lastObject message.

//Example of using objectAtIndex:
//Task *currentTask = [workProject01.listOfTasks objectAtIndex:0];
Task *currentTask = [workProject01.listOfTasks lastObject];
NSLog(@"currentTask.name = %@", currentTask.name);

You should see the following in the log:

currentTask.name = Learn Objective-C

At this point, you now have a complete object graph to work with. You can send
the writeReportToLog message to print out the entire contents of the object
graph.

[workProject01 writeReportToLog];

See Listing 9-6 for the details on how that works. Here is the message you
would see printed to the log:

CHAPTER 9: Working with Object Graphs 292

PROJECT
 name = Make iOS App
 description = Make an iOS application for the iPad
 dueDate = 2012-03-20 15:57:13 +0000
 personInCharge = Jane Smith, Manager
 TASKS
 name = Learn Objective-C
 description = Learn Objective-C to make Mac apps
 dueDate = 2012-03-20 15:57:13 +0000
 priority = 1
 assignedWorker = David Done, Programmer

See Listings 9-1 through 9-7.

The Code
Listing 9-1. Worker.h

#import <Foundation/Foundation.h>

@interface Worker : NSObject

@property(strong)NSString *name;
@property(strong)NSString *role;

@end

Listing 9-2. Worker.m

#import "Worker.h"

@implementation Worker
@synthesize name, role;

-(NSString *)description{
 return [NSString stringWithFormat:@"%@, %@", name, role];
}

@end

Listing 9-3. Task.h

#import <Foundation/Foundation.h>
#import "Worker.h"

@interface Task : NSObject

@property(strong)NSString *name;

CHAPTER 9: Working with Object Graphs 293

@property(strong)NSString *details;
@property(strong)NSDate *dueDate;
@property(assign)int priority;
@property(strong)Worker *assignedWorker;

-(void)writeReportToLog;

@end

Listing 9-4. Task.m

#import "Task.h"

@implementation Task
@synthesize name, details, dueDate, priority, assignedWorker;

-(void)writeReportToLog{
 NSLog(@" name = %@", self.name);
 NSLog(@" description = %@", self.details);
 NSLog(@" dueDate = %@", self.dueDate);
 NSLog(@" priority = %i", self.priority);
 NSLog(@" assignedWorker = %@", self.assignedWorker);
}

@end

Listing 9-5. Project.h

#import <Foundation/Foundation.h>
#import "Task.h"
#import "Worker.h"

@interface Project : NSObject

@property(strong)NSString *name;
@property(strong)NSString *description;
@property(strong)NSDate *dueDate;
@property(strong)NSMutableArray *listOfTasks;
@property(strong)Worker *personInCharge;

-(void)writeReportToLog;

@end

Listing 9-6. Project.m

#import "Project.h"

@implementation Project
@synthesize name, description, dueDate, listOfTasks, personInCharge;

CHAPTER 9: Working with Object Graphs 294

- (id)init{
 self = [super init];
 if (self) {
 self.listOfTasks = [[NSMutableArray alloc] init];
 }
 return self;
}

-(void)writeReportToLog{
 NSLog(@"PROJECT");
 NSLog(@" name = %@", self.name);
 NSLog(@" description = %@", self.description);
 NSLog(@" dueDate = %@", self.dueDate);
 NSLog(@" personInCharge = %@", self.personInCharge);
 NSLog(@"TASKS");
 [self.listOfTasks enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 [obj writeReportToLog];
 }];
}

@end

Listing 9-7. main.m

#import <Foundation/Foundation.h>
#import "Project.h"
#import "Task.h"

int main(int argc, const char * argv[]){
 @autoreleasepool {
 //Example of object graph
 //Create a new project
 Project *workProject01 =[[Project alloc] init];
 workProject01.name = @"Make iOS App";
 workProject01.description = @"Make an iOS application for the iPad";
 workProject01.dueDate = [NSDate date];

 //Setup a new person to be in charge
 Worker *personInCharge = [[Worker alloc] init];
 personInCharge.name = @"Jane Smith";
 personInCharge.role = @"Manager";

 //Assign person to project
 workProject01.personInCharge = personInCharge;

 //Write using description for object
 NSLog(@"workProject01.personInCharge = %@", workProject01.personInCharge);
 //Just write out role of person in charge
 NSLog(@"workProject01.personInCharge.role = %@", 

CHAPTER 9: Working with Object Graphs 295

workProject01.personInCharge.role);

 //Create new task
 Task *task01 = [[Task alloc] init];
 task01.name = @"Learn Objective-C";
 task01.details = @"Learn Objective-C to make Mac apps";
 task01.priority = 1;
 task01.dueDate = [NSDate date];

 //Set up a new person to assign to the task
 Worker *employee = [[Worker alloc] init];
 employee.name = @"David Done";
 employee.role = @"Programmer";

 //Assign worker to task
 task01.assignedWorker = employee;

 //Write using description for object
 NSLog(@"task01.assignedWorker = %@", task01.assignedWorker);
 //Just write out role of the employee
 NSLog(@"task01.assignedWorker.role = %@", task01.assignedWorker.role);

 //Add task to project
 [workProject01.listOfTasks addObject:task01];

 //To reference a task from the list use the array
 Task *currentTask = [workProject01.listOfTasks lastObject];
 NSLog(@"currentTask.name = %@", currentTask.name);

 //Write out project report:
 [workProject01 writeReportToLog];

 //Note: you will want to do this for each task that the
 //project needs

 //Create new task
 Task *task02 = [[Task alloc] init];
 task02.name = @"Investigate UIKit";
 task02.details = @"Investigate UIKit to see how it works for users.";
 task02.priority = 3;
 task02.dueDate = [NSDate date];

 //Assign worker to task
 task02.assignedWorker = employee;

 //Add task to project
 [workProject01.listOfTasks addObject:task02];

 //Create new task
 Task *task03 = [[Task alloc] init];

CHAPTER 9: Working with Object Graphs 296

 task03.name = @"Evaluate";
 task03.details = @"Signoff on initial project progress.";
 task03.priority = 1;
 task03.dueDate = [NSDate date];

 //Assign worker to task
 task03.assignedWorker = personInCharge;

 //Add task to project
 [workProject01.listOfTasks addObject:task03];

 //Write out project report:
 [workProject01 writeReportToLog];

 }
 return 0;
}

Usage
The best way to use this code is to create a Mac command-line application in
Xcode and recreate Listings 9-1 through 9-7. Then run the application and
inspect the log. You will see something like the following appear, but with
different NSDate values:

workProject01.personInCharge = Jane Smith, Manager
 workProject01.personInCharge.role = Manager
 task01.assignedWorker = David Done, Programmer
 task01.assignedWorker.role = Programmer
 currentTask.name = Learn Objective-C
 PROJECT
 name = Make iOS App
 description = Make an iOS application for the iPad
 dueDate = 2012-03-20 16:06:55 +0000
 personInCharge = Jane Smith, Manager
 TASKS
 name = Learn Objective-C
 description = Learn Objective-C to make Mac apps
 dueDate = 2012-03-20 16:06:55 +0000
 priority = 1
 assignedWorker = David Done, Programmer
 PROJECT
 name = Make iOS App
 description = Make an iOS application for the iPad
 dueDate = 2012-03-20 16:06:55 +0000
 personInCharge = Jane Smith, Manager
 TASKS

CHAPTER 9: Working with Object Graphs 297

 name = Learn Objective-C
 description = Learn Objective-C to make Mac apps
 dueDate = 2012-03-20 16:06:55 +0000
 priority = 1
 assignedWorker = David Done, Programmer
 name = Investigate UIKit
 description = Investigate UIKit to see how it works for users.
 dueDate = 2012-03-20 16:06:55 +0000
 priority = 3
 assignedWorker = David Done, Programmer
 name = Evaluate
 description = Signoff on initial project progress.
 dueDate = 2012-03-20 16:06:55 +0000
 priority = 1
 assignedWorker = Jane Smith, Manager

This output shows the complete object graph that you will be using as an
example throughout this chapter, so this serves as a good reference.

9.2 Using Key-Value Coding

Problem
You would like to get and set property values in your object graph dynamically
at runtime without knowing the particular property names beforehand. Since you
don’t know what properties are to be used, you can’t use dot notation to access
the property value.

Solution
Use key-value coding (KVC) to get and set properties dynamically. NSObject has
built-in methods that let you set or get property values based on a string key
that corresponds to the name of a property.

How It Works
Note that you are using the object graph that was created in Recipe 9.1.
NSObject has some built-in behavior that indexes each property and each
property value in a dictionary data structure. The keys of the dictionary are the
declared property names (stored as NSString objects).

CHAPTER 9: Working with Object Graphs 298

Getting Property Values
In order to use this system to get a property value, all you need to do is supply
the NSString property name to the NSObject method valueForKey:. Since you
don’t usually know what kind of object will be returned by valueForKey: you
should use the id object type. Name this id object temp and use it throughout
this recipe.

id temp;

To get the name of the project, you need to send the valueForKey: message to
the workProject01 and assign the result to temp and use the key @"name".

temp = [workProject01 valueForKey:@"name"];

To use the value stored in temp, you can treat temp like an NSString object.

NSLog(@"temp (from key name) = %@", temp);

You should see the following in the log:

temp (from key name) = Make iOS App

This can be helpful in situations where you just don’t know what property value
you will need beforehand because you can use strings here. So, instead of
including the string directly in the code like I’m doing here, the information could
be coming from an external source of input like a text file. This flexibility can
provide some dynamic behavior; KVC is also essential to the operation of some
systems like data binding and Interface Builder (an Xcode tool used to compose
user interfaces without coding).

You can get any type of object with valueForKey:, including custom objects like
the Worker object you set up to be in charge of a project.

temp = [workProject01 valueForKey:@"personInCharge"];

Here is an interesting trick that KVC makes possible. Let’s say that you just want
to know the name of each task in your project’s lists of tasks (a pretty common
request). You can use KVC to get an array filled up with just those values. The
first thing you want to do is get a reference to the task list.

temp = [workProject01 valueForKey:@"listOfTasks"];

This works in exactly the same way as the previous examples. Then you want to
use valueForKey: again, but this time you send the message to the temp object
where you have the task list references and use the @"name" key. This returns an
array filled up with each name property value for each Task object inside the task
list referenced by the temp object.

NSArray *stuffFromTaskList = [temp valueForKey:@"name"];

CHAPTER 9: Working with Object Graphs 299

Here, I set the results to an NSArray object because I want to use a particular
NSArray enumeration method to demonstrate the results of this operation.

[stuffFromTaskList enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"obj: %@", obj);
}];

The log should list the following property values:

obj: Learn Objective-C
obj: Investigate UIKit
obj: Evaluate

Setting Property Values
You can also set property values with KVC. This follows the same pattern as
getting property values. You need an NSString key to reference the property and
you need to send a message to the object where the property is located.

So, if you want to change the name of the project that you’ve been working on
to ‘‘My Pet Project’’, you could do the following:

[workProject01 setValue:@"My Pet Project"
 forKey:@"name"];

As before, you can do this with any property. You can also apply a set to each
property value in an array. For instance, if you want to reset each task name to
‘‘New Task’’, you would do the following:

temp = [workProject01 valueForKey:@"listOfTasks"];
[temp setValue:@"New Task"
 forKey:@"name"];

If you were to print out the log report with these changes using the
writeReportToLog method, here is what you would now get (updated lines are in
bold):

PROJECT
 name = My Pet Project
 description = Make an iOS application for the iPad
 dueDate = 2012-03-21 17:01:05 +0000
 personInCharge = Jane Smith, Manager
 TASKS
 name = New Task
 description = Learn Objective-C to make Mac apps
 dueDate = 2012-03-21 17:01:05 +0000
 priority = 1
 assignedWorker = David Done, Programmer
 name = New Task
 description = Investigate UIKit to see how it works for users.

CHAPTER 9: Working with Object Graphs 300

 dueDate = 2012-03-21 17:01:05 +0000
 priority = 3
 assignedWorker = David Done, Programmer
 name = New Task
 description = Signoff on initial project progress.
 dueDate = 2012-03-21 17:01:05 +0000
 priority = 1
 assignedWorker = Jane Smith, Manager

NOTE: The code files that define the Project, Task, and Worker classes
are the same as in Recipe 9.1.

See Listings 9-8 through 9-14.

The Code
Listing 9-8. Worker.h

#import <Foundation/Foundation.h>

@interface Worker : NSObject

@property(strong)NSString *name;
@property(strong)NSString *role;

@end

Listing 9-9. Worker.m

#import "Worker.h"

@implementation Worker
@synthesize name, role;

-(NSString *)description{
 return [NSString stringWithFormat:@"%@, %@", name, role];
}

@end

Listing 9-10. Task.h

#import <Foundation/Foundation.h>
#import "Worker.h"

@interface Task : NSObject

CHAPTER 9: Working with Object Graphs 301

@property(strong)NSString *name;
@property(strong)NSString *details;
@property(strong)NSDate *dueDate;
@property(assign)int priority;
@property(strong)Worker *assignedWorker;

-(void)writeReportToLog;

@end

Listing 9-11. Task.m

#import "Task.h"

@implementation Task
@synthesize name, details, dueDate, priority, assignedWorker;

-(void)writeReportToLog{
 NSLog(@" name = %@", self.name);
 NSLog(@" description = %@", self.details);
 NSLog(@" dueDate = %@", self.dueDate);
 NSLog(@" priority = %i", self.priority);
 NSLog(@" assignedWorker = %@", self.assignedWorker);
}

@end

Listing 9-12. Project.h

#import <Foundation/Foundation.h>
#import "Task.h"
#import "Worker.h"

@interface Project : NSObject

@property(strong)NSString *name;
@property(strong)NSString *description;
@property(strong)NSDate *dueDate;
@property(strong)NSMutableArray *listOfTasks;
@property(strong)Worker *personInCharge;

-(void)writeReportToLog;

@end

Listing 9-13. Project.m

#import "Project.h"

CHAPTER 9: Working with Object Graphs 302

@implementation Project
@synthesize name, description, dueDate, listOfTasks, personInCharge;

- (id)init{
 self = [super init];
 if (self) {
 self.listOfTasks = [[NSMutableArray alloc] init];
 }
 return self;
}

-(void)writeReportToLog{
 NSLog(@"PROJECT");
 NSLog(@" name = %@", self.name);
 NSLog(@" description = %@", self.description);
 NSLog(@" dueDate = %@", self.dueDate);
 NSLog(@" personInCharge = %@", self.personInCharge);
 NSLog(@"TASKS");
 [self.listOfTasks enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 [obj writeReportToLog];
 }];
}

@end

Listing 9-14. main.m

#import <Foundation/Foundation.h>
#import "Project.h"
#import "Task.h"

int main(int argc, const char * argv[]){
 @autoreleasepool {
 //Create a new project
 Project *workProject01 =[[Project alloc] init];
 workProject01.name = @"Make iOS App";
 workProject01.description = @"Make an iOS application for the iPad";
 workProject01.dueDate = [NSDate date];

 //Setup a new person to be in charge
 Worker *personInCharge = [[Worker alloc] init];
 personInCharge.name = @"Jane Smith";
 personInCharge.role = @"Manager";

 //Assign person to project
 workProject01.personInCharge = personInCharge;

 //Create new task
 Task *task01 = [[Task alloc] init];
 task01.name = @"Learn Objective-C";

CHAPTER 9: Working with Object Graphs 303

 task01.details = @"Learn Objective-C to make Mac apps";
 task01.priority = 1;
 task01.dueDate = [NSDate date];

 //Setup a new person to assign to the task
 Worker *employee = [[Worker alloc] init];
 employee.name = @"David Done";
 employee.role = @"Programmer";

 //Assign worker to task
 task01.assignedWorker = employee;

 //Add task to project
 [workProject01.listOfTasks addObject:task01];

 //Create new task
 Task *task02 = [[Task alloc] init];
 task02.name = @"Investigate UIKit";
 task02.details = @"Investigate UIKit to see how it works for users.";
 task02.priority = 3;
 task02.dueDate = [NSDate date];

 //Assign worker to task
 task02.assignedWorker = employee;

 //Add task to project
 [workProject01.listOfTasks addObject:task02];

 //Create new task
 Task *task03 = [[Task alloc] init];
 task03.name = @"Evaluate";
 task03.details = @"Signoff on initial project progress.";
 task03.priority = 1;
 task03.dueDate = [NSDate date];

 //Assign worker to task
 task03.assignedWorker = personInCharge;

 //Add task to project
 [workProject01.listOfTasks addObject:task03];

 //Use KVC to get property values
 //Use id to get a generalized object reference
 id temp;

 //Get the name of the project:
 temp = [workProject01 valueForKey:@"name"];
 NSLog(@"temp (from key name) = %@", temp);

 //get the person in charge:

CHAPTER 9: Working with Object Graphs 304

 temp = [workProject01 valueForKey:@"personInCharge"];
 NSLog(@"temp (from key personInCharge) = %@", temp);

 //get the project's task list:
 temp = [workProject01 valueForKey:@"listOfTasks"];
 NSLog(@"temp (from key listOfTasks) = %@", temp);

 NSArray *stuffFromTaskList = [temp valueForKey:@"name"];
 [stuffFromTaskList enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL 
*stop) {
 NSLog(@"obj: %@", obj);
 }];

 //Use KVC to set property values
 [workProject01 setValue:@"My Pet Project"
 forKey:@"name"];

 temp = [workProject01 valueForKey:@"listOfTasks"];
 [temp setValue:@"New Task"
 forKey:@"name"];

 //write out the object graph's contents
 [workProject01 writeReportToLog];
 }
 return 0;
}

Usage
A Mac command-line is a sufficient base to use to test this code. Recreate all of
the code from Listings 9-8 through 9-14, including the code that works with the
object graph in the main.m file.

Build and run your application. You should see the output that follows in your
console log window. The major change in this recipe was the process of
accessing the property values, not the content itself.

temp (from key name) = Make iOS App
temp (from key personInCharge) = Jane Smith, Manager
temp (from key listOfTasks) = (
 "<Task: 0x106b16200>",
 "<Task: 0x106b16640>",
 "<Task: 0x106b16730>"
)
 obj: Learn Objective-C
 obj: Investigate UIKit
 obj: Evaluate

CHAPTER 9: Working with Object Graphs 305

 PROJECT
 name = My Pet Project
 description = Make an iOS application for the iPad
 dueDate = 2012-03-21 17:01:05 +0000
 personInCharge = Jane Smith, Manager
 TASKS
 name = New Task
 description = Learn Objective-C to make Mac apps
 dueDate = 2012-03-21 17:01:05 +0000
 priority = 1
 assignedWorker = David Done, Programmer
 name = New Task
 description = Investigate UIKit to see how it works for users.
 dueDate = 2012-03-21 17:01:05 +0000
 priority = 3
 assignedWorker = David Done, Programmer
 name = New Task
 description = Signoff on initial project progress.
 dueDate = 2012-03-21 17:01:05 +0000
 priority = 1
 assignedWorker = Jane Smith, Manager

This is the results of your navigation and manipulation of the object graph.

9.3 Using Key Paths in Your Object Graph
Problem
You want to access object properties that are deep in your object graph
dynamically, but valueForKey: and setValueForKey: only work when you have
an object reference at hand.

Solution
Use key paths to get deeply nested object property values from your object
graph. NSObject has a function called valueForKeyPath: that will help you get
these values.

How It Works
Note that again you are using the object graph that was created in Recipe 9.1.
This time, instead of simply providing a key-value as you did in Recipe 9.2, you
are going to provide a key path. A key path looks like the code that you would
write to access an object or property with dot notation except that the key path

CHAPTER 9: Working with Object Graphs 306

is a string. For instance, if you want to see the name of the person in charge
using standard dot notation, you do the following:

id temp;
temp = workProject01.personInCharge.name;

Note that you will be reusing id emp throughout this recipe. To do the same
using a key path, you do this:

temp = [workProject01 valueForKeyPath:@"personInCharge.name"];

If you want to go one level deeper and get the value of the NSString
uppercaseString function, you can do this:

temp = [workProject01 valueForKeyPath:@"personInCharge.name.uppercaseString"];

As you might expect, you can also set properties with key paths. For instance, if
you want to change the name of the person in charge, you can do this:

[workProject01 setValue:@"Mary Steinbeck"
 forKeyPath:@"personInCharge.name"];

See Listings 9-15 through 9-21.

NOTE: Key paths work well-----with one caveat. There is no way to
reference an element of an array. If you want to get the name property
value of one of the tasks in the project task list, you’re out of luck. The
only way to do this is to get a reference to the array first; then you
must select the object from the list in the usual ways.

The Code
Listing 9-15. Worker.h

#import <Foundation/Foundation.h>

@interface Worker : NSObject

@property(strong)NSString *name;
@property(strong)NSString *role;

@end

CHAPTER 9: Working with Object Graphs 307

Listing 9-16. Worker.m

#import "Worker.h"

@implementation Worker
@synthesize name, role;

-(NSString *)description{
 return [NSString stringWithFormat:@"%@, %@", name, role];
}

@end

Listing 9-17. Task.h

#import <Foundation/Foundation.h>
#import "Worker.h"

@interface Task : NSObject

@property(strong)NSString *name;
@property(strong)NSString *details;
@property(strong)NSDate *dueDate;
@property(assign)int priority;
@property(strong)Worker *assignedWorker;

-(void)writeReportToLog;

@end

Listing 9-18. Task.m

#import "Task.h"

@implementation Task
@synthesize name, details, dueDate, priority, assignedWorker;

-(void)writeReportToLog{
 NSLog(@" name = %@", self.name);
 NSLog(@" description = %@", self.details);
 NSLog(@" dueDate = %@", self.dueDate);
 NSLog(@" priority = %i", self.priority);
 NSLog(@" assignedWorker = %@", self.assignedWorker);
}

@end

CHAPTER 9: Working with Object Graphs 308

Listing 9-19. Project.h

#import <Foundation/Foundation.h>
#import "Task.h"
#import "Worker.h"

@interface Project : NSObject

@property(strong)NSString *name;
@property(strong)NSString *description;
@property(strong)NSDate *dueDate;
@property(strong)NSMutableArray *listOfTasks;
@property(strong)Worker *personInCharge;

-(void)writeReportToLog;

@end

Listing 9-20. Project.m

#import "Project.h"

@implementation Project
@synthesize name, description, dueDate, listOfTasks, personInCharge;

- (id)init{
 self = [super init];
 if (self) {
 self.listOfTasks = [[NSMutableArray alloc] init];
 }
 return self;
}

-(void)writeReportToLog{
 NSLog(@"PROJECT");
 NSLog(@" name = %@", self.name);
 NSLog(@" description = %@", self.description);
 NSLog(@" dueDate = %@", self.dueDate);
 NSLog(@" personInCharge = %@", self.personInCharge);
 NSLog(@"TASKS");
 [self.listOfTasks enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 [obj writeReportToLog];
 }];
}

@end

CHAPTER 9: Working with Object Graphs 309

Listing 9-21. main.m

#import <Foundation/Foundation.h>
#import "Project.h"
#import "Task.h"

int main(int argc, const char * argv[]){
 @autoreleasepool {
 //Create a new project
 Project *workProject01 =[[Project alloc] init];
 workProject01.name = @"Make iOS App";
 workProject01.description = @"Make an iOS application for the iPad";
 workProject01.dueDate = [NSDate date];

 //Setup a new person to be in charge
 Worker *personInCharge = [[Worker alloc] init];
 personInCharge.name = @"Jane Smith";
 personInCharge.role = @"Manager";

 //Assign person to project
 workProject01.personInCharge = personInCharge;

 //Create new task
 Task *task01 = [[Task alloc] init];
 task01.name = @"Learn Objective-C";
 task01.details = @"Learn Objective-C to make Mac apps";
 task01.priority = 1;
 task01.dueDate = [NSDate date];

 //Set up a new person to assign to the task
 Worker *employee = [[Worker alloc] init];
 employee.name = @"David Done";
 employee.role = @"Programmer";

 //Assign worker to task
 task01.assignedWorker = employee;

 //Add task to project
 [workProject01.listOfTasks addObject:task01];

 //Create new task
 Task *task02 = [[Task alloc] init];
 task02.name = @"Investigate UIKit";
 task02.details = @"Investigate UIKit to see how it works for users.";
 task02.priority = 3;
 task02.dueDate = [NSDate date];

 //Assign worker to task
 task02.assignedWorker = employee;

CHAPTER 9: Working with Object Graphs 310

 //Add task to project
 [workProject01.listOfTasks addObject:task02];

 //Create new task
 Task *task03 = [[Task alloc] init];
 task03.name = @"Evaluate";
 task03.details = @"Signoff on initial project progress.";
 task03.priority = 1;
 task03.dueDate = [NSDate date];

 //Assign worker to task
 task03.assignedWorker = personInCharge;

 //Add task to project
 [workProject01.listOfTasks addObject:task03];

 //Use key paths to get property values
 //Use id to get a generalized object reference
 id temp;

 //Get the name of the person in charge using a dot notation
 temp = workProject01.personInCharge.name;
 NSLog(@"workProject01.personInCharge.name = %@", temp);

 //Get the name of the person in charge using a key path
 temp = [workProject01 valueForKeyPath:@"personInCharge.name"];
 NSLog(@"personInCharge.name = %@", temp);

 //Get the name of the person in charge in uppercase using a key path
 temp = [workProject01 valueForKeyPath:@"personInCharge.name.uppercaseString"];
 NSLog(@"personInCharge.name.uppercaseString = %@", temp);

 //Set the name of the person in charge using a key path
 [workProject01 setValue:@"Mary Steinbeck"
 forKeyPath:@"personInCharge.name"];

 //write out the object graph's contents
 [workProject01 writeReportToLog];
 }
 return 0;
}

Usage
The easiest way to try this recipe is to set up a command-line Mac application
and include the code in Listings 9-15 through 9-21. The class definitions are the
same as the ones used in Recipes 9.1 and 9.2.

