
Issue 20 January 2012

http://duckduckgo.com

  3

http://www.getharvest.com/hackers

4  ﻿

Curator
Lim Cheng Soon

Contributors
Matt Might
Jason Cohen
Charlie Park
Edward Z. Yang
Chandra Patni
Alex MacCaw
Paul Stamatiou
Matthew Flickinger

Proofreader
Emily Griffin

Printer
MagCloud

Hacker Monthly is the print magazine version
of Hacker News — news.ycombinator.com, a social news
website wildly popular among programmers and startup
founders. The submission guidelines state that content
can be “anything that gratifies one’s intellectual curios-
ity.” Every month, we select from the top voted articles
on Hacker News and print them in magazine format.
For more, visit hackermonthly.com.

Advertising
ads@hackermonthly.com

Contact
contact@hackermonthly.com

Published by
Netizens Media
46, Taylor Road,
11600 Penang,
Malaysia.

Hacker Monthly is published by Netizens Media and not affiliated with Y Combinator in any way.

http://news.ycombinator.com
http://hackermonthly.com
mailto:ads@hackermonthly.com
mailto:contact@hackermonthly.com

  5

For links to Hacker News dicussions, visit hackermonthly.com/issue-20

Contents
FEATURES

06  Translating Math into Code
By Matt Might

STARTUPS

14  Hiring Employee #1
By Jason Cohen

DESIGN

18  Slopegraphs
By Charlie Park

PROGRAMMING

26  How to Read Haskell Like Python
By Edward Z. Yang

32  Fast, Easy, Realtime Metrics Using Redis Bitmaps
By Chandra Patni

34  Asynchronous UIs
By Alex MacCaw

37  The Coding Zone
By Paul Stamatiou

38  What’s in a GIF — Bit by Byte
By Matthew Flickinger

http://hackermonthly.com/issue-20

6  FEATURES

FEATURES

Translating Math into Code

By Matt Might

Caution: Math has no side effects
The fatal mistake newcomers make when
translating math into code is using mutable data
structures where only an immutable structure
was correct.

Mathematics has no side effects.
Math cannot modify the value of a variable,

either global or local. It cannot mutate an ele-
ment in an array. And a mathematical function
always returns the same value for the same input.

The literal rendering of mathematics into
code cannot contain side effects.

Mathematics is a purely functional language.
Of course, once the constraints on an imple-

mentation are understood, it’s usually possible
to exchange immutable data structures for
mutable ones in key places to achieve perfor-
mance savings.

But, for the purposes of prototyping, it’s
always best to start with a direct, purely func-
tional implementation.

Sets and power sets
The rendering of a set as code will usually be a
type, a collection backed by a balanced tree or a
hash map, or a predicate.

In mathematics, a set is an unordered collec-
tion of elements.

The empty set, ∅, is a special set containing
no elements.

The syntax for literal sets is curly braces: {}.
For example, the set {1,2,3} is the set containing
1, 2 and 3.

with Examples in Java, Racket, Haskell and Python

Discrete math-
ematical struc-
tures form the

foundation of computer
science.

These structures are so
universal that most research
papers in the theory of com-
putation, programming lan-
guages, and formal methods
present concepts in terms of
discrete mathematics rather
than code.

The underlying assump-
tion is that the reader will
know how to translate these
structures into a faithful
implementation as a working
program.

A lack of material explain-
ing this translation frustrates
outsiders.

What deepens that frustra-
tion is that each language
paradigm encodes discrete
structures in a distinct way.

Many of the encodings are
as immutable, purely func-
tional data structures (even
in imperative languages), a
topic unfortunately omitted
from many computer science
curricula. Many standard
libraries provide only muta-
ble versions of these data
structures, which instantly
leads to pitfalls.

Okasaki’s classic Purely
Functional Data Structures
[hn.my/okasaki] is an essen-

tial reference.
Read on for my guide to

translating the common
discrete mathemati-

cal structures — sets,
sequences, functions,

disjoint unions,
relations and
syntax — into

working code in
Java, Python, Racket,
and Haskell.

http://hn.my/okasaki

  7

The relationship x ∈ S declares that the value x is a
member of the set S.

Sets as types
Infinite sets tend to be encoded as types. (Of course,
some finite sets are encoded as types too.)

In some cases, a set X is defined as a subset of
another set Y:

X ⊂ Y.

This subset relationship could be represented as
inheritance in a language like Java or Python, if these
sets are meant to be types:

class X extends Y { ... }

When a set X is defined to be the power set of
another set Y:

X = P(Y) = 2Y,

then X and Y will be types, and members of X will be
collections.

Sets as collections
When a set’s contents are computed at run-time, then
it will often be a sorted collection backed by a structure
like a red-black tree.

It’s not hard to implement a purely functional, sorted
(but unbalanced) search tree in Java:

interface Ordered <T> {
 public boolean isLessThan(T that) ;
}

abstract class SortedSet<T extends Ordered<T>> {
 public abstract boolean isEmpty() ;
 public abstract boolean contains(T element) ;
 public abstract SortedSet<T> add(T element) ;

 public static final <E extends Ordered<E>>
SortedSet<E> empty() {
 return new EmptySet<E>();
 }
}

final class EmptySet<T extends Ordered<T>>
extends SortedSet<T> {
 public boolean isEmpty() {
 return true ;
 }

 public boolean contains(T element) {
 return false ;
 }
 public SortedSet<T> add(T element) {
 return new Node<T>(this,element,this) ;
 }

 public EmptySet() {
 }
}

final class Node<T extends Ordered<T>> extends
SortedSet<T> {

 private final SortedSet<T> left ;
 private final T element ;
 private final SortedSet<T> right ;

 public boolean isEmpty() {
 return false ;
 }
 public Node(SortedSet<T> left, T element,
SortedSet<T> right) {
 this.left = left ;
 this.right = right ;
 this.element = element ;
 }
 public boolean contains(T needle) {
 if (needle.isLessThan(this.element)) {
 return this.left.contains(needle) ;
 } else if (this.element.isLessThan(needle)){
 return this.right.contains(needle) ;
 } else {
 return true ;
 }
 }
 public SortedSet<T> add(T newGuy) {
 if (newGuy.isLessThan(this.element)) {
 return new Node<T>(left.add(newGuy),this.
element,right) ;
 } else if (this.element.isLessThan(newGuy))
{
 return new Node<T>(left,this.
element,right.add(newGuy)) ;
 } else {
 return this ; // Already in set.
 }
 }
}

8  FEATURES

Be warned that the Java library’s Set interface (option-
ally) allows imperative addition and removal of ele-
ments. A computational rendering of mathematics
cannot use these features.

A run-time set might also be backed by an immu-
table hash table.

Regardless of representation, these set data structures
typically need to support operations like enumeration,
union, intersection and difference, and relations like
membership, equality, and subset.

Whether a balanced tree or a hash map is better for
ease of implementation and performance rests on type
of the elements in the set and the algorithmic uses-
cases for the set operations.

In some cases, it’s easy to provide an efficient order-
ing function. Sometimes, it’s easier to provide a hash
function and a definition of equality.

Python provides syntactic support for hash-backed
sets:

>>> { 3 , 2 , 1 } == { 1 , 2 , 3 }
True

>>> {1,2,3} | {3,4,5}
set([1, 2, 3, 4, 5])

Racket also provides native sets:

> (equal? (set 3 2 1) (set 1 2 3))
#t

> (set-union (set 3 2 1) (set 3 4 5))
(set 1 2 3 4 5)

In Haskell, Data.Set provides a full-featured imple-
mentation of sorted, balanced tree-backed sets.

I’m fond of the following notation for Haskell:

import Data.Set

type P = Data.Set.Set

so that I can write things like:

type Ints = P(Int)

which is aesthetically closer to the formal mathematics.

Sets as predicates
If the set X is a subset of Y, but the structure of the set
X is outside the descriptive capacity of the type system,
then X could be represented as a predicate:

class Y {
 public boolean isX() { ... }
}

or in Haskell:

isX :: Y -> Bool

Some advanced programming languages like Agda
support dependent types, which allow predicates in the
type system itself.

In Racket, rich, expressive contracts take the place of
dependent types.

Disjoint union (sums)
A disjoint (or tagged) union of several sets is a new set
containing all of the elements of the constituent sets,
but with an implicit mark (or tag) added to each ele-
ment to indicate from which constituent set it came.

The set A + B is the disjoint union of the sets A and B.
In mathematics, that distinguishing mark is almost

always kept implicit or inferred from context. (The tag
is rarely needed.)

In fact, when that mark is required, it is common to
use syntactic sets.

In Java (and other object-oriented languages), sum
types are represented through class-based inheritance.
The sum forms an abstract base type, and each con-
stituent forms a subtype. For example, the type A + B +
C would become:

abstract class ApBpC { ... }

class A extends ApBpC { ... }
class B extends ApBpC { ... }
class C extends ApBpC { ... }

Haskell supports algebraic data types that closely
mimic the sum form. Explicit constructors serve as
tags. For example:

data ApBpC = ACons A
 | BCons B
 | CCons C

The constructors are also used for pattern-matching;
for example:

whatAmI (ACons _) = "I'm an A."
whatAmI (BCons _) = "I'm a B."
whatAmI (CCons _) = "I'm a C."

  9

Of course, in Java, a whatAmI method becomes
dynamic dispatch:

abstract class ApBpC {
 abstract public String whatAmI() ;
}
class A extends ApBpC {
 public String whatAmI() {
 return "I'm an A." ;
 }
}
class B extends ApBpC {
 public String whatAmI() {
 return "I'm a B." ;
 }
}
class C extends ApBpC {
 public String whatAmI() {
 return "I'm a C." ;
 }
}

In untyped languages like Racket, where the univer-
sal type is already the sum of all types, there is no need
for a special embedding.

Languages like Python can exploit class-based inheri-
tance or take the Racket-like approach for representing
sum types.

Sequences and vectors
Sequences are a common discrete structure, and their
rendering in code is perhaps the most straightforward.

In formal notation, the set of sequences over ele-
ments in S is written S*.

It is usually clear from context whether S* should
contain infinite sequences or only finite ones. (And, in
many cases, it doesn’t matter.)

For example, if the set A = {a, b} is an alphabet,
then the set of strings over this alphabet is A*, which
would contain elements like ab and babba.

If the variable used to denote elements of the set S is
s, then a sequence in the set S* is usually a bold-faced s
or s. (It is a common convention to use the lower-case
version of a set to denote members of that set.)

Given a sequence s, its first element is s1, and its ith
element is si.

Explicit sequences tend to be wrapped in angle-
brackets, so that:

s = <s1, s2, ... sn>

Sequences as linked lists
Most frequently, a finite sequence will be encoded as a
linked list.

For example, in Java:

abstract class Sequence<S> {
 public abstract S getHead() ;
 public abstract Sequence<S> getTail() ;
 public abstract boolean isEmpty() ;

 public static final <T> Sequence<T> cons(T
head, Sequence<T> tail) {
 return new Cons<T>(head,tail) ;
 }

 public static final <T> Sequence<T> nil() {
 return new Nil<T>() ;
 }
}

final class Cons<S> extends Sequence<S> {
 private final S head ;
 private final Sequence<S> tail ;

 public S getHead() {
 return this.head ;
 }

 public Sequence<S> getTail() {
 return this.tail ;
 }

 public boolean isEmpty() {
 return false ;
 }

 public Cons(S head, Sequence<S> tail) {
 this.head = head ;
 this.tail = tail ;
 }
}

final class Nil<S> extends Sequence<S> {
 public S getHead() {
 throw new EmptySequenceException() ;
 }

10  FEATURES

 public Sequence<S> getTail() {
 throw new EmptySequenceException() ;
 }

 public boolean isEmpty() {
 return true ;
 }

 public Nil() { }
}

class EmptySequenceException extends RuntimeEx-
ception {
}

class Test {
 public static void main(String[] args) {
 Sequence<Integer> end = Sequence.nil() ;

 Sequence<Integer> si =
 Sequence.cons(3, end) ;
 }
}

Functional languages excel at encoding sequences.
Haskell has a list type: []. A function that adds one to
every element of a list could be written:

add1 :: [Int] -> [Int]
add1 [] = []
add1 (hd:tl) = (hd + 1):(add1 tl)

Or, more succinctly using map:

add1 :: [Int] -> [Int]
add1 = map (+1)

In most Lisps (like Racket), cons constructs lists,
while car and cdr destruct:

 (car (cons 1 (cons 2 '()))) == 1
 (car (cdr (cons 1 (cons 2 '())))) == 2
 (pair? '()) == #f
 (pair? (cons 1 '())) == #t

In Python, tuples and lists work about equally well
as sequences, but tuples might be less error-prone since
they’re immutable.

