uw sitepoint

JQUERY

NOVICE TO NINJA

NEW KICKS AND TRICKS

SIMPLE, FAST, POWERFUL — JAVASCRIPT THE WAY IT SHOULD BE

Summary of Contents

Preface Xvii
1. Falling in Love with jQueryo 1
2. Selecting, Decorating, and Enhancing 19
3. Animating, Scrolling, and Resizing, 53
4. Images and Slideshows 93
5. Menus, Tabs, Tooltips, and Panels 139
6. Construction, Ajax, and Interactivity 187
7. Forms, Controls, and Dialogs 239
8. Lists, Trees, and Tablest e e 305
9. Plugins, Themes, and Advanced TopicS. ..., 347
A. Reference Material oo 409
B. JavaScript Tidbits 419
C. Plugin Helpers oo e 425

g e
\) sitepoint

JQUERY: NOVICE
TO NINJA

BY EARLE CASTLEDINE
& CRAIG SHARKIE

jQuery: Novice to Ninja
by Earle Castledine and Craig Sharkie

Copyright © 2012 SitePoint Pty. Ltd.

Product Manager: Simon Mackie Assistant Technical Editor: Diana MacDonald
Technical Editor: Tom Museth Indexer: Michele Combes

Expert Reviewer: Jorn Zaefferer Cover Designer: Alex Walker

Editor: Kelly Steele

Printing History: Latest Update: February 2012

First Edition: February 2010
Second Edition: February 2012

Notice of Rights

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted
in any form or by any means without the prior written permission of the publisher, except in the case
of brief quotations included in critical articles or reviews.

Notice of Liability

The authors and publisher have made every effort to ensure the accuracy of the information herein.
However, the information contained in this book is sold without warranty, either express or implied.
Neither the authors and SitePoint Pty. Ltd., nor its dealers or distributors, will be held liable for any
damages to be caused either directly or indirectly by the instructions contained in this book, or by the
software or hardware products described herein.

Trademark Notice

Rather than indicating every occurrence of a trademarked name as such, this book uses the names only
in an editorial fashion and to the benefit of the trademark owner with no intention of infringement of
the trademark.

wu\ sitepoint

Published by SitePoint Pty. Ltd.

48 Cambridge Street Collingwood
VIC Australia 3066
Web: www.sitepoint.com
Email: business@sitepoint.com

ISBN 978-0-9871530-1-2 (print)

ISBN 978-0-9871530-7-4 (ebook)
Printed and bound in the United States of America

About Earle Castledine

Sporting a Masters in Information Technology and a lifetime of experience on the Web of
Hard Knocks, Earle Castledine (aka Mr. Speaker) holds an interest in everything computery.
Raised in the wild by various 8-bit home computers, he settled in the Internet during the
mid-nineties and has been living and working there ever since.

A senior systems analyst and JavaScript flaneur, he is equally happy in the rapid rivers of
Scala, the dense foliage of mobile apps and games, or the fluffy clouds of client-side interaction

development.

As co-creator of the client-side opus TurnTubelist," as well as countless web-based experi-
ments, Earle recognizes the Internet not as a lubricant for social change but as a vehicle for
unleashing frivolous ECMAScript gadgets and interesting time-wasting technologies.

About Craig Sharkie

A degree in Fine Art is a strange entrance to a career with a passion for programming, but
that’s where Craig started. A right-brain approach to code and problem-solving has seen him
plying his craft in many of the big names of the Web: AOL, Microsoft, Yahoo, Ziff-Davis, and
Australia’s Atlassian. Today, you’ll find him coding HTML5 and JavaScript solutions for
Telstra Media’s IPTV division, stretching the boundaries of where you might expect to find

jQuery.

His passion for programming and a fondness for serial commas and the like have led him on
a path from journalism, through development, on to conferencing, and now into print. Taking
up JavaScript in 1995, he was an evangelist for the “good parts” even before Crockford coined
the term, and has seen the language flow from the desktop through mobile, and out to televi-
sions and beyond. Being able to start the day with his new daughter just makes seeing where

each day leads all the more fascinating.