CHAPTER 9: Working with Object Graphs 311

The key path code is located in the main.m file toward the end. When you run
this code you will see the results of the key path functions. Look at the name of
the person in charge to see the change you made at the end of the code in
main.m.

workProject01.personInCharge.name = Jane Smith
personInCharge.name = Jane Smith
personInCharge.name.uppercaseString = JANE SMITH
PROJECT
 name = Make iOS App
 description = Make an iOS application for the iPad
 dueDate = 2012-03-20 16:06:55 +0000
 personInCharge = Mary Steinbeck, Manager
 TASKS
 name = Learn Objective-C
 description = Learn Objective-C to make Mac apps
 dueDate = 2012-03-20 16:06:55 +0000
 priority = 1
 assignedWorker = David Done, Programmer
 name = Investigate UIKit
 description = Investigate UIKit to see how it works for users.
 dueDate = 2012-03-20 16:06:55 +0000
 priority = 3
 assignedWorker = David Done, Programmer
 name = Evaluate
 description = Signoff on initial project progress.
 dueDate = 2012-03-20 16:06:55 +0000
 priority = 1
 assignedWorker = Mary Steinbeck, Manager

In case you don’t see the change, Mary Steinbeck is now listed as the person in
charge of the project as well as the last task.

9.4 Aggregating Information with Key Paths

Problem
You want to get aggregated information from your object graph. For instance,
you may need to know the average priority level of all the tasks in your project’s
task list.

CHAPTER 9: Working with Object Graphs 312

Solution
Use @count, @sum, @avg, @min, @max, and @distinctUnionOfObjects to get
aggregated information from arrays in your object graph.

How It Works
When you use the valueForKeyPath: method, you can include the @count, @sum,
@avg, @min, @max, and @distinctUnionOfObjects operators in the key path to
create the information from the property in the array. The general form of the key
path is

[keypath].[@operator].[property name]

If you want to get the sum of all the priority values in the task list that you
created in Recipe 9.1, you can do this:

id sum = [workProject01 valueForKeyPath:@"listOfTasks.@sum.priority"];

Remember that listOfTasks is an array of Task objects. Each Task object has an
int property named priority. These operators work on the value of each
priority property for each Task object in the array.

Here are some more examples of how to use these operators with the priority
property:

//Get the sum of all the priority values
id sum = [workProject01 valueForKeyPath:@"listOfTasks.@sum.priority"];
NSLog(@"sum of task list priorities = %@", sum);

//Get the average of all the priority values
id average = [workProject01 valueForKeyPath:@"listOfTasks.@avg.priority"];
NSLog(@"average of task list priorities = %@", average);

//Get the minimum of all the priority values
id min = [workProject01 valueForKeyPath:@"listOfTasks.@min.priority"];
NSLog(@"min of task list priorities = %@", min);

//Get the maximum of all the priority values
id max = [workProject01 valueForKeyPath:@"listOfTasks.@max.priority"];
NSLog(@"max of task list priorities = %@", max);

You can also get the distinct values from a property. Say that in your task list
you have a person assigned to each task. Often the same person is assigned
many tasks (like David Done in your object graph). Sometimes you just want a
list of each object without the repetition. Maybe you want to send just one e-
mail to each person on your project.

mailto:listOfTasks.@sum.priority"]
mailto:listOfTasks.@sum.priority"]
mailto:listOfTasks.@avg.priority"]
mailto:listOfTasks.@min.priority"]
mailto:listOfTasks.@max.priority"]

CHAPTER 9: Working with Object Graphs 313

To get such a list, use the @distinctUnionOfObjects operator, like so:

id listOfWorkers = [workProject01 
valueForKeyPath:@"listOfTasks.@distinctUnionOfObjects.assignedWorker"];
NSLog(@"list of distinct workers from task list = %@", listOfWorkers);

This prints out each worker, but only once.

list of distinct workers from task list = (
 "David Done, Programmer",
 "Jane Smith, Manager"
)

David Done is only listed once, even though he’s assigned to two tasks. See
Listings 9-22 through 9-28.

The Code
Listing 9-22. Worker.h

#import <Foundation/Foundation.h>

@interface Worker : NSObject

@property(strong)NSString *name;
@property(strong)NSString *role;

@end

Listing 9-23. Worker.m

#import "Worker.h"

@implementation Worker
@synthesize name, role;

-(NSString *)description{
 return [NSString stringWithFormat:@"%@, %@", name, role];
}

@end

Listing 9-24. Task.h

#import <Foundation/Foundation.h>
#import "Worker.h"

@interface Task : NSObject

mailto:listOfTasks.@distinctUnionOfObjects.assignedWorker"]

CHAPTER 9: Working with Object Graphs 314

@property(strong)NSString *name;
@property(strong)NSString *details;
@property(strong)NSDate *dueDate;
@property(assign)int priority;
@property(strong)Worker *assignedWorker;

-(void)writeReportToLog;

@end

Listing 9-25. Task.m

#import "Task.h"

@implementation Task
@synthesize name, details, dueDate, priority, assignedWorker;

-(void)writeReportToLog{
 NSLog(@" name = %@", self.name);
 NSLog(@" description = %@", self.details);
 NSLog(@" dueDate = %@", self.dueDate);
 NSLog(@" priority = %i", self.priority);
 NSLog(@" assignedWorker = %@", self.assignedWorker);
}

@end

Listing 9-26. Project.h

#import <Foundation/Foundation.h>
#import "Task.h"
#import "Worker.h"

@interface Project : NSObject

@property(strong)NSString *name;
@property(strong)NSString *description;
@property(strong)NSDate *dueDate;
@property(strong)NSMutableArray *listOfTasks;
@property(strong)Worker *personInCharge;

-(void)writeReportToLog;

@end

Listing 9-27. Project.m

#import "Project.h"

@implementation Project

CHAPTER 9: Working with Object Graphs 315

@synthesize name, description, dueDate, listOfTasks, personInCharge;

- (id)init{
 self = [super init];
 if (self) {
 self.listOfTasks = [[NSMutableArray alloc] init];
 }
 return self;
}

-(void)writeReportToLog{
 NSLog(@"PROJECT");
 NSLog(@" name = %@", self.name);
 NSLog(@" description = %@", self.description);
 NSLog(@" dueDate = %@", self.dueDate);
 NSLog(@" personInCharge = %@", self.personInCharge);
 NSLog(@"TASKS");
 [self.listOfTasks enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 [obj writeReportToLog];
 }];
}

@end

Listing 9-28. main.m

#import <Foundation/Foundation.h>
#import "Project.h"
#import "Task.h"

int main(int argc, const char * argv[]){
 @autoreleasepool {
 //Create a new project
 Project *workProject01 =[[Project alloc] init];
 workProject01.name = @"Make iOS App";
 workProject01.description = @"Make an iOS application for the iPad";
 workProject01.dueDate = [NSDate date];

 //Set up a new person to be in charge
 Worker *personInCharge = [[Worker alloc] init];
 personInCharge.name = @"Jane Smith";
 personInCharge.role = @"Manager";

 //Assign person to project
 workProject01.personInCharge = personInCharge;

 //Create new task
 Task *task01 = [[Task alloc] init];
 task01.name = @"Learn Objective-C";
 task01.details = @"Learn Objective-C to make Mac apps";

CHAPTER 9: Working with Object Graphs 316

 task01.priority = 1;
 task01.dueDate = [NSDate date];

 //Set up a new person to assign to the task
 Worker *employee = [[Worker alloc] init];
 employee.name = @"David Done";
 employee.role = @"Programmer";

 //Assign worker to task
 task01.assignedWorker = employee;

 //Add task to project
 [workProject01.listOfTasks addObject:task01];

 //Create new task
 Task *task02 = [[Task alloc] init];
 task02.name = @"Investigate UIKit";
 task02.details = @"Investigate UIKit to see how it works for users.";
 task02.priority = 3;
 task02.dueDate = [NSDate date];

 //Assign worker to task
 task02.assignedWorker = employee;

 //Add task to project
 [workProject01.listOfTasks addObject:task02];

 //Create new task
 Task *task03 = [[Task alloc] init];
 task03.name = @"Evaluate";
 task03.details = @"Signoff on initial project progress.";
 task03.priority = 1;
 task03.dueDate = [NSDate date];

 //Assign worker to task
 task03.assignedWorker = personInCharge;

 //Add task to project
 [workProject01.listOfTasks addObject:task03];

 //Use key paths to get aggregated information from arrays
 //Get the count
 id count = [workProject01 valueForKeyPath:@"listOfTasks.@count.priority"];
 NSLog(@"task list count = %@", count);

 //Get the sum of all the priority values
 id sum = [workProject01 valueForKeyPath:@"listOfTasks.@sum.priority"];
 NSLog(@"sum of task list priorities = %@", sum);

h

mailto:listOfTasks.@count.priority"]
mailto:listOfTasks.@sum.priority"]

CHAPTER 9: Working with Object Graphs 317

 //Get the average of all the priority values
 id average = [workProject01 valueForKeyPath:@"listOfTasks.@avg.priority"];
 NSLog(@"average of task list priorities = %@", average);

 //Get the minimum of all the priority values
 id min = [workProject01 valueForKeyPath:@"listOfTasks.@min.priority"];
 NSLog(@"min of task list priorities = %@", min);

 //Get the maximum of all the priority values
 id max = [workProject01 valueForKeyPath:@"listOfTasks.@max.priority"];
 NSLog(@"max of task list priorities = %@", max);

 //Get a list of distinct assigned to values
 id listOfWorkers = [workProject01 
valueForKeyPath:@"listOfTasks.@distinctUnionOfObjects.assignedWorker"];
 NSLog(@"list of distinct workers from task list = %@", listOfWorkers);

 }
 return 0;
}

Usage
This recipe has the same object graph as the earlier recipes so you can re-use
the projects you set up earlier in this chapter if you’ve been following along.
Otherwise, you can set up a Mac command-line app in Xcode and add the files
from Listings 9-22 through 9-28. The most important code is located toward the
end of the main.m file.

When you build and run your application you will see the results of the
aggregated information in your log.

task list count = 3
sum of task list priorities = 5
average of task list priorities = 1.66666666666666666666666666666666666666
min of task list priorities = 1
max of task list priorities = 3
list of distinct workers from task list = (
 "David Done, Programmer",
 "Jane Smith, Manager"
)

Note that the order in which your Worker objects appear may not match the
order in which my Worker objects appear. This is normal because you can’t
assume that objects will appear in a given order here.

mailto:listOfTasks.@avg.priority"]
mailto:listOfTasks.@min.priority"]
mailto:listOfTasks.@max.priority"]
mailto:listOfTasks.@distinctUnionOfObjects.assignedWorker"]

CHAPTER 9: Working with Object Graphs 318

9.5 Implementing the Observer Pattern

Problem
You want one object to be notified when the property value of another object
changes. In particular, you want to notify a controller when a property in the
model has changed so that the user interface may be updated.

Solution
Implement an Observer pattern using key-value observing.

How It Works
There are three steps to using key-value observation. First, you need to
establish a connection between the object that is being observed and the object
that is observing. You do this by sending the
addObserver:forKeyPath:options:context: message to the object that is to be
observed with a reference to the object that is doing the observing.

Next, in the class definition for the object that is doing observing you must
override the NSObject method called
observeValueForKeyPath:ofObject:change:context:. This method is invoked
whenever a change is made to the observed object. This is where you receive
the information that you are interested in, such as the object where the change
occurred, the key path, and the changed property value.

Finally, the object that is being observed must remove the observer in the
dealloc method. This is a method that is called right before the observed object
is going to be destroyed, and you have to make sure that observer is removed
as well or the observed could be retained and cause a memory leak.

To demonstrate how to do this, you’re going to use a subset of the object graph
that was created in Recipe 9.1. Your object graph subset only has one Project
object and one Worker object. The Task class and task list can both be omitted
for now.

What you are about to do is have the person in charge become an observer of
the project’s name property. Whenever the name property value of the project
changes, the person in charge will be notified.

CHAPTER 9: Working with Object Graphs 319

The first step is to go to the part of the code in main.m where you are creating
the object graph. Locate the space right after the personInCharge Worker object
is instantiated and send the addObserver:forKeyPath:options:context:
message to the project with the personInCharge and some other objects. The
added code is in bold.

//Create a new project
Project *workProject01 =[[Project alloc] init];
workProject01.name = @"Make iOS App";
workProject01.description = @"Make an iOS application for the iPad";
workProject01.dueDate = [NSDate date];

//Setup a new person to be in charge
Worker *personInCharge = [[Worker alloc] init];
personInCharge.name = @"Jane Smith";
personInCharge.role = @"Manager";

//Add personInCharge as an observer:
[workProject01 addObserver:personInCharge
 forKeyPath:@"name"
 options:NSKeyValueObservingOptionNew
 context:nil];

This means that the object personInCharge is observing the property value in the
key path ‘‘name’’ on the object workProject01. The option
NSKeyValueObservingOptionNew means that you will be notified with the updated
property value information.

You also have to make sure that you will receive and make use of this
information when it arrives to the observer. This happens when you override the
observeValueForKeyPath:ofObject:change:context: method in the class
definition of your observer. Override this method in the implementation file for
the Worker class (Worker.m).

#import "Worker.h"

@implementation Worker
@synthesize name, role;

...

-(void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context{
 NSLog(@"'%@' has noticed that the project '%@' has changed", self, object);

 NSLog(@"'%@' was changed to '%@'", keyPath, [change objectForKey:@"new"]);
}

CHAPTER 9: Working with Object Graphs 320

@end

When the name property of the workProject01 object changes, this code
executes. The parameters will have the information that you are interested in:
the key path, a reference to the object that was changed, and a dictionary that
has the change that was made. You can use this information to make changes.
Here you are simply writing to the log. If you were using key-value observation
with a user interface, you could use this information to update the app screen.

Before you test this out, there’s one more thing to address. You must take care
to remove any observers from an observed object before the object is
destroyed. So, go to the Project class declaration and add a dealloc method
where you will remove the observer. This code belongs in the Project.m file.

#import "Project.h"

@implementation Project
@synthesize name, description, dueDate, personInCharge;

...

-(void)dealloc{
 [self removeObserver:self.personInCharge
 forKeyPath:@"name"];
}

@end

Finally, to test this out, change the name property value of the workProject01
object like this:

workProject01.name = @"The Wow Project!";

You will see in the log that the personInCharge object was notified and a report
was written to the log.

'Jane Smith, Manager' has noticed that the project 'Make an iOS application for
the iPad' has changed
'name' was changed to 'The Wow Project!'

See Listings 9-29 through 9-33.

The Code
Listing 9-29. Project.h

#import <Foundation/Foundation.h>
#import "Worker.h"

CHAPTER 9: Working with Object Graphs 321

@interface Project : NSObject

@property(strong)NSString *name;
@property(strong)NSString *description;
@property(strong)NSDate *dueDate;
@property(strong)Worker *personInCharge;

-(void)writeReportToLog;

@end

Listing 9-30. Project.m

#import "Project.h"

@implementation Project
@synthesize name, description, dueDate, personInCharge;

-(void)writeReportToLog{
 NSLog(@"PROJECT");
 NSLog(@" name = %@", self.name);
 NSLog(@" description = %@", self.description);
 NSLog(@" dueDate = %@", self.dueDate);
 NSLog(@" personInCharge = %@", self.personInCharge);
}

-(void)dealloc{
 [self removeObserver:self.personInCharge
 forKeyPath:@"name"];
}

@end

Listing 9-31. Worker.h

#import <Foundation/Foundation.h>

@interface Worker : NSObject

@property(strong)NSString *name;
@property(strong)NSString *role;

@end

Listing 9-32. Worker.m

#import "Worker.h"

@implementation Worker

CHAPTER 9: Working with Object Graphs 322

@synthesize name, role;

-(NSString *)description{
 return [NSString stringWithFormat:@"%@, %@", name, role];
}

-(void)observeValueForKeyPath:(NSString *)keyPath
 ofObject:(id)object
 change:(NSDictionary *)change
 context:(void *)context{
 NSLog(@"'%@' has noticed that the project '%@' has changed", self, object);

 NSLog(@"'%@' was changed to '%@'", keyPath, [change objectForKey:@"new"]);
}

@end

Listing 9-33. main.m

#import <Foundation/Foundation.h>
#import "Project.h"

int main(int argc, const char * argv[]){
 @autoreleasepool {
 //Create a new project
 Project *workProject01 =[[Project alloc] init];
 workProject01.name = @"Make iOS App";
 workProject01.description = @"Make an iOS application for the iPad";
 workProject01.dueDate = [NSDate date];

 //Setup a new person to be in charge
 Worker *personInCharge = [[Worker alloc] init];
 personInCharge.name = @"Jane Smith";
 personInCharge.role = @"Manager";

 //Add personInCharge as an observer:
 [workProject01 addObserver:personInCharge
 forKeyPath:@"name"
 options:NSKeyValueObservingOptionNew
 context:nil];

 //Assign person to project
 workProject01.personInCharge = personInCharge;

 //change the name of the project
 workProject01.name = @"The Wow Project!";

 }
 return 0;

CHAPTER 9: Working with Object Graphs 323

}

Usage
You can use this code with a simple command-line Mac app. Include the
Project class declaration from Listings 9-29 and 9-30. Note that even though
these are based on the class definitions from Recipe 9.1 they now include
additional code to make them work with key-value observation.

The code in main.m has also been updated from Recipe 9.1 to include code to
make key-value observation work. When you build and run your application, you
should see something like this appear in your log:

'Jane Smith, Manager' has noticed that the project 'Make an iOS application for
the iPad' has changed
'name' was changed to 'The Wow Project!'

Key-value observation comes in handy when you want to be able update your
user interface. For instance, you may have a view controller in an iOS app set as
an observer for a model property so the view controller can update the view as
the data model changes.

9.6 Inspecting Classes and Objects

Problem
Your application is dealing with objects that you don’t have information about at
runtime, but you want to know if you can send messages and otherwise use the
objects.

Solution
Use the built-in methods that come with NSObject to inspect classes. You can
find out if an object is a type of class, if the object responds to a selector, and if
the object is equal to another object.

How It Works
This recipe uses the object graph that you created in Recipe 9.1 but you’ll
remove the Task class and objects since you don’t need the entire hierarchy for

CHAPTER 9: Working with Object Graphs 324

this recipe. You need a new class that is a subclass of Worker called Consultant.
Here is the interface for and implementation of Consultant:

#import "Worker.h"

@interface Consultant : Worker

@end

@implementation Consultant

-(NSString *)description{
 return [NSString stringWithFormat:@"%@, %@", [super description], @"Consultant"];
}

@end

Set up the simplified object graph in the main.m file first.

//Create a new project
Project *workProject01 =[[Project alloc] init];
workProject01.name = @"Make iOS App";
workProject01.description = @"Make an iOS application for the iPad";
workProject01.dueDate = [NSDate date];

//Set up a new person to be in charge
Worker *personInCharge = [[Worker alloc] init];
personInCharge.name = @"Jane Smith";
personInCharge.role = @"Manager";

//Assign person to project
workProject01.personInCharge = personInCharge;

//Create a consultant
Consultant *consulter = [[Consultant alloc] init];
consulter.name = @"Lone Wolf";
consulter.role = @"Star Programmer";

As in Recipe 9.1, this is a project with Jane Smith in charge. This time, though,
you omitted the task list and you created a consultant named Lone Wolf.

Now, let’s imagine that you are in a situation where you have a reference to an
object but you don’t know for sure the type of the object. This could happen if
you are using key-value coding, or you could have an object reference handed
to you in some other situation where you don’t know what type of object you are
working with. For example,

id projectManager = [workProject01 valueForKey:@"personInCharge"];

CHAPTER 9: Working with Object Graphs 325

The object variable projectManager is just a type of id, which doesn’t tell you
anything (although here you happen to know what’s going on because you just
created the object graph).

You might guess that projectManager is a Worker object and you want to send
the writeReportToLog message to projectManager. But since you’re not sure,
you want to test the object first to see if it responds. One option is to use the
respondsToSelector message. You can give this message a parameter that
references the message that you want to send using the @selector keyword.
You get back a BOOL indicating whether the object will respond.

BOOL doesItRespond = [projectManager
respondsToSelector:@selector(writeReportToLog)];

You can also find out if an object is a particular class or a subclass of a class.
Just send the isKindOfClass message to the object with a class object as a
parameter. Again, you get a BOOL value back telling you if the object is a type of
that class or not. In your object graph, both consulter and projectManager are a
kind of Worker class and so the following code returns YES for both objects:

BOOL isItAKindOfClass = [consulter isKindOfClass:[Worker class]];

isItAKindOfClass = [projectManager isKindOfClass:[Worker class]];

You may also want to know if the object is an instance (or object) of a class.
This next method returns YES if the object is an instance of the class and NO if
anything else (including subclasses of the class). So, if you test both
projectManager and consulter like this

BOOL isAnInstanceOfClass = [projectManager isMemberOfClass:[Worker class]];

isAnInstanceOfClass = [consulter isMemberOfClass:[Worker class]];

The first function returns YES and the second returns NO. This is because
projectManager is an instance of Worker while consulter is merely an instance
of a subclass of Worker.

Sometimes you have two object references and you need to test to see if they
are actually identical objects. To do this, use the isEqual message; you get a
BOOL value of YES back if both objects are the same and a NO back if they are two
difference instances.

So for your object graph, you may want to test projectManager and consulter to
see if they happen to be the same object.

BOOL isEqual = [projectManager isEqual:consulter];

This is a NO as you probably guessed by looking back at the object creation in
the beginning of the code in main.m.

CHAPTER 9: Working with Object Graphs 326

However, if you test projectManager and personInCharge, you get a different
outcome.

isEqual = [projectManager isEqual:personInCharge];

This returns YES because while they are different object variable names they are
both referencing the same object. See Listings 9-34 through 9-40.

The Code
Listing 9-34. Project.h

#import <Foundation/Foundation.h>
#import "Worker.h"

@interface Project : NSObject

@property(strong)NSString *name;
@property(strong)NSString *description;
@property(strong)NSDate *dueDate;
@property(strong)Worker *personInCharge;

-(void)writeReportToLog;

@end

Listing 9-35. Project.m

#import "Project.h"

@implementation Project
@synthesize name, description, dueDate, personInCharge;

-(void)writeReportToLog{
 NSLog(@"PROJECT");
 NSLog(@" name = %@", self.name);
 NSLog(@" description = %@", self.description);
 NSLog(@" dueDate = %@", self.dueDate);
 NSLog(@" personInCharge = %@", self.personInCharge);
}

@end

Listing 9-36. Worker.h

#import <Foundation/Foundation.h>

@interface Worker : NSObject

CHAPTER 9: Working with Object Graphs 327

@property(strong)NSString *name;
@property(strong)NSString *role;

@end

Listing 9-37. Worker.m

#import "Worker.h"

@implementation Worker
@synthesize name, role;

-(NSString *)description{
 return [NSString stringWithFormat:@"%@, %@", name, role];
}

@end

Listing 9-38. Consultant.h

#import "Worker.h"

@interface Consultant : Worker

@end

Listing 9-39. Consultant.m

#import "Consultant.h"

@implementation Consultant

-(NSString *)description{
 return [NSString stringWithFormat:@"%@, %@", [super description], @"Consultant"];
}

@end

Listing 9-40. main.m

#import <Foundation/Foundation.h>
#import "Project.h"
#import "Consultant.h"

int main(int argc, const char * argv[]){
 @autoreleasepool {
 //Create a new project
 Project *workProject01 =[[Project alloc] init];
 workProject01.name = @"Make iOS App";
 workProject01.description = @"Make an iOS application for the iPad";

CHAPTER 9: Working with Object Graphs 328

 workProject01.dueDate = [NSDate date];

 //Set up a new person to be in charge
 Worker *personInCharge = [[Worker alloc] init];
 personInCharge.name = @"Jane Smith";
 personInCharge.role = @"Manager";

 //Assign person to project
 workProject01.personInCharge = personInCharge;

 //Create a consultant
 Consultant *consulter = [[Consultant alloc] init];
 consulter.name = @"Lone Wolf";
 consulter.role = @"Star Programmer";

 //Get object from key path
 id projectManager = [workProject01 valueForKey:@"personInCharge"];

 //See if the object responds to a selector
 BOOL doesItRespond = [projectManager 
respondsToSelector:@selector(writeReportToLog)];

 if(doesItRespond)
 [projectManager writeReportToLog];
 else
 NSLog(@"'%@' doesn't respond to selector", projectManager);

 //See if consulter is a type of Worker
 BOOL isItAKindOfClass = [consulter isKindOfClass:[Worker class]];

 if(isItAKindOfClass)
 NSLog(@"consulter is a Worker (%@)", consulter);
 else
 NSLog(@"consulter's no Worker");

 //See if projectManager is a type of Worker
 isItAKindOfClass = [projectManager isKindOfClass:[Worker class]];

 if(isItAKindOfClass)
 NSLog(@"projectManager is a Worker (%@)", projectManager);
 else
 NSLog(@"projectManager's no Worker");

 //See if projectManager is an instance of Worker
 BOOL isAnInstanceOfClass = [projectManager isMemberOfClass:[Worker class]];

 if(isAnInstanceOfClass)
 NSLog(@"projectManager is an instance of Worker");
 else
 NSLog(@"projectManager's no Worker");

CHAPTER 9: Working with Object Graphs 329

 //See if consulter is an instance of Worker
 isAnInstanceOfClass = [consulter isMemberOfClass:[Worker class]];

 if(isAnInstanceOfClass)
 NSLog(@"consulter is an instance of Worker");
 else
 NSLog(@"consulter's no Worker");

 //Compare two objects
 BOOL isEqual = [projectManager isEqual:consulter];

 if(isEqual)
 NSLog(@"'%@' == '%@'", projectManager, consulter);
 else
 NSLog(@"'%@' != '%@'", projectManager, consulter);

 isEqual = [projectManager isEqual:personInCharge];

 if(isEqual)
 NSLog(@"'%@' == '%@'", projectManager, personInCharge);
 else
 NSLog(@"'%@' != '%@'", projectManager, personInCharge);

 }
 return 0;
}

Usage
Like the other applications in this chapter, the easiest way to test this for
yourself is to use a Mac command-line application with Xcode and add the code
from Listings 9-34 through 9-40.