Of course, the standard warning about side effects
applies: do not use the side-effecting features of Python
lists, like popping an element.

Vectors as arrays
When dealing with a set of sequences which all have
the same length, the term “vector” is commonly used
instead of “sequence.”

The set of vectors over the set S of length n is writ-
ten Sn.

Sometimes vectors are written with a right-arrow
(→) over the unbolded representative variable.

Vectors can be efficiently encoded using arrays, but
lists also suffice.

Remember: the array must not be mutated!
If you need to update an index in a vector, it should

be copied into a new array first, leaving the original
array untouched.

That said, it is often the case that you can prove that
when one vector is computed as the update of another
vector that the original vector is garbage. In these cases, it
is a safe and common optimization to mutate the array.

Infinite sequences as streams
Infinite sequences are not common, but when they
arise, they are often encoded as streams.

In Haskell, laziness means that any list can be an
infinite list.

It is easy to encode an infinite sequence like the list
of all natural numbers:

nats = 1:(map (+1) nats)

so that take 5 nats yields [1,2,3,4,5].
And, even more remarkably, we can filter this list to

produce the list of all primes:

isPrime n = all (\ m -> n `mod` m /= 0) [2..n-1]

primes = filter isPrime (tail nats)

It is actually the case that take 6 primes yields
[2,3,5,7,11,13].

Racket includes a stream library, allowing the
equivalent:

(define (inc n) (+ 1 n))
(define nats (stream-cons 1 (stream-map inc nats)))
(define (prime? n)
 (call/ec (λ (return)
 (for ([m (in-range 2 (- n 1))])
 (when (= (modulo n m) 0)
 (return #f)))
 (return #t))))
(define primes (stream-filter prime? (stream-rest
nats)))

  11

In an object-oriented setting like Python or Java,
streams can be constructed from an interface:

interface Stream<A> {
 public A first() ;
 public Stream<A> rest() ;
}

The first() method should be sure to cache its
result, and if the stream is I/O-backed, then the rest()
method should invoke the first() method.

Cartesian products (tuples)
Cartesian products, or tuples, are ordered collections,
where the location of the element in the collection
determines its type.

Cartesian products map onto records, structs, and
objects, with each index into the tuple occupying a
field.

For instance, A × B produces a set of pairs, where the
first element is from the set A, and the second is from
the set B.

Individual tuples are denoted with parentheses.
For example, (a, b, c) is a member of A × B × C.

In Java, the type A × B would be a class:

class AtimesB {
 public final A a ;
 public final B b ;
 public AtimesB(A a, B b) {
 this.a = a ;
 this.b = b ;
 }
}

In Racket, this would be a struct:

(define-struct a×b (a b))

Python contains native tuple support:

>>> x = (1,1,2,3)
>>> x[3]
3

But, one might just as easily have defined a class:

class MyTuple:
 def __init__(self,first,second,third,fourth):
 self.first = first ;
 self.second = second ;
 self.third = third ;
 self.fourth = fourth ;

Haskell provides native tuple support, too:

Prelude> let t = (1,2,3)
Prelude> t
(1,2,3)

Haskell also allows for record-like data types, such as
in the following two definitions:

data AB = Pair A B
data AB' = Pair' { a :: A, b :: B }

Both definitions introduce constructors:

Pair :: A -> B -> AB
Pair' :: A -> B -> AB'

The second definition introduces two extractors, one
for each field:

a :: AB' -> A
b :: AB' -> B

Functions (maps)
Mathematical functions transform inputs to outputs.

The set of functions from the set A into the set B is
the set A → B.

Under the interpretation of (→) as an operator on
sets, the signature

f : X → Y

can be interpreted as the function f is a member of the
set X → Y:

f ∈ X → Y

In mathematical notation, there are several extant
notations for application:

f(x) = f x = f.x

All of these are the application of the function f to
the value x.

In code, functions can translate into procedures and
methods, but if they’re finite, they can also translate
into finite maps backed by hash tables or sorted, bal-
anced tree maps.

Functions as code
Most of the time a mathematical function will map
into a procedure in the underlying language.

When a function is supposed to map into executable
code, it’s usually straightforward to make the mapping
using the data structures and algorithms presented
elsewhere in this guide.

12  FEATURES

Functions as maps
In some cases, mathematicians use functions as the
formal analog of a hash table or a dictionary. For
example:

f [x ↦ y]

represents a function identical to f except that x maps
to y.

Please note that extending a function like this does
not (and cannot) change the original function f !

Immutable red-black tree maps are a great data
structure for representing these finite functions meant
to be extended.

Once again, it is not safe to use the mutable sorted
maps and hash tables provided by the Java library, nor
the mutable dictionaries provided by Python.

Haskell provides the Data.Map library for this pur-
pose, and Racket also offers immutable hash maps.

Sometimes, it is acceptable to hijack the native notion
of functions to get them to act like immutable diction-
aries. For instance, in Python, we can define extend:

def extend (f, x, y):
 return lambda xx: y if xx == x else f(xx)
def empty(x): raise Exception("No such input")

so that the following works:

g = extend(extend(empty, 3, 4), 5, 6)
print(g(3)) # prints 4
print(g(5)) # prints 6

The disadvantage of taking over the internal notion
of function like this is that one cannot enumerate the
contents of the function, as with a hash or tree-backed
formulation.

Immutable maps atop mutable structures
If a language already provides a good native map-like

structure (like Python’s dictionaries), then it is possible
to exploit this structure through shallow copies every
time the map is extended:

class DictMap:
 def __init__(self, contents):
 self.contents = contents
 def extend(self,x,y):
 contents_ = copy.copy(self.contents)
 contents_[x] = y
 return DictMap(contents_)
 def __call__(self,x):
 return self.contents[x]

Relations
Structurally, a relation R is a (possibly infinite) set of
subset of some Cartesian product.

The set of all relations over A × B is P(A × B).
Computational encodings of relations center

on understanding relations in terms of other data
structures.

In the special case where a relation relates ele-
ments of the same set, e.g. R ⊆ A × A, then R defines a
directed graph over nodes in A.

Given a relation R, the notation

R(x1,...,xn)

is equivalent to

(x1,...,xn) ∈ R.

There are three common ways to encode a relation
computationally: as a collection, as a function, and as a
predicate.

Relations as collections
Structurally, a relation is a set of tuples, and for finite
relations, an encoding as a set of tuples is reasonable.

Relations as functions
Given a relation R ⊆ A × B, the following congruences
allow a relation to be represented as a function:

P(A × B) ≅ A → P(B).

This functional encoding of a relation is particularly
popular for implementing the transition relation of
abstract machines, which relates a machine state to all
of its possible successors.

Relations as predicates
If one only needs to know whether or not some tuple is
within the relation, then it is frequently most efficient
to encode the relation as a predicate.

This view is supported by another congruence:

P(A × B) ≅ A × B → {true,false}

  13

Syntax
Syntactic sets are common within the fields of formal
methods and programming languages.

A syntactic definition for the set E uses the following
form:

E ::= pat1 | ... | patn

where each syntactic pattern pat defines a new syntac-
tic form for constructing members of the set E.

A syntactic set is, in essence, a disjoint union with
explicit tags.

Viewing syntactic sets as sum types guides transla-
tion into code.

Syntactic set examples
For example, we can define a syntax for expression
trees:

E	 ::=	 e + e
	 |	 e * e
	 |	 n

We might then define an evaluator eval : E → N on
this set:

eval(e + e)	 = eval(e) + eval(e)
eval(e * e)	 = eval(e) × eval(e)
eval(n)	 = n

In Java (or any object-oriented language), this could
become:

abstract class Exp {
 abstract public int eval() ;
}

class Sum extends Exp {
 public final Exp left ;
 public final Exp right ;

 public Sum(Exp left, Exp right) {
 this.left = left ;
 this.right = right ;
 }

 public int eval() {
 return left.eval() + right.eval() ;
 }
}

class Product extends Exp {
 public final Exp left ;
 public final Exp right ;

 public Product(Exp left, Exp right) {
 this.left = left ;
 this.right = right ;
 }

 public int eval() {
 return left.eval() * right.eval() ;
 }
}

class Const extends Exp {
 public int value ;

 public Const(int value) {
 this.value = value ;
 }

 public int eval() {
 return value ;
 }
}

To define a sum type with explicit tags, one might
use the following form:

Kont	 ::=	 letk(v, e, ρ, κ)
	 |	 seqk(e, ρ, κ)
	 |	 setk(v,e, ρ, κ)
	 |	 halt

In Haskell, this structure could be:

data Kont = LetK Var Exp Env Kont
 | SeqK Exp Env Kont
 | SetK Var Exp Env Kont
 | Halt

In mathematics, the syntactic notation can only be
used if the representative variables for each set (e.g., κ
for Kont, ρ for Env) have been clearly established, since
in the Haskell notation, these types are required. n

Matt Might is a professor of Computer Science at the University
of Utah. His research interests include programming language
design, static analysis and compiler optimization. He blogs at
matt.might.net/articles and tweets from @mattmight.

Reprinted with permission of the original author.
First appeared in hn.my/mathcode (matt.might.net)

http://matt.might.net/articles
http://twitter.com/mattmight
http://hn.my/mathcode

14  STARTUPS

STARTUPS

By Jason Cohen

Hiring Employee #1

It’s a big decision to make your
first hire, because what you’re
really deciding is whether you

want to keep a lifestyle business or
attempt to “cross the chasm” and
maybe even get rich.

Assuming you really are in the
market for another pair of hands
to screw stuff up worse than you
already do, the question is how to
acquire resumes, how to pare them
down, and how to identify someone
who is going to work well in your
company.

There’s already a lot of great
advice about hiring at little startups.
Before I give you mine, here are
some of my favorite articles, in no
particular order:

■■ “Smart, And Gets Things Done”
[hn.my/joelhire] by Joel Spolsky.
The classic guide to what to do
during the interview and how to
know whether to “hire” or “not
hire.”

■■ “Hazards of Hiring”
[hn.my/hazards] by Eric Sink.
Great tips, including some spe-
cific to hiring developers.

■■ “Why Startups Should Always
Compromise When Hiring”
[hn.my/compromise] by
Dharmesh Shah. There are many
attributes you’d like to see in a
hire, but compromise is neces-
sary; here’s how to do it.

■■ “Five Quick Pointers on Startup
Hiring” [hn.my/5points] and
“Disagreeing with Entrepreneur
Magazine” [hn.my/disagree] by
Dharmesh Shah. Assorted tips, all
important.

■■ “Date Before Getting Married,”
Part 1 [hn.my/married1] and
Part 2 [hn.my/married2], by
Dharmesh Shah. A strong argu-
ment in favor of working with
a person rather than relying on
interviews.

I’m not going to rehash those
or attempt a “complete guide to
hiring.”

But I do have some fresh advice
you might not have seen before:

Hire “Startup-minded” People
If a person just left IBM, is she a
good fit for your startup?