About Tom Museth

Tom Museth first fell in love with code while creating scrolling adventure games in BASIC
on his Commodore 64, and usability testing them on reluctant family members. He then spent
16 years as a journalist and production editor before deciding web development would be
more rewarding. He has a passion for jQuery, PHP, HTML5, and CSS3; is eagerly eyeing the
world of mobile dev; and likes to de-stress via a book, a beach, and a fishing rod.

! http://www.turntubelist.com/

http://www.turntubelist.com/

Vi

About Jorn Zaefferer

Jorn Zaefferer is a freelance web developer, consultant, and trainer, residing in Cologne,
Germany. Jorn evolved jQuery’s test suite into QUnit, a JavaScript unit-testing framework,
and maintains it. He also created and maintains a number of popular plugins. As a jQuery
UI development lead, he focuses on the development of new plugins, widgets, and utilities.

About SitePoint

SitePoint specializes in publishing fun, practical, and easy-to-understand content for Web
professionals. Visit http://www.sitepoint.com/ to access our blogs, books, newsletters, articles,
and community forums.

http://www.sitepoint.com/

For Amelia. Thank you.

—Earle

For Jemima:

May it remain

others that continue
oblivious to the
myriad unseen
opportunities that lay
open before us.

—Craig

Table of Contents

Preface...................... XVii
Who Should Read This Booko, Xvili
What's in This Book Xvili
Where to Find Helpo o XXi

The SitePoint Forums........ i XXi
The Book's Website XXil
The SitePoint Newsletters......... ... i XXii
The SitePoint Podcast XXii
Your Feedback XXili
Acknowledgments e XXili
Earle Castledine ...t XXiii
Craig Sharkie XXiii
Conventions Used in ThisBookt XXili
Code Samples XXV
Tips, Notes, and Warnings XXV

Chapter 1 Falling in Love with jQuery........... 1

What's so good about jQuery?....... .. 2
Cross-browser Compatibilityo 2
CSS3 Selectors . . ovv et 3
Helpful Utilities. ... e 3
JAuery Ul . oo e 4
PlUGINS . oo 5
Keeping Markup Clean it 6
Widespread Adoption........ ... 7

What's the downside? i i 7

Downloading and Including jQuery ..., 8

Downloading jQuery ... 8

The Google Content Distribution Network (CDN) 10
Other CDN Options e 11
Nightlies and Github 11
Uncompressed or Compressed?ooiiiiiiinnnnn... 12
Anatomy of a jQuery Script 12
The jJQuery Alaso 13
Dissecting a jQuery Statement.......... 13
Bits of HTML, aka “The DOM" oo s 15
If You Choose to Accept It ... 17

Chapter 2 Selecting, Decorating, and

Enhancing................................. 19

Making Sure the Page IsReady 20
Selecting: The Core of jJQuery ... 21
Simple Selectingot e 22
Narrowing Down Qur Selection oo ... 24
Testing Our Selection ... s 25
FIters . e 26
Using Multiple Selectors ..., 26
Becoming a Good Selector 27
Decorating: CSS with jQuery 27
Reading CSS Properties.........coiiiiiin i 28
Setting CSS Properties. ... 28
ClaSSS - et 31
Enhancing: Adding Effects with jQuery 34
Hiding and Revealing Elements............................. 34
Progressive Enhancement........... 39
Adding New Elements.......... ..o, 40

Removing Existing Elements............ 43

Modifying Content..... ... o i 44
Basic Animation: Hiding and Revealing with Flair 45
Callback Functions 47
AFew Tricks . ..o 48
Highlighting When Hoveringo, 48
Spoiler Revealer 50
Before We Move Ono o 52

Chapter 3 Animating, Scrolling, and

Resizing..................................... 53

ANIMating . ..o e 53
Animating CSS Properties.. ... 54
Color Animation ... 56
BaSING ..ot e 57
Advanced Easingco i 58
Bouncy Content Panes i, 60

The Animation Queueot 63
Chaining Actions 64
Pausing the Chain......... i ... 65
Animated Navigation i 66
Animated Navigation, Take Two 69

The jQuery Ul Libraryo 72

Get Animated! e 74
SCrOlliNg . o e e 74
The scroll Event.ot 74
Floating Navigation i, 75
Scrolling the Document........ 77
Custom Scrollbars 80
RESIZING . .ot 82