Everything is included in main.m along with if statements that write out the
results of each test to the console log. Build and run the application and inspect
the console log to see the results. You will see something like the following in
your console log:

'Jane Smith, Manager' doesn't respond to selector
consulter is a Worker (Lone Wolf, Star Programmer, Consultant)
projectManager is a Worker (Jane Smith, Manager)
projectManager is an instance of Worker
consulter's no Worker
'Jane Smith, Manager' != 'Lone Wolf, Star Programmer, Consultant'
'Jane Smith, Manager' == 'Jane Smith, Manager'

CHAPTER 9: Working with Object Graphs 330

9.7 Archiving Your Object Graph

Problem
You want to export you object graph to the file system so you can use your
object graph in another application or so you have a backup.

Solution
Adopt and implement the NSCoding protocol in each class that supports
archiving. Then use the NSKeyArchiver class to save your root object to the file
system.

How It Works
In this recipe, you take the object graph created in Recipe 9.1 and archive the
object graph to the file system. Then, with a second application, you read in and
decode the saved object graph.

NSCoding
The first step in this process is to adopt the NSCoding protocol in each class
where you want to support archiving. To fulfill your NSCoding contract, you must
implement two methods: encodeWithCoder: and initWithCoder:. These two
methods are what a class will use to encode and decode the class objects.

So adopt and implement the NSCoding protocol for the Worker class. The first
step is to adopt the NSCoding protocol in the Worker’s interface located in
Worker.h.

#import <Foundation/Foundation.h>

@interface Worker : NSObject<NSCoding>

@property(strong)NSString *name;
@property(strong)NSString *role;

@end

Next, add the implementation for encodeWithCoder: to the Worker’s
implementation located in Worker.m.

CHAPTER 9: Working with Object Graphs 331

#import "Worker.h"

@implementation Worker
@synthesize name, role;

-(NSString *)description{
 return [NSString stringWithFormat:@"%@, %@", name, role];
}

- (void) encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:self.name forKey:@"namekey"];
 [encoder encodeObject:self.role forKey:@"rolekey"];
}

@end

This method is used to tell the archive object to store the property values in a
file based on the key that is provided. To keep things clear, I used the property
name + ‘‘key’’ as the key.

You also need to know how to decode the file and translate that into an object.
This is defined in the method initWithCoder:. The init prefix to this method
implies that the method makes up part of the constructor and will be used for
new object instances.

#import "Worker.h"

@implementation Worker
@synthesize name, role;

-(NSString *)description{
 return [NSString stringWithFormat:@"%@, %@", name, role];
}

- (void) encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:self.name forKey:@"namekey"];
 [encoder encodeObject:self.role forKey:@"rolekey"];
}

- (id)initWithCoder:(NSCoder *)decoder {
 self.name = [decoder decodeObjectForKey:@"namekey"];
 self.role = [decoder decodeObjectForKey:@"rolekey"];

 return self;
}

@end

The key thing here is that the properties and the keys must match what is
defined in the encodeWithCoder: method.

CHAPTER 9: Working with Object Graphs 332

This must be done for each class definition that you want to support archiving.
This means that for the object graph from Recipe 9.1, you need to do this for
Project and Task as well (see Listings 9-42 and 9-44 for the code for this).

NSKeyedArchiver
Once all your classes support archiving you can use NSKeyedArchiver to save
your objects to a file. You need to identify a root, or first, object if your object
graph has a hierarchy type of structure. In the 9.1 object graph, workProject01
is the root object. You also need a file location that you can reference later. This
part is very easy.

BOOL dataArchived = [NSKeyedArchiver archiveRootObject:workProject01
 toFile:@"/Users/Shared/workProject01.dat"];

if(dataArchived)
 NSLog(@"Object graph successfully archived");
else
 NSLog(@"Error attempting to archive object graph");

You can simply use a class message to NSKeyedArchiver along with a file
location to save your object graph to the file. If you ever want to do the opposite
and retrieve your object graph, you can do this:

Project *storedProject = [NSKeyedUnarchiver 
unarchiveObjectWithFile:@"/Users/Shared/workProject01.dat"];

if(storedProject)
 [storedProject writeReportToLog];
else
 NSLog(@"Error attempting to retrieve the object graph");

This uses the data from the file to populate your object. This includes the
objects in arrays and dictionaries that have relationships with your object (like
the task list in Recipe 9.1). You can use this in a completely different application
as long as both applications have matching class definitions. See Listings 9-41
through 9-47.

The Code
Listing 9-41. Project.h

#import <Foundation/Foundation.h>
#import "Task.h"
#import "Worker.h"

CHAPTER 9: Working with Object Graphs 333

@interface Project : NSObject<NSCoding>

@property(strong)NSString *name;
@property(strong)NSString *description;
@property(strong)NSDate *dueDate;
@property(strong)NSMutableArray *listOfTasks;
@property(strong)Worker *personInCharge;

-(void)writeReportToLog;

@end

Listing 9-42. Project.m

#import "Project.h"

@implementation Project
@synthesize name, description, dueDate, listOfTasks, personInCharge;

- (id)init{
 self = [super init];
 if (self) {
 self.listOfTasks = [[NSMutableArray alloc] init];
 }
 return self;
}

-(void)writeReportToLog{
 NSLog(@"PROJECT");
 NSLog(@" name = %@", self.name);
 NSLog(@" description = %@", self.description);
 NSLog(@" dueDate = %@", self.dueDate);
 NSLog(@" personInCharge = %@", self.personInCharge);
 NSLog(@"TASKS");
 [self.listOfTasks enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 [obj writeReportToLog];
 }];
}

- (void) encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:self.name forKey:@"namekey"];
 [encoder encodeObject:self.description forKey:@"descriptionkey"];
 [encoder encodeObject:self.dueDate forKey:@"dueDatekey"];
 [encoder encodeObject:self.personInCharge forKey:@"personInChargekey"];
 [encoder encodeObject:self.listOfTasks forKey:@"listOfTaskskey"];
}

- (id)initWithCoder:(NSCoder *)decoder {
 self.name = [decoder decodeObjectForKey:@"namekey"];
 self.description = [decoder decodeObjectForKey:@"descriptionkey"];

CHAPTER 9: Working with Object Graphs 334

 self.dueDate = [decoder decodeObjectForKey:@"dueDatekey"];
 self.personInCharge = [decoder decodeObjectForKey:@"personInChargekey"];
 self.listOfTasks = [decoder decodeObjectForKey:@"listOfTaskskey"];

 return self;
}

@end

Listing 9-43. Task.h

#import <Foundation/Foundation.h>
#import "Worker.h"

@interface Task : NSObject<NSCoding>

@property(strong)NSString *name;
@property(strong)NSString *details;
@property(strong)NSDate *dueDate;
@property(assign)int priority;
@property(strong)Worker *assignedWorker;

-(void)writeReportToLog;

@end

Listing 9-44. Task.m

#import "Task.h"

@implementation Task
@synthesize name, details, dueDate, priority, assignedWorker;

-(void)writeReportToLog{
 NSLog(@" name = %@", self.name);
 NSLog(@" description = %@", self.details);
 NSLog(@" dueDate = %@", self.dueDate);
 NSLog(@" priority = %i", self.priority);
 NSLog(@" assignedWorker = %@", self.assignedWorker);
}

- (void) encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:self.name forKey:@"namekey"];
 [encoder encodeObject:self.details forKey:@"detailskey"];
 [encoder encodeObject:self.dueDate forKey:@"dueDatekey"];
 [encoder encodeObject:[NSNumber numberWithInt:self.priority] forKey:@"prioritykey"];
 [encoder encodeObject:self.assignedWorker forKey:@"assignedWorkerkey"];
}

CHAPTER 9: Working with Object Graphs 335

- (id)initWithCoder:(NSCoder *)decoder {
 self.name = [decoder decodeObjectForKey:@"namekey"];
 self.details = [decoder decodeObjectForKey:@"detailskey"];
 self.dueDate = [decoder decodeObjectForKey:@"dueDatekey"];
 self.priority = [[decoder decodeObjectForKey:@"prioritykey"] intValue];
 self.assignedWorker = [decoder decodeObjectForKey:@"assignedWorkerkey"];

 return self;
}

@end

Listing 9-45. Worker.h

#import <Foundation/Foundation.h>

@interface Worker : NSObject<NSCoding>

@property(strong)NSString *name;
@property(strong)NSString *role;

@end

Listing 9-46. Worker.m

#import "Worker.h"

@implementation Worker
@synthesize name, role;

-(NSString *)description{
 return [NSString stringWithFormat:@"%@, %@", name, role];
}

- (void) encodeWithCoder:(NSCoder *)encoder {
 [encoder encodeObject:self.name forKey:@"namekey"];
 [encoder encodeObject:self.role forKey:@"rolekey"];
}

- (id)initWithCoder:(NSCoder *)decoder {
 self.name = [decoder decodeObjectForKey:@"namekey"];
 self.role = [decoder decodeObjectForKey:@"rolekey"];

 return self;
}

@end

CHAPTER 9: Working with Object Graphs 336

Listing 9-47. main.m

#import <Foundation/Foundation.h>
#import "Project.h"
#import "Task.h"

int main(int argc, const char * argv[]){
 @autoreleasepool {
 //Example of object graph:
 //Create a new project
 Project *workProject01 =[[Project alloc] init];
 workProject01.name = @"Make iOS App";
 workProject01.description = @"Make an iOS application for the iPad";
 workProject01.dueDate = [NSDate date];

 //Setup a new person to be in charge
 Worker *personInCharge = [[Worker alloc] init];
 personInCharge.name = @"Jane Smith";
 personInCharge.role = @"Manager";

 //Assign person to project
 workProject01.personInCharge = personInCharge;

 //Create new task
 Task *task01 = [[Task alloc] init];
 task01.name = @"Learn Objective-C";
 task01.details = @"Learn Objective-C to make Mac apps";
 task01.priority = 1;
 task01.dueDate = [NSDate date];

 //Setup a new person to assign to the task
 Worker *employee = [[Worker alloc] init];
 employee.name = @"David Done";
 employee.role = @"Programmer";

 //Assign worker to task
 task01.assignedWorker = employee;

 //Add task to project
 [workProject01.listOfTasks addObject:task01];

 //Note: you will want to do this for each task that the
 //project needs

 //Create new task
 Task *task02 = [[Task alloc] init];
 task02.name = @"Investigate UIKit";
 task02.details = @"Investigate UIKit to see how it works for users.";
 task02.priority = 3;
 task02.dueDate = [NSDate date];

CHAPTER 9: Working with Object Graphs 337

 //Assign worker to task
 task02.assignedWorker = employee;

 //Add task to project
 [workProject01.listOfTasks addObject:task02];

 //Create new task
 Task *task03 = [[Task alloc] init];
 task03.name = @"Evaluate";
 task03.details = @"Signoff on initial project progress.";
 task03.priority = 1;
 task03.dueDate = [NSDate date];

 //Assign worker to task
 task03.assignedWorker = personInCharge;

 //Add task to project
 [workProject01.listOfTasks addObject:task03];

 //Archive object graph:
 BOOL dataArchived = [NSKeyedArchiver archiveRootObject:workProject01
 toFile:@"/Users/Shared/workProject01.dat"];

 if(dataArchived)
 NSLog(@"Object graph successfully archived");
 else
 NSLog(@"Error attempting to archive object graph");

 //Retrieve object graph
 Project *storedProject = [NSKeyedUnarchiver 
unarchiveObjectWithFile:@"/Users/Shared/workProject01.dat"];
 if(storedProject)
 [storedProject writeReportToLog];
 else
 NSLog(@"Error attempting to retrieve the object graph");

 }
 return 0;
}

Usage
To use this code, simply add the files from Listings 9-41 through 9-47 to a Mac
command-line application, which you can create easily from Xcode. If you run
the application, you will see that the objects are archived and retrieved
successfully. To make sure that the archive was created successfully, locate
the file on your Mac. You can open this file with a text editor but the contents

CHAPTER 9: Working with Object Graphs 338

will not be readable. If you like, you can also try loading the saved object graph
into a second application. Copy your Xcode project and paste it into a new
location with a different project name. Keep all the code files except for main.m.
Replace the code in main.m with the following code:

#import <Foundation/Foundation.h>
#import "Project.h"
#import "Task.h"

int main(int argc, const char * argv[]){
 @autoreleasepool {

 //Retrieve object graph
 Project *storedProject = [NSKeyedUnarchiver 
unarchiveObjectWithFile:@"/Users/Shared/workProject01.dat"];

 if(storedProject)
 [storedProject writeReportToLog];
 else
 NSLog(@"Error attempting to retrieve the object graph");

 }
 return 0;
}

Build and run this application (making sure you ran the application from the
recipe first) and you should see the contents of your object graph print out like
this:

PROJECT
 name = Make iOS App
 description = Make an iOS application for the iPad
 dueDate = 2012-03-28 21:13:01 +0000
 personInCharge = Jane Smith, Manager
 TASKS
 name = Learn Objective-C
 description = Learn Objective-C to make Mac apps
...

10
Chapter

Core Data
Core Data is a technology that is used to solve the problem of data persistence
in applications. When users add to the object graph or make changes to the
object graph, they generally expect those changes to be reflected in the
application the next time that they use it.

For you to provide this, you need to come up with a way for your applications to
remember these changes to the object graph. This is what data persistence is all
about, and Core Data is the technology that you can use to solve this problem.
The recipes in this chapter will show you how to:

 Add Core Data support to your Mac and iOS applications

 Compose an entity description

 Create a managed object

 Execute fetch requests

 Execute fetch requests with NSPredicate

 Execute fetch requests with NSSortDescriptor

 Post changes to your object graph to the data store

 Represent to-many relationships with Core Data

NOTE: Core Data can be pretty complex and requires a few steps to
set it up. The first three recipes are required before you can build and
test your project.

CHAPTER 10: Core Data 340

10.1 Adding Core Data Support to an
Application

Problem
You want to add Core Data support to your iOS or Mac application.

Solution
Link to the Core Data framework and add the Core Data stack to the class that
you would like to support Core Data.

How It Works
Core Data is used to store object data for an application. While Core Data may
use a database or file to hold the object content, you don’t need to know these
details to use Core Data. You do need to link first to the Core Data framework
and set up some Core Data objects in order to use Core Data for your objects.

For this recipe, you’re going to re-create the object graph that was used in the
Mac app that you created in Recipe 9.1. This time, however, you will use an iOS
app and Core Data to compose the object graph. Core Data is something that
you can use with either Mac or iOS.

NOTE: Xcode provides a checkbox titled ‘‘Use Core Data for Storage’’
that will do some of this setup work for you automatically. You can use
that as an alternative to this recipe, but be aware that the application
template won’t match exactly what you are doing here.

Link to Core Data Framework
Your iOS application is not necessarily linked to Core Data so you need to do
this yourself. To link to a framework, go to your Xcode project’s Linked
Frameworks pane. See Figure 10-1 to locate this.

CHAPTER 10: Core Data 341

Figure 10-1. Linking to the Core Data Framework

Click the plus button in your Linked Frameworks pane (marked (3) in Figure
10-1). You will get a screen with a list of all the available frameworks. There is
also a search bar that you can use to filter the list to make it easier to locate the
Core Data framework. See Figure 10-2 as a reference.

CHAPTER 10: Core Data 342

Figure 10-2. Choosing the Core Data framework

Select the item named CoreData.framework and click the Add button.

Adding the Core Data Stack
Core Data needs some key objects to work. These objects are referred to as the
Core Data stack. You need these objects located in the class where you want to
implement data persistence. Often you will see the Core Data stack located in
the app delegate or a root model class.

In this recipe you are going to add Core Data support to the object graph that
you created in Recipe 9.1; you are going to add a new model class that will
apply to the entire application. This will serve as your root model and you will
locate the Core Data stack here along with an array that will later be used to
store a list of projects.

The first step is to create the new root model class that you can simply name
AppModel (see Recipe 1.3 for more details on how to add a custom class to your
Xcode project). The first thing that you need to add to the AppModel class is a
function that returns the URL that you are going to use for your data store.

CHAPTER 10: Core Data 343

NOTE: The data store is the file that stores the data on the user’s
device in the application’s Documents directory. This can be a SQLite
database or another file. While you need to supply Core Data with this
URL, you don’t need to worry about the specifics of the database, nor
do you need to create the database yourself. If the file or database is
not present, Core Data will create it for you.

Here is the function that returns the URL of the data store:

#import "AppModel.h"

@implementation AppModel

- (NSURL *)dataStoreURL {

 NSString *docDir =
[NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,
NSUserDomainMask, YES) lastObject];

 return [NSURL fileURLWithPath:[docDir 
stringByAppendingPathComponent:@"DataStore.sql"]];
}

@end

Next, add the managed object model to AppModel. The managed object model
maintains a collection of data schemas. Data schemas are specifications of
collections of the entities that make up your object graph. These specifications
are used by Core Data to figure out how to make object data persistent. In a
later recipe, you will compose the documents that Core Data uses for these data
schemas.

You are going to add the managed object model to AppModel by adding a
property of type NSManagedObjectModel. This property is marked as readonly in
the AppModel interface. Since NSManagedObjectModel is a Core Data class, you
need to import Core Data into AppModel here as well.

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@interface AppModel : NSObject

-(NSURL *)dataStoreURL;

@property (nonatomic, strong, readonly) NSManagedObjectModel *managedObjectModel;

CHAPTER 10: Core Data 344

@end

Moving over to the AppModel implementation file, you must code your own
assessor for this readonly property.

#import "AppModel.h"

@implementation AppModel
NSManagedObjectModel *_managedObjectModel;

...

- (NSManagedObjectModel *)managedObjectModel {
 if (_managedObjectModel) {
 return _managedObjectModel;
 }
 _managedObjectModel = [NSManagedObjectModel mergedModelFromBundles:nil];
 return _managedObjectModel;
}

@end

This readonly property assessor is lazily creating the managed object model
only if the object hasn’t already been created. The managed object model will
be created with each schema that you have included in your project.

Next you need the persistent store coordinator. This part of the Core Data stack
is responsible for connecting the data store to the managed object model. The
persistent store coordinator is also used by the managed object content (you
add this next) to persist changes to the object graph.

You add this Core Data stack object to the AppModel class following the same
pattern used for the managed object model.

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
 if (_persistentStoreCoordinator) {
 return _persistentStoreCoordinator;
 }

 NSError *error = nil;
 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] 
initWithManagedObjectModel:[self managedObjectModel]];
 if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:[self dataStoreURL]
 options:nil
 error:&error]) {
 NSLog(@"Unresolved Core Data error with persistentStoreCoordinator: %@, %@", 
error, [error userInfo]);

CHAPTER 10: Core Data 345

 }

 return _persistentStoreCoordinator;
}

This one is a little more involved because you need to create the store
coordinator with a reference to the managed object model and you need to add
the data store reference so Core Data knows where to manage the object data.

NOTE: You are not explicitly listing the interface for the persistent
store coordinator or the managed object context here since they
follow the same pattern as the managed object model. Listing 10-2
shows the entire interface.

Of course, the persistent store coordinator and the next Core Data stack object
you add both need a property declaration like the managed object model did.
These all follow the same pattern so I won’t repeat that code here, but you can
look at Listing 10-2 for the remaining property declarations.

Next, you need the managed object context. This core data stack object is
responsible for managing a collection of managed objects. Managed objects are
the objects for which Core Data is responsible. These are the objects that need
data persistence.

The managed object context acts like a scratch pad for all the changes to the
object graph. At key points in an application’s lifecycle, you will use the
managed object context to retrieve objects and post the changes to the object
graph back to the data store. Here is how to add the managed object context:

- (NSManagedObjectContext *)managedObjectContext {
 if (_managedObjectContext) {
 return _managedObjectContext;
 }

 if ([self persistentStoreCoordinator]) {
 _managedObjectContext = [[NSManagedObjectContext alloc] init];
 [_managedObjectContext setPersistentStoreCoordinator:[self 
persistentStoreCoordinator]];
 }

 return _managedObjectContext;
}

As you can see from the function, the managed object context simply needs a
reference to the persistent store coordinator to function. That’s the Core Data

CHAPTER 10: Core Data 346

stack for iOS. This gives you Core Data support, but there are other steps you
need to take before you can show how Core Data works in a real application.

See Listings 10-1 through 10-4.

The Code
Listing 10-1. AppModel.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@interface AppModel : NSObject

-(NSURL *)dataStoreURL;

@property (nonatomic, strong, readonly) NSManagedObjectModel *managedObjectModel;
@property (nonatomic, strong, readonly) NSPersistentStoreCoordinator 
*persistentStoreCoordinator;
@property (nonatomic, strong, readonly) NSManagedObjectContext *managedObjectContext;

@end

Listing 10-2. AppModel.m

#import "AppModel.h"

@implementation AppModel
NSManagedObjectModel *_managedObjectModel;
NSPersistentStoreCoordinator *_persistentStoreCoordinator;
NSManagedObjectContext *_managedObjectContext;

- (NSURL *)dataStoreURL {

 NSString *docDir = [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 
NSUserDomainMask, YES) lastObject];

 return [NSURL fileURLWithPath:[docDir
stringByAppendingPathComponent:@"DataStore.sql"]];
}

- (NSManagedObjectModel *)managedObjectModel {
 if (_managedObjectModel) {
 return _managedObjectModel;
 }
 _managedObjectModel = [NSManagedObjectModel mergedModelFromBundles:nil];
 return _managedObjectModel;
}

CHAPTER 10: Core Data 347

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
 if (_persistentStoreCoordinator) {
 return _persistentStoreCoordinator;
 }

 NSError *error = nil;
 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] 
initWithManagedObjectModel:[self managedObjectModel]];
 if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:[self dataStoreURL]
 options:nil
 error:&error]) {
 NSLog(@"Unresolved Core Data error with persistentStoreCoordinator: %@, %@", 
error, [error userInfo]);
 }

 return _persistentStoreCoordinator;
}

- (NSManagedObjectContext *)managedObjectContext {
 if (_managedObjectContext) {
 return _managedObjectContext;
 }

 if ([self persistentStoreCoordinator]) {
 _managedObjectContext = [[NSManagedObjectContext alloc] init];
 [_managedObjectContext setPersistentStoreCoordinator:[self 
persistentStoreCoordinator]];
 }

 return _managedObjectContext;
}

@end

CHAPTER 10: Core Data 348

Listing 10-3. AppDelegate.h

#import <UIKit/UIKit.h>

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@end

Listing 10-4. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate
@synthesize window = _window;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

@end

Usage
Core Data requires you to set up a few things before you can actually test code.
For now, you can simply link to the Core Data framework and add the AppModel
class to an iOS app. Build your application and make sure that you don’t see
any errors. The upcoming recipes will assume that you have the Core Data stack
in place.

10.2 Adding an Entity Description

Problem
You need to describe the entity that will be managed by Core Data.

CHAPTER 10: Core Data 349

Solution
Add a data model file to your application and then use the data model editor to
describe your entity.

How It Works
You can use Xcode to lay out entities and attributes. Store these entity
descriptions in a special file called a data model. For this recipe, you will create
an entity description for the entity project. This is the same project that you set
up in Recipe 9.1.