If she left because she couldn’t
stand the crushing bureaucracy,
the tolerance of incompetence, and
the lack of any visibility into what
customers actually wanted, then
she sounds like a person ready for a
startup.

Or therapy.
On the other hand, if during the

interview she asks how often you
do performance reviews, that means
she doesn’t understand the startup
culture. If she says “I thrive in envi-
ronments with clear requirements,
written expectations, and defined
processes,” run away as fast as your
little legs can carry you.

Startups are chaotic. Rules
change, and there is no “job descrip-
tion.” It’s better to make a strong
decision that turns out wrong, and
admit it, than to plan ahead or wait
for instructions. Potential earnings
(e.g. stock, performance bonuses)
are preferred to guaranteed earnings
(e.g. salary, benefits).

http://hn.my/joelhire
http://hn.my/hazards
http://hn.my/compromise
http://hn.my/5points
http://hn.my/disagree
http://hn.my/married1
http://hn.my/married2

  15

You already live by this Code of
Turmoil because you’re the entre-
preneur; you have no choice. But
normal people do have a choice,
and most abhor chaos. Big com-
panies don’t behave this way, and
most people are accustomed to
working for big companies.

You have to hire someone comfy
with the bedlam of startup life.

Write a Crazy Job Description
You’re not just hiring any old pro-
grammer or salesman, you’re hiring
employee #1. This person helps
set the culture of the company.
This person has to mesh with your
personality 100%. You’re going to
be putting in long hours together.
If they don’t get your jokes, it’s not
going to work.

So, why wait until the interview
to see whether your personali-
ties mesh? Put it right in the job
description.

Be funny, reflect your personality,
and reflect the uniqueness of your
company. See the jobs page at WP
Engine [wpengine.com/careers] for
a bunch of examples — everything
from detailing our culture (“Being
transparent about our strengths
and weaknesses wins us sales”) to
attitude on writing awesome code
(“You think using a profiler is fun,
like a treasure hunt”) to treating cus-
tomers (“Whether or not you sleep
at night is directly proportional to
whether you’ve made someone
thrilled or pissed off that day”).

You should see the results in the
cover letters. If after a job posting
like that the person is still sending
the generic bullshit cover letter, you
know they’re not for you. If they
respond in kind, good sign.

And anyway, one day you actu-
ally might need them to change
those pellets, and then you’ve got it
in writing!

Do Not Use a Recruiter
On young startups using recruiters,
Bryan Menell sums it up nicely:

“If you find yourself wanting to
hire a recruiter, hit yourself in the
head with a frying pan until the
feeling goes away.”

You need to hire an absolute
superstar, and recruiters are not in
the business of helping you find
superstars.

In fact, their incentives are
exactly opposite yours. Here’s why.

Recruiters are like real estate
salesmen: they make money when
you hire someone. They make the
same amount of money whether it
takes you four days or four months
to find that someone. So every day
that passes, every additional resume
you request, every additional
interview you set up, the recruiter
is making less and less money per
hour.

In fact, there’s a floor that the
recruiter can’t go below, so the
more time you take to find the right
person, the more they’ll push you
to settle for someone you’ve already
rejected.

The exception is a recruiter who
works by the hour rather than for
a hiring bounty. These are hard to
find, but they do exist. I’ve had
luck only in this case.

Resumes Are (Mostly) Useless
Think about your own resume. Is
there anything on there that quali-
fies you to run your own company?
Not just “experience” generically,
but really relevant knowledge? I’ll
bet there’s very little. But it doesn’t
matter, right?

Right; so it doesn’t matter with
your first few employees either.

Resumes are useful only as
talking points. That is, when you
have a candidate on the phone,
you can use the resume to ask
about previous experience, test
their knowledge of technologies
they claim to have, etc. Resumes
are conversation-starters, but they
imply nothing about whether the
person is right for you.

One particularly useful trick
with resumes is to dig deep on a
detail. Pick the weirdest technol-
ogy in the list, or pick on one bullet
point they listed two jobs ago that
seems a little odd to you. Then go
deep. Don’t let them say “It’s been a
while” — if they can’t talk about it,
how can they claim it’s experience
they’re bringing along?

http://wpengine.com/careers

16  STARTUPS

Writing Skills Are Required
I don’t care if this person is going
to spend 60 hours a week writing
inscrutable code that only a Ruby
interpreter could love. I don’t care
if the job description is “sit in that
corner and work multi-variate dif-
ferential equations.” Everyone has
to be able to communicate clearly.

In a modern startup everyone will
be writing blog entries, Twittering,
Facebooking, and God only knows
what the hell other new Goddamn
technology is coming next. But
whatever it is, you can bet it will
require good communication skills.

In a small startup there’s no layer
separating employees from custom-
ers. Everyone talks to everyone.
You can’t have your company
represented by someone who can’t
be trusted with a customer. In fact,
everyone needs to be able to not
just talk to customers, but even sell
to them. Remember, tech support
is sales!

In a small startup everyone has
to understand one other’s nuances.
There’s enough crap you have to
figure out without also having to
decipher an email. There’s enough
about your business you don’t
understand without translating
garbage sentence fragments in a
README file.

Therefore, some part of the
interview process has to include
free-form writing. In fact, there’s a
particularly useful time for that….

Screen Candidates With Mini-
Essay Questions
When you post a job listing —
especially on large-scale sites like
Monster or Craig’s List — expect a
torrent of resumes. It’s not unusual
to get 100 in a day. You need a
time-efficient system for winnow-
ing them down to a small handful
worthy of an interview.

Screening resumes is not an
option, because resumes are useless.
Besides, you don’t have time to read
hundreds of resumes.

Instead, prepare an email tem-
plate that asks the applicant to
write a few paragraphs on a few
topics. For example:

Thanks for sending us your
resume. The next step in our hiring
process is for you to write a few
paragraphs on each of the follow-
ing topics. Please reply to this email
address with your response:

1.	Why do you want to work at
[company]?

2.	Describe a situation in your
work-life where you failed.

3.	Describe a time when you
accomplished something you
thought was impossible. (Can be
work-related or personal)

Thanks for your interest in [com-
pany], and I hope to hear from you
soon.

Here’s what happens: First,
most people never respond. Good
riddance! Second, you’ll get lazy-
ass responses like “I want to work
at your company because I saw
you are hiring” and ludicrous
answers like “I have never failed at
anything.”

Resist the temptation to reply
with, “You just did.” That’s what
assholes do.

Maybe 10% of the respondents
will actually answer the questions,
and you’ll know in two minutes
whether this person can commu-
nicate and, yes, even whether they
seem fun, intelligent, or interesting.

One exception to this rule: If
the cover letter is truly wonderful,
that’s a rare, great sign, and you can
probably skip right to the phone
interview.

“In a small startup there’s no layer separating
employees from customers. You can’t have
your company represented by someone who
can’t be trusted with a customer.”

  17

Always Be Hiring
The rule of thumb is that it takes
3-6 months to hire a really good
person. Why so long?

■■ Good people are rare, so it takes
a while to dig them up. Like
truffles. Or weeds.

■■ Good people won’t change jobs
more often than once a year —
probably more like every 3 – 4
years, especially if their employer
appreciates their abilities and
compensates them accordingly.
So you have to find this person
in their “once every three years”
window.

■■ Good people gets lots of good
job offers (yes, even in this
economy). So when you do find
one, and you give them the writ-
ing test, the phone interview,,the
in-person interview, discuss
compensation, and then provide
a formal written offer… there’s a
good chance they just accepted
an awesome offer somewhere
else. (This happened to me all the
time at Smart Bear. It’s happen-
ing now at WP Engine.)

This means if you start hiring
when you really need someone,
that’s too late. You’ll be “in need”
for months.

This means you need to be hiring
constantly.

So how do you “hire constantly”
without being drowned in resumes
and interviews? The answer comes
from another attribute of good
people:

Good people choose where they
want to work, not vice versa. They
hear about a cool company, and
when they’re interested in new
work, they call you.Your company
has to be a place good people will
seek, not where you have to go

fishing. How do you manage that,
especially when you’re small? Ideas:

■■ Develop your blog/Twitter so
you have a steady stream of eye-
balls from people who like you.

■■ Attend local meet-ups and user
groups. Meet the woman who
runs the group — she knows
everyone worth knowing.

■■ Sponsor a meet-up at your office.
Don’t have an office? Co-sponsor
with someone who does, like
another company or a co-working
place.

■■ Ask your friends for resumes of
people they didn’t hire but who
they liked. That is, people who
are good but just weren’t a fit for
that company.

■■ Try to get your “Jobs” page
to rank well in local-only
search. So e.g. “java program-
mer job in Austin TX,” not
something impossible like “java
programmer.”

■■ Take everyone you know to lunch
periodically and ask if they know
of a candidate. Yes, you can ask
them by email, but often being
in-person brings out more infor-
mation. Or maybe one of them
will be interested himself. (That’s
happened to me a few times.)

Don’t Be Trapped by What You
Think Hiring “Should” Be
You’re hiring a friend, a trusted
partner, someone you’ll be spending
10 hours a day with for the foresee-
able future.

You’re not hiring a Systems
Engineer III for IBM or a Senior
Regional Sales Manager for Dell.
The “rules” of HR don’t apply to
you (except the law).

Think of it more like getting mar-
ried than hiring an underling.

Going with your gut is not
wrong. n

Jason Cohen is the founder of WP Engine
[wpengine.com] — Heroku for WordPress,
after exitting from three previous com-
panies. He blogs at blog.asmartbear.com

Reprinted with permission of the original author.
First appeared in hn.my/hire1 (asmartbear.com)

http://wpengine.com
http://blog.asmartbear.com
http://hn.my/hire1

18  DESIGN

By Charlie Park

Slopegraphs

Back in 2004, Edward Tufte
defined and developed the con-
cept of a “sparkline.” Odds are
good that if you’re reading this,

you’re familiar with them and how popular
they’ve become.

What’s interesting is that over twenty years
before sparklines came on the scene, Tufte
developed a different type of data visualiza-
tion that didn’t fare nearly as well. To date, in
fact, I’ve only been able to find three exam-
ples of it, and even they aren’t completely in
line with his vision.

It’s curious that it hasn’t become more
popular; the chart type is quite elegant, aligns
with all of Tufte’s best practices for data visu-
alization, and was created by the master of
information design. Why haven’t these charts
(christened “slopegraphs” by Tufte about a
month ago) taken off the way sparklines did?

We’re going to look at slopegraphs: what
they are, how they’re made, why they haven’t
seen a massive uptake so far, and why I think
they’re about to become much more popular
in the near future.

Edward Tufte’s

DESIGN

Photo: Christmas #32, flickr.com/photos/pagedooley/5274477590

http://flickr.com/photos/pagedooley/5274477590

  19

The Table-Graphic
In his 1983 book The Visual Display of Quantita-
tive Information [hn.my/visual], Tufte displayed
a new type of data graphic.

As Tufte notes in his book, this type of chart
is useful for seeing:

■ the hierarchy of the countries in both 1970
and 1979 [the order of the countries]

■ the specific numbers associated with each
country in each of those years [the data value
next to their names]

■ how each country’s numbers changed over
time [each country’s slope]

■ how each country’s rate of change compares to
the other countries’ rates of change [the slopes
compared with one another]

■ any notable deviations in the general trend
(notice Britain in the above example) [aberrant
slopes]

This chart does this in a remarkably minimal-
ist way. There’s absolutely zero non-data ink.

So, anyway, Professor Tufte made this new
kind of graph. Unlike sparklines, though, it
didn’t really get picked up. Anywhere.

My theory on this lack of response is
three-fold:

➊ It didn’t have a name. (He just referenced it
as a “table-graphic” at the time.)