The resize Event. ... i 82

Xi

Xii

Resizable Elements 85
That's How We Scroll. And Animatet 92
Chapter 4 Images and Slideshows................ 93
LightboXeso 94
Custom Lightbox 94
Troubleshooting with console.log..........coivvun... 99
ColorBox: A Lightbox Plugin 100
Cropping Images with Jerop ... 104
SHAEShOWS . . oo 107
Cross-fading Slideshowso, 107
Scrolling Slideshows 123
iPhoto-like Slideshow Widget.............. 130
Image-ine That!. 137

Chapter 5 Menus, Tabs, Tooltips, and

Panels...................................... 139

MENUS . . o 140
Expandable/Collapsible Menusccoviiio.... 140
Open/Closed Indicators...........c.coviiiiieeeniiiinnann. 145
Menu Expand on Hover i 147
Drop-down Menuso 148
Accordion Menusot 153
A Simple Accordion 153
Multiple-level Accordions, 158
JQuery Ul Accordion 160
TabS . 161
Basic Tabs 161

Panels and Panes..... 167
Slide-down Login Form o 168
Sliding Overlay o 169

TOOIIPS .« o 173
Simple Styled Tooltips ... 174
Advanced Tooltips and Dialogs, 177

Order off the Menu s 185

Chapter 6 Construction, Ajax, and

Interactivity.............................. 187
Construction and Best Practices........... ...t 188
Cleaner JAUEIY . ..o vt e e e 188
Client-side Templating.......... ... i, 194
Browser Sniffing (.. IsBad!)............. 198
Ajax Crash Course i e e e 200
What IS AJax? ..o 200
Loading Remote HTML i 201
Enhancing Hyperlinks with Hijax 201
Picking HTML with Selectors......... ..., 203
Advanced loadingoiiiiiii i 205
Prepare for the Future: onand off 205
Fetching Data with $.9getJSON........o ... 207

A Client-side Twitter Searcher cooi... 208

The jQuery Ajax Workhorset 209
Common Ajax Settingsccoviiiiinii i 211
Loading External Scripts with $.getScript................ 211
GET and POST Requestsot 212
jQuery Ajax Events 214
Interactivity: Using AjaXovuineii i 215

Ajax Image Gallery i 216

Xiii

Xiv

Image Tagging 231
Ajax Ninjas? Check! 238
Chapter 7 Forms, Controls, and Dialogs....... 239
FOrmMS o e 240
Simple Form Validation........ o i 240
Form Validation with the Validation Plugin.................. 246
Maximum Length Indicator..........., 249
Form Hints. 251
Check All CheckboXesouiiii e 253
Inline Editing ... 254
Autocomplete 261
Star Rating Control 264
CONtrOlS . .o 270
Buttons 271
Date Picker 272
SHAerS . 275
Drag and Drop . ..o 279
jQuery Ul sortable ... 287
Progress Bar 289
Dialogs and Notifications.......... ... i, 291
Simple Modal Dialog 291
jQuery Ul Dialog 295
Growl-style Notifications........., 298
1-up Notification oo 302
We're in Good Form o 304
Chapter 8 Lists, Trees, and Tables............... 305
LIStS oo 306

Sorting Lists 313
Manipulating Select Box Lists.......... 315
TS et 320
Expandable Tree 320
Event Delegation i 324
Tables . o e 326
Fixed Table Headers i 326
Repeating Header..... i, 330
Data Gridso 333
Selecting Rows with Checkboxes........................... 343
We've Made the A-list!. 345

Chapter 9 Plugins, Themes, and Advanced

Topics................ 347

PIUGINS . o e e 347
Creating a Plugin i i i 348
Advanced TOPICS .. vttt e 357
Extending JQuery e 357
A 370

A jQuery Ninja's Miscellany 381
Avoiding Conflicts 381
Queuing and Dequeuing Animations 382
Treating JavaScript Objects as jQuery Objects................ 384
Theme Rolling . ..o e e 386
Using Gallery Themeso, 386
Rolling Your Own oo e 387
Making Your Components Themeable 388

And By No Means Least i, 390
Playing Your Trumpt 392

StarTrackr!: Epilogue i 408

XV

XVi

Appendix A Reference Material 409
$.ajax Options . ..o 409
Flags . oo 409

SEtHINGS . . ot te e 410
Callbacks and Functions it 413
$.support Options. ..ot 414
e 417
Event Properties 417