The first thing you need to do is add the data model to your application. From
Xcode, go to File  New  File. Then choose iOS  Core Data  Data Model.
You can name the file whatever you want, but I’ll leave the default name of
Model. You should see a new file named Model.xcdatamodeld appear in the
Project Navigator. If you select this file, you will see something like Figure 10-3
appear in the editor screen.

Figure 10-3. Data model editor

The data model editor is where you will describe the Project entity. Click the
Add Entity button in the bottom left area in the screen. A new entry will appear

CHAPTER 10: Core Data 350

at the top left area in the data model editor under the title entity. Name your
entity Project.

Once you have an entity started, you can describe the entity by adding
attributes to it. These attributes will be turned into code properties later. Based
on Recipe 9-1, you already know that Project has these attributes: name,
description, and a due date.

NOTE: The Project class from Recipe 9.1 also had Worker and
listOfTasks properties. These are a little bit more involved, so you’ll
revisit these two properties in the upcoming recipe on establishing
relationships in Core Data.

To add an attribute to the Project entity, make sure that the Project entity is
selected in the data model editor and click the Add Attribute button in the
bottom right area of the data model editor. The attribute will appear in the center
top area of the data model editor and you can type in the name of the attribute
(name, in this case).

To the right of the attribute name you can also choose a data type. Click the
drop-box toward the right and select the data type String for the name attribute.
Repeat this process for the description attribute, but change the name to
descrip.

NOTE: The word “description” is already used by a Core Data class so
you can’t use it for the Project entity because there will be a conflict.

Name the due date attribute dueDate and set Date as the data type.

When you are finished your data model should look like Figure 10-4.

CHAPTER 10: Core Data 351

Figure 10-4. Completed project data model

That’s all there is to using the data model editor to describe an entity.

The Code

NOTE: The code that appears in Listings 10-5 and 10-6 is the default
code that Xcode automatically generates when you create a new iOS
application. I’ve made no modifications to it.

Listing 10-5. AppDelegate.h

#import <UIKit/UIKit.h>

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@end

CHAPTER 10: Core Data 352

Listing 10-6. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate
@synthesize window = _window;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

@end

Usage
Now you’re ready to move on to Recipe 10.3 and continue setting up Core Data.

10.3 Adding a Managed Object to an
Application

Problem
The entity that you composed in Recipe 10.2 needs an Objective-C class so that
you can use it in code.

Solution
Use Xcode to automatically generate a code file based on the entity description
that you set up in Recipe 10.2.

How It Works
Core Data uses entity descriptions to set up a database schema and to code a
class that you can use in your application. All you need to do is add a new Core
Data file to your Xcode project. For this recipe, I’m going to assume that you

CHAPTER 10: Core Data 353

have already set up the Core Data stack from Recipe 10.1 and the project entity
description from Recipe 10.2.

Select the data model file that you created in Recipe 10.2. Also, make sure to
select the Project entity. Then choose File  New  File. Then choose iOS 
Core Data  NSManaged Object subclass. In the dialog that pops up, click
Create.

You will see that two files have been generated for you: Project.h and
Project.m. If you click on Project.h, you will see this interface:

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@interface Project : NSManagedObject

@property (nonatomic, retain) NSString * descrip;
@property (nonatomic, retain) NSDate * dueDate;
@property (nonatomic, retain) NSString * name;

@end

This looks like a typical Objective-C class except that Project is a subclass of
NSManagedObject and you’re importing the Core Data framework. Being a
subclass of NSManagedObject is required for Core Data to be able to take
responsibility for Project.

Here is what the implementation for Project looks like:

#import "Project.h"

@implementation Project

@dynamic descrip;
@dynamic dueDate;
@dynamic name;

@end

What’s notable about this is that these property declarations all come from the
entity description that you coded in Recipe 10.2. Also, note the @dynamic
keyword here. @dynamic is used like @synthesize to deal with the property
assessor code.

CHAPTER 10: Core Data 354

NOTE: @dynamic means that the class will deal with the property
assessor code at runtime. Normally, if you were to use the @dynamic
code on your own, you would need some way to have your class
respond to requests for property value getting and setting.
NSManagedObject does this for you in the background using key-value
coding.

That’s all you need to do to create the Project managed object. See Listings
10-7 through 10-12.

The Code
Listing 10-7. AppDelegate.h

#import <UIKit/UIKit.h>

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@end

Listing 10-8. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate
@synthesize window = _window;

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions{
 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

@end

CHAPTER 10: Core Data 355

Listing 10-9. AppModel.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@interface AppModel : NSObject

-(NSURL *)dataStoreURL;

@property (nonatomic, strong, readonly) NSManagedObjectModel *managedObjectModel;
@property (nonatomic, strong, readonly) NSPersistentStoreCoordinator 
*persistentStoreCoordinator;
@property (nonatomic, strong, readonly) NSManagedObjectContext *managedObjectContext;

@end

Listing 10-10. AppModel.m

#import "AppModel.h"

@implementation AppModel
NSManagedObjectModel *_managedObjectModel;
NSPersistentStoreCoordinator *_persistentStoreCoordinator;
NSManagedObjectContext *_managedObjectContext;

- (NSURL *)dataStoreURL {

 NSString *docDir = [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 
NSUserDomainMask, YES) lastObject];

 return [NSURL fileURLWithPath:[docDir 
stringByAppendingPathComponent:@"DataStore.sql"]];
}

- (NSManagedObjectModel *)managedObjectModel {
 if (_managedObjectModel) {
 return _managedObjectModel;
 }
 _managedObjectModel = [NSManagedObjectModel mergedModelFromBundles:nil];
 return _managedObjectModel;
}

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
 if (_persistentStoreCoordinator) {
 return _persistentStoreCoordinator;
 }

 NSError *error = nil;
 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] 
initWithManagedObjectModel:[self managedObjectModel]];

CHAPTER 10: Core Data 356

 if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:[self dataStoreURL]
 options:nil
 error:&error]) {
 NSLog(@"Unresolved Core Data error with persistentStoreCoordinator: %@, %@", 
error, [error userInfo]);
 }

 return _persistentStoreCoordinator;
}

- (NSManagedObjectContext *)managedObjectContext {
 if (_managedObjectContext) {
 return _managedObjectContext;
 }

 if ([self persistentStoreCoordinator]) {
 _managedObjectContext = [[NSManagedObjectContext alloc] init];
 [_managedObjectContext setPersistentStoreCoordinator:[self 
persistentStoreCoordinator]];
 }

 return _managedObjectContext;
}

@end

Listing 10-11. Project.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@interface Project : NSManagedObject

@property (nonatomic, retain) NSString * descrip;
@property (nonatomic, retain) NSDate * dueDate;
@property (nonatomic, retain) NSString * name;

@end

Listing 10-12. Project.m

#import "Project.h"

@implementation Project

@dynamic descrip;
@dynamic dueDate;
@dynamic name;

CHAPTER 10: Core Data 357

@end

Usage
You are getting closer to testing Core Data out, but as of yet there is still nothing
to test with this code. In the next recipe, you’ll start to see how this all starts to
come together.

10.4 Adding a Managed Object to Core Data

Problem
You want to use objects that are managed by Core Data.

Solution
Use the managed object context to create a new managed object and save the
managed object to the data store.

How It Works
For this recipe, you will work on the Xcode project from Recipe 10.3 that has the
Core Data stack and Project managed object class already set up. To create a
new managed object, use the managed object context with the
NSEntityDescription class function
insertNewObjectForEntityForName:inManagedObjectContext:. This function
needs the name of the managed object class Project and it returns a reference
to the managed object that was just created.

Project *managedProject = (Project *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Project"
inManagedObjectContext:[self managedObjectContext]];

This gives you a Project object named managedProject. The first thing you
should do is set some of this project’s properties.

managedProject.name = @"New Project";
managedProject.descrip = @"This is a new project";
managedProject.dueDate = [NSDate date];

CHAPTER 10: Core Data 358

This managedProject object only exists in the managed object context at first.
The managed object context functions like a scratch pad where you can place
objects before they are ready to be stored in the data store.

Posting Back to the Data Store
Now that you have created content, you need to use the managed object
context to post this change back to the data store. To do this, send the save
message to the managed object context.

[[self managedObjectContext] save:nil];

Note that this line of code is how you send the save message from the AppModel
class. If you want to send the save message from another class, like the app
delegate, you can send the save message to the local AppModel reference; you
can see this in Listing 10-14.

After you do this, you’ve posted all the changes to the managed object context
that were made since the last save message was sent. You can use an NSError
object here as a parameter if you wish; for this example I simply used nil. You
can retrieve this object from the data store at a later date.

Note that you include this code in the init function, so take a look at Listings
10-13 through 10-18 to see how this all fits into AppModel in context. The code to
create a new project managed object is put into a function that returns a
Project object so it’s easier to test from other classes like the app delegate.

The Code
Listing 10-13. AppDelegate.h

#import <UIKit/UIKit.h>
#import "AppModel.h"

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@end

Listing 10-14. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate
@synthesize window = _window;

CHAPTER 10: Core Data 359

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:
(NSDictionary *)launchOptions{

 //Create a new AppModel instance
 AppModel *dataModel = [[AppModel alloc] init];

 //Get a new project from dateModel and use it
 Project *newProject = [dataModel makeNewProject];
 newProject.name = @"App Delegate's Project";
 NSLog(@"project.name = %@", newProject.name);
 NSLog(@"project.descrip = %@", newProject.descrip);
 NSLog(@"project.dueDate = %@\n", newProject.dueDate);

 //Post changes back to date store
 [[dataModel managedObjectContext] save:nil];

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

@end

Listing 10-15. AppModel.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>
#import "Project.h"

@interface AppModel : NSObject

-(NSURL *)dataStoreURL;
-(Project *)makeNewProject;

@property (nonatomic, strong, readonly) NSManagedObjectModel *managedObjectModel;
@property (nonatomic, strong, readonly) NSPersistentStoreCoordinator 
*persistentStoreCoordinator;
@property (nonatomic, strong, readonly) NSManagedObjectContext *managedObjectContext;

@end

Listing 10-16. AppModel.m

#import "AppModel.h"

@implementation AppModel
NSManagedObjectModel *_managedObjectModel;
NSPersistentStoreCoordinator *_persistentStoreCoordinator;

q

CHAPTER 10: Core Data 360

NSManagedObjectContext *_managedObjectContext;

-(Project *)makeNewProject{

 Project *managedProject = (Project *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Project"
inManagedObjectContext:[self managedObjectContext]];

 managedProject.name = @"New Project";
 managedProject.descrip = @"This is a new project";
 managedProject.dueDate = [NSDate date];

 return managedProject;

}

- (NSURL *)dataStoreURL {

 NSString *docDir = [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 
NSUserDomainMask, YES) lastObject];

 return [NSURL fileURLWithPath:[docDir 
stringByAppendingPathComponent:@"DataStore.sql"]];
}

- (NSManagedObjectModel *)managedObjectModel {
 if (_managedObjectModel) {
 return _managedObjectModel;
 }
 _managedObjectModel = [NSManagedObjectModel mergedModelFromBundles:nil];
 return _managedObjectModel;
}

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
 if (_persistentStoreCoordinator) {
 return _persistentStoreCoordinator;
 }

 NSError *error = nil;
 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] 
initWithManagedObjectModel:[self managedObjectModel]];
 if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:[self dataStoreURL]
 options:nil
 error:&error]) {
 NSLog(@"Unresolved Core Data error with persistentStoreCoordinator: %@, %@", 
error, [error userInfo]);
 }

CHAPTER 10: Core Data 361

 return _persistentStoreCoordinator;
}

- (NSManagedObjectContext *)managedObjectContext {
 if (_managedObjectContext) {
 return _managedObjectContext;
 }

 if ([self persistentStoreCoordinator]) {
 _managedObjectContext = [[NSManagedObjectContext alloc] init];
 [_managedObjectContext setPersistentStoreCoordinator:[self 
persistentStoreCoordinator]];
 }

 return _managedObjectContext;
}

@end

Listing 10-17. Project.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@interface Project : NSManagedObject

@property (nonatomic, retain) NSString * descrip;
@property (nonatomic, retain) NSDate * dueDate;
@property (nonatomic, retain) NSString * name;

@end

Listing 10-18. Project.m

#import "Project.h"

@implementation Project

@dynamic descrip;
@dynamic dueDate;
@dynamic name;

@end

Usage
At long last, you can now test out this Core Data code for yourself. Add the
code from Listings 10-13 through 10-18 and then build and run your Xcode

CHAPTER 10: Core Data 362

project. When you run your application you will see the following in your console
log window:

project.name = App Delegate's Project

project.descrip = This is a new project

project.dueDate = 2012-04-10 14:07:00 +0000

Take a look at AppDelegate.m to see how this output was created. A Project
managed object instance was created from the AppModel class and returned to
the app delegate. As you can see, this process isn’t much different than using
other Objective-C classes and objects.

10.5 Retrieving Objects from the Data Store

Problem
You want users to retrieve objects from the data store that they have worked on
earlier.

Solution
Use a fetch request to retrieve objects that are already in the data store.

How It Works
A fetch request is the action of getting objects out of a data store. Use the
NSFetchRequest class to create the request and NSEntityDescription to specify
the type of entity that you want to retrieve from the data store.

You can create an NSFetchRequest object using the alloc and init
constructors.

NSFetchRequest *request = [[NSFetchRequest alloc] init];

You also need an entity description so Core Data knows what it’s supposed to
fetch.

NSEntityDescription *entity = [NSEntityDescription entityForName:@"Project"
 inManagedObjectContext:[self 
managedObjectContext]];

NSEntityDescription *entity = [NSEntityDescription entityForName:@"Project"

CHAPTER 10: Core Data 363

 inManagedObjectContext:[self managedObjectContext]];

You then must assign the entity object to the fetch request’s entity property.

request.entity = entity;

Finally, you can execute the fetch request. The results will be returned back to
you as an array.

NSArray *listOfProjects = [[self managedObjectContext] executeFetchRequest:request 
error:nil];

You can use this array to reference the managed objects that you have available
from the data store. If there are no objects yet, the array will still be created but
it will have a count of 0.

Here is an example of how you might use this array of project objects:

//List out contents of each project
if([listOfProjects count] == 0)
 NSLog(@"There are no projects in the data store yet");
else {
 NSLog(@"HERE ARE THE PROJECTS IN THE DATA STORE");
 [listOfProjects enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"-----");
 NSLog(@"project.name = %@", [obj name]);
 NSLog(@"project.descrip = %@", [obj descrip]);
 NSLog(@"project.dueDate = %@\n", [obj dueDate]);
 }];
}

See Listings 10-19 through 10-24.

The Code
Listing 10-19. AppDelegate.h

#import <UIKit/UIKit.h>
#import "AppModel.h"

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@end

CHAPTER 10: Core Data 364

Listing 10-20. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate
@synthesize window = _window;

- (BOOL)application:(UIApplication *)application 
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 //Create a new AppModel instance
 AppModel *dataModel = [[AppModel alloc] init];

 //Get a new project from dateModel and use it
 Project *newProject = [dataModel makeNewProject];
 newProject.name = @"App Delegate's Project";
 NSLog(@"project.name = %@", newProject.name);
 NSLog(@"project.descrip = %@", newProject.descrip);
 NSLog(@"project.dueDate = %@\n", newProject.dueDate);

 //Post changes back to date store
 [[dataModel managedObjectContext] save:nil];

 //Get all the projects in the data store
 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 NSEntityDescription *entity = [NSEntityDescription entityForName:@"Project"
 inManagedObjectContext:[dataModel 
managedObjectContext]];
 request.entity = entity;
 NSArray *listOfProjects = [[dataModel managedObjectContext] 
executeFetchRequest:request error:nil];

 //List out contents of each project
 if([listOfProjects count] == 0)
 NSLog(@"There are no projects in the data store yet");
 else {
 NSLog(@"HERE ARE THE PROJECTS IN THE DATA STORE");
 [listOfProjects enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"-----");
 NSLog(@"project.name = %@", [obj name]);
 NSLog(@"project.descrip = %@", [obj descrip]);
 NSLog(@"project.dueDate = %@\n", [obj dueDate]);
 }];
 }

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;

CHAPTER 10: Core Data 365

}

@end

Listing 10-21. AppModel.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>
 #import "Project.h"

@interface AppModel : NSObject

-(NSURL *)dataStoreURL;
-(Project *)makeNewProject;

@property (nonatomic, strong, readonly) NSManagedObjectModel *managedObjectModel;
@property (nonatomic, strong, readonly) NSPersistentStoreCoordinator 
*persistentStoreCoordinator;
@property (nonatomic, strong, readonly) NSManagedObjectContext *managedObjectContext;

@end

Listing 10-22. AppModel.m

#import "AppModel.h"

@implementation AppModel
NSManagedObjectModel *_managedObjectModel;
NSPersistentStoreCoordinator *_persistentStoreCoordinator;
NSManagedObjectContext *_managedObjectContext;

-(Project *)makeNewProject{

 Project *managedProject = (Project *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Project"
inManagedObjectContext:[self managedObjectContext]];

 managedProject.name = @"New Project";
 managedProject.descrip = @"This is a new project";
 managedProject.dueDate = [NSDate date];

 return managedProject;

}

- (NSURL *)dataStoreURL {

 NSString *docDir = [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 
NSUserDomainMask, YES) lastObject];

CHAPTER 10: Core Data 366

 return [NSURL fileURLWithPath:[docDir 
stringByAppendingPathComponent:@"DataStore.sql"]];
}

- (NSManagedObjectModel *)managedObjectModel {
 if (_managedObjectModel) {
 return _managedObjectModel;
 }
 _managedObjectModel = [NSManagedObjectModel mergedModelFromBundles:nil];
 return _managedObjectModel;
}

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
 if (_persistentStoreCoordinator) {
 return _persistentStoreCoordinator;
 }

 NSError *error = nil;
 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] 
initWithManagedObjectModel:[self managedObjectModel]];
 if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:[self dataStoreURL]
 options:nil
 error:&error]) {
 NSLog(@"Unresolved Core Data error with persistentStoreCoordinator: %@, %@", 
error, [error userInfo]);
 }

 return _persistentStoreCoordinator;
}

- (NSManagedObjectContext *)managedObjectContext {
 if (_managedObjectContext) {
 return _managedObjectContext;
 }

 if ([self persistentStoreCoordinator]) {
 _managedObjectContext = [[NSManagedObjectContext alloc] init];
 [_managedObjectContext setPersistentStoreCoordinator:[self 
persistentStoreCoordinator]];
 }

 return _managedObjectContext;
}

@end

CHAPTER 10: Core Data 367

Listing 10-23. Project.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@interface Project : NSManagedObject

@property (nonatomic, retain) NSString * descrip;
@property (nonatomic, retain) NSDate * dueDate;
@property (nonatomic, retain) NSString * name;

@end

Listing 10-24. Project.m

#import "Project.h"

@implementation Project

@dynamic descrip;
@dynamic dueDate;
@dynamic name;

@end

Usage
Test this code by adding Listings 10-19 through 10-24 to your own Xcode
project. If you build and run this a few times, you will notice that the list from the
data store grows by one project for each run. This happens because the new
project that was created in the beginning in the app delegate is being added to
all the projects that were already present in the data store. If you were to run this
app for the first time, your output would look something like this:

project.name = App Delegate's Project
project.descrip = This is a new project
project.dueDate = 2012-04-12 15:08:13 +0000
HERE ARE THE PROJECTS IN THE DATA STORE

project.name = App Delegate's Project
project.descrip = This is a new project
project.dueDate = 2012-04-12 15:08:13 +0000

CHAPTER 10: Core Data 368

NOTE: The managed object context retrieves all the objects in the
data store as well as the objects that are in the managed object
context but not yet posted to the data store.

10.6 Posting Changes to the Data Store

Problem
As your users work with your application they makes changes to the content
that you want to save to the data store.

Solution
Test the managed object context to see if any changes have been made to the
user’s object graph. If there have been changes, you can either roll back and get
rid of the changes or save the changes back to the data store.

How It Works
Managed objects are used like other Objective-C objects. You can use dot
notation to change the content in a managed object. Once you do this, the
managed object context becomes aware that changes have been made to the
object graph.

For example, if you change the content in the project from Recipe 10.5, you
would just do something like this:

newProject.name = @"Project Has New Name";
newProject.descrip = @"Here is a new revision of the project";

What is different from what you’ve done in previous chapters is that the
managed object context has become aware of the changes you’ve made. You
can ask the managed object context if any changes have been made to the
object graph by sending the hasChanges message to the context, like so:

if([[dataModel managedObjectContext] hasChanges])
 NSLog(@"The object graph has changed");

Sometimes you might want to ask the managed object context if anything has
changed at key points in an application’s lifecycle. If there are changes, you can

CHAPTER 10: Core Data 369

either save them to the data store or discard them. Here is how you might save
changes:

if([[dataModel managedObjectContext] hasChanges])
 [[dataModel managedObjectContext] save:nil];

Of course, you already saw this operation when you created the first project.
You could have also discarded the changes by sending a rollback message to
the managed object context.

if([[dataModel managedObjectContext] hasChanges])
 [[dataModel managedObjectContext] rollback];

When you want to delete a managed object you must use the managed object
context deleteObject method.

[[dataModel managedObjectContext] deleteObject:newProject];

You still can roll back or save this change permanently like you did when you
changed the property values by sending either the rollback or save message to
the managed object context. See Listings 10-25 through 10-30.

The Code
Listing 10-25. AppDelegate.h

#import <UIKit/UIKit.h>
#import "AppModel.h"

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@end

Listing 10-26. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate
@synthesize window = _window;

- (BOOL)application:(UIApplication *)application 
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 //Create a new AppModel instance
 AppModel *dataModel = [[AppModel alloc] init];

 //Make some projects

CHAPTER 10: Core Data 370

 Project *p1 = [dataModel makeNewProject];
 p1.name = @"Proj1";

 Project *p2 = [dataModel makeNewProject];
 p2.name = @"Proj2";

 Project *p3 = [dataModel makeNewProject];
 p3.name = @"Proj3";

 Project *p4 = [dataModel makeNewProject];
 p4.name = @"Proj4";

 [[dataModel managedObjectContext] save:nil];

 //Get all the projects in the data store
 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 NSEntityDescription *entity = [NSEntityDescription entityForName:@"Project"
 inManagedObjectContext:[dataModel 
managedObjectContext]];
 request.entity = entity;
 NSArray *listOfProjects = [[dataModel managedObjectContext] 
executeFetchRequest:request error:nil];

 //Print out contents of all the projects
 NSLog(@"-----");
 NSLog(@"NEW PROJECTS IN CONTEXT");
 [listOfProjects enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"project.name = %@", [obj name]);
 }];

 //Rollback example
 Project *rollbackProject = [listOfProjects objectAtIndex:0];
 rollbackProject.name = @"Rollback Project";

 //Look at changed object
 NSLog(@"-----");
 NSLog(@"CHANGED PROJECTS IN CONTEXT");
 [listOfProjects enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"project.name = %@", [obj name]);
 }];

 //Discard changes
 if([[dataModel managedObjectContext] hasChanges])
 [[dataModel managedObjectContext] rollback];

 //Look at object after rollback
 NSLog(@"-----");
 NSLog(@"PROJECTS IN CONTEXT AFTER ROLLBACK");
 [listOfProjects enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"project.name = %@", [obj name]);

CHAPTER 10: Core Data 371

 }];

 //Delete second and third projects
 [[dataModel managedObjectContext] deleteObject:p2];
 [[dataModel managedObjectContext] deleteObject:p3];

 //save back to data store
 [[dataModel managedObjectContext] save:nil];

 //Get all the projects in the data store
 request = [[NSFetchRequest alloc] init];
 entity = [NSEntityDescription entityForName:@"Project"
 inManagedObjectContext:[dataModel managedObjectContext]];
 request.entity = entity;
 listOfProjects = [[dataModel managedObjectContext] executeFetchRequest:request 
error:nil];

 //Look at objects after deletion
 NSLog(@"-----");
 NSLog(@"PROJECTS IN CONTEXT AFTER DELETION");
 [listOfProjects enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"project.name = %@", [obj name]);
 }];

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

@end

Listing 10-27. AppModel.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>
 #import "Project.h"

@interface AppModel : NSObject

-(NSURL *)dataStoreURL;
-(Project *)makeNewProject;

@property (nonatomic, strong, readonly) NSManagedObjectModel *managedObjectModel;
@property (nonatomic, strong, readonly) NSPersistentStoreCoordinator 
*persistentStoreCoordinator;
@property (nonatomic, strong, readonly) NSManagedObjectContext *managedObjectContext;

@end

CHAPTER 10: Core Data 372

Listing 10-28. AppModel.m

#import "AppModel.h"

@implementation AppModel
NSManagedObjectModel *_managedObjectModel;
NSPersistentStoreCoordinator *_persistentStoreCoordinator;
NSManagedObjectContext *_managedObjectContext;

-(Project *)makeNewProject{

 Project *managedProject = (Project *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Project"
inManagedObjectContext:[self managedObjectContext]];

 managedProject.name = @"New Project";
 managedProject.descrip = @"This is a new project";
 managedProject.dueDate = [NSDate date];

 return managedProject;

}

- (NSURL *)dataStoreURL {

 NSString *docDir = [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 
NSUserDomainMask, YES) lastObject];

 return [NSURL fileURLWithPath:[docDir
stringByAppendingPathComponent:@"DataStore.sql"]];
}

- (NSManagedObjectModel *)managedObjectModel {
 if (_managedObjectModel) {
 return _managedObjectModel;
 }
 _managedObjectModel = [NSManagedObjectModel mergedModelFromBundles:nil];
 return _managedObjectModel;
}

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
 if (_persistentStoreCoordinator) {
 return _persistentStoreCoordinator;
 }

 NSError *error = nil;
 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] 
initWithManagedObjectModel:[self managedObjectModel]];
 if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType

CHAPTER 10: Core Data 373

 configuration:nil
 URL:[self dataStoreURL]
 options:nil
 error:&error]) {
 NSLog(@"Unresolved Core Data error with persistentStoreCoordinator: %@, %@", 
error, [error userInfo]);
 }

 return _persistentStoreCoordinator;
}

- (NSManagedObjectContext *)managedObjectContext {
 if (_managedObjectContext) {
 return _managedObjectContext;
 }

 if ([self persistentStoreCoordinator]) {
 _managedObjectContext = [[NSManagedObjectContext alloc] init];
 [_managedObjectContext setPersistentStoreCoordinator:[self 
persistentStoreCoordinator]];
 }

 return _managedObjectContext;
}

@end

Listing 10-29. Project.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@interface Project : NSManagedObject

@property (nonatomic, retain) NSString * descrip;
@property (nonatomic, retain) NSDate * dueDate;
@property (nonatomic, retain) NSString * name;

@end

Listing 10-30. Project.m

#import "Project.h"

@implementation Project

@dynamic descrip;
@dynamic dueDate;
@dynamic name;

CHAPTER 10: Core Data 374

@end

Usage
Add the code from Listings 10-25 through 10-30 to your Xcode project to test it
for yourself. The recipe is a little bit more involved than the main recipe text. The
main difference is that it contains four separate projects so that you can clearly
see the effects of saving, rolling back, and deleting managed objects from the
data store.