➋ It was a totally new concept. (Where spar-
klines are easily understood as “an axis-less
line chart, scaled down (and kind of cute),”
this “table-graphic” is something new.)

➌ It’s a little good deal more complicated to
draw. (More on that at the end.)

A Super-Close Zoom-In on a Line Chart
The best way I’ve found to describe these table-
graphics is this: it’s like a super-close zoom-in on
a line chart, with a little extra labeling.

Imagine you have a line chart, showing the
change in European countries’ population over
time. Each country has a line, zigzagging from
January (on the left) to December (on the right).
Each country has twelve points across the chart.
The lines zigzag up and down across the chart.

Now, let’s say you zoomed in to just the June-July
segment of the chart, and you labeled the left and right
sides of each country’s June-July lines (with the coun-
try’s name, and the specific number at each data point).

That’s it. Fundamentally, that’s all a table-graphic is.

Tufte, Edward.
The Visual Display of
Quantitative Information.
Cheshire, Connecticut:
Graphics Press; 1983; p. 158

http://hn.my/visual

20  DESIGN

Hierarchical Table-Graphics in
the Wild
Where sparklines found their way
into products at Google (Google
Charts and Google Finance) and
Microsoft, and even saw some
action from a pre-jQuery John
Resig (jspark.js [hn.my/jspark]),
this table-graphic thing saw essen-
tially zero uptake.

At present, Googling for “tufte
table-graphic” yields a whop-
ping eighty-three results, most of
which have nothing to do with this
technique.

Actually, since Tufte’s 1983
book, I’ve found three non-Tuftian
examples (total). And even they
don’t really do what Tufte laid out
with his initial idea.

Let’s look at each of them.

Ben Fry’s Baseball Chart
The first we’ll look at came from
Processing developer/data visu-
alization designer Ben Fry, who
developed a chart showing baseball
team performance vs. total team
spending:

A version of this graphic was
included in his 2008 book Visual-
izing Data, but I believe he shared
it online before then.

Anyway, you can see each major-
league baseball team on the left,
with their win/loss ratio on the
left and their annual budget on the
right. Between them is a sloped
line showing how their ordering
in each column compares. Lines
angled up (red) suggest a team that
is spending more than their win
ratio suggests they should be, where
blue lines suggest the team’s get-
ting a good value for their dollars.
The steeper the blue line, the more
wins-per-dollar.

There are two key distinctions
between Tufte’s chart and Fry’s
chart.

First: Fry’s baseball chart is really
just comparing order, not scale. The
top-most item on the left is laid out
with the same vertical position as
the top-most item on the right, and
so on down the list.

[benfry.com/salaryper/]

http://hn.my/jspark
http://benfry.com/salaryper/

  21

Second: Fry’s is comparing two
different variables: win ratio and
team budget. Tufte’s looks at a
single variable, over time. (To be
fair, Fry’s does show the change
over time, but only in a dynamic,
online version, where the orders
change over time as the season
progresses. The static image
above doesn’t concern itself with
change-over-time.)

If you want to get technical, Fry’s
chart is essentially a “forced-rank
parallel coordinates plot” with just
two metrics.

Another difference I should
note: This type of forced-rank chart
doesn’t have any obvious allowance
for ties. That is, if two items on the
chart have the same datum value
(as is the case in eleven of the thirty
teams above), the designer (or the
algorithm, if the process is auto-
mated) has to choose one item to
place above the other. (For exam-
ple, see the Reds and the Braves, at
positions #6 and #7 on the left of
the chart.) In Fry’s case, he uses the
team with the lower salary as the
“winner” of the tie. But this isn’t
obvious to the reader.

In Visualizing Data, Fry touches
on the “forcing a rank” question
(p. 118), noting that at the end of
the day, he wants a ranked list, so a
scatterplot using the X and Y axes
is less effective of a technique (as
the main point with a scatterplot
is simply to display a correlation,
not to order the items). I’m not
convinced, but I am glad he was
intentional about it. I also suspect
that,because the list is generated
algorithmically, it was easier to do it
and avoid label collisions this way.

Nevertheless, I do think it’s a
good visualization.

The National Geographic Maga-
zine Life-Expectancy Chart
In 2009, Oliver Uberti at National
Geographic Magazine released
a chart showing the average life
expectancy at birth of citizens of
different countries, comparing that
with what each nation spends on
health care per person:

Like Fry’s chart, Uberti’s chart
uses two different variables. Unlike
Fry’s chart, Uberti’s does use dif-
ferent scales. While that resolves
the issue I noted about having to
force-rank identical data points, it
introduces a new issue: dual-scaled
axes.

 [blogs.ngm.com/blog_central/2009/12/the-cost-of-care.html]

http://blogs.ngm.com/blog_central/2009/12/the-cost-of-care.html

22  DESIGN

By selecting the
two scales used, the
designer of the graph
— whether inten-
tionally or not — is
introducing meaning
where there might not
actually be any.

For example, should
the right-side data
points have been
spread out so that the
highest and lowest
points were as high
and low as the Swit-
zerland and Mexico
labels (the highest and
lowest figures, apart
from the US) on the
left? Should the scale
been adjusted so that
the Switzerland and/
or Mexico lines ran
horizontally? Each of
those options would have
affected the layout of
the chart. I’m not saying
that Uberti should have
done that — just that a
designer needs to tread
very carefully when using
two different scales on
the same axis.

A few bloggers criti-
cized the NatGeo chart,
noting that, like the Fry
chart above, it was an
Inselberg-style parallel-
coordinates plot, and that
a better option would be
a scatter plot.

In a great response on
the NatGeo blog
[hn.my/natgeo], Uberti
then re-drew the data in a
scatter plot:

Uberti also gave some good reasons
for drawing the graph the way he did
originally, with his first point being that
“many people have difficulty reading
scatter plots. When we produce graph-
ics for our magazine, we consider a wide
audience, many of whose members are
not versed in visualization techniques.
For most people, it’s considerably easier
to understand an upward or downward
line than relative spatial positioning.”

I agree with him on that. Scatterplots
reveal more data, and they reveal the
relationships better (and Uberti’s scat-
terplot is really good, apart from a few
quibbles I have about his legend place-
ment). But scatterplots can be tricky to
parse, especially for laymen.

Note, for example, that in the scatter
plot, it’s hard at first to see the cluster
of bubbles in the bottom-left corner of
the chart, and the eye’s initial “read” of
the chart is that a best-fit line would run
along that top-left-to-bottom-right string
of bubbles from Japan to Luxembourg.

In reality, though, that line would
be absolutely wrong, and the best-fit
would run from the bottom-left to the
upper-right.

Also, the entire point of the chart is to
show the US’s deviant spending pattern,
but in the scatter plot, the eye’s activ-
ity centers around that same cluster of
bubbles, and the US’s bubble on the far
right is lost.

The “Above average spending / Below
average life expectancy” labels on the
quadrants are really helpful, but, again,
it reinforces Uberti’s point, that scatter
plots are tricky to read. Should those
labels really be necessary? Without
them, would someone be able to glance
at the scatter chart and “get it”?

For quick scanning, the original chart
really does showcase the extraordinary
amount the US spends on healthcare
relative to other countries. And that’s
the benefit of these table-graphics: slopes
are easy to read.

http://hn.my/natgeo

  23

Speed Per Dollar
Back in July of 2007 (I
know: we’re going back in
time a bit, but this chart
diverges even more from
Tufte’s than the others, and
I wanted to build up to it),
a designer at online driving
magazine WindingRoad.com
developed the “Speed per
Dollar” index (on the right).

 Again, what we have is,
essentially, an Inselberg-style
parallel-coordinates plot,
with a Fry-style forced-rank.
In this case, though, each
step of the progression leads
us through the math, to the
conclusion at the right-side
of the chart: dollar-for-dollar,
your best bet is the Ariel
Atom.

Anyway, this chart uses
slopes to carry meaning,
hence its inclusion here, but
I think it’s different enough
from the table-chart Tufte
developed in 1983 that
it isn’t quite in the same
family.

Dave Nash, a “kindly
contributor” at Tufte’s forum
then refined the chart,
making aspects of it clearer
and more Tuftian (on the
right).

(I like how the original included the math at the top of the chart, showing how
the SPD value was derived, and I like how it highlights the final column, drawing
the eye to the conclusions, but I do think Nash’s shows the data better.)

24  DESIGN

Cancer Survival Rates
We’ll close with the last example of
these table-charts I’ve found.

This one’s from Tufte himself. It
shows cancer survival rates over 5-,
10-, 15-, and 20-year periods.

Actually, the chart below is
a refinement of a Tufte original
(2002), done (again) by Kindly Con-
tributor Dave Nash (2003, 2006).

Owing it to being a creation of
the man himself, this is most in-line
with the table-chart I showed at
the very top, from 1983. We can
clearly see each item’s standings on
the chart, from one quinquennium
to the next. In fact, this rendition
of the data is a good illustration of
my earlier simplification, that these
table-charts are, essentially, mini-
malist versions of line charts with
intra-line labels.

Tufte Names His Creation
Although it’s possible that Tufte
has used this term in his workshops,
the first occasion I can find of the
“table-chart” having an actual name
is this post from Tufte’s forums
[hn.my/tufteforum] on June 1st,
2011. The name he gives the table-
chart: Slopegraphs.

I suspect that we’ll see more
slopegraphs in the wild, simply
because people will now have
something they can use to refer to
the table-chart besides “that slopey
thing Tufte had in Visual Design.”

But there’s still a technical prob-
lem: How do you make these damn
things?

Making Slopegraphs
At the moment, both of the canoni-
cal slopegraphs were made by hand,
in Adobe Illustrator. A few people
have made initial efforts at software
that aids in creating slopegraphs. It’s
hard, though. If the labels are too
close together, they collide, making
the chart less legible. A well-done
piece of software, then, is going
to include collision-detection and
account for overlapping labels in
some regard.

[edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0000Jr]

http://hn.my/tufteforum
http://edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0000Jr

  25

Here are a few software tools
that are currently being developed:

■■ Dr. David Ruau has developed a
working version of slopegraphs in
R [hn.my/slopegraphr].

■■ Alex Kerin, slopegraphs in Tab-
leau [hn.my/tableau].

■■ Coy Yonce, slopegraphs in Crystal
Reports [hn.my/slopecr] and
slopegraphs in Crystal Reports
Enterprise [hn.my/slopecre].

■■ I started developing a slopegraphs
in Javascript/Canvas version
[hn.my/slopejs], but probably
won’t continue it, and Ill try to
use the Google Charts’ API if
I try again. The “jaggies” on the
lines were too rough for me.

In each case, if you use the
chart-making software to generate
a slopegraph, attribute the software
creator.

With this many people working
on software implementations of
slopegraphs, I expect to see a large
uptick in slopegraphs in the next
few months and years. But when
should people use slopegraphs?

When to Use Slopegraphs
In Tufte’s June 1st post, he sums up
the use of slopegraphs well: “Slope-
graphs compare changes over time
for a list of nouns located on an
ordinal or interval scale.”

Basically: Any time you’d use a
line chart to show a progression
of univariate data among multiple
actors over time, you might have
a good candidate for a slopegraph.
There might be other occasions
where it would work as well. Note
that strictly by Tufte’s June 1st defi-
nition, none of the examples I gave
(Baseball, Life Expectancy, Speed-
per-Dollar) count as slopegraphs.

But some situations clearly would
benefit from using a slopegraph,
and I think Tufte’s definition is
a good one until more examples
come along and expand it or con-
firm it.

An example of a good slopegraph
candidate: in my personal finance
webapp PearBudget, we’ve relied
far more on tables than on charts.
(In fact, the only chart we include
is a “sparkbar” under each cat-
egory’s name, showing the amount
of money available in the current
month.) We’ve avoided charts in
general (and pie charts in particular,
unlike every other personal finance
webapp), but I’m considering
adding a visual means of comparing
spending across years — how did
my spending on different categories
this June compare with my spend-
ing on those categories in June of
2010? Did they all go up? Did any
go down? Which ones changed the
most? This would be a great situa-
tion in which to use a slopegraph.