Event Methodso 418

DIY Event Objectso oo e e 418
Appendix B JavaScript Tidbits...................... 419
Type COBICION .\ ettt e e e e 419
Equality Operators. ... e 420
Truthiness and Falsiness i 421
Unmasking JAUErYt e e 423
Appendix C Plugin Helpers........................... 425
Selector and Context. 425

The jJQuery Stacko 426
Minification e 427

Preface

No matter what kind of ninja you are—a cooking ninja, a corporate lawyer ninja, or
an actual ninja ninja—virtuosity lies in first mastering the basic tools of the trade.
Once conquered, it’s then up to the full-fledged ninja to apply that knowledge in
creative and inventive ways.

In recent times, jQuery has proven itself to be a simple but powerful tool for taming
and transforming web pages, bending even the most stubborn and aging browsers
to our will. jQuery is a library with two principal purposes: manipulating elements
on a web page, and helping out with Ajax requests. Sure, there are quite a few
commands available to do this, but they’re all consistent and easy to learn. Once
you’ve chained together your first few actions, you’ll be addicted to the jQuery
building blocks, and your friends and family will wish you’d never discovered it!

On top of the core jQuery library is jQuery Ul a set of fine-looking controls and

widgets (such as accordions, tabs, and dialogs), combined with a collection of full-
featured behaviors for implementing controls of your own. jQuery Ul lets you quickly
throw together awesome interfaces with little effort, and serves as a great example

of what you can achieve with a little jQuery know-how.

At its core, jQuery is a tool to help us improve the usability of our sites and create
a better user experience. Usability refers to the study of the principles behind an
object’s perceived efficiency or elegance. Far from being merely flashy, trendy design,
jQuery lets us speedily sculpt our pages in ways both subtle and extreme: from
finessing a simple sliding panel to implementing a brand-new user interaction you
invented in your sleep.

Becoming a ninja isn’t about learning an APIinside out and back to front; that’s just
having a good memory. The real skill and value comes when you can apply your
knowledge to making something exceptional: something that builds on the combined
insights of the past to be even slightly better than anything anyone has done before.
This is certainly not easy, but thanks to jQuery, it’s fun just trying.

XVili

Who Should Read This Book

If you’re a front-end web designer looking to add a dash of cool interactivity to your
sites, and you’ve heard all the buzz surrounding jQuery and want to find out what
the fuss is about, this book will put you on the right track. If you’ve dabbled with
JavaScript, but have been frustrated by the complexity of many seemingly simple
tasks, we’ll show you how jQuery can help out. Even if you're familiar with the
basics of jQuery, but want to take your skills to the next level, you’ll find a wealth
of good coding advice and in-depth knowledge.

You should already have intermediate to advanced HTML and CSS skills, as jQuery
uses CSS-style selectors to zero in on page elements. Some rudimentary programming
knowledge will be helpful to have, as jQuery—despite its clever abstractions—is
still based on JavaScript. That said, we’ve tried to explain any JavaScript concepts
as we use them, so with a little willingness to learn you’ll do fine.

What's in This Book

By the end of this book, you’ll be able to take your static HTML and CSS web pages
and bring them to life with a bit of jQuery magic. You’ll learn how to select elements
on the page, move them around, remove them entirely, add new ones with Ajax,
animate them ... in short, you’ll be able to bend HTML and CSS to your will! We
also cover the powerful functionality of the jQuery UI library, and investigate the

recently released jQuery Mobile framework.

This book comprises the following nine chapters and three appendices. Read them
in order from beginning to end to gain a complete understanding of the subject, or
skip around if you only need a refresher on a particular topic.

Chapter 1: Falling in Love with jQuery
Before we dive into learning all the ins and outs of jQuery, we’ll have a quick
look at why you’d want to use it in the first place: why it’s better than writing
your own JavaScript, and why it’s better than the other JavaScript libraries out
there. We’ll brush up on some CSS concepts that are key to understanding

jQuery, and briefly touch on the basic syntax required to call jQuery into action.