The first time that you run your application you should observe something like
this in the console log window:

NEW PROJECTS IN CONTEXT
project.name = Proj3
project.name = Proj4
project.name = Proj1
project.name = Proj2

CHANGED PROJECTS IN CONTEXT
project.name = Rollback Project
project.name = Proj4
project.name = Proj1
project.name = Proj2

PROJECTS IN CONTEXT AFTER ROLLBACK
project.name = Proj3
project.name = Proj4
project.name = Proj1
project.name = Proj2

PROJECTS IN CONTEXT AFTER DELETION
project.name = Proj4
project.name = Proj1

NOTE: The order in which the projects appear may be different for
you.

CHAPTER 10: Core Data 375

10.7 Using One-To-One Relationships with
Core Data

Problem
Your object graph requires you to represent a one-to-one relationship and you
want this content managed by Core Data.

Solution
Create at least two entities in the data model and then add a relationship
between these entities in the data model editor.

How It Works
You are getting closer to implementing the object graph from Recipe 9.1 in Core
Data. What you want to do is add a Worker entity to your data model. Remember
that the Worker class from Recipe 9.1 had a name property and a role property.
Worker objects could be assigned to projects and tasks. You are going to just
recreate the Project to Worker relationship here.

NOTE: You are about to make a big change to your data model. Since
the data model is cached after the first time it runs, you can’t change
the data model without breaking the application. So you need to make
sure to delete the application from the iOS Simulator before testing the
changes that you are about to make to the data model. Go to the iOS
Simulator and click iOS Simulator  Reset Content and Settings. Click
the Reset button that pops up.

First, add a new Worker entity to your data model. Follow the same procedure as
Recipe 10.2 to add the Worker entity. Your updated model should look like
Figure 10-5 when you are finished.

CHAPTER 10: Core Data 376

Figure 10-5. Worker entity

Next, you need to establish a relationship between Project and Worker. To
establish the relationship, select Project in the data model editor and then click
the plus button in the Relationships pane of the data model editor. Name the
relationship personInCharge and set the Destination to Worker.

Now you need to define the inverse (or opposite) relationship. This gives you a
way to reference the project that a worker is working on.

Select the Worker entity and then click the plus button in the Relationships pane
of the data model editor. Name the relationship Project and set the Destination
to Project. Select personInCharge for the Inverse.

To see everything that you just did at one time, select each entity in the data
model editor while holding down the Command key. Both entities will be
highlighted and you will see all the attributes and relationships listed at once.
Your data model editor should look like Figure 10-6.

CHAPTER 10: Core Data 377

Figure 10-6. Project-to-Worker and Worker-to-Project relationship

Keeping both the Project and Worker entities highlighted, go to File  New 
File. Then choose iOS  Core Data  NSManagedObject subclass. Click Next
and then Create. You will get a warning dialog because you are going to write
over the previous Project class file. That is ok since you do need to update it,
so click Replace.

In your Xcode project you should have files for the Project and Worker managed
object classes. Let’s take a look at the Project class interface.

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@class Worker;

@interface Project : NSManagedObject

@property (nonatomic, retain) NSString * descrip;
@property (nonatomic, retain) NSDate * dueDate;
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) Worker *personInCharge;

@end

The relationship for the person in charge is represented by that last property,
personInCharge. You can use this property to get a reference to the Worker
object with which you have the one-to-one relationship.

Now look at the Worker class interface to see how the opposite relationship is
represented.

CHAPTER 10: Core Data 378

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@class Project;

@interface Worker : NSManagedObject

@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSString * role;
@property (nonatomic, retain) Project *project;

@end

This gives you the opportunity to get a reference to the project when you only
have a reference to the worker on hand.

All of this gives you the infrastructure to set up your relationships and entities.
But you now need to add the code to create the objects and establish the
relationships. In the Core Data recipes you’ve done so far you’ve been using the
makeNewProject function in AppModel to do this for you. Logically enough, you
need to use a makeNewWorker function to create a Worker instance for you in
AppModel.

Change the interface for AppModel to accommodate the function that you need
to create a new Worker instance.

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>
#import "Project.h"
#import "Worker.h"

@interface AppModel : NSObject

-(NSURL *)dataStoreURL;

@property (nonatomic, strong, readonly) NSManagedObjectModel *managedObjectModel;
@property (nonatomic, strong, readonly) NSPersistentStoreCoordinator 
*persistentStoreCoordinator;
@property (nonatomic, strong, readonly) NSManagedObjectContext *managedObjectContext;

-(Project *)makeNewProject;
-(Worker *)makeNewWorker;

@end

The makeNewWorker function can be coded like this:

#import "AppModel.h"

@implementation AppModel

CHAPTER 10: Core Data 379

...

-(Worker *)makeNewWorker{
 Worker *managedWorker = (Worker *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Worker" 
inManagedObjectContext:[self managedObjectContext]];

 managedWorker.name = @"New Worker";
 managedWorker.Role = @"Works on projects";

 return managedWorker;
}

...

@end

You establish the relationship itself in the makeNewProject function.

#import "AppModel.h"

@implementation AppModel

...

-(Project *)makeNewProject{

 Project *managedProject = (Project *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Project" 
inManagedObjectContext:[self managedObjectContext]];

 managedProject.name = @"New Project";
 managedProject.descrip = @"This is a new project";
 managedProject.dueDate = [NSDate date];

 managedProject.personInCharge = [self makeNewWorker];

 return managedProject;

}

...

@end

Now, if you use AppModel to create a new project, you automatically have a
Worker assigned and the relationship is established. For instance, you could do
something like this:

CHAPTER 10: Core Data 380

//Create a new AppModel instance
AppModel *dataModel = [[AppModel alloc] init];

//Make some projects
Project *p1 = [dataModel makeNewProject];
p1.name = @"Proj1";

NSLog(@"p1.name = %@, p1.personInCharge = %@", p1.name, p1.personInCharge.name);

This will print out the following content to the console log:

p1.name = Proj1, p1.personInCharge = New Worker
w.project.name = Proj1

See Listings 10-31 through 10-38.

The Code
Listing 10-31. AppModel.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>
#import "Project.h"
#import "Worker.h"

@interface AppModel : NSObject

-(NSURL *)dataStoreURL;

@property (nonatomic, strong, readonly) NSManagedObjectModel *managedObjectModel;
@property (nonatomic, strong, readonly) NSPersistentStoreCoordinator
*persistentStoreCoordinator;
@property (nonatomic, strong, readonly) NSManagedObjectContext *managedObjectContext;

-(Project *)makeNewProject;
-(Worker *)makeNewWorker;

@end

Listing 10-32. AppModel.m

#import "AppModel.h"

@implementation AppModel
NSManagedObjectModel *_managedObjectModel;
NSPersistentStoreCoordinator *_persistentStoreCoordinator;
NSManagedObjectContext *_managedObjectContext;

-(Project *)makeNewProject{

CHAPTER 10: Core Data 381

 Project *managedProject = (Project *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Project" 
inManagedObjectContext:[self managedObjectContext]];

 managedProject.name = @"New Project";
 managedProject.descrip = @"This is a new project";
 managedProject.dueDate = [NSDate date];

 managedProject.personInCharge = [self makeNewWorker];

 return managedProject;

}

-(Worker *)makeNewWorker{
 Worker *managedWorker = (Worker *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Worker" 
inManagedObjectContext:[self managedObjectContext]];

 managedWorker.name = @"New Worker";
 managedWorker.Role = @"Works on projects";

 return managedWorker;
}

- (NSURL *)dataStoreURL {

 NSString *docDir = [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 
NSUserDomainMask, YES) lastObject];

 return [NSURL fileURLWithPath:[docDir 
stringByAppendingPathComponent:@"DataStore.sql"]];
}

- (NSManagedObjectModel *)managedObjectModel {
 if (_managedObjectModel) {
 return _managedObjectModel;
 }
 _managedObjectModel = [NSManagedObjectModel mergedModelFromBundles:nil];
 return _managedObjectModel;
}

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
 if (_persistentStoreCoordinator) {
 return _persistentStoreCoordinator;
 }

 NSError *error = nil;
 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] 

CHAPTER 10: Core Data 382

initWithManagedObjectModel:[self managedObjectModel]];
 if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:[self dataStoreURL]
 options:nil
 error:&error]) {
 NSLog(@"Unresolved Core Data error with persistentStoreCoordinator: %@, %@", 
error, [error userInfo]);
 }

 return _persistentStoreCoordinator;
}

- (NSManagedObjectContext *)managedObjectContext {
 if (_managedObjectContext) {
 return _managedObjectContext;
 }

 if ([self persistentStoreCoordinator]) {
 _managedObjectContext = [[NSManagedObjectContext alloc] init];
 [_managedObjectContext setPersistentStoreCoordinator:[self 
persistentStoreCoordinator]];
 }

 return _managedObjectContext;
}

@end

Listing 10-33. Worker.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@class Project;

@interface Worker : NSManagedObject

@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSString * role;
@property (nonatomic, retain) Project *project;

@end

Listing 10-34. Worker.m

#import "Worker.h"
#import "Project.h"

CHAPTER 10: Core Data 383

@implementation Worker

@dynamic name;
@dynamic role;
@dynamic project;

@end

Listing 10-35. Project.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@class Worker;

@interface Project : NSManagedObject

@property (nonatomic, retain) NSString * descrip;
@property (nonatomic, retain) NSDate * dueDate;
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) Worker *personInCharge;

@end

Listing 10-36. Project.m

#import "Project.h"
#import "Worker.h"

@implementation Project

@dynamic descrip;
@dynamic dueDate;
@dynamic name;
@dynamic personInCharge;

@end

Listing 10-37. AppDelegate.h

#import <UIKit/UIKit.h>
#import "AppModel.h"

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@end

CHAPTER 10: Core Data 384

Listing 10-38. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate
@synthesize window = _window;

- (BOOL)application:(UIApplication *)application 
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 //Create a new AppModel instance
 AppModel *dataModel = [[AppModel alloc] init];

 //Make some projects
 Project *p1 = [dataModel makeNewProject];
 p1.name = @"Proj1";

 NSLog(@"p1.name = %@, p1.personInCharge = %@", p1.name, p1.personInCharge.name);

 Worker *worker = p1.personInCharge;
 NSLog(@"w.project.name = %@", worker.project.name);

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

@end

Usage
Add the code from Listings 10-31 through 10-38 to your app. If you have been
following along with the previous recipes and want to reuse your Xcode project,
make sure to delete the application from the iOS Simulator before attempting to
test this code.

Build and run your application to see the following output in the console log:

p1.name = Proj1, p1.personInCharge = New Worker
w.project.name = Proj1

CHAPTER 10: Core Data 385

10.8 Using One-To-Many Relationships with
Core Data

Problem
Your object graph requires you to represent a one-to-many relationship and you
want this content managed by Core Data.

Solution
Create at least two entities in the data model and then add a one-to-many
relationship between these entities in the data model editor.

How It Works
You’re getting closer to implementing the object graph from Recipe 9.1 in Core
Data. What you want to do is add a task entity to your data model. Remember
that the Task class from Recipe 9.1 has name, details, dueDate, and priority
properties. Task also has a Worker property which you will leave for the next
recipe. Tasks are contained in projects so the relationship is going to go from
Project to Task. There will be many tasks for each project. You are going to just
recreate the Project to Task relationship here.

NOTE: You are about to make another big change to your data model.
Since the data model is cached after the first time it runs, you can’t
change the data model without breaking the application. So you need
to make sure to delete the application from the iOS Simulator before
testing the changes that you are about to make to the data model. Go
to the iOS Simulator and click iOS Simulator  Reset Content and
Settings. Click the Reset button that pops up.

Just like in Recipe 10.7, you are going to add another entity to the data model.
This entity is called Task and the attributes will match the Task properties from
Recipe 9.2. The Task entity description will look like Figure 10-7.

CHAPTER 10: Core Data 386

Figure 10-7. Task entity

Now you are going to start to establish the relationship between Project and
Task. Select the Project entity and click the plus sign in the Relationships pane
in the data model editor. Name the relationship listOfTasks and set the
Destination to Task.

To set up the inverse relationship, select the Task entity and click the plus sign in
the Relationships pane in the data model editor. Name the relationship project
and set the Destination to Project. Choose listOfTasks as the Inverse.

Select all three entities in the data model to see everything at once. Alternatively,
you can also hold down the Shift key and then click the first and last entity to
select all the entities. You should have something that looks like Figure 10-8.

CHAPTER 10: Core Data 387

Figure 10-8. Project, Task, and Worker with relationships

To see the data model in a more visual way, you can change the editor style by
clicking the segmented button in the bottom right hand area of the data model
editor (the ‘‘Editor Styles: Table, Graph’’ button). This provides a graphical
display that highlights the entities and their relationships. See Figure 10-9 for an
example of what it looks like. You may need to move the entities around a little
to get them to appear as they do in Figure 10-9.

CHAPTER 10: Core Data 388

Figure 10-9. Visual editor style

You still need to make the Project to Task relationship a one-to-many
relationship. To do so, select the listOfTasks relationship and use the data
model inspector to change listOfTasks from a one-to-one relationship to a one-
to-many relationship.

Select listOfTasks and then open the data model inspector, which is on the
right hand side of the data model editor. Make sure that the right pane in Xcode
is visible and that you have the data model inspector open (see Figure 10-10).

CHAPTER 10: Core Data 389

Figure 10-10. Specifying one-to-many relationships

In the data inspector, click the checkbox named Plural that reads To-Many
Relationship.

Now you are ready to create your managed objects. Make sure each entity is
selected in the data model editor and then choose File  New  File. Then
choose iOS  Core Data  NSManaged Object subclass. In the dialog that pops
up, click Create. You need to allow Xcode to replace the file here.

Look at the Project interface to see how the one-to-many relationship is
represented in code.

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@class Worker;

@interface Project : NSManagedObject

@property (nonatomic, retain) NSString * descrip;
@property (nonatomic, retain) NSDate * dueDate;
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) Worker *personInCharge;
@property (nonatomic, retain) NSSet *listOfTasks;
@end

@interface Project (CoreDataGeneratedAccessors)

- (void)addListOfTasksObject:(NSManagedObject *)value;
- (void)removeListOfTasksObject:(NSManagedObject *)value;
- (void)addListOfTasks:(NSSet *)values;

CHAPTER 10: Core Data 390

- (void)removeListOfTasks:(NSSet *)values;

@end

The property that holds the references to all your tasks is an NSSet named
listOfTasks. The additional interface code is given to make it easier to add and
remove items into the NSSet property. All you need to do to add Task objects
into the project is to use these accessors. For example,

//Make a task
Task *t1 = (Task *)[NSEntityDescription insertNewObjectForEntityForName:@"Task" 
inManagedObjectContext:[dataModel managedObjectContext]];

t1.name = @"Task 1";
t1.details = @"Task details";
t1.dueDate = [NSDate date];
t1.priority = [NSNumber numberWithInt:1];

//Add the task to the project
[p1 addListOfTasksObject:t1];

//Make a task
Task *t2 = (Task *)[NSEntityDescription insertNewObjectForEntityForName:@"Task" 
inManagedObjectContext:[dataModel managedObjectContext]];

t2.name = @"Task 2";
t2.details = @"Task details";
t2.dueDate = [NSDate date];
t2.priority = [NSNumber numberWithInt:1];

//Add the task to the project
[p1 addListOfTasksObject:t2];

Now you can use the tasks that are associated with the project. To print these
tasks out to the log, you could do something like this:

//Get all the projects in the data store
NSFetchRequest *request = [[NSFetchRequest alloc] init];
NSEntityDescription *entity = [NSEntityDescription entityForName:@"Project"
 inManagedObjectContext:[dataModel 
managedObjectContext]];

request.entity = entity;
NSArray *listOfProjects = [[dataModel managedObjectContext] 
executeFetchRequest:request error:nil];

//Print out contents of all the projects (including the tasks)
NSLog(@"-----");
NSLog(@"NEW PROJECTS IN CONTEXT");
[listOfProjects enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {

CHAPTER 10: Core Data 391

 NSLog(@"project.name = %@", [obj name]);
 [[obj listOfTasks] enumerateObjectsUsingBlock:^(id obj, BOOL *stop) {
 NSLog(@" task.name = %@", [obj name]);
 }];
}];

See Listings 10-39 through 10-48.

The Code
Listing 10-39. AppDelegate.h

#import <UIKit/UIKit.h>
#import "AppModel.h"

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@end

Listing 10-40. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate
@synthesize window = _window;

- (BOOL)application:(UIApplication *)application 
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 //Create a new AppModel instance
 AppModel *dataModel = [[AppModel alloc] init];

 //Make a project
 Project *p1 = [dataModel makeNewProject];
 p1.name = @"Proj1";

 //Make a task
 Task *t1 = (Task *)[NSEntityDescription insertNewObjectForEntityForName:@"Task" 
inManagedObjectContext:[dataModel managedObjectContext]];

 t1.name = @"Task 1";
 t1.details = @"Task details";
 t1.dueDate = [NSDate date];
 t1.priority = [NSNumber numberWithInt:1];

CHAPTER 10: Core Data 392

 //Add the task to the project
 [p1 addListOfTasksObject:t1];

 //Make a task
 Task *t2 = (Task *)[NSEntityDescription insertNewObjectForEntityForName:@"Task"
 inManagedObjectContext:
[dataModel managedObjectContext]];

 t2.name = @"Task 2";
 t2.details = @"Task details";
 t2.dueDate = [NSDate date];
 t2.priority = [NSNumber numberWithInt:1];

 //Add the task to the project
 [p1 addListOfTasksObject:t2];

 //Get all the projects in the data store
 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 NSEntityDescription *entity = [NSEntityDescription entityForName:@"Project"
 inManagedObjectContext:[dataModel 
managedObjectContext]];

 request.entity = entity;
 NSArray *listOfProjects = [[dataModel managedObjectContext] 
executeFetchRequest:request error:nil];

 //print out contents of all the projects (including the tasks):
 NSLog(@"-----");
 NSLog(@"NEW PROJECTS IN CONTEXT");
 [listOfProjects enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"project.name = %@", [obj name]);
 [[obj listOfTasks] enumerateObjectsUsingBlock:^(id obj, BOOL *stop) {
 NSLog(@" task.name = %@", [obj name]);
 }];
 }];

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

@end

Listing 10-41. AppModel.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>
#import "Project.h"
#import "Worker.h"

CHAPTER 10: Core Data 393

#import "Task.h"

@interface AppModel : NSObject

-(NSURL *)dataStoreURL;

@property (nonatomic, strong, readonly) NSManagedObjectModel *managedObjectModel;
@property (nonatomic, strong, readonly) NSPersistentStoreCoordinator 
*persistentStoreCoordinator;
@property (nonatomic, strong, readonly) NSManagedObjectContext *managedObjectContext;

-(Project *)makeNewProject;
-(Worker *)makeNewWorker;
-(Task *)makeNewTask;

@end

Listing 10-42. AppModel.m

#import "AppModel.h"

@implementation AppModel
NSManagedObjectModel *_managedObjectModel;
NSPersistentStoreCoordinator *_persistentStoreCoordinator;
NSManagedObjectContext *_managedObjectContext;

-(Project *)makeNewProject{

 Project *managedProject = (Project *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Project" 
inManagedObjectContext:[self managedObjectContext]];

 managedProject.name = @"New Project";
 managedProject.descrip = @"This is a new project";
 managedProject.dueDate = [NSDate date];

 managedProject.personInCharge = [self makeNewWorker];

 return managedProject;

}

-(Worker *)makeNewWorker{
 Worker *managedWorker = (Worker *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Worker" 
inManagedObjectContext:[self managedObjectContext]];

 managedWorker.name = @"New Worker";
 managedWorker.Role = @"Works on projects";

CHAPTER 10: Core Data 394

 return managedWorker;
}

-(Task *)makeNewTask{
 Task *managedTask = (Task *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Task" 
inManagedObjectContext:[self managedObjectContext]];

 managedTask.name = @"New Task";
 managedTask.details = @"Task details";
 managedTask.dueDate = [NSDate date];
 managedTask.priority = [NSNumber numberWithInt:1];

 return managedTask;
}

- (NSURL *)dataStoreURL {

 NSString *docDir = [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 
NSUserDomainMask, YES) lastObject];

 return [NSURL fileURLWithPath:[docDir 
stringByAppendingPathComponent:@"DataStore.sql"]];
}

- (NSManagedObjectModel *)managedObjectModel {
 if (_managedObjectModel) {
 return _managedObjectModel;
 }
 _managedObjectModel = [NSManagedObjectModel mergedModelFromBundles:nil];
 return _managedObjectModel;
}

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
 if (_persistentStoreCoordinator) {
 return _persistentStoreCoordinator;
 }

 NSError *error = nil;
 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] 
initWithManagedObjectModel:[self managedObjectModel]];
 if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:[self dataStoreURL]
 options:nil
 error:&error]) {
 NSLog(@"Unresolved Core Data error with persistentStoreCoordinator: %@, %@", 
error, [error userInfo]);
 }

CHAPTER 10: Core Data 395

 return _persistentStoreCoordinator;
}

- (NSManagedObjectContext *)managedObjectContext {
 if (_managedObjectContext) {
 return _managedObjectContext;
 }

 if ([self persistentStoreCoordinator]) {
 _managedObjectContext = [[NSManagedObjectContext alloc] init];
 [_managedObjectContext setPersistentStoreCoordinator:[self 
persistentStoreCoordinator]];
 }

 return _managedObjectContext;
}

@end

Listing 10-43. Project.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@class Worker;

@interface Project : NSManagedObject

@property (nonatomic, retain) NSString * descrip;
@property (nonatomic, retain) NSDate * dueDate;
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) Worker *personInCharge;
@property (nonatomic, retain) NSSet *listOfTasks;
@end

@interface Project (CoreDataGeneratedAccessors)

- (void)addListOfTasksObject:(NSManagedObject *)value;
- (void)removeListOfTasksObject:(NSManagedObject *)value;
- (void)addListOfTasks:(NSSet *)values;
- (void)removeListOfTasks:(NSSet *)values;

@end

Listing 10-44. Project.m

#import "Project.h"
#import "Worker.h"

CHAPTER 10: Core Data 396

@implementation Project

@dynamic descrip;
@dynamic dueDate;
@dynamic name;
@dynamic personInCharge;
@dynamic listOfTasks;

@end

Listing 10-45. Worker.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@class Project;

@interface Worker : NSManagedObject

@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSString * role;
@property (nonatomic, retain) Project *project;

@end

Listing 10-46. Worker.m

#import "Worker.h"
#import "Project.h"

@implementation Worker

@dynamic name;
@dynamic role;
@dynamic project;

@end

Listing 10-47. Task.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@class Project;

@interface Task : NSManagedObject

@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSString * details;
@property (nonatomic, retain) NSString * dueDate;

CHAPTER 10: Core Data 397

@property (nonatomic, retain) NSNumber * priority;
@property (nonatomic, retain) Project *project;

@end

Listing 10-48. Task.m

#import "Task.h"
#import "Project.h"

@implementation Task

@dynamic name;
@dynamic details;
@dynamic dueDate;
@dynamic priority;
@dynamic project;

@end

Usage
To use this code, add the entities as described in the ‘‘How It Works’’ section.
Include the code from Listings 10-39 through 10-48 for the AppDelegate and the
AppModel classes. Build and run your project and you should see output that
looks like this:

 NEW PROJECTS IN CONTEXT
 project.name = Proj1
 task.name = Task 1
 task.name = Task 2

10.9 Managing Data Store Versioning

Problem
You have an application that is already deployed to your customers and you
want to make a change to the data model. You know if you just make the
change to the existing data model you will break your user’s application.