Slopegraph Best Practices
Because slopegraphs don’t have a
lot of uses in place, best practices
will have to emerge over time. For
now, though:

■■ Be clear. First to yourself, then
to your reader, whether your
numbers are displaying the items
in order or whether they’re on an
actual scale.

■■ If the data points or labels are
bunching up, expand the vertical
scale as necessary.

■■ Left-align the names of the items
on both the left-hand and right-
hand axes to make vertical scan-
ning of the items’ names easier.

■■ Include both the names of the
items and their values on both
the left-hand and right-hand axes.

■■ Use a thin, light gray line to con-
nect the data. A too-heavy line
is unnecessary and will make the
chart harder to read.

■■ But when a chart features mul-
tiple slope intersections (like
the baseball or speed-per-dollar
charts above), judicious use of
color can avoid what Ben Fry
describes as the “pile of sticks”
phenomenon (Visualizing Data,
121).

■■ A table with more statistical
detail might be a good comple-
ment to use alongside the
slopegraph. As Tufte notes: “The
data table and the slopegraph
are colleagues in explanation not
competitors. One display can
serve some but not all functions.”

■■ Defer to current best practices
outlined by Tufte, Stephen Few,
and others, including maximiz-
ing data-to-ink ratios, minimizing
chartjunk, and so on. n

Charlie Park runs the online personal
finance app pearbudget.com, and is about
to launch monotask.com, described as
“ADD meds for your computer.” He lives in
Virginia with his wife and three daughters.

Reprinted with permission of the original author.
First appeared in hn.my/slopegraphs (charliepark.org)

http://hn.my/slopegraphr
http://hn.my/tableau
http://hn.my/slopecr
http://hn.my/slopecre
http://hn.my/slopejs
http://pearbudget.com
http://monotask.com
http://hn.my/slopegraphs

26  PROGRAMMING

Reprinted with permission of the original author.
First appeared in hn.my/slopegraphs (charliepark.org)

PROGRAMMING

By Edward Z. Yang

How to Read Haskell
Like Python

Have you ever
been in a situa-
tion where you

need to quickly under-
stand what a piece of
code in some unfamiliar
language does? If the
language looks a lot like
what you’re comfortable
with, you can usually
guess what large amounts
of the code do, even if
you may not be familiar
with how all the language
features work.

For Haskell, this is a
little more difficult, since
Haskell syntax looks very
different from traditional
languages. But there’s no
really deep difference
here; you just have to
squint at it right. Here is a
fast, mostly incorrect, and
hopefully useful guide for
interpreting Haskell code
like a Pythonista. By the
end, you should be able to
interpret this fragment of
Haskell (some code elided
with ...):

runCommand env cmd state = ...
retrieveState = ...
saveState state = ...

main :: IO ()
main = do
 args <- getArgs
 let (actions, nonOptions, errors) = getOpt Permute options args
 opts <- foldl (>>=) (return startOptions) actions
 when (null nonOptions) $ printHelp >> throw NotEnoughArguments
 command <- fromError $ parseCommand nonOptions
 currentTerm <- getCurrentTerm
 let env = Environment
 { envCurrentTerm = currentTerm
 , envOpts = opts
 }
 saveState =<< runCommand env command =<< retrieveState

■■ Types. Ignore everything you see after
:: (similarly, you can ignore type,
class, instance and newtype. Some
people claim that types help them
understand code. If you’re a complete
beginner, things like Int and String
will probably help, and things like
LayoutClass and MonadError won’t.
Don’t worry too much about it.)

■■ Arguments. f a b c translates into
f(a, b, c). Haskell code omits paren-
theses and commas. One consequence
of this is we sometimes need paren-
theses for arguments: f a (b1 + b2)
c translates into f(a, b1 + b2, c).

■■ Dollar sign. Since complex state-
ments like a + b are pretty common
and Haskellers don’t really like paren-
theses, the dollar sign is used to avoid
parentheses: f $ a + b is equivalent
to the Haskell code f (a + b) and
translates into f(a + b). You can think
of it as a big opening left parenthesis
that automatically closes at the end of
the line (no need to write)))))) any-
more!). In particular, if you stack them
up, each one creates a deeper nesting:
f $ g x $ h y $ a + b is equivalent
to f (g x (h y (a + b))) and trans-
lates into f(g(x,h(y,a + b)) (though
some consider this bad practice).

  27

In some code, you may see a
variant of $: <$> (with angled
brackets). You can treat <$> the
same way as you treat $. (You
might also see <*>; pretend that
it’s a comma, so f <$> a <*> b
translates to f(a, b). There’s not
really an equivalent for regular $)

■■ Backticks. x `f` y translates into
f(x,y). The thing in the back-
ticks is a function, usually binary,
and the things to the left and
right are the arguments.

■■ Equals sign. Two possible mean-
ings. If it’s at the beginning of a
code block, it just means you’re
defining a function:

doThisThing a b c = ...
 ==>
def doThisThing(a, b, c):
 ...

Or if you see it near a let key-
word, it’s acting like an assign-
ment operator:

let a = b + c in ...
 ==>
a = b + c
...

■■ Left arrow. Also acts like an
assignment operator:

a <- createEntry x
 ==>
a = createEntry(x)

Why don’t we use an equals sign?
Shenanigans. (More precisely,
createEntry x has side effects.
More accurately, it means that
the expression is monadic. But
that’s just shenanigans. Ignore it
for now.)

■■ Right arrow. It’s complicated.
We’ll get back to them later.

■■ Do keyword. Line noise. You
can ignore it. (It does give some

information, namely that there
are side effects below, but you
never see this distinction in
Python.)

■■ Return. Line-noise. Also ignore.
(You’ll never see it used for con-
trol flow.)

■■ Dot. f . g $ a + b translates
to f(g(a + b)). Actually, in a
Python program you’d probably
have been more likely to see:

x = g(a + b)
y = f(x)

But Haskell programmers are
allergic to extra variables.

■■ Bind and fish operators. You
might see things like =<<, >>=,
<=< and >=>. These are basically
just more ways of getting rid of
intermediate variables:

doSomething >>= doSomethin-
gElse >>= finishItUp
 ==>
x = doSomething()
y = doSomethingElse(x)
finishItUp(y)

Sometimes a Haskell program-
mer decides that it’s prettier if
you do it in the other direction,
especially if the variable is getting
assigned somewhere:

z <- finishItUp =<< doSome-
thingElse =<< doSomething
 ==>
x = doSomething()
y = doSomethingElse(x)
z = finishItUp(y)

The most important thing to
do is to reverse engineer what’s
actually happening by looking at
the definitions of doSomething,
doSomethingElse and finishItUp:
it will give you a clue what’s
“flowing” across the fish operator.
If you do that, you can read <=<

and >=> the same way (they actu-
ally do function composition, like
the dot operator). Read >> like
a semicolon (e.g. no assignment
involved):

doSomething >> doSomethin-
gElse
 ==>
doSomething()
doSomethingElse()

■■ Partial application. Sometimes,
Haskell programmers will call
a function, but they won’t pass
enough arguments. Never fear;
they’ve probably arranged for the
rest of the arguments to be given
to the function somewhere else.
Ignore it, or look for functions
which take anonymous functions
as arguments. Some of the usual
culprits include map, fold (and
variants), filter, the composi-
tion operator ., the fish operators
(=<<, etc). This happens a lot to
the numeric operators: (+3) trans-
lates into lambda x: x + 3.

■■ Control operators. Use your
instincts on these: they do what
you think they do! (Even if you
think they shouldn’t act that
way.) So if you see: when (x ==
y) $ doSomething x, it reads like
“When x equals y, call doSome-
thing with x as an argument.”

Ignore the fact that you
couldn’t actually trans-
late that into when(x == y,
doSomething(x)) (Since, that
would result in doSomething
always being called.) In fact,
when(x == y, lambda: doSome-
thing x) is more accurate, but
it might be more comfortable to
just pretend that when is also a
language construct.

if and case are built-in key-
words. They work the way you’d
expect them to.

28  PROGRAMMING

■■ Right arrows (for real!) Right arrows have noth-
ing to do with left arrows. Think of them as colons:
they’re always nearby the case keyword and the
backslash symbol, the latter of which is lambda: \x
-> x translates into lambda x: x.

Pattern matching using case is a pretty nice
feature, but a bit hard to explain here. Probably the
easiest approximation is an if..elif..else chain
with some variable binding:

case moose of
 Foo x y z -> x + y * z
 Bar z -> z * 3
 ==>
if isinstance(moose, Foo):
 x = moose.x # the variable binding!
 y = moose.y
 z = moose.z
 return x + y * z
elif isinstance(moose, Bar):
 z = moose.z
 return z * 3
else:
 raise Exception("Pattern match failure!")

■■ Bracketing. You can tell something is a bracketing
function if it starts with with. They work like con-
texts do in Python:

withFile "foo.txt" ReadMode $ \h -> do
 ...
 ==>
with open("foo.txt", "r") as h:
 ...

(You may recall the backslash from earlier. Yes, that’s
a lambda. Yes, withFile is a function. Yes, you can
define your own.)

■■ Exceptions. throw, catch, catches, throwIO, finally,
handle and all the other functions that look like this
work essentially the way you expect them to. They
may look a little funny, however, because none of
these are keywords: they’re all functions, and follow
all those rules. So, for example:

trySomething x `catch` \(e :: IOException) ->
handleError e
 ===
catch (trySomething x) (\(e :: IOException) ->
handleError e)
 ==>
try:
 trySomething(x)
except IOError as e:
 handleError(e)

■■ Maybe. If you see Nothing, it can be thought of as
None. So isNothing x tests if x is None. What’s the
opposite of it? Just. For example, isJust x tests if x
is not None.

You might see a lot of line noise associated with
keeping Just and None in order. Here’s one of the
most common ones:

maybe someDefault (\x -> ...) mx
 ==>
if mx is None:
 x = someDefault
else:
 x = mx
...

Here’s one specific variant, for when a null is an
error condition:

maybe (error "bad value!") (\x -> ...) x
 ==>
if x is None:
 raise Exception("bad value!")

  29

■■ Records. The work they way you’d expect them too,
although Haskell lets you create fields that have no
names:

data NoNames = NoNames Int Int
data WithNames = WithNames {
 firstField :: Int,
 secondField :: Int
}

So NoNames would probably be represented as a
tuple (1, 2) in Python, and WithNames a class:

class WithNames:
 def __init__(self, firstField, secondField):
 self.firstField = firstField
 self.secondField = secondField

Then creation is pretty simple NoNames 2 3 trans-
lates into (2, 3), and WithNames 2 3 or WithNames {
firstField = 2, secondField = 3 } translates into
WithNames(2,3).

Accessors are a little more different. The most
important thing to remember is Haskellers put their
accessors before the variable, whereas you might
be most familiar with them being after. So field x
translates to x.field. How do you spell x.field = 2?
Well, you can’t really do that. You can copy one with
modifications though:

return $ x { field = 2 }
 ==>
y = copy(x)
y.field = 2
return y

Or you can make one from scratch if you replace
x with the name of the data structure (it starts with
a capital letter). Why do we only let you copy data
structures? This is because Haskell is a pure lan-
guage; but don’t let that worry you too much. It’s
just another one of Haskell’s quirks.

■■ List comprehensions. They originally came from
the Miranda-Haskell lineage! There are just more
symbols.

[x * y | x <- xs, y <- ys, y > 2]
 ==>
[x * y for x in xs for y in ys if y > 2]

It also turns out Haskellers often prefer list com-
prehensions written in multi-line form (perhaps they
find it easier to read). They look something like:

do
 x <- xs
 y <- ys
 guard (y > 2)
 return (x * y)

So if you see a left arrow and it doesn’t really
look like it’s doing side effects, maybe it’s a list
comprehension.