XiX

Chapter 2: Selecting, Decorating, and Enhancing
Ostensibly, jQuery’s most significant advantage over plain JavaScript is the ease
with which it lets you select elements on the page to play with. We’ll start off
this chapter by teaching you how to use jQuery’s selectors to zero in on your
target elements, and then we’ll look at how you can use jQuery to alter those

elements’ CSS properties.

Chapter 3: Animating, Scrolling, and Resizing
jQuery excels at animation: whether you’d like to gently slide open a menu or
send a dialog whizzing across the screen, jQuery can help you out. In this
chapter, we’ll explore jQuery’s wide range of animation helpers, and put them
into practice by enhancing a few simple user interface components. We’ll also
have a quick look at some animation-like helpers for scrolling the page and
making elements resizable.

Chapter 4: Images and Slideshows
With the basics well and truly under our belts, we’ll turn to building some of
the most common jQuery widgets out there: image galleries and slideshows.
We’ll learn how to build lightbox displays, scrolling thumbnail galleries and
cross-fading galleries, and even take a stab at an iPhoto-style flip-book.

Chapter 5: Menus, Tabs, Tooltips, and Panels
Now that we’re comfortable with building cool UI widgets with jQuery, we’ll
dive into some slightly more sophisticated controls: drop-down and accordion-
style menus, tabbed interfaces, tooltips, and various types of content panels.
We’re really on a roll now: our sites are looking less and less like the brochure-
style pages of the 1990s, and more and more like the Rich Internet Applications
of the 21st century!

Chapter 6: Construction, Ajax, and Interactivity
This is the one you’ve all been waiting for: Ajax! In order to make truly desktop-
style applications on the Web, you need to be able to pass data back and forth
to and from the server without any of those pesky refreshes clearing your inter-
face from the screen—and that’s what Ajax is all about. jQuery includes a raft
of convenient methods for handling Ajax requests in a simple, cross-browser
manner, letting you leave work with a smile on your face. But before we get too
carried away, our code is growing more complex, so we’d better take a look at

some best practices for organizing it.

Chapter 7: Forms, Controls, and Dialogs
The bane of every designer, forms are nonetheless the cornerstone of any web
application. In this chapter, we’ll learn what jQuery has to offer us in terms of
simplifying our form-related scripting. We’ll learn how to validate forms on the
fly, offer assistance to our users, and manipulate checkboxes, radio buttons,
and select lists with ease. Then we’ll have a look at some less conventional
ways of allowing a site’s users to interact with it: a variety of advanced controls
like date pickers, sliders, and drag and drop. We’ll round it off with a look at
modal dialogs in the post-popup world, as well as a few original nonmodal
notification styles. What a chapter!

Chapter 8: Lists, Trees, and Tables
No matter how “Web 2.0” your application may be, chances are you’ll still need
to fall back on the everyday list, the humdrum tree, or even the oft-derided table
to present information to your users. This chapter will show how jQuery can
make even the boring stuff fun, as we’ll learn how to transform lists into dynam-

ic, sortable data, and tables into data grids with sophisticated functionality.

Chapter 9: Plugins, Themes, and Advanced Topics

jQuery is more than just cool DOM manipulation, easy Ajax requests, and funky
Ul components. It has a wealth of functionality aimed at the more ninja-level
developer: a fantastic plugin architecture, a highly extensible and flexible core,
customizable events, and a whole lot more. In this chapter, we’ll cover the
jQuery UI theme system, which lets you easily tailor the appearance of jQuery
UI widgets to suit your site, and even make your own plugins skinnable with
themes. We’ll also take a look at using the brand new jQuery Mobile framework,

so that you can deploy your ninja skills on handheld devices.

Appendix A: Reference Material
jQuery is a library that aims for flexibility, with many options for usage across
arange of applications. Whether it’s mastering Ajax, underpinning broad browser
support, or handling all kinds of events, there’s a range of core functions and

plugins to suit any developer’s needs.

Appendix B: JavaScript Tidbits
Okay, so we know jQuery is really just JavaScript underneath the hood, and
here’s where you’ll get a crash course in vanilla JavaScript. It pays to know the

XXi

mechanics of the jQuery library, and here we’ll cover the basics. Feel free to go

off on your own JavaScript tangent after reading this appendix.