CHAPTER 10: Core Data 398

Solution
Add a new version of your data model to your application based on your original
data model. Set the new version of your data model to be the current model
used by the application. Finally, add some options to your persistent store
coordinator to make sure that the updated data model is used.

How It Works
As you probably realize by now, if you are developing an application and then
decide to make a change to the data model, your application will crash when
you try to test your code. This is because the application is trying to use the
managed object model that was created during the first run with an updated
managed object model that you just created.

Normally you can just delete your application from the iOS Simulator (or Mac
desktop) and start over without any problems. However, if you have people
already using your application, you need to make sure that you can use the new
data model version without breaking their application or losing their content.

To demonstrate this recipe, go back to the application created in Recipe 10.8
and add a new relationship to the task entity. In the original object graph from
Recipe 9.1, the Task class had a one-to-one relationship with the Worker class.
Add this relationship now with a new version of the data model.

First, add some options to the persistent store coordinator. Set two flags to YES
to allow automatic versioning. These flags are
NSMigratePersistentStoresAutomaticallyOption and
NSInferMappingModelAutomaticallyOption; to use them you must put them both
in an NSDictionary object with their values set to YES. You add this update to
the persistent store coordinator in the AppModel.m file where you have the
persistent store coordinator coded.

#import "AppModel.h"

@implementation AppModel

...

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
 if (_persistentStoreCoordinator) {
 return _persistentStoreCoordinator;
 }

 NSError *error = nil;

CHAPTER 10: Core Data 399

 NSDictionary *options = [NSDictionary dictionaryWithObjectsAndKeys: 
[NSNumber numberWithBool:YES], NSMigratePersistentStoresAutomaticallyOption, 
[NSNumber numberWithBool:YES], NSInferMappingModelAutomaticallyOption, nil];

 _persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] 
initWithManagedObjectModel:[self managedObjectModel]];

 if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:[self dataStoreURL]
 options:options
 error:&error]) {
 NSLog(@"Unresolved Core Data error with persistentStoreCoordinator: %@, %@", 
error, [error userInfo]);
 }

 return _persistentStoreCoordinator;
}

...

@end

To make the change a bit clearer, I’ve highlighted the additional code in bold.

Now you can go ahead and create a new version of the data model based on
the original. Select your data model, which is the file named
Model.xcdatamodeld. Then go to Editor  Add Model Version. Name your version
Model 2 and select Model in the ‘‘Based on Model’’ drop-down box.

When you look at your data model file, you will see that there are two data
model files, Model.xcdatamodeld and Model 2.xcdatamodeld. Right now, they are
identical and you can see each data model by clicking on the respective file.

Now set the current data model to Model 2. This is how you let Core Data know
that you are using the new version. You do this by selecting the top level in the
data model. Make sure that the right pane is showing the File Inspector. Locate
the drop-down box labeled Current. Select Model 2 from the Current drop-down
box (see Figure 10-11).

CHAPTER 10: Core Data 400

Figure 10-11. Setting the current data model versions

Now add the Task to Worker one-to-one relationship. First, select Model 2 so
you know that you’re working on the new version. To establish the relationship,
select Task in the data model editor and then click the plus button in the
Relationships pane of the data model editor. Name the relationship assignedTo
and set the Destination to Worker.

Now you need to define the inverse (or opposite) relationship. This gives you a
way to reference the task that a worker is working on. Select the Worker entity
and click the plus button in the Relationships pane of the data model editor.
Name the relationship task and set the Destination to Task. Select assignedTo
for the Inverse.

To see everything that you just did at one time, select each entity in the data
model editor while holding down the Command key. Both entities will be
highlighted and you will see all the attributes and relationships listed at once.
Your data model editor should look like Figure 10-12.

Figure 10-12. Task to Worker and Worker to Task relationship

CHAPTER 10: Core Data 401

Keeping all the entities highlighted, go to File  New  File. Then choose iOS 
Core Data  NSManagedObject subclass. Click Next and then Create. You will
get a warning dialog because you are going to write over the previous Project
class file. That’s ok since you do need to update it, so click Replace.

Now you can use your Core Data without breaking your application.

//Create a new AppModel instance
AppModel *dataModel = [[AppModel alloc] init];

//Make a project
Project *p1 = [dataModel makeNewProject];
p1.name = @"Proj1";

//Make a task
Task *t1 = (Task *)[NSEntityDescription insertNewObjectForEntityForName:@"Task"

inManagedObjectContext:[dataModel managedObjectContext]];
t1.name = @"Task 1";
t1.details = @"Task details";
t1.dueDate = [NSDate date];
t1.priority = [NSNumber numberWithInt:1];

//Assign a worker to this task:
Worker *managedWorker = (Worker *)[NSEntityDescription
insertNewObjectForEntityForName:@"Worker"

inManagedObjectContext:[dataModel managedObjectContext]];
managedWorker.name = @"John";
managedWorker.Role = @"Programmer";

t1.assignedTo = managedWorker;

Core Data will take care of managing the two versions for each user’s
application without any more intervention from you. See Listings 10-49 through
10-58.

The Code
Listing 10-49. AppDelegate.h

#import <UIKit/UIKit.h>
#import "AppModel.h"

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

CHAPTER 10: Core Data 402

@end

Listing 10-50. AppDelegate.m

#import "AppDelegate.h"

@implementation AppDelegate
@synthesize window = _window;

- (BOOL)application:(UIApplication *)application 
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions{

 //Create a new AppModel instance
 AppModel *dataModel = [[AppModel alloc] init];

 //Make a project
 Project *p1 = [dataModel makeNewProject];
 p1.name = @"Proj1";

 //Make a task
 Task *t1 = (Task *)[NSEntityDescription insertNewObjectForEntityForName:@"Task" 
inManagedObjectContext:[dataModel managedObjectContext]];

 t1.name = @"Task 1";
 t1.details = @"Task details";
 t1.dueDate = [NSDate date];
 t1.priority = [NSNumber numberWithInt:1];

 //Assign a worker to this task:
 Worker *managedWorker = (Worker *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Worker" 
inManagedObjectContext:[dataModel managedObjectContext]];

 managedWorker.name = @"John";
 managedWorker.Role = @"Programmer";

 t1.assignedTo = managedWorker;

 //Add the task to the project
 [p1 addListOfTasksObject:t1];

 //Make a task
 Task *t2 = (Task *)[NSEntityDescription insertNewObjectForEntityForName:@"Task"
 inManagedObjectContext:
[dataModel managedObjectContext]];

 t2.name = @"Task 2";
 t2.details = @"Task details";
 t2.dueDate = [NSDate date];

CHAPTER 10: Core Data 403

 t2.priority = [NSNumber numberWithInt:1];

 //Add the task to the project
 [p1 addListOfTasksObject:t2];

 //Get all the projects in the data store
 NSFetchRequest *request = [[NSFetchRequest alloc] init];
 NSEntityDescription *entity = [NSEntityDescription entityForName:@"Project"
 inManagedObjectContext:[dataModel 
managedObjectContext]];

 request.entity = entity;
 NSArray *listOfProjects = [[dataModel managedObjectContext] 
executeFetchRequest:request error:nil];

 //print out contents of all the projects (including the tasks):
 NSLog(@"-----");
 NSLog(@"NEW PROJECTS IN CONTEXT");
 [listOfProjects enumerateObjectsUsingBlock:^(id obj, NSUInteger idx, BOOL *stop) {
 NSLog(@"project.name = %@", [obj name]);
 [[obj listOfTasks] enumerateObjectsUsingBlock:^(id obj, BOOL *stop) {
 NSLog(@" task.name = %@", [obj name]);
 NSLog(@" task.assignedTo = %@", [[obj assignedTo] name]);
 }];
 }];

 self.window = [[UIWindow alloc] initWithFrame:[[UIScreen mainScreen] bounds]];
 self.window.backgroundColor = [UIColor whiteColor];
 [self.window makeKeyAndVisible];
 return YES;
}

@end

Listing 10-51. AppModel.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>
#import "Project.h"
#import "Worker.h"
#import "Task.h"

@interface AppModel : NSObject

-(NSURL *)dataStoreURL;

@property (nonatomic, strong, readonly) NSManagedObjectModel *managedObjectModel;
@property (nonatomic, strong, readonly) NSPersistentStoreCoordinator 
*persistentStoreCoordinator;
@property (nonatomic, strong, readonly) NSManagedObjectContext *managedObjectContext;

CHAPTER 10: Core Data 404

-(Project *)makeNewProject;
-(Worker *)makeNewWorker;
-(Task *)makeNewTask;

@end

Listing 10-52. AppModel.m

#import "AppModel.h"

@implementation AppModel
NSManagedObjectModel *_managedObjectModel;
NSPersistentStoreCoordinator *_persistentStoreCoordinator;
NSManagedObjectContext *_managedObjectContext;

-(Project *)makeNewProject{

 Project *managedProject = (Project *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Project" 
inManagedObjectContext:[self managedObjectContext]];

 managedProject.name = @"New Project";
 managedProject.descrip = @"This is a new project";
 managedProject.dueDate = [NSDate date];

 managedProject.personInCharge = [self makeNewWorker];

 return managedProject;

}

-(Worker *)makeNewWorker{
 Worker *managedWorker = (Worker *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Worker" 
inManagedObjectContext:[self managedObjectContext]];

 managedWorker.name = @"New Worker";
 managedWorker.Role = @"Works on projects";

 return managedWorker;
}

-(Task *)makeNewTask{
 Task *managedTask = (Task *)[NSEntityDescription 
insertNewObjectForEntityForName:@"Task" 
inManagedObjectContext:[self managedObjectContext]];

 managedTask.name = @"New Task";
 managedTask.details = @"Task details";

CHAPTER 10: Core Data 405

 managedTask.dueDate = [NSDate date];
 managedTask.priority = [NSNumber numberWithInt:1];

 return managedTask;
}

- (NSURL *)dataStoreURL {

 NSString *docDir = [NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 
NSUserDomainMask, YES) lastObject];

 return [NSURL fileURLWithPath:[docDir 
stringByAppendingPathComponent:@"DataStore.sql"]];
}

- (NSManagedObjectModel *)managedObjectModel {
 if (_managedObjectModel) {
 return _managedObjectModel;
 }
 _managedObjectModel = [NSManagedObjectModel mergedModelFromBundles:nil];
 return _managedObjectModel;
}

- (NSPersistentStoreCoordinator *)persistentStoreCoordinator {
 if (_persistentStoreCoordinator) {
 return _persistentStoreCoordinator;
 }

 NSError *error = nil;
 NSDictionary *options = [NSDictionary dictionaryWithObjectsAndKeys: 
[NSNumber numberWithBool:YES], NSMigratePersistentStoresAutomaticallyOption, 
[NSNumber numberWithBool:YES], NSInferMappingModelAutomaticallyOption, nil];

_persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc] 
initWithManagedObjectModel:[self managedObjectModel]];

if (![_persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType
 configuration:nil
 URL:[self dataStoreURL]
 options:options
 error:&error]) {
 NSLog(@"Unresolved Core Data error with persistentStoreCoordinator: %@, %@", 
error, [error userInfo]);
}
 return _persistentStoreCoordinator;
}

- (NSManagedObjectContext *)managedObjectContext {
 if (_managedObjectContext) {
 return _managedObjectContext;

CHAPTER 10: Core Data 406

 }

 if ([self persistentStoreCoordinator]) {
 _managedObjectContext = [[NSManagedObjectContext alloc] init];
 [_managedObjectContext setPersistentStoreCoordinator:[self 
persistentStoreCoordinator]];
 }

 return _managedObjectContext;
}

@end

Listing 10-53. Project.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@class Worker;

@interface Project : NSManagedObject

@property (nonatomic, retain) NSString * descrip;
@property (nonatomic, retain) NSDate * dueDate;
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) Worker *personInCharge;
@property (nonatomic, retain) NSSet *listOfTasks;
@end

@interface Project (CoreDataGeneratedAccessors)

- (void)addListOfTasksObject:(NSManagedObject *)value;
- (void)removeListOfTasksObject:(NSManagedObject *)value;
- (void)addListOfTasks:(NSSet *)values;
- (void)removeListOfTasks:(NSSet *)values;

@end

Listing 10-54. Project.m

#import "Project.h"
#import "Worker.h"

@implementation Project

@dynamic descrip;
@dynamic dueDate;
@dynamic name;
@dynamic personInCharge;

CHAPTER 10: Core Data 407

@dynamic listOfTasks;

@end

Listing 10-55. Task.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@class Project, Worker;

@interface Task : NSManagedObject

@property (nonatomic, retain) NSString * details;
@property (nonatomic, retain) NSDate * dueDate;
@property (nonatomic, retain) NSString * name;
@property (nonatomic, retain) NSNumber * priority;
@property (nonatomic, retain) Project *project;
@property (nonatomic, retain) Worker *assignedTo;

@end

Listing 10-56. Task.m

#import "Task.h"
#import "Project.h"
#import "Worker.h"

@implementation Task

@dynamic details;
@dynamic dueDate;
@dynamic name;
@dynamic priority;
@dynamic project;
@dynamic assignedTo;

@end

Listing 10-57. Worker.h

#import <Foundation/Foundation.h>
#import <CoreData/CoreData.h>

@class Project, Task;

@interface Worker : NSManagedObject

@property (nonatomic, retain) NSString * name;

CHAPTER 10: Core Data 408

@property (nonatomic, retain) NSString * role;
@property (nonatomic, retain) Project *project;
@property (nonatomic, retain) Task *task;

@end

Listing 10-58. Worker.m

#import "Worker.h"
#import "Project.h"
#import "Task.h"

@implementation Worker

@dynamic name;
@dynamic role;
@dynamic project;
@dynamic task;

@end

Usage
Versioning is a little tricky to test out. Start with the application from Recipe 10.8
and make sure to build it so that you can see the output in the console log. Then
go through the process of following this recipe to see if you can update the data
model gracefully. After you build and run this application you should see
something like this appear in your console log:

 NEW PROJECTS IN CONTEXT
 project.name = Proj1
 task.name = Task 1
 task.assignedTo = John
 task.name = Task 2
 task.assignedTo = (null)

11
Chapter

Objective-C Beyond
Mac and iOS
Objective-C is used almost exclusively with Mac and iOS, but it is possible to
use Objective-C on other platforms. This chapter discusses how to write and
compile Objective-C code on Windows 7 with GNUstep. This chapter also
demonstrates Objective-J, a programming language based on Objective-C that
is used to make web applications.

In this chapter, you will:

 Install GNUstep on Windows 7

 Write and compile a Hello World Objective-C program on
Windows 7

 Download and install the Objective-J and Cappuccino
Framework on Mac

 Create a Hello World Objective-J web app for the Safari web
browser

11.1 Installing GNUstep on Windows

Problem
You need to install GNUstep on your Windows 7 computer so you can write
Objective-C code that will run on a Windows 7 computer.

Solution
Download and install the GNUstep tools, including Foundation and AppKit, on
your Windows 7 computer in order to use Objective-C.

CHAPTER 11: Objective-C Beyond Mac and iOS 410

How It Works
The purpose of GNUstep is to make Objective-C, Foundation, and AppKit a
cross-platform development environment. GNUstep allows you to use the type
of code covered in this book on many different systems, including Windows.

But first you need to install GNUstep on your Windows computer. You can do
this by going to GNUstep’s Windows Installer page at
www.gnustep.org/experience/Windows.html.

You must download and install the following three packages in this order:

1. GNUstep MSYS System

2. GNUstep Core

3. GNUstep Devel

Leave all of the installation settings as the defaults. Upon completion, you will
see a new folder on your Windows drive, C:\GNUstep. This is where the GNUstep
development environment is located.

When you work with GNUstep, you will use a text editor to write code and a
command-line Shell (Shell is like the Mac Terminal) to compile code. The text
editor can be any program (like Notepad) that can save files as plain text. You
can open your Shell window by going to the Windows Start Menu  All
Programs  GNUstep  Shell.

When you open the Shell, you will see a black window with a prompt. You will
be located in the home directory of your GNUstep environment (not the
Windows root directory). See Figure 11-1 for an example of what the Shell looks
like.

http://www.gnustep.org/experience/Windows.html

CHAPTER 11: Objective-C Beyond Mac and iOS 411

Figure 11-1. GNUstep Shell

NOTE: Your screen may not list the files you see in Figure 11-1. The ls
command will list the files and folders located in the folder you are
currently in.

The GNUstep home directory is located at C:\GNUstep\msys\1.0\home\[USER-
NAME]. Note that [USER-NAME] is your Windows username. This is where you will
put the code files that you want to compile.

NOTE: The GNUstep Shell is like a mini Mac, Unix, or Linux
command-line utility, so those types of commands will work with the
GNUstep Shell. For instance, Figure 11-1 shows the use of the
command ls to show a listing of the folders in my GNUstep home
directory. You can also use commands like cd to change your current
directory and mkdir to make a new directory.

If you can open your GNUstep Shell and have installed all three of the packages
from the GNUstep web site, you are ready to move on to the Hello World
example shown in Recipe 11.2.

CHAPTER 11: Objective-C Beyond Mac and iOS 412

11.2 Objective-C Hello World on Windows

Problem
You want to write and compile a simple Objective-C program on Windows using
GNUstep.

Solution
You will need two files to do this on Windows: a text file with the source code
and a special text file called a make file. Make files are used to list the settings
that compilers need to turn your code into a compiled program.

How It Works
Use a text editor (Notepad is fine) to create a new text file and put this code into
the file:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]){

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 NSString *helloString = @"Hello World";
 NSLog(@"%@", helloString);

 [pool drain];
 [pool release];

 return 0;
}

This code is very similar to the code you’ve used in previous Hello World
Objective-C recipes with one exception. You can see that you are using pre-
ARC memory management here. The @autoreleasepool{} block is not
supported in GNUstep right now.

Save the file into the GNUstep home directory and make sure to name the file
main.m.

CHAPTER 11: Objective-C Beyond Mac and iOS 413

NOTE: If you’re using Notepad to edit your text files, take extra care to
make sure that Notepad is not appending the txt file extension to your
filename. Use the ls command from the GNUstep Shell to see the
“real” filename if your Windows file explorer automatically hides file
extensions.

Next, you need to write a make file. These files are used by the GNUstep
environment to compile your code into a program. Create a new text file and
include this text in the file:

include $(GNUSTEP_MAKEFILES)/common.make

TOOL_NAME = main
main_OBJC_FILES = main.m

include $(GNUSTEP_MAKEFILES)/tool.make

The parts of the make file that you will have to change for each program that
you want to compile are highlighted in bold. The very first (after TOOL_Name) is the
filename that your compiled program will have. This must match the second line
(right before the _OBJC_FILES). The last area in bold must match the file name of
the file that has the code that you want to compile.

Save the file with the name of GNUmakefile in GNUstep home directory. The file
should have no file extension. Open the GNUstep Shell by going to the Windows
Start Menu  All Programs  GNUstep  Shell. Make sure that you are in the
same location as your two files by typing in the ls command. You should see
your two files listed with the file extensions that you expect.

$ ls
GNUmakefile main.m

Now all you have to do is type in the word make and press return. You will see a
build log appear in your GNUstep Shell. If there are any errors, they will be
reported in here as well. See Figure 11-2 for an example of how this should look.

CHAPTER 11: Objective-C Beyond Mac and iOS 414

Figure 11-2. Build log from make command

You can test your Objective-C application by typing the name of the program
into the GNUstep Shell. The compiled program will be saved in a sub-directory
named obj so you will have to type in something like this:

./obj/main

See Figure 11-3 for an example and Listings 11-1 and 11-2 for the code.

Figure 11-3. GNUstep Hello World output

q

CHAPTER 11: Objective-C Beyond Mac and iOS 415

The Code
Listing 11-1. main.m

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]){

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 NSString *helloString = @"Hello World";
 NSLog(@"%@", helloString);

 [pool drain];
 [pool release];

 return 0;
}

Listing 11-2. GNUmakefile

include $(GNUSTEP_MAKEFILES)/common.make

TOOL_NAME = main
main_OBJC_FILES = main.m

include $(GNUSTEP_MAKEFILES)/tool.make

Usage
You can use this code as described in the ‘‘How It Works’’ section. You can also
try to add some other Objective-C objects to the main.m file to see how they
work in your Windows development environment. For example, to see how an
array would work, you can change main.m to look like this:

#import <Foundation/Foundation.h>

int main (int argc, const char * argv[]){

 NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init];

 NSString *helloString = @"Hello World";
 NSLog(@"%@", helloString);

 NSArray *listOfLetters1 = [NSArray arrayWithObjects:@"A", @"B", @"C", nil];
 NSLog(@"listOfLetters1 = %@", listOfLetters1);

 [pool drain];

CHAPTER 11: Objective-C Beyond Mac and iOS 416

 [pool release];

 return 0;
}

You would compile this again using the make command from the GNUstep Shell.
To see the new results, you can simply open the program by typing ./obj/main
again. This will give you output like this:

Hello World
listOfLetters1 = (A, B, C)

You can experiment with other Foundation classes here as well. Keep in mind
that even though GNUstep is an open source project and has a goal of
supporting all the Foundation components, there are really no guarantees that
everything will work as you expect. Obviously, the development environment
that you get on Windows is not the same as you are used to with Mac.

GNUstep provides similar functionality as Apple’s Objective-C, but these two
things are not identical. If you would like to learn more about this rich
framework, go to www.gnustep.org/ to get the current details, tutorials, and
documentation.

11.3 Downloading Objective-J for Web Apps

Problem
You want to be able to develop web apps with Objective-J using the same
coding patterns used for Mac and iOS apps with Objective-C.

Solution
Download the Starter Package from http://cappuccino.org/download/ to get
the frameworks that you need to develop apps using Objective-J.

How It Works
Objective-J brings Objective-C-----like code to web apps. Web apps are different
than Mac or iOS apps in that they run inside of a browser like Safari. Instead of
being deployed to a user’s Mac or iPhone, web apps are deployed to a web
server and users get the apps by pointing their browser to the web server. Web
apps have been around awhile, but what is neat about Objective-J is that you

http://www.gnustep.org/
http://cappuccino.org/download/

CHAPTER 11: Objective-C Beyond Mac and iOS 417

can use the sophisticated patterns and code used for desktop apps for your
web apps. Objective-J was built to closely mimic how Objective-C works and so
you will see very similar (but not identical) classes in Objective-J as you do in
Objective-C.

The ‘‘J’’ in Objective-J stands for JavaScript, and this underlies the key
difference between Objective-J and Objective-C. While Objective-C is an
extension of C, Objective-J is an extension of JavaScript (a web app language).
You will also see the name ‘‘Cappuccino’’ associated with Objective-J.
Cappuccino is the Objective-J equivalent of Objective-C Cocoa. Both words
refer to the application frameworks (as opposed to the pure programming
languages).

To get started with Objective-J, you will need a text editor like TextEdit on Mac,
a web browser like Safari on Mac, and you will need to download the Starter
Package from http://cappuccino.org/download/.

The Starter Package comes with a Hello World application already set up. Once
you’ve downloaded the Starter Package, just navigate to the folder New
Application and open the file named index.html in Safari. You’ll see a web
page pop up with the words ‘‘Hello World’’ on a label.

NOTE: This app will not work with Chrome unless you have the
Objective-J application deployed to a web server. This is due to
Chrome’s security settings.

Usage
In the next recipe, you’ll set up your own Hello World app along with some user
controls so you can see how Objective-J is used. When making your own apps,
you will generally use the example application provided in the Cappuccino
Starter Package as a template.

http://cappuccino.org/download/

CHAPTER 11: Objective-C Beyond Mac and iOS 418

11.4 Coding a Hello World Objective-J
Application

Problem
You want to set up a simple Objective-J application that says Hello World.

Solution
Create a folder for your Objective-J application that includes the Objective-J
frameworks that you downloaded with the Starter Package. You will also need
these files: Info.plist, index.html, main.j, and AppController.j in the
Objective-J application folder.

How It Works
Objective-J applications are not compiled like Objective-C Mac and iOS
applications. Instead, you house the files either locally on your desktop while
you are developing the application or on a web server when the application is
released. When a user points to an Objective-J file, the browser interprets the
code in the file and presents the results inside the browser window.

The first thing that you need to make is a new folder named helloworldapp that
will house your Objective-J application. You can simply use Finder on the Mac
to do this right on your desktop.

NOTE: You can develop these types of applications on any system
with any text editor and web browser, but I’ll be using the standard
Mac setup for this example.

Next, you need the Objective-J frameworks. Go to the Starter Package that you
downloaded in Recipe 11.3 and go into the NewApplication folder and locate the
folder labeled Frameworks. Copy the Frameworks folder. Go back into your
Objective-J app’s folder and paste the Frameworks folder in.