■■ More symbols. Lists work the way you would expect
them to in Python; [1, 2, 3] is in fact a list of three
elements. A colon, like x:xs means construct a list
with x at the front and xs at the back (cons, for you
Lisp fans.) ++ is list concatenation. !! means index-
ing. Backslash means lambda. If you see a symbol
you don’t understand, try looking for it on Hoogle
[haskell.org/hoogle](yes, it works on symbols!).

■■ More line noise. The following functions are prob-
ably line noise, and can probably be ignored. liftIO,
lift, runX (e.g. runState), unX (e.g. unConstructor),
fromJust, fmap, const, evaluate, an exclamation
mark before an argument (f !x), seq, a hash sign
(e.g. I# x).

30  PROGRAMMING

■■ Bringing it all together. Let’s return to the original code
fragment:

runCommand env cmd state = ...
retrieveState = ...
saveState state = ...

main :: IO ()
main = do
 args <- getArgs
 let (actions, nonOptions, errors) = getOpt Permute
options args
 opts <- foldl (>>=) (return startOptions) actions
 when (null nonOptions) $ printHelp >> throw NotEn-
oughArguments
 command <- fromError $ parseCommand nonOptions
 currentTerm <- getCurrentTerm
 let env = Environment
 { envCurrentTerm = currentTerm
 , envOpts = opts
 }
 saveState =<< runCommand env command =<<
retrieveState

With some guessing, we can pop out this translation:

def runCommand(env, cmd, state):
 ...
def retrieveState():
 ...
def saveState(state):
 ...

def main():
 args = getArgs()
 (actions, nonOptions, errors) = getOpt(Permute(),
options, args)
 opts = **mumble**
 if nonOptions is None:
 printHelp()
 raise NotEnoughArguments
 command = parseCommand(nonOptions)

 currentTerm = getCurrentTerm()
 env = Environment(envCurrentTerm=currentTerm,
envOpts=opts)

 state = retrieveState()
 result = runCommand(env, command, state)
 saveState(result)

This is not bad, for a very superficial
understanding of Haskell syntax (there’s
only one obviously untranslatable bit,
which requires knowing what a fold is.
Not all Haskell code is folds; I’ll repeat,
don’t worry about it too much!)

Most of the things I have called “line
noise” actually have very deep reasons
behind them, and if you’re curious about
the actual reasons behind these distinc-
tions, I recommend learning how to write
Haskell. But if you’re just reading Haskell,
I think these rules should be more than
adequate. n

Edward Z. Yang is an undergraduate currently
studying computer science at MIT/University of
Cambridge. He is interested in topics related to
functional programming, and plays the oboe.

Reprinted with permission of the original author.
First appeared in hn.my/haskellpython (ezyang.com)

http://hn.my/haskellpython

  31

Reprinted with permission of the original author.
First appeared in hn.my/haskellpython (ezyang.com)

Reprinted with permission of the original author. First appeared in hn.my/codelearn.

http://hn.my/haskellpython
http://cloudkick.com

32  PROGRAMMING

By Chandra Patni

Fast, Easy, Realtime Metrics
Using Redis Bitmaps

Crash Course on Bitmap and Redis
Bitmaps

Bitmap (aka Bitset)
A Bitmap or bitset is an array of zeros
and ones. A bit in a bitset can be set to
either 0 or 1, and each position in the
array is referred to as an offset. Opera-
tions such as logical AND, OR, XOR,
etc., and other bitwise operations are fair
game for Bitmaps.

Population Count
The population count of a Bitmap is the
number of bits set to 1. There are effi-
cient algorithms for calculating popula-
tion count. For instance, the population
count of a 90% filled bitset containing 1
billion bits took 21.1 ms on a MacBook
Pro. There is even a hardware instruc-
tion in SSE4 for the population count of
an integer.

Bitmaps in Redis
Redis allows binary keys and binary
values. Bitmaps are nothing but binary
values. The setbit(key, offset, value)
operation, which takes O(1) time, sets
the value of a bit to 0 or 1 at the speci-
fied offset for a given key.

A simple example: Daily Active Users
To count unique users that logged in
today, we set up a bitmap where each
user is identified by an offset value.
When a user visits a page or performs an
action, which warrants it to be counted,
set the bit to 1 at the offset represent-
ing user id. The key for the bitmap is a
function of the name of the action user
performed and the timestamp.

In this simple example, every time
a user logs in we perform a redis.
setbit(daily_active_users, user_id,
1). This flips the appropriate offset in
the daily_active_users bitmap to 1. This
is an O(1) operation. Doing a popula-
tion count on this results in 9 unique
users that logged in today. The key is
daily_active_users and the value is
1011110100100101.

Of course, since the daily active users
will change every day, we need a way
to create a new bitmap every day. We
do this by simply appending the date to
the bitmap key. For example, if we want
to calculate the daily unique users who
have played at least 1 song in a music
app for a given day, we can set the key

At Spool, we
calculate our
key metrics in

real time. Traditionally,
metrics are performed
by a batch job (running
hourly, daily, etc.). Redis-
backed bitmaps allow us
to perform such calcula-
tions in realtime and are
extremely space efficient.
In a simulation of 128
million users, a typi-
cal metric such as “daily
unique users” takes less
than 50 ms on a MacBook
Pro and only takes 16 MB
of memory. Spool doesn’t
have 128 million users
yet, but it’s nice to know
our approach will scale.
We thought we’d share
how we do it, in case
other startups find our
approach useful.

  33

name to be play:yyyy-mm-
dd. If we want to calculate
the number of unique users
playing a song each hour,
we can name the key name
play:yyyy-mm-dd-hh. For the
rest of the discussion, we will
stick with daily unique users
that played a song. To collect
daily metrics, we will simple
set the user’s bit to 1 in the
play:yyyy-mm-dd key when-
ever a user plays a song. This is
an O(1) operation.

redis.setbit(play:yyyy-mm-
dd, user_id, 1)

The unique users that
played a song today are the
population count of the
bitmap stored as the value for
the play:yyyy-mm-dd key. To
calculate weekly or monthly
metrics, we can simply com-
pute the union of all the daily
Bitmaps over the week or the
month, and then calculate the
population count of the result-
ing bitmap.

 You can also extract more
complex metrics very easily.
For example, the premium
account holders who played a
song in November would be:

(play:2011-11-01
∪ play:2011-11-02
∪...∪play:2011-11-30) ∩
premium:2011-11

Performance comparison
using 128 million users
The table below shows a com-
parison of daily unique action
calculations calculated over
1 day, 7 days, and 30 days for
128 million users. The 7 and
30 metrics are calculated by
combining daily bitmaps.

Period Time (ms)

Daily 50.2

Weekly 392.0

Monthly 1624.8

Optimizations
In the above example, we
can optimize the weekly and
monthly computations by
caching the calculated daily,
weekly, and monthly counts in
Redis.

This is a very flexible
approach. An added bonus of
caching is that it allows fast
cohort analysis, such as weekly
unique users who are also
mobile users — the intersec-
tion of a mobile users bitmap
with a weekly active users
bitmap. Or, if we want to com-
pute rolling unique users over
the last n days, having cached
daily unique counts makes this
easy; simply grab the previ-
ous n-1 days from your cache
and union it with the real time
daily count, which only takes
50 ms.

Sample Code
A Java code snippet below computes unique
users for a given user action and date.

import redis.clients.jedis.Jedis;
import java.util.BitSet;
...
 Jedis redis = new Jedis("localhost");
...
 public int uniqueCount(String action,
String date) {
 String key = action + ":" + date;
 BitSet users = BitSet.valueOf(redis.
get(key.getBytes()));
 return users.cardinality();
 }

The code snippet below computes the
unique users for a given user action and a list
of dates.

import redis.clients.jedis.Jedis;
import java.util.BitSet;
...
 Jedis redis = new Jedis("localhost");
...
 public int uniqueCount(String action,
String... dates) {
 BitSet all = new BitSet();
 for (String date : dates) {
 String key = action + ":" + date;
 BitSet users = BitSet.
valueOf(redis.get(key.getBytes()));
 all.or(users);
 }
 return all.cardinality();
 } n

Chandra Patni is a member of the Spool geek squad.
These days he hacks on Node, CoffeeScript, Redis and
Ruby. He is @cpatni on Twitter and @rubyorchard on
GitHub.

Reprinted with permission of the original author.
First appeared in hn.my/redisbitmap (spool.com)

http://twitter.com/cpatni
http://github.com/rubyorchard
http://hn.my/redisbitmap

34  PROGRAMMING

By Alex MacCaw

Asynchronous UIs

It’s an interesting time to
be working on the frontend
now. We have new technolo-

gies such as HTML5, CSS3, Canvas
and WebGL, all of which greatly
increase the possibilities for web
application development. The
world is our oyster!

However, there’s also another
trend I’ve noticed. Web develop-
ers are still stuck in the request/
response mindset. I call it the “click
and wait” approach — where every
UI interaction results in a delay
before another interaction can
be performed. That’s the process
they’ve used their entire careers, so
it’s no wonder most developers are
blinkered to the alternatives.

Speed matters — a lot. Or to be
precise, perceived speed matters a
lot. Speed is a critical and often
neglected part of UI design, but
it can make a huge difference to
user experience, engagement, and
revenue.

■■ Amazon: 100 ms of extra load
time caused a 1% drop in sales
(source: Greg Linden, Amazon).

■■ Google: 500 ms of extra load
time caused 20% fewer searches
(source: Marissa Mayer, Google).

■■ Yahoo!: 400 ms of extra load
time caused a 5–9% increase
in the number of people who
clicked “back” before the page
even loaded (source: Nicole Sul-
livan, Yahoo!).

Yet, despite all this evidence,
developers still insist on using the
request/response model. Even
the introduction of Ajax hasn’t
improved the scene much, replac-
ing blank loading states with spin-
ners. There’s no technical reason
why we’re still in this state of
affairs, it’s purely conceptual.

A good example of the problem
is Gmail’s “sending” notification;
how is this useful to people? What’s
the point of blocking? 99% of the
time the email will be sent just fine.

 As developers, we should opti-
mize for the most likely scenario.
Behavior like this reminds me of
Window’s balloon notifications,
which were awesome for telling
you about something you just did:

The Solution
I’ve been working on this prob-
lem, specifically with a MVC
JavaScript framework called Spine
[spinejs.com], and implementing
what I’ve dubbed asynchronous user
interfaces, or AUIs. The key to this
is that interfaces should be com-
pletely non-blocking. Interactions
should be resolved instantly; there
should be no loading messages or
spinners. Requests to the server
should be decoupled from the
interface.

The key thing to remember is
that users don’t care about Ajax.
They don’t give a damn if a request
to the server is still pending. They
don’t want loading messages. Users
would just like to use your applica-
tion without any interruptions.

the Future of Web User Interfaces

http://spinejs.com

  35

The Result
AUIs result in a significantly better
user experience, more akin to
what people are used to on the
desktop than the web. Here’s
an example of an AUI Spine
application with a Rails backend
[spine-rails3.herokuapp.com].

 Notice that any action you take,
such as updating a page, is completely
asynchronous and instant. Ajax REST
calls are sent off to Rails in the back-
ground after the UI has updated. It’s
a much better user experience.

Compare it to the static version
of the same application, which
blocks and navigates to a new page
on every interaction. The AUI expe-
rience is a big improvement that
will get even more noticeable in
larger (and slower) applications.

Have a browse around the source
[hn.my/spinerails] to see what’s
going on, especially the main
controller.