CHAPTER 11: Objective-C Beyond Mac and iOS 419

Info.plist
Now you need an Info.plist file. This file serves the same purpose as the file of
the same name does in Mac and iOS applications: it lists parameters that the
Objective-J application will need to function.

Add a new text file to your folder named Info.plist and add this code to the
file:

<?xml version="1.0" encoding="UTF-8"?>
<plist version="1.0">
<dict>
 <key>CPApplicationDelegateClass</key>
 <string>AppController</string>
</dict>
</plist>

This is XML file that tells the application that the app delegate class name is
AppController. This is a simple example. More complicated applications will
likely include additional settings in the info.plist file.

index.html
The index.html file is the web page that houses the Objective-J application, so
the code will be in HTML. The main purpose of this page is to load up the code
files that you are going to set up in the next two files. Like the Info.plist file,
add the index.html file to the app’s folder. It should contain this HTML code:

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head>
 <script type="text/javascript">
 OBJJ_MAIN_FILE = "main.j";
 </script>
 <script type="text/javascript" src="Frameworks/Objective-J/Objective-
J.js"></script>
 <title></title>
 </head>
</html>

This file is doing two major things: specifying the code file where the main
Objective-J program is located and pointing to the Objective-J frameworks.

http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 11: Objective-C Beyond Mac and iOS 420

main.j
The main.j file is where the main function is located. This serves the same
purpose as the main.m file does in an Objective-C Mac or iOS application,
namely main.j launches the application object (which in Objective-J is a
CPApplicationMain object).

Create a text file named main.j in your application folder and input this code:

@import <Foundation/Foundation.j>
@import <AppKit/AppKit.j>

@import "AppController.j"

function main(args, namedArgs){
 CPApplicationMain(args, namedArgs);
}

AppController.j
AppController acts as the app delegate for the web app, and like a Mac or iOS
application, this is where most of the initial application setup will take place.

NOTE: The app delegate class is specified in the Info.plist file.

Add a text file named AppController.j with this code into your application
folder:

@import <Foundation/CPObject.j>

@implementation AppController : CPObject{
}

- (void)applicationDidFinishLaunching:(CPNotification)aNotification{

}

@end

This code probably looks a bit familiar to you since it’s like the app delegate
code used in both iOS and Mac applications. In the
applicationDidFinishLaunching: method, you put the code that sets up the
app user interface.

Add this code to set up an app window and content view:

CHAPTER 11: Objective-C Beyond Mac and iOS 421

@import <Foundation/CPObject.j>

@implementation AppController : CPObject{
}

- (void)applicationDidFinishLaunching:(CPNotification)aNotification{

 var theWindow = [[CPWindow alloc] initWithContentRect:CGRectMakeZero()
 styleMask:CPBorderlessBridgeWindowMask];

 var contentView = [theWindow contentView];

}

@end

Now that you have a window and view, you can add a label to your web app.

@import <Foundation/CPObject.j>

@implementation AppController : CPObject{
}

- (void)applicationDidFinishLaunching:(CPNotification)aNotification{

 var theWindow = [[CPWindow alloc] initWithContentRect:CGRectMakeZero()
 styleMask:CPBorderlessBridgeWindowMask];

 var contentView = [theWindow contentView];

 var label = [[CPTextField alloc] initWithFrame:CGRectMakeZero()];
 [label setStringValue:@"Hello World!"];
 [label setFont:[CPFont boldSystemFontOfSize:24.0]];
 [label sizeToFit];
 [label setCenter:[contentView center]];
 [contentView addSubview:label];

 [theWindow orderFront:self];

}

@end

Use the CPTextField class to create a label here. To display the object, you
must add the label to the contentView subview collection with the addSubView:
message. This is where you’ll be saying Hello World. You will also notice that
you send the orderFront: message to the window. This essentially presents the
window in the browser. See Listings 11-3 through 11-6 for the code.

CHAPTER 11: Objective-C Beyond Mac and iOS 422

The Code
Listing 11-3. Info.plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0"><dict>
 <key>CPApplicationDelegateClass</key>
 <string>AppController</string>
</dict>
</plist>

Listing 11-4. index.html

<!DOCTYPE html
 PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head>
 <script type="text/javascript">
 OBJJ_MAIN_FILE = "main.j";
 </script>
 <script type="text/javascript" src="Frameworks/Objective-J/Objective-
J.js"></script>
 <title></title></head> </html>

Listing 11-5. main.j

@import <Foundation/Foundation.j>
@import <AppKit/AppKit.j>

@import "AppController.j"

function main(args, namedArgs){
 CPApplicationMain(args, namedArgs);
}

Listing 11-6. AppController.j

@import <Foundation/CPObject.j>

@implementation AppController : CPObject{
}

- (void)applicationDidFinishLaunching:(CPNotification)aNotification{

 var theWindow = [[CPWindow alloc] initWithContentRect:CGRectMakeZero()
 styleMask:CPBorderlessBridgeWindowMask];

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

CHAPTER 11: Objective-C Beyond Mac and iOS 423

 var contentView = [theWindow contentView];

 var label = [[CPTextField alloc] initWithFrame:CGRectMakeZero()];

 [label setStringValue:@"Hello World!"];
 [label setFont:[CPFont boldSystemFontOfSize:24.0]];
 [label sizeToFit];
 [label setCenter:[contentView center]];

 [contentView addSubview:label];

 [theWindow orderFront:self];
}

@end

Usage
Use this app by opening index.html in the Safari browser. You may use the
Safari File menu to open index.html or you can just drag the index.html file into
the Safari icon to open the app. You will see the Hello World message presented
in your browser window. See Figure 11-4 for an example of what it should look
like.

Figure 11-4. Hello World Objective-J application

CHAPTER 11: Objective-C Beyond Mac and iOS 424

If you want to deploy an application like this to users, you must provide the
entire folder on a web site. Users will just go to your web site to use the
application. You can use this app in any modern browser, including Microsoft
Internet Explorer. However, if you are using Chrome, you will not be able to test
Objective-J programs locally unless you have a web server running locally on
your Mac.

Objective-J is a rich platform in its own right and thus can’t be covered in detail
here. If you want to learn more about Objective-J, head over to
http://cappuccino.org/ to get tutorials and documentation.

11.5 Adding a Button to an Objective-J
Application

Problem
You want to add user controls like buttons to your web application.

Solution
Follow the same template that you used for the Hello World application to set up
the web app itself. To create a button in your web app, use the CPButton class in
the app controller.

How It Works
Set up the web application user controls in the AppController.j file. If there are
any controls that you want to keep a reference to, make sure that you declare
the object variables outside of a method so that the object variables will stay in
scope while the app is active.

Set up the app controller in the file AppController.j.

@import <Foundation/CPObject.j>

@implementation AppController : CPObject{
}

var label;
var contentView;

http://cappuccino.org/

CHAPTER 11: Objective-C Beyond Mac and iOS 425

- (void)applicationDidFinishLaunching:(CPNotification)aNotification{

 var theWindow = [[CPWindow alloc] initWithContentRect:CGRectMakeZero()
styleMask:CPBorderlessBridgeWindowMask];

 contentView = [theWindow contentView];

 var frame = CGRectMake(0, 13.0, 150.0, 24.0);

 label = [[CPTextField alloc] initWithFrame:frame];

 [label setStringValue:@"Press the Button"];
 [label setFont:[CPFont boldSystemFontOfSize:24.0]];
 [label sizeToFit];
 [label setCenter:[contentView center]];
 [contentView addSubview:label];

}

@end

This code is a modified version of the Hello World app in Recipe 11.4. The major
difference is that the contentView and label objects are declared outside the
function so that they will stay in scope.

To create the button, use the CPButton class and set the button’s properties.
CPButton works much like UIButton for iOS, and the pattern of use is about the
same. Here is how you add it to applicationDidFinishLaunching: method:

frame = CGRectMake(CGRectGetWidth([contentView bounds])/2.0 - 40, 
CGRectGetMaxY([label frame]) + 10, 80, 24)
var button = [[CPButton alloc] initWithFrame: frame];
[button setAutoresizingMask:CPViewMinXMargin |
 CPViewMaxXMargin |
 CPViewMinYMargin |
 CPViewMaxYMargin];
[button setTitle:"Make Gray"];
[button setTarget:self];
[button setAction:@selector(changeBackground:)];
[contentView addSubview:button];

This follows the target-action design pattern. You can see that the app
controller here is the target and the action is called changeBackground:.

Here’s the code for changeBackground: method to change the background color
of the app and add content to the label:

- (void)changeBackground:(id)aSender{
 var c = [CPColor lightGrayColor];

CHAPTER 11: Objective-C Beyond Mac and iOS 426

 [contentView setBackgroundColor:c];
 [label setStringValue:@"Color Changed!"];
}

That’s all you need to do to add a button to this web app! See Listing 11-7 for
the code.

The Code
Listing 11-7. AppController.j

@import <Foundation/CPObject.j>

@implementation AppController : CPObject{

}

var label;

var contentView;

- (void)applicationDidFinishLaunching:(CPNotification)aNotification{

 var theWindow = [[CPWindow alloc] initWithContentRect:CGRectMakeZero()

styleMask:CPBorderlessBridgeWindowMask];

 contentView = [theWindow contentView];

 var frame = CGRectMake(0, 13.0, 150.0, 24.0);

 label = [[CPTextField alloc] initWithFrame:frame];

 [label setStringValue:@"Press the Button"];

 [label setFont:[CPFont boldSystemFontOfSize:24.0]];

 [label sizeToFit];

 [label setCenter:[contentView center]];

 [contentView addSubview:label];

 frame = CGRectMake(CGRectGetWidth([contentView bounds])/2.0 - 40,

CGRectGetMaxY([label frame]) + 10, 80, 24);

 var button = [[CPButton alloc] initWithFrame: frame];

 [button setAutoresizingMask:CPViewMinXMargin |

 CPViewMaxXMargin |

 CPViewMinYMargin |

 CPViewMaxYMargin];

CHAPTER 11: Objective-C Beyond Mac and iOS 427

 [button setTitle:"Make Gray"];

 [button setTarget:self];

 [button setAction:@selector(changeBackground:)];

 [contentView addSubview:button];

 [theWindow orderFront:self];

}

- (void)changeBackground:(id)aSender{

 var c = [CPColor lightGrayColor];

 [contentView setBackgroundColor:c];

 [label setStringValue:@"Color Changed!"];

}

@end

Usage
To use this app, re-use the template that you set up with the Hello World
example in Recipe 11.4. Replace the code in the file AppController.j with the
code from Listing 11.7.

Run this app by opening index.html in the Safari web browser. You may use the
Safari File menu to open index.html file or you can just drag index.html into the
Safari icon to open the app. You will see a button and a label in the browser
window. Click the button and see how the label content changes and the
background color turns to light gray.

Index

 A, B
Application development

class, 19–22
console, 4–6
custom class

class method, 16–18
creation, 7–9
instance method, 18–19

iOS application
attributes, 36
creation, 35–36
delegation, 45–48
picker view, 48
simulator, 40
target-action, 40–44
templates, 35
user controls, 44
Xcode, 34–40

Mac application
application settings, 32
attributes, 32–33
delegatation, 22
method execution, 30
templates, 30–31
user controls, 26–30
web-based, terminal

application, 22–25
Xcode, 30–34

NSLog, 4–6
property assessors

@synthesize, 14–16
attributes, 10

code, 9–13
terminal command, 2–4

Aggregate information, key paths
@distinctUnionOfObjects

operators, 311–313
arrays, 312
average priority level, 311–313
code testing, 313–317
usage, 317

Array
count, 86–87
creation, 82–84
iteration, 87–90
manipulation, 100–103
NSArray and NSMutableArray

constructors, 83
NSPredicate comparison

operators, 96
queries, 95–100
reading file system, 106–107
referencing objects, 84–86, 110–

111
save option, file system, 104–105
sorting, 90–95

Asynchronous processes
GCD

dispatch_async function, 223–
224

NSTread, 222–229
serial queues, 230–235

INDEX 430

Asynchronous processes, (cont.)
NSOperationQueue

bigTaskAction method, 237–
238

implementation, 235–241
main and serial queue, 236
viewDidLoad method, 237

threads
@synchronized, 217–222
AppDelegate.h, 200–203
autorelease, 199–200
background tasks, 204–212
NSLock, 212–217
NSNumber object, 205, 207
NSObject method, 204
NSThread, 198–199
type cast, 207
UIProgressView, 204
updateUIWhen, 206
ViewController, 204–205
viewDidLoad method, 213

Automatic Reference Counting (ARC),
263, 265–267

 C
Consume web content. See Web

content
Core data

application, managed object
@dynamic keyword, 353
Objective-C class, 352–354
test code, 354–357
usage, 357

data persistence, 339
entity description

AppDelegate code, 351–352
data model file, 349
description attribute, 350
editor screen, 349–350
project completion, 350–351
project entity, 350
usage, 352

Xcode, 349–350
iOS/Mac application

AppModel, 346–348
data schemas, 343
framework, 340–342
managed objects, 345
readonly properties, 344
stack, 342–346
usage, 348
Xcode, 340

managed object
data store, 358
objects, 357–358
project class, 357–358
test code, 358–361
usage, 361

one-to-many relationship
code testing, 391–397
entity description, 385
interfaces, 389
object graph, 385
project, task and worker, 387
task code, 385–391
usage, 397
visual editor style, 388

one-to-one relationship
makeNewProject function, 378
object graph, 375
project to worker relationship,

375–380
test code, 380–384
usage, 384
worker entity, 376

posting changes
console log window, 374
save/changes, 368–369
test code, 369–374
usage, 374

retrieve objects
data store, 362–363
fetch request, 362
test code, 363–367
usage, 367–368

INDEX 431

version management
code testing, 401–408
current drop-down box, 399
data model, 397–401
one-to-one relationship, 400
usage, 408

 D, E
Dates

add/subtract, 191–192
comparison, 183–187
component, 181–183
format, 189–190
NSCalendar constants, 184
NSDate class method, 179–180
string conversion, 187–189
timer, schedule code, 193–195

Dictionaries
count, 112–113
creation, 107–110
iteration, 113–115
manipulation, 115–117
reading file system, 120–122
saving object, file system, 117–

120

 F
File system

attributes, 140–142
cache content, 170–177
change attributes, 155–158
constructors, 166–167
delegation, 158–165
directories

add, move, copy and remove,
145–148

sub-folders, 143–145
iOS application

reference key directories,
136–139

system directories, 138
UI, 176

keys, 141–142
Mac application

domain masks, 135
reference key directories,

133–136
system directory constants,

134
managing files, 149–152
NSCache, 170–177
NSData, data, 165–170
NSFileManager, 158–165
NSMutableData mutation

methods, 167–168
references, 131–133
status, 152–155

 G, H
Garbage collection, 264, 280–281
GNUstep, Windows 7

command-line, 411
home directory, 411
installation, 409
packages, 410
shell window, 410–411
tools, 409

Grand Central Dispatch (GCD)
@synthesize statement, 230
bigTaskAction method, 231–232
blocks, 223
dispatch_async function, 223–

224
main queue, 226
multiple threads, 222–229
NSThread, 223
serial queues, 230–235

 I
iOS application

attributes, 36, 40
creation, 35–36
delegation, 45–48
picker view, 48

INDEX 432

iOS application (cont.)
reference key directories, 136–

139
strings

reading file system, 54–57
writing file system, 59–62

system directories, 138
target-action, 40–44
templates, 35
UI, 176
user controls, 44
Xcode, 34–40

 J
JSON

NSJSONSerialization, 254
Parser, 254–255
web services, 253–256

 K, L
Key-value coding (KVC)

get properties, 298–299
NSOject, 297
set properties, 299–300
test code, 300–304
usage, 304

 M, N
Mac application

application settings, 32
attributes, 32–33
delegatation, 22
domain masks, 135
garbage collection, 280–281
method execution, 30
reference key directories, 133–

136
strings

reading file system, 52–54
writing file system, 57–59

system directory constants, 134

templates, 30–31
user controls, 26–30
web-based, terminal application,

22–25
window, 25
Xcode, 30–34

Memory management
applications, 261–262
ARC, 263, 265–267
autorelease, 263, 275–280
custom classes, 270–274
dealloc method, 272
garbage collection, 264, 280–281
lifecycle, 262
options, 264
ownership, 262
property references, 271–272
reference counting, 263, 267–270

Model-View-Controller (MVC), 285

 O, P, Q, R
Object collections

array
contents, 100–103
count, 86–87
creation, 82–84
iteration, 87–90
manipulation, 100–103
NSArray and NSMutableArray

constructors, 83
NSPredicate comparison

operators, 96
queries, 95–100
reading file system, 106–107
referencing objects, 84–86,

110–111
save option, file system, 104–

105
sorting, 90–95

dictionaries
count, 112–113
creation, 107–110

INDEX 433

iteration, 113–115
manipulation, 115–117
NSDictionary and

NSMutableDictionary
constructors, 108

reading file system, 120–122
saving object, file system,

117–120
set

comparison, 125–127
count, 124–125
creation, 122–124
iteration, 128–129
manipulation, 130–131

Object graphs
aggregate information, key paths

@distinctUnionOfObjects
operators, 311–313

arrays, 312
average priority level, 311–

313
code testing, 313–317
usage, 317

archive
code testing, 332–337
file system, 330
NSCoding protocol, 330–332
NSKeyedArchiver, 332
usage, 337

classes and objects
built-in methods, 323
entity, 284
task implementation, 323–326
test code, 326–329
usage, 329

creation, 285
entity, 283–284
initialization, 289–292
key paths

code testing, 306–310
usage, 310–311
valueForKey and

setValueForKey, 305–306

key-value coding
get properties, 298–299
Mac command-line, 304–305
NSObject, 297
set properties, 299–300
test code, 300–304

network, 284–285
object, 284
observer pattern implementation

class definition, 318
code testing, 320–323
connection, 318
dealloc method, 318
key-value observation, 318–

320
usage, 323

overriding, 286
project, 288–289
task, 286–288
test code, 292–296
usage, 296–297
worker, 285–286

Objective-C
GNUstep, Windows 7

command-line, 411
home directory, 411
installation, 409
packages, 410
shell window, 410–411
tools, 409

Hello World, Windows 7
build log, 413–414
code testing, 415
make and text file, 412
output, 414
text file creation, 412–413
usage, 415–416
write and compile, 412

Objective-J
button, 424–427
Hello World, 418–424
web application, 416–417

web applications, 409

INDEX 434

Objective-J
button

AppController.j file, 424–426
CPButton class, 424
target-action, 425
test code, 426–427
usage, 427
user controls, 424

Hello World
AppController, 420–421
code testing, 422–423
folders and packages, 418
helloworldapp, 418
index.html file, 419
Info.plist file, 419
main.j file, 420
Safari browser, 423–424

web application, 416–417
One-to-many relationship

code testing, 391–397
entity description, 385
interfaces, 389
object graph, 385
project, task and worker, 387
task code, 385–391
usage, 397
visual editor style, 388

One-to-one relationship
makeNewProject function, 378
object graph, 375
project to worker relationship,

375–380
test code, 380–384
usage, 384
worker entity, 376

 S
Strings

comparison operator (==), 63–65
contain key phrases, 69–71
file identity options, 72
foundation framework, 49

localization, 71–74
manipulation, 65–69
numbers

currency, scientific notation
and spelled out, 78–80

formats, 78–80
math functions, 76–78
primitive type/NSNumber

object, 75–76
styles, 79

objects, 50–52
reading file system

iOS application, 54–57
Mac application, 52–54

search options, 69–71
writing file system

iOS application, 59–62
Mac application, 57–59

 T, U
Terminal application, 2–4
Threads

@synchronized, 217–222
autorelease, 199–200
background tasks, 204–212
code testing, 200–203
main thread, 198
NSLock, 212–217
NSNumber object, 205, 207
NSObject method, 204
NSThread, 198–199
processes, 198
type cast, 207
UIProgressView, 204
updateUIWhen, 206
ViewController, 204–205
viewDidLoad method, 213

Timer, 193–195

 V
Version management

code testing, 401–408

 i

Objective-C Recipes
A Problem-Solution Approach

■ ■ ■

Matthew Campbell

ii

Objective-C Recipes

Copyright © 2012 by Matthew Campbell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or
hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or
scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer
system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is
permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and
permission for use must always be obtained from Springer. Permissions for use may be obtained through
RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective
Copyright Law.

ISBN-13 (pbk): 978-1-4302-4371-7

ISBN-13 (electronic): 978-1-4302-4372-4

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an editorial
fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if the y are not
identified as s uch, is not to be taken as an expression of opinion as to whether or not they are subje ct to
proprietary rights.

While the a dvice and infor mation in this book are belie ved to be tru e and accurate at the date of pub lication,
neither th e aut hors nor the e ditors n or th e publisher ca n accept any legal responsibility for any error s or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material
contained herein.

President and Publisher: Paul Manning
Lead Editor: Steve Anglin
Developmental Editor: Matthew Moodie and Louise Corrigan
Technical Reviewer: Anselm Bradford
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Louise Corrigan, Morgan Ertel, Jonathan

Gennick, Jonathan Hassell, Robert Hutchinson, Michelle Lowman, James Markham, Matthew Moodie,
Jeff Olson, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Dominic Shakeshaft, Gwenan Spearing,
Matt Wade, Tom Welsh

Coordinating Editor: Corbin Collins
Copy Editor: Mary Behr
Compositor: Bytheway Publishing Services
Indexer: SPi Global
Artist: SPi Global
Cover Designer: Anna Ishchenko

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 6th
Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.com, or
visit www.springeronline.com.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Special Bulk Sales–
eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to readers at
www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

mailto:orders-ny@springer-sbm.com
http://www.springeronline.com
mailto:rights@apress.com
http://www.apress.com
http://www.apress.com/bulk-sales
http://www.apress.com
http://www.apress.com/source-code/

iv

Contents

■ About the Author... xx
■ About the Technical Reviewer ... xxi
■ Acknowledgments .. xxii
■ Preface..xxxiii
■ Chapter 1: Application Development... 1
1.1 Creating a Terminal Application ... 2

Problem ..2
Solution ..2
How It Works ..2
The Code...3
Usage..3

1.2 Writing to the Console... 4
Problem ..4
Solution ..4
How It Works ..4
The Code...5
Usage..6

1.3 Creating a New Custom Class ... 7
Problem ..7
Solution ..7
How It Works ..7
The Code...8
Usage..9

1.4 Code Property Assessors .. 9
Problem ..9
Solution ..9
How It Works ..9
The Code...11
Usage..12

1.5 Code Property Assessors with @synthesize... 13
Problem ..13

CONTENTS

 v

Solution ..13
How It Works ..13
The Code...14
Usage..15

1.6 Adding a Class Method to a Custom Class.. 15
Problem ..15
Solution ..15
How It Works ..15
The Code...16
Usage..17

1.7 Adding an Instance Method to a Custom Class... 17
Problem ..17
Solution ..17
How It Works ..17
Usage..18

1.8 Extending a Class with a Category ... 18
Problem ..18
Solution ..18
How It Works ..19
The Code...19
Usage..20

1.9 Creating a Mac Window-Based Application from Terminal 21
Problem ..21
Solution ..21
How It Works ..21
The Code...23
Usage..24

1.10 Adding a User Control to a Mac Application ... 25
Problem ..25
Solution ..25
How It Works ..25
The Code...26
Usage..27

1.11 Creating a Mac Window-Based Application From Xcode.......................... 29
Problem ..29
Solution ..30
How It Works ..30
The Code...32
Usage..33

1.12 Creating an iOS Application from Xcode... 33
Problem ..33
Solution ..34

CONTENTS

vi

How It Works ..34
The Code...37
Usage..38

1.13 Adding User Controls to an iOS Application with Target-Action............... 39
Problem ..39
Solution ..39
How It Works ..40
The Code...41
Usage..42

1.14 Adding User Controls to an iOS Application with Delegation.................... 43
Problem ..43
Solution ..44
How It Works ..44
The Code...45
Usage..46

■ Chapter 2: Working With Strings and Numbers .. 49
2.1 Creating a String Object.. 50

Problem ..50
Solution ..50
How It Works ..50
The Code...51
Usage..52

2.2 Reading Strings from Files on a Mac.. 52
Problem ..52
Solution ..52
How It Works ..52
The Code...53
Usage..54

2.3 Reading Strings from Files on iOS .. 54
Problem ..54
Solution ..54
How It Works ..54
The Code...56
Usage..56

2.4 Writing Strings to Files on a Mac.. 57
Problem ..57
Solution ..57
How It Works ..57
The Code...59
Usage..59

2.5 Writing Strings To Files On iOS ... 59

CONTENTS

 vii

Problem ..59
Solution ..60
How It Works ..60
The Code...61
Usage..62

2.6 Comparing Strings .. 63
Problem ..63
Solution ..63
How It Works ..63
The Code...64
Usage..65

2.7 Manipulating Strings .. 65
Problem ..65
Solution ..65
How It Works ..66
The Code...67
Usage..68

2.8 Searching Through Strings ... 68
Problem ..68
Solution ..69
How It Works ..69
The Code...69
Usage..70

2.9 Localizing Strings ... 70
Problem ..70
Solution ..70
How It Works ..71
The Code...73
Usage..73

2.10 Converting Numbers to Strings... 74
Problem ..74
Solution ..74
How It Works ..74
The Code...74
Usage..75

2.11 Converting Strings to Numbers... 75
Problem ..75
Solution ..75
How It Works ..76
The Code...76
Usage..77

2.12 Formatting Numbers... 77

CONTENTS

viii

Problem ..77
Solution ..77
How It Works ..77
The Code...78
Usage..79

■ Chapter 3: Working With Object Collections ... 81
3.1 Creating an Array.. 82

Problem ..82
Solution ..82
How It Works ..82
The Code...83
Usage..84

3.2 Referencing Objects in Arrays .. 84
Problem ..84
Solution ..85
How It Works ..85
The Code...85
Usage..86

3.3 Obtaining the Array Count .. 86
Problem ..86
Solution ..86
How It Works ..86
The Code...87
Usage..87

3.4 Iterating Through an Array ... 87
Problem ..87
Solution ..87
How It Works ..88
The Code...89
Usage..90

3.5 Sorting an Array.. 90
Problem ..90
Solution ..90
How It Works ..91
The Code...92
Usage..95

3.6 Querying an Array... 95
Problem ..95
Solution ..95
How It Works ..96
The Code...98
Usage..100

CONTENTS

 ix

3.7 Manipulating Array Contents .. 100
Problem ..100
Solution ..100
How It Works ..100
The Code...101
Usage..103

3.8 Saving Arrays to the File System.. 104
Problem ..104
Solution ..104
How It Works ..104
The Code...105
Usage..105

3.9 Reading Arrays from the File System ... 106
Problem ..106
Solution ..106
How It Works ..106
The Code...106
Usage..107

3.10 Creating a Dictionary .. 107
Problem ..107
Solution ..107
How It Works ..108
The Code...109
Usage..110

3.11 Referencing Objects in Arrays .. 110
Problem ..110
Solution ..110
How It Works ..110
The Code...111
Usage..111

3.12 Obtaining the Dictionary Count ... 112
Problem ..112
Solution ..112
How It Works ..112
The Code...112
Usage..113

3.13 Iterating Through a Dictionary.. 113
Problem ..113
Solution ..113
How It Works ..113
The Code...114
Usage..115

CONTENTS

x

3.14 Manipulating Dictionary Contents .. 115
Problem ..115
Solution ..115
How It Works ..115
The Code...116
Usage..117

3.15 Saving Dictionaries to the File System ... 117
Problem ..117
Solution ..117
How It Works ..118
The Code...118
Usage..119

3.16 Reading Dictionaries from the File System... 119
Problem ..119
Solution ..120
How It Works ..120
The Code...120
Usage..121

3.17 Creating a Set ... 121
Problem ..121
Solution ..121
How It Works ..121
The Code...122
Usage..123

3.18 Obtaining the Set Count .. 123
Problem ..123
Solution ..123
How It Works ..123
The Code...124
Usage..124

3.19 Comparing Sets... 124
Problem ..124
Solution ..124
How It Works ..125
The Code...125
Usage..126

3.20 Iterating Through a Set ... 127
Problem ..127
Solution ..127
How It Works ..127
The Code...128
Usage..128

CONTENTS

 xi

3.21 Manipulating Set Contents.. 129
Problem ..129
Solution ..129
How It Works ..129
The Code...130
Usage..130

■ Chapter 4: File System .. 131
4.1 Referencing and Using the File Manager .. 131

Problem ..131
Solution ..131
How It Works ..132
The Code...132
Usage..133

4.2 Getting Mac System Directory References ... 133
Problem ..133
Solution ..133
How It Works ..134
The Code...135
Usage..136

4.3 Getting Key iOS Directory References... 136
Problem ..136
Solution ..136
How It Works ..137
The Code...138
Usage..139

4.4 Getting File Attributes... 140
Problem ..140
Solution ..140
How It Works ..140
The Code...142
Usage..142

4.5 Getting the List of Files and Sub-Directories in a Directory...................... 143
Problem ..143
Solution ..143
How It Works ..143
The Code...144
Usage..144

4.6 Managing Directories.. 145
Problem ..145
Solution ..145
How It Works ..146

CONTENTS

xii

The Code...147
Usage..148

4.7 Managing Files.. 149
Problem ..149
Solution ..149
How It Works ..149
The Code...150
Usage..152

4.8 Checking File Status ... 152
Problem ..152
Solution ..152
How It Works ..153
The Code...153
Usage..155

4.9 Changing File Attributes ... 155
Problem ..155
Solution ..155
How It Works ..155
The Code...156
Usage..157

4.10 Using Delegation with NSFileManager.. 158
Problem ..158
Solution ..158
How It Works ..158
The Code...162
Usage..164

4.11 Working with Data Using NSData.. 165
Problem ..165
Solution ..165
How It Works ..165
The Code...168
Usage..169

4.12 Caching Content with NSCache... 170
Problem ..170
Solution ..170
How It Works ..170
The Code...173
Usage..176

■ Chapter 5: Working With Dates, Times, and Timers.................................... 179
5.1 Creating a Date Object for Today .. 179

Problem ..179

CONTENTS

 xiii

Solution ..180
How It Works ..180
The Code...180
Usage..180

5.2 Creating Custom Dates by Component. .. 181
Problem ..181
Solution ..181
How It Works ..181
The Code...182
Usage..183

5.3 Comparing Two Dates ... 183
Problem ..183
Solution ..183
How It Works ..183
The Code...185
Usage..187

5.4 Converting a String to a Date.. 187
Problem ..187
Solution ..187
How It Works ..187
The Code...188
Usage..188

5.5 Formatting Dates for Display . .. 189
Problem ..189
Solution ..189
How It Works ..189
The Code...190
Usage..190

5.6 Adding and Subtracting Dates .. 191
Problem ..191
Solution ..191
How It Works ..191
The Code...192
Usage..192

5.7 Using a Timer to Schedule and Repeat Tasks. ... 193
Problem ..193
Solution ..193
How It Works ..193
The Code...194
Usage..195

CONTENTS

xiv

■ Chapter 6: Asynchronous Processing ... 197
6.1 Running a Process in a New Thread ... 198

Problem ..198
Solution ..198
How It Works ..198
The Code...200
Usage..203

6.2 Communicating Between the Main Thread and a Background Thread..... 204
Problem ..204
Solution ..204
How It Works ..204
The Code...209
Usage..211

6.3 Locking Threads with NSLock... 212
Problem ..212
Solution ..212
How It Works ..212
The Code...214
Usage..217

6.4 Locking Threads with @synchronized.. 217
Problem ..217
Solution ..218
How It Works ..218
The Code...219
Usage..221

6.5 Asynchronous Processing with Grand Central Dispatch (GCD)................. 222
Problem ..222
Solution ..223
How It Works ..223
The Code...227
Usage..229

6.6 Using Serial Queues in GCD... 230
Problem ..230
Solution ..230
How It Works ..230
The Code...232
Usage..235

6.7 Implement Asynchronous Processing Using NSOperationQueue.............. 235
Problem ..235
Solution ..236
How It Works ..236

CONTENTS

 xv

The Code...238
Usage..241

■ Chapter 7: Consuming Web Content.. 243
7.1 Downloading a File ... 243

Problem ..243
Solution ..243
How It Works ..244
The Code...244
Usage..245

7.2 Consuming a Web Service Using XML... 245
Problem ..245
Solution ..246
How It Works ..246
The Code...251
Usage..252

7.3 Consuming a Web Service Using JSON ... 253
Problem ..253
Solution ..253
How It Works ..254
The Code...255
Usage..256

7.4 Asynchronously Consuming Web Content .. 257
Problem ..257
Solution ..257
How It Works ..257
The Code...259
Usage..260

■ Chapter 8: Memory Management.. 261
8.1 Understanding Memory Management... 261

Problem ..261
Solution ..261

8.2 Setting up an Application without ARC... 265
Problem ..265
Solution ..265
How It Works ..265
The Code...266
Usage..267

8.3 Using Reference Counting to Manage Memory... 267
Problem ..267
Solution ..267
How It Works ..267

CONTENTS

xvi

The Code...269
Usage..270

8.4 Adding Memory Management to Your Custom Classes 270
Problem ..270
Solution ..270
How It Works ..270
The Code...273
Usage..274

8.5 Using Autorelease ... 275
Problem ..275
Solution ..275
How It Works ..275
The Code...277
Usage..280

8.6 Enabling Garbage Collection for Mac Applications................................... 280
Problem ..280
Solution ..280
How It Works ..281

■ Chapter 9: Working With Object Graphs.. 283
Object-Orientated Vocabulary... 283

Entity ...283
Class ...284
Objects ...284
The Object Graph ..284

9.1 Creating an Object Graph.. 285
Problem ..285
Solution ..285
How It Works ..285
The Code...292
Usage..296

9.2 Using Key-Value Coding.. 297
Problem ..297
Solution ..297
How It Works ..297
The Code...300
Usage..304

9.3 Using Key Paths in Your Object Graph Problem.. 305
Solution ..305
How It Works ..305
The Code...306
Usage..310

CONTENTS

 xvii

9.4 Aggregating Information with Key Paths.. 311
Problem ..311
Solution ..312
How It Works ..312
The Code...313
Usage..317

9.5 Implementing the Observer Pattern.. 318
Problem ..318
Solution ..318
How It Works ..318
The Code...320
Usage..323

9.6 Inspecting Classes and Objects .. 323
Problem ..323
Solution ..323
How It Works ..323
The Code...326
Usage..329

9.7 Archiving Your Object Graph... 330
Problem ..330
Solution ..330
How It Works ..330
The Code...332
Usage..337

■ Chapter 10: Core Data ... 339
10.1 Adding Core Data Support to an Application .. 340

Problem ..340
Solution ..340
The Code...346
Usage..348

10.2 Adding an Entity Description .. 348
Problem ..348
Solution ..349
How It Works ..349
The Code...351
Usage..352

10.3 Adding a Managed Object to an Application... 352
Problem ..352
Solution ..352
How It Works ..352
The Code...354

CONTENTS

xviii

Usage..357
10.4 Adding a Managed Object to Core Data .. 357

Problem ..357
Solution ..357
How It Works ..357
The Code...358
Usage..361

10.5 Retrieving Objects from the Data Store .. 362
Problem ..362
Solution ..362
How It Works ..362
The Code...363
Usage..367

10.6 Posting Changes to the Data Store ... 368
Problem ..368
Solution ..368
How It Works ..368
The Code...369
Usage..374

10.7 Using One-To-One Relationships with Core Data 375
Problem ..375
Solution ..375
How It Works ..375
The Code...380
Usage..384

10.8 Using One-To-Many Relationships with Core Data 385
Problem ..385
Solution ..385
How It Works ..385
The Code...391
Usage..397

10.9 Managing Data Store Versioning .. 397
Problem ..397
Solution ..398
How It Works ..398
The Code...401
Usage..408

■ Chapter 11: Objective-C Beyond Mac and iOS... 409
11.1 Installing GNUstep on Windows .. 409

Problem ..409
Solution ..409

CONTENTS

 xix

How It Works ..410
11.2 Objective-C Hello World on Windows.. 412

Problem ..412
Solution ..412
How It Works ..412
The Code...415
Usage..415

11.3 Downloading Objective-J for Web Apps.. 416
Problem ..416
Solution ..416
How It Works ..416
Usage..417

11.4 Coding a Hello World Objective-J Application .. 417
Problem ..417
Solution ..418
How It Works ..418
The Code...422
Usage..423

11.5 Adding a Button to an Objective-J Application....................................... 424
Problem ..424
Solution ..424
How It Works ..424
The Code...426
Usage..427
Who This Book Is For ..xxiii
What You Will Learn..xxiii
Downloading the Code..xxiv
Contacting the Author...xxiv

xx

About the Author

 Matthew Campbell has trained over 800 new iOS developers at
the Mobile App Mastery Institute and iOS Code Camp. He also
developed Tasting Notes, a universal app for wine lovers. Matt is the
lead blogger for http://HowToMakeiPhoneApps.com, a blog about
creating iPhone apps.

http://HowToMakeiPhoneApps.com

 xxi

About the Technical Reviewer

 Anselm Bradford is a lecturer in digital media at the Auckland
University of Technology (AUT) in New Zealand where he researches
interactive media, web media, and visual communication. He has been a
technical reviewer on several iOS-related books and is the lead author of
HTML5 Mastery and a co-author of CSS3 Solutions. He may be found
@anselmbradford on Twitter and occasionally blogs at
AnselmBradford.com.

xxii

Acknowledgments

It’s tempting to think that a book like this is the sole work of the person whose name is stamped
on the front cover. Of course, that’s not true, and this book never would have happened at all
without the support and occasional ego massaging from the supportive editors at Apress.

In particular, I’d like to acknowledge Louise Corrigan, whose comments peppered
throughout our shared documents encouraged me to finish each chapter. I’d also like to
acknowledge our technical reviewer, Anselm Bradford, who helped me make sure that the code
wasn’t going horribly wrong and would work for you.

I’d like to acknowledge Corbin Collins, who helped keep us all on track. It is way too easy
to miss a deadline or two without the occasional nudge to keep us all in line, and Corbin provided
that.

Finally, I’d like to give a shout out to all the readers of the
http://HowToMakeiPhoneApps.com blog and the Mobile App Mastery Institute students. Everything
in this book is possible because of your generous support and attention throughout the years. I
never would have written this book without your feedback and validation.

http://HowToMakeiPhoneApps.com

 xxiii

Preface

Today, learning programming is about learning how to shape our world. Objective-C
programmers are in a unique position to create applications that people all over the world can
use in their daily lives.

Objective-C is a delight to use. While other programming languages can feel clumsy at
times, Objective-C will show you its power and reach with grace. Problems that seem intractable
in other programming languages melt away in Objective-C.

At its core, this book is about exploring Objective-C in the language’s natural
environment. Objective-C has a story to tell in code that is about computer science and solving
problems in an elegant way.

INDEX 435

current drop-down box, 399
data model, 397–401
one-to-one relationship, 400
usage, 408

 W
Web content

asynchronous, 257–260
file download, 243–245
JSON, 253–256
XML, 245–253

Windows 7
GNUstep

command-line, 411
home directory, 411
installation, 409
packages, 410
shell window, 410–411
tools, 409

Hello World
build log, 413–414
code testing, 415
make file, 413–414
output, 414
text file creation, 412–413
usage, 415–416
write and compile, 412

 X, Y, Z
XML

delegate method, 248
LinkShortener, 251–252
NSMutableString, 249
NSURL object and NSData, 246
NSXMLParser, 247–251
parser, 247–251
URL function, 252–253
web services, 245

	Cover

	Contents at a Glance

	Contents

	About the Author

	About the Technical Reviewer

	Acknowledgments

	Preface

	Application Development
	1.1 Creating a Terminal Application
	Problem
	Solution
	How It Works
	The Code
	Usage

	1.2 Writing to the Console
	Problem
	Solution
	How It Works
	The Code
	Usage

	1.3 Creating a New Custom Class
	Problem
	Solution
	How It Works
	The Code
	Usage

	1.4 Code Property Assessors
	Problem
	Solution
	How It Works
	The Code
	Usage

	1.5 Code Property Assessors with @synthesize
	Problem
	Solution
	How It Works
	The Code
	Usage

	1.6 Adding a Class Method to a Custom Class
	Problem
	Solution
	How It Works
	The Code
	Usage

	1.7 Adding an Instance Method to a Custom Class
	Problem
	Solution
	How It Works
	Usage

	1.8 Extending a Class with a Category
	Problem
	Solution
	How It Works
	The Code
	Usage

	1.9 Creating a Mac Window-Based Application from Terminal
	Problem
	Solution
	How It Works
	The Code
	Usage

	1.10 Adding a User Control to a Mac Application
	Problem
	Solution
	How It Works
	The Code
	Usage

	1.11 Creating a Mac Window-Based Application From Xcode
	Problem
	Solution
	How It Works
	The Code
	Usage

	1.12 Creating an iOS Application from Xcode
	Problem
	Solution
	How It Works
	The Code
	Usage

	1.13 Adding User Controls to an iOS Application with Target-Action
	Problem
	Solution
	How It Works
	The Code
	Usage

	1.14 Adding User Controls to an iOS Application with Delegation
	Problem
	Solution
	How It Works
	The Code
	Usage

	Working With Strings and Numbers
	2.1 Creating a String Object
	Problem
	Solution
	How It Works
	The Code
	Usage

	2.2 Reading Strings from Files on a Mac
	Problem
	Solution
	How It Works
	The Code
	Usage

	2.3 Reading Strings from Files on iOS
	Problem
	Solution
	How It Works
	The Code
	Usage

	2.4 Writing Strings to Files on a Mac
	Problem
	Solution
	How It Works
	The Code
	Usage

	2.5 Writing Strings To Files On iOS
	Problem
	Solution
	How It Works
	The Code
	Usage

	2.6 Comparing Strings
	Problem
	Solution
	How It Works
	The Code
	Usage

	2.7 Manipulating Strings
	Problem
	Solution
	How It Works
	The Code
	Usage

	2.8 Searching Through Strings
	Problem
	Solution
	How It Works
	The Code
	Usage

	2.9 Localizing Strings
	Problem
	Solution
	How It Works
	The Code
	Usage

	2.10 Converting Numbers to Strings
	Problem
	Solution
	How It Works
	The Code
	Usage

	2.11 Converting Strings to Numbers
	Problem
	Solution
	How It Works
	The Code
	Usage

	2.12 Formatting Numbers
	Problem
	Solution
	How It Works
	The Code
	Usage

	Working with Object Collections
	3.1 Creating an Array
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.2 Referencing Objects in Arrays
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.3 Obtaining the Array Count
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.4 Iterating Through an Array
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.5 Sorting an Array
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.6 Querying an Array
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.7 Manipulating Array Contents
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.8 Saving Arrays to the File System
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.9 Reading Arrays from the File System
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.10 Creating a Dictionary
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.11 Referencing Objects in Arrays
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.12 Obtaining the Dictionary Count
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.13 Iterating Through a Dictionary
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.14 Manipulating Dictionary Contents
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.15 Saving Dictionaries to the File System
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.16 Reading Dictionaries from the File System
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.17 Creating a Set
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.18 Obtaining the Set Count
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.19 Comparing Sets
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.20 Iterating Through a Set
	Problem
	Solution
	How It Works
	The Code
	Usage

	3.21 Manipulating Set Contents
	Problem
	Solution
	How It Works
	The Code
	Usage

	File System
	4.1 Referencing and Using the File Manager
	Problem
	Solution
	How It Works
	The Code
	Usage

	4.2 Getting Mac System Directory References
	Problem
	Solution
	How It Works
	The Code
	Usage

	4.3 Getting Key iOS Directory References
	Problem
	Solution
	How It Works
	The Code
	Usage

	4.4 Getting File Attributes
	Problem
	Solution
	How It Works
	The Code
	Usage

	4.5 Getting the List of Files and SubDirectories in a Directory
	Problem
	Solution
	How It Works
	The Code
	Usage

	4.6 Managing Directories
	Problem
	Solution
	How It Works
	The Code
	Usage

	4.7 Managing Files
	Problem
	Solution
	How It Works
	The Code
	Usage

	4.8 Checking File Status
	Problem
	Solution
	How It Works
	The Code
	Usage

	4.9 Changing File Attributes
	Problem
	Solution
	How It Works
	The Code
	Usage

	4.10 Using Delegation with NSFileManager
	Problem
	Solution
	How It Works
	The Code
	Usage

	4.11 Working with Data Using NSData
	Problem
	Solution
	How It Works
	The Code
	Usage

	4.12 Caching Content with NSCache
	Problem
	Solution
	How It Works
	The Code
	Usage

	Working With Dates, Times, and Timers
	5.1 Creating a Date Object for Today
	Problem
	Solution
	How It Works
	The Code
	Usage

	5.2 Creating Custom Dates by Component
	Problem
	Solution
	How It Works
	The Code
	Usage

	5.3 Comparing Two Dates
	Problem
	Solution
	How It Works
	The Code
	Usage

	5.4 Converting a String to a Date
	Problem
	Solution
	How It Works
	The Code
	Usage

	5.5 Formatting Dates for Display
	Problem
	Solution
	How It Works
	The Code
	Usage

	5.6 Adding and Subtracting Dates
	Problem
	Solution
	How It Works
	The Code
	Usage

	5.7 Using a Timer to Schedule and Repeat Tasks
	Problem
	Solution
	How It Works
	The Code
	Usage

	Asynchronous Processing
	6.1 Running a Process in a New Thread
	Problem
	Solution
	How It Works
	The Code
	Usage

	6.2 Communicating Between the Main Thread and a Background Thread
	Problem
	Solution
	How It Works
	The Code
	Usage

	6.3 Locking Threads with NSLock
	Problem
	Solution
	How It Works
	The Code
	Usage

	6.4 Locking Threads with @synchronized
	Problem
	Solution
	How It Works
	The Code
	Usage

	6.5 Asynchronous Processing with Grand Central Dispatch (GCD)
	Problem
	Solution
	How It Works
	The Code
	Usage

	6.6 Using Serial Queues in GCD
	Problem
	Solution
	How It Works
	The Code
	Usage

	6.7 Implement Asynchronous Processing Using NSOperationQueue
	Problem
	Solution
	How It Works
	The Code
	Usage

	Consuming Web Content
	7.1 Downloading a File
	Problem
	Solution
	How It Works
	The Code
	Usage

	7.2 Consuming a Web Service Using XML
	Problem
	Solution
	How It Works
	The Code
	Usage

	7.3 Consuming a Web Service Using JSON
	Problem
	Solution
	How It Works
	The Code
	Usage

	7.4 Asynchronously Consuming Web Content
	Problem
	Solution
	How It Works
	The Code
	Usage

	Memory Management
	8.1 Understanding Memory Management
	Problem
	Solution

	8.2 Setting up an Application without ARC
	Problem
	Solution
	How It Works
	The Code
	Usage

	8.3 Using Reference Counting to Manage Memory
	Problem
	Solution
	How It Works
	The Code
	Usage

	8.4 Adding Memory Management to Your Custom Classes
	Problem
	Solution
	How It Works
	The Code
	Usage

	8.5 Using Autorelease
	Problem
	Solution
	How It Works
	The Code
	Usage

	8.6 Enabling Garbage Collection for Mac Applications
	Problem
	Solution
	How It Works

	Working with Object Graphs
	Object-Orientated Vocabulary
	9.1 Creating an Object Graph
	Problem
	Solution
	How It Works
	Working with an Object Graph
	The Code
	Usage

	9.2 Using Key-Value Coding
	Problem
	Solution
	How It Works
	The Code
	Usage

	9.3 Using Key Paths in Your Object Graph Problem
	Solution
	How It Works
	The Code
	Usage

	9.4 Aggregating Information with Key Paths
	Problem
	Solution
	How It Works
	The Code
	Usage

	9.5 Implementing the Observer Pattern
	Problem
	Solution
	How It Works
	The Code
	Usage

	9.6 Inspecting Classes and Objects
	Problem
	Solution
	How It Works
	The Code
	Usage

	9.7 Archiving Your Object Graph
	Problem
	Solution
	How It Works
	The Code
	Usage

	Core Data
	10.1 Adding Core Data Support to an Application
	Problem
	Solution
	How It Works
	Link to Core Data Framework
	Adding the Core Data Stack
	The Code
	Usage

	10.2 Adding an Entity Description
	Problem
	Solution
	How It Works
	The Code
	Usage

	10.3 Adding a Managed Object to an Application
	Problem
	Solution
	How It Works
	The Code
	Usage

	10.4 Adding a Managed Object to Core Data
	Problem
	Solution
	How It Works
	The Code
	Usage

	10.5 Retrieving Objects from the Data Store
	Problem
	Solution
	How It Works
	The Code
	Usage

	10.6 Posting Changes to the Data Store
	Problem
	Solution
	How It Works
	The Code
	Usage

	10.7 Using One-To-One Relationships with Core Data
	Problem
	Solution
	How It Works
	The Code
	Usage

	10.8 Using One-To-Many Relationships with Core Data
	Problem
	Solution
	How It Works
	The Code
	Usage

	10.9 Managing Data Store Versioning
	Problem
	Solution
	How It Works
	The Code
	Usage

	Objective-C Beyond Mac and iOS
	11.1 Installing GNUstep on Windows
	Problem
	Solution
	How It Works

	11.2 Objective-C Hello World on Windows
	Problem
	Solution
	How It Works
	The Code
	Usage

	11.3 Downloading Objective-J for Web Apps
	Problem
	Solution
	How It Works
	Usage

	11.4 Coding a Hello World Objective-J Application
	Problem
	Solution
	How It Works
	The Code
	Usage

	11.5 Adding a Button to an Objective-J Application
	Problem
	Solution
	How It Works
	The Code
	Usage

	Index
	A, B
	C
	D, E
	F
	G, H
	I
	J
	K, L
	M, N
	O, P, Q, R
	S
	T, U
	V
	W
	X, Y, Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 738.000]
>> setpagedevice