Not a Silver Bullet
It’s worth mentioning here that I
don’t think this approach is a silver
bullet for all web applications, and
it won’t be appropriate for all use
cases. One example that springs
to mind is credit-card transactions,
something you’ll always want to be
synchronous and blocking. How-
ever, I do believe that AUIs are
applicable the vast majority of the
time.

The other point I’d like to make
is that not all feedback is bad.
Unobtrusive feedback that’s actu-
ally useful to your users is com-
pletely fine, like a spinner indicating
when files have synced, or network
connections have finished. The key
thing is that feedback is useful and
doesn’t block further interaction.

The Implementation
So how do you achieve these
AUIs? There are a number of key
principles:

■■ Move state and view rendering to
the client side

■■ Intelligently preload data

■■ Asynchronous server
communication

Now, these concepts turn the
existing server-driven model on its
head. It’s often not possible to con-
vert a conventional web application
into a client side app; you need to
set out from the get-go with these
concepts in mind as they involve a
significantly different architecture.

Moving state to the client side
is a huge subject and beyond the
scope of this article. For more infor-
mation on that, you might want
to read my book, JavaScript Web
Applications [hn.my/jsapp]. Here
I want to focus on a specific part of
AUIs: asynchronous server commu-
nication, or in other words, server
interaction that’s decoupled from
the user interface.

The idea is that you update the
client before you send an Ajax
request to the server. For example,
say a user updated a page name in a
CMS. With an asynchronous UI, the
name change would be immediately
reflected in the application, without
any loading or pending messages.
The UI is available for further inter-
action instantly. The Ajax request
specifying the name change would
then be sent off separately in the
background. At no point does the
application depend on the Ajax
request for further interaction.

For example, let’s take a Spine
Model called Page. Say we update it
in a controller, changing its name:

page = Page.find(1)
page.name = "Hello World"
page.save()

As soon as you call save(), Spine
will perform the following actions:

1.	Run validation callbacks and per-
sist the changes to memory

2.	Fire the change event and update
the user interface

3.	Send an Ajax PUT to the server
indicating the change

Notice that the Ajax request
to the server has been sent after
the UI has been updated; in other
words, what we’ve got here is an
asynchronous interface.

http://spine-rails3.herokuapp.com
http://hn.my/spinerails
http://hn.my/jsapp

36  PROGRAMMING

Synchronizing State
Now this is all very well in prin-
ciple, but I’m sure you’re already
thinking of scenarios where this
breaks down. Since I’ve been work-
ing with these types of applications
for a while, I can hopefully address
some of these concerns. Feel free to
skip the next few sections if you’re
not interested in the finer details.

Validation
What if server validation fails? The
client thinks the action has already
succeeded, so they’ll be pretty sur-
prised if subsequently told that the
validation had failed.

There’s a pretty simple solu-
tion to this: client-side validation.
Replicate server-side validation on
the client side, performing the same
checks. You’ll always ultimately
need server-side validation, since
you can’t trust clients. But, by also
validating on the client, you can be
confident a request will be success-
ful. Server-side validation should
only fail if there’s a flaw in your
client-side validation.

That said, not all validation is
possible on the client-side, espe-
cially validating the uniqueness of
an attribute (an operation which
requires DB access). There’s no
easy solution to this, but there is a
discussion covering various options
in Spine’s documentation.

Network Failures and Server Errors
What happens if the user closes
their browser before a request has
completed? This is fairly simple to
resolve: just listen to the window.
onbeforeunload event, check to see
if Ajax requests are still pending,
and, if appropriate, notify the user.
Spine’s Ajax documentation con-
tains a discussion about this.

window.onbeforeunload = ->
 if Spine.Ajax.pending
 '''Data is still being sent
to the server; you may lose
unsaved changes if you close
the page.'''

Alternatively, if the server returns
an unsuccessful response code, say a
500, or if the network request fails,
we can catch that in a global error
handler and notify the user. Again,
this is an exceptional event, so it’s
not worth investing too much devel-
oper time into. We can just log the
event, inform the user, and perhaps
refresh the page to re-sync state.

ID Generation
IDs are useful to refer to client-side
records, and are used extensively
throughout JavaScript frameworks
like Backbone [hn.my/backbone]
and Spine. However, this throws up
a bit of a dilemma: where are the
IDs generated, with the server or
the client?

Generating IDs on the server has
the advantage that IDs are guaran-
teed to be unique, but generating
them on the client side has the
advantage that they’re available
instantly. How do we resolve this
situation?

Well, a solution that Backbone
uses is generating an internal cid (or
client id). You can use this cid tem-
porarily before the server responds
with the real identifier. Backbone
has a separate record retrieval API,
depending on whether you’re using
a cid, or a real id.

Users.getByCid(internalID)
Users.get(serverID)

I’m not such a fan of that solu-
tion, so I’ve taken a different tack
with Spine. Spine generates pseudo
GUIDs internally when creat-
ing records (unless you specify an
ID yourself). It’ll use that ID to

identify records from then on.
However, if the response from an
Ajax create request to the server
returns a new ID, Spine will switch
to using the server specified ID.
Both the new and old ID will still
work, and the API to find records is
still the same.

Synchronous Requests
The last issue is with Ajax requests
that get sent out in parallel. If a user
creates a record, and then imme-
diately updates the same record,
two Ajax requests will be sent out
at the same time, a POST and a PUT.
However, if the server processes the
“update” request before the “create”
one, it’ll freak out. It has no idea
which record needs updating, as the
record hasn’t been created yet.

The solution to this is to pipeline
Ajax requests, transmitting them
serially. Spine does this by default,
queuing up POST, PUT and DELETE
Ajax requests so they’re sent one at
a time. The next request is sent only
after the previous one has returned
successfully.

Next Steps
So that’s a pretty thorough intro-
duction into asynchronous inter-
faces, and even if you glossed over
the finer details, I hope you’ve been
left with the impression that AUIs
are a huge improvement over the
status quo, and a valid option when
building web applications. n

Alex MacCaw is a JavaScript/Ruby devel-
oper, and works at Twitter with the
frontend Revenue Team. He also enjoys
traveling and writing, and his book JavaS-
cript Web Applications was published by
O’Reilly this year.

Reprinted with permission of the original author.
First appeared in hn.my/aui (alexmaccaw.co.uk)

http://hn.my/backbone
http://hn.my/aui

37  PROGRAMMING

By Paul Stamatiou

The Coding Zone

I’ve learned there are three
things that set me up for a pro-
ductive programming session.

Good Music
An endless supply of new

beats works wonders. This is the
absolute most important thing for
me. If I have to context switch
every three minutes to find a
better song to play, not much is
going to get done. Sometimes
I’ll loop through a Deadmau5
album on Spotify, or listen to a
set like Trance Around the World
[trancearoundtheworld.com].
While I really enjoy leaks and
mashups on Hype Machine
[hypem.com/stammy], it is so hit
or miss that I end up having to
change the track often.

Getting in the coding zone starts
by isolating myself from the rest
of the world with my headphones.
That’s also a sign to Akshay, who
works a few feet in front of me,
that I’m in get-shit-done mode but
have Campfire open if he needs
anything.

No Chance of Interruption
I must have a seemingly end-

less block of time at my disposal. If
I have a meeting in one hour, that
severely limits how much of a zone
I can get into. My most productive
work tends to happen at odd hours
where there is no possible way that
I will get a text about going out
for lunch, an IM from Olark, or a
bunch of emails filling my inbox.

For example, it’s early on Sunday
morning, my cofounder is sleep-
ing (I’ve slumped into a nocturnal
phase....We’re in a no-meetings-
until-we-ship-some-new-stuff
mode), and I will probably be up
until 7 am in a blissful coding rage.
Everything is perfect right now.

Organization
I’m never far away from our

Trello board [trello.com], my own
personal Trello “scratch” board, my
trusty Pilot Hi-Tec C Cavalier 0.3
mm pen and browser sketch pad
[hn.my/uistencils] on my desk.
Anything that crosses my mind
worth doing now goes on my sketch
pad and anything worth doing later
goes on our Trello. I used to hate
Trello because I thought it was
fugly, but the simplicity has grown
on me.

For some reason I can’t seem
to shake the “to do.txt” file on my
desktop. Nowadays it has evolved
into more of a scratch pad as well
— random snippets of code or copy
that I don’t need this moment but
don’t feel like having to browse
through github to find later should
I need it again. n

Paul Stamatiou is the co-founder of
Picplum [picplum.com], a startup making
it easy to automatically send photo prints
to loved ones.

Honorable mentions: A depth charge [hn.my/depth] or cappuccino
on my desk, being motivated about what I’m actually building (that’s
the easy part for me and why I have only ever worked on my start-
ups), and having a clean workspace, both in my physical living area
and on my computer’s desktop and Picplum Dropbox folder.

Reprinted with permission of the original author.
First appeared in hn.my/aui (alexmaccaw.co.uk)

Reprinted with permission of the original author.
First appeared in hn.my/czone (paulstamatiou.com)

http://trancearoundtheworld.com
http://hypem.com/stammy
http://trello.com
http://hn.my/uistencils
http://picplum.com
http://hn.my/depth
http://hn.my/aui
http://hn.my/czone

38  PROGRAMMING

By Matthew Flickinger

What’s in a GIF
— Bit by Byte

We will
start off
by walking
though the

different parts of a GIF file. (The
information on this page is primar-
ily drawn from the W3C GIF89a
specification [hn.my/gift89a].)
A GIF file is made up of a bunch
of different “blocks” of data. The
following diagram shows all of
the different types of blocks and
where they belong in the file. The
file starts at the left and works its
way right. At each branch you may

go one way or the other. The large
middle section can be repeated as
many times as needed. (Technically,
it may also be omitted completely,
but I can’t imagine what good a GIF
file with no image data would be.)

I’ll show you what these blocks
looks like by walking through a
sample GIF file. You can see the
sample file and its corresponding
bytes on top of next page.

http://hn.my/gift89a

39  PROGRAMMING

Note that not all blocks are
represented in this sample file. I will
provide samples of missing blocks
where appropriate. The different
types of blocks include: header, logi-
cal screen descriptor, global color
table, graphics control extension,
image descriptor, local color table,
image data, plain text extension,
application extension, comment
extension, and trailer. Let’s get
started with the first block!

Header Block

All GIF files must start with a
header block. The header takes up
the first six bytes of the file. These
bytes should all correspond to
ASCII character codes [ascii.cl]. We
actually have two pieces of informa-
tion here. The first three bytes are
called the signature. These should
always be “GIF” (e.g., 47=“G”,
49=“I”, 46=“F”). The next three
specify the version of the specifica-
tion that was used to encode the
image. We’ll only be working with
“89a” (e.g., 38=“8”, 39=“9”, 61=“a”).
The only other recognized version
string is “87a” but I doubt most
people will run into those anymore.

Logical Screen Descriptor

The logical screen descriptor always
immediately follows the header.
This block tells the decoder how
much room this image will take
up. It is exactly seven bytes long. It
starts with the canvas width. This
value can be found in the first two
bytes. It’s saved in a format the spec
simply calls “unsigned.” Basically
we’re looking at a 16-bit, nonnega-
tive integer (0-65,535). As with all
the other multi-byte values in the
GIF format, the least significant
byte is stored first (little-endian
format). This means where we
would read 0A 00 from the byte
stream, we would normally write
it as 000A, which is the same as
10. Thus the width of our sample
image is 10 pixels. As a further
example, 255 would be stored as FF
00, but 256 would be 00 01. As you
might expect, the canvas height fol-
lows. Again, in this sample we can
see this value is 0A 00, which is 10.

Next we have a packed byte.
That means that this byte actu-
ally has multiple values stored in
its bits. In this case, the byte 91
can be represented as the binary
number 10010001. (The built-in
Windows calculator is actually very
useful when converting numbers
into hexadecimal and binary for-
mats. Be sure it’s in “scientific” or

“programmer” mode, depending on
the version of Windows you have.)
The first and most-significant bit
is the global color table flag. If it’s
0, then there is none. If it’s 1, then
a global color table will follow. In
our sample image, we can see that
we will have a global color table
(as will usually be the case). The
next three bits represent the color
resolution. The spec says this value
“is the number of bits per primary
color available to the original image,
minus 1” and “...represents the size
of the entire palette from which the
colors in the graphic were selected.”
Because I don’t much about what
this one does, I’ll point you to a
more knowledgeable article on bit
and color depth [hn.my/bitcolor].
For now 1 seems to work. Note
that 001 represents 2 bits/pixel;
111 would represent 8 bits/pixel.
The next single bit is the sort flag.
If the value is 1, then the colors in
the global color table are sorted in
order of “decreasing importance,”
which typically means “decreasing
frequency” in the image. This can
help the image decoder but is not
required. Our value has been left at
0. The last three bits are the size of
global color table. Well, that’s a lie;
it’s not the actual size of the table.
If this value is N, then the actual
table size is 2^(N+1). From our
sample file, we get the three bits
001, which is the binary version of
1. Our actual table size would be

(from Sample File)

(from Sample File)

http://hn.my/bitcolor

40  PROGRAMMING

2^(1+1) = 2^2 = 4. (We’ve men-
tioned the global color table several
times with this byte, we will be
talking about what it is in the next
section.)

The next byte gives us the back-
ground color index. This byte is
only meaningful if the global color
table flag is 1. It represents which
color in the global color table (by
specifying its index) should be used
for pixels whose value is not speci-
fied in the image data. If, by some
chance, there is no global color
table, this byte should be 0.

The last byte of the logical screen
descriptor is the pixel aspect ratio.
I’m not exactly sure what this value
does. Most of the images I’ve seen
have this value set to 0. The spec
says that if there was a value speci-
fied in this byte, N, the actual ratio
used would be (N + 15) / 64 for all
N<>0.

Global Color Table

We’ve mentioned the global color
table a few times already now let’s
talk about what it actually is. As you
are probably already aware, each
GIF has its own color palette. That
is, it has a list of all the colors that
can be in the image and cannot con-
tain colors that are not in that list.
The global color table is where that
list of colors is stored. Each color

is stored in three bytes. Each of
the bytes represents an RGB color
value. The first byte is the value for
red (0-255), next green, then blue.
The size of the global color table
is determined by the value in the
packed byte of the logical screen
descriptor. As we mentioned before,
if the value from that byte is
N, then the actual number of
colors stored is 2^(N+1). This
means that the global color
table will take up 3*2^(N+1)
bytes in the stream.

Our sample file has a global
color table size of 1. This means it
holds 2^(1+1)=2^2=4 colors. We
can see that it takes up 12 (3*4)
bytes as expected. We read the

bytes three at a time to get each of
the colors. The first
color is #FFFFFF

(white). This value is given an index
of 0. The second color is #FF0000
(red). The color with an index value
of 2 is #0000FF (blue). The last
color is #000000 (black). The index
numbers will be important when
we decode the actual image data.

Note that this block is labeled
as “optional.” Not every GIF has
to specify a global color table.
However, if the global color table
flag is set to 1 in the logical screen
descriptor block, the color table
is then required to immediately
follow that block.

Graphics Control Extension

Graphic control extension blocks
are used frequently to specify
transparency settings and control
animations. They are completely
optional.

The first byte is the extension
introducer. All extension blocks
begin with 21. Next is the graphic
control label, F9, which is the value
that says this is a graphic control
extension. Third up is the total
block size in bytes. Next is a packed
field. Bits 1-3 are reserved for
future use. Bits 4-6 indicate disposal
method. The penultimate bit is the
user input flag, and the last is the
transparent color flag. The delay
time value follows in the next two
bytes stored in the unsigned format.
After that we have the transpar-
ent color index byte. Finally we
have the block terminator which is
always 00.

Size in Logical
Screen Desc

No. of
Colors

Byte
Length

0 2 6

1 4 12

2 8 24

3 16 48

4 32 96

5 64 192

6 128 384

7 256 768

(from Sample File)

(from Sample File)

  41

Image Descriptor

A single GIF file may contain
multiple images (useful when creat-
ing animated images). Each image
begins with an image descriptor
block. This block is exactly 10 bytes
long.

The first byte is the image separa-
tor. Every image descriptor begins
with the value 2C. The next 8 bytes
represent the location and size of
the following image. An image in
the stream may not necessarily take
up the entire canvas size defined by
the logical screen descriptor. There-
fore, the image descriptor specifies
the image left position and image
top position of where the image
should begin on the canvas. Next it
specifies the image width and image
height. Each of these values is in
the 2-byte, unsigned format. Our
sample image indicates that the
image starts at (0,0) and is 10 pixels
wide by 10 pixels tall. (This image
does take up the whole canvas size.)

The last byte is
another packed field.
In our sample file
this byte is 0, so all
of the sub-values
will be zero. The first
and most significant
bit in the byte is
the local color table
flag. Setting this flag
to 1 allows you to

specify that the image data
that follows uses a different
color table than the global

color table. (More information on
the local color table follows.) The
second bit is the interlace flag.

Local Color Table
The local color table looks identical
to the global color table. The local
color table would always immedi-
ately follow an image descriptor but
will only be there if the local color
table flag is set to 1. It is effective
only for the block of image data
that immediately follows it. If no
local color table is specified, the
global color table is used for the fol-
lowing image data.

The size of the local color table
can be calculated by the value given
in the image descriptor. Just like
with the global color table, if the
image descriptor specifies a size
of N, the color table will contain
2^(N+1) colors and will take up
3*2^(N+1) bytes. The colors are
specified in RGB value triplets.

Image Data

Finally we get to the actual image
data. The image data is composed
of a series of output codes which
tell the decoder which colors to spit
out to the canvas. These codes are
combined into the bytes that make
up the block.

The first byte of this block is the
LZW minimum code size. This value
is used to decode the compressed
output codes. The rest of the bytes

represent data sub-
blocks. Data sub-
blocks are groups
of 1-256 bytes. The
first byte in the
sub-block tells you
how many bytes of
actual data follow.
This can be a value
from 0 (00) to 255
(FF). After you’ve
read those bytes,

the next byte you read will tell you
how many more bytes of data follow
that one. You continue to read until
you reach a sub-block that says that
zero bytes follow.

You can see our sample file has a
LZW minimum code size of 2. The
next byte tells us that 22 bytes of
data follow it (16 hex = 22). After
we’ve read those 22 bytes, we see
the next value is 0. This means that
no bytes follow and we have read
all the data in this block.

(from Sample File)

(from Sample File)

42  PROGRAMMING

Plain Text Extension

Oddly enough the spec allows you
to specify text which you wish
to have rendered on the image.
I followed the spec to see if any
application would understand this
command; but IE, Firefox, and
Photoshop all failed to render the
text. Rather than explaining all the
bytes, I’ll tell you how to recognize
this block and skip over it.

The block begins with an exten-
sion introducer as all extension
block types do. This value is always
21. The next byte is the plain text
label. This value of 01 is used to
distinguish plain text extensions
from all other extensions. The next
byte is the block size. This tells you
how many bytes there are until
the actual text data begins, or in
other words, how many bytes you
can now skip. The byte value will
probably be 0C which means you
should jump down 12 bytes. The
text that follows is encoded in data
sub-blocks. The block ends when
you reach a sub-block of length 0.

Application Extension

The spec allows for application
specific information to be embed-
ded in the GIF file itself. The only
reference I could find to application
extensions was the NETSCAPE2.0
extension, which is used to loop an
animated GIF file.

Like with all extensions, we start
with 21, which is the extension
introducer. Next is the extension

label, which for application exten-
sions is FF. The next value
is the block size, which
tells you how many bytes
there are before the actual

application data begins. This byte
value should be 0B, which indicates
11 bytes. These 11 bytes hold two
pieces of information. First is the
application identifier which takes
up the first 8 bytes. These bytes
should contain ASCII character
codes that identify
to which application
the extension belongs.
In the case of the
example above, the
application identi-
fier is “NETSCAPE”
which is conveniently
8 characters long. The next three
bytes are the application authen-
tication code. The spec says these
bytes can be used to “authenticate
the application identifier.” With
the NETSCAPE2.0 extension, this
value is simply a version number,
“2.0”, hence the extensions name.
What follows is the application data
broken into data sub-blocks. Like
with the other extensions, the block
terminates when you read a sub-
block that has zero bytes of data.

Comment Extension

One last extension type is the com-
ment extension. Yes, you can actually
embed comments within a GIF file.
Why you would want to increase the
file size with unprintable data, I’m
not sure. Perhaps it would be a fun
way to pass secret messages.

It’s probably no surprise by now
that the first byte is the extension
introducer which is 21. The next
byte is always FE, which is the

comment label. Then we jump right
to data sub-blocks containing ASCII
character codes for your comment.
As you can see from the example,
we have one data sub-block that
is 9 bytes long. If you translate the
character codes you see that the
comment is “blueberry.” The final
byte, 00, indicates a sub-block with
zero bytes that follow, which let’s
us know we have reached the end
of the block.

Trailer

The trailer block indicates when
you’ve hit the end of the file. It is
always a byte with a value of 3B.

You can read the rest of this
series here:

■■ LZW Image Data
[hn.my/imagedata]

■■ Animation and Transparency
[hn.my/animation] n

Matthew is currently a PhD student in the
department of biostatistics at the Univer-
sity of Michigan where he is studying sta-
tistical genetics. He was been teaching
computers new tricks ever since he started
retyping BASIC programs from the back of
3-2-1 Contact magazines.

Example (Not in Sample File)

Reprinted with permission of the original author.
First appeared in hn.my/gif (matthewflickinger.com)

Example (Not in Sample File)

Example (Not in Sample File)

(from Sample File)

http://hn.my/imagedata
http://hn.my/animation
http://hn.my/gif

  43

Reprinted with permission of the original author.
First appeared in hn.my/gif (matthewflickinger.com)

Trying to read
your customers’
minds?

Our simple engagement tools help you understand your customers,
prioritize feedback, and give great customer support even faster.
Spend more time building a product your customers will love!

Get 50% o� your first 3 months* with the code
mindreader at UserVoice.com.

* O�er good for new accounts if used before 12/31/2011.

http://hn.my/gif
https://app.uservoice.com/account/new/full_service_ultimate?coupon_key=mindreader

Dream. Design. Print.
MagCloud, the revolutionary new self-publishing web service
by HP, is changing the way ideas, stories, and images find
their way into peoples’ hands in a printed magazine format.

HP MagCloud capitalizes on the digital revolution, creating a
web-based marketplace where traditional media companies,
upstart magazine publishers, students, photographers, design-
ers, and businesses can affordably turn their targeted content
into print and digital magazine formats.

Simply upload a PDF of your content, set your selling price, and
HP MagCloud takes care of the rest—processing payments,
printing magazines on demand, and shipping orders to loca-
tions around the world. All magazine formatted publications
are printed to order using HP Indigo technology, so they not
only look fantastic but there’s no waste or overruns, reducing
the impact on the environment.

Become part of the future of magazine publishing today at
www.magcloud.com.

25% Off the First Issue You Publish
Enter promo code HACKER when you set your
magazine price during the publishing process.

Coupon code valid through February 28, 2011.
Please contact promo@magcloud.com with any questions.

http://www.magcloud.com

	Contents
	FEATURES
	Translating Math into Code

	STARTUPS
	Hiring Employee #1

	DESIGN
	Slopegraphs

	PROGRAMMING
	How to Read Haskell Like Python
	Fast, Easy, Realtime Metrics Using Redis Bitmaps
	Asynchronous UIs
	The Coding Zone
	What’s in a GIF — Bit by Byte