Appendix C: Plugin Helpers
When it comes to developing your own plugin, there’s an arsenal of actions and
properties that will make building your project simpler and more fun. From the

jQuery stack to minifying your files, we’ll take a quick look at them here.

Take the jQuery Quiz
Now that you’ve reached the end of the book, put your jQuery ninja skills to
the test with our simple online quiz. We’ve created a series of multiple choice
questions based on the book’s content that you can use to assess your learning.

The quiz is on the SitePoint website at http://www.sitepoint.com/quiz-jquery.

Where to Find Help

jQuery is under active development, so chances are good that, by the time you read
this, some minor detail or other of these technologies will have changed from what’s
described in this book. Thankfully, SitePoint has a thriving community of JavaScript
and jQuery developers ready and waiting to help you out if you run into trouble.
We also maintain a list of known errata for this book, which you can consult for the
latest updates; the details follow.

The SitePoint Forums

The SitePoint Forums' are discussion forums where you can ask questions about
anything related to web development. You may, of course, answer questions too.
That’s how a discussion forum site works: some people ask, some people answer,
and most people do a bit of both. Sharing your knowledge benefits others and
strengthens the community. A lot of interesting and experienced web designers and
developers hang out there. It’s a good way to learn new stuff, have questions
answered in a hurry, and have a blast.

The JavaScript Forum?

jQuery.

is where you’ll want to head to ask any questions about

! http://www.sitepoint.com/forums/
2 http://www.sitepoint.com/forums/forumdisplay.php?f=15

http://www.sitepoint.com/forums/
http://www.sitepoint.com/forums/forumdisplay.php?f=15

XXii

The Book's Website

Located at http://www.sitepoint.com/books/jquery2/, the website that supports this

book will give you access to the following facilities:

The Code Archive

As you progress through this book, you’ll note a number of references to the code
archive. This is a downloadable ZIP archive that contains each and every line of
example source code that’s printed in this book. If you want to cheat (or save
yourself from carpal tunnel syndrome), go ahead and download the archive.?

Updates and Errata

No book is perfect, and we expect that watchful readers will be able to spot at least
one or two mistakes in this one. The Errata page® on the book’s website will always
have the latest information about known typographical and code errors.

The SitePoint Newsletters

In addition to books like this one, SitePoint publishes free email newsletters, such
as the SitePoint newsletter, PHPMaster, and BuildMobile, to name a few. In them,
you’ll read about the latest news, product releases, trends, tips, and techniques for
all aspects of web development. Sign up to one or more of these newsletters at
http://www.sitepoint.com/newsletter/.

The SitePoint Podcast

Join the SitePoint Podcast team for news, interviews, opinion, and fresh thinking
for web developers and designers. We discuss the latest web industry topics, present
guest speakers, and interview some of the best minds in the industry. You can catch
up on the latest and previous podcasts at http://www.sitepoint.com/podcast/, or
subscribe via iTunes.

3 http://www.sitepoint.com/books/jquery2/code.php
4 http://www.sitepoint.com/books/jquery2/errata.php

http://www.sitepoint.com/books/jquery2/
http://www.sitepoint.com/books/jquery2/code.php
http://www.sitepoint.com/books/jquery2/errata.php
http://www.sitepoint.com/newsletter/
http://www.sitepoint.com/podcast/

Your Feedback

If you're unable to find an answer through the forums, or if you wish to contact us
for any other reason, the best place to write is books@sitepoint.com. We have a
well-staffed email support system set up to track your inquiries, and if our support
team members are unable to answer your question, they’ll send it straight to us.
Suggestions for improvements, as well as notices of any mistakes you may find, are
especially welcome.

Acknowledgments

Earle Castledine

I'd like to thank Zenexity for teaching me everything I need to know about both
Paris and functional programming, Stuart Horton-Stephens for showing me how to
find beauty in even the most disturbing internet meme, the SitePoint gang for
turning pages of rambling nonsense into English, the Sydney and Paris JavaScript
community (who both truly rock), the jQuery team (and related fellows) for being
a JavaScript-fueled inspiration to us all, and, finally, my awesome Mum and Dad
for getting me a Spectravideo 318 instead of a Commodore 64—thus forcing me to
read the manuals instead of playing games, all those years ago.

Craig Sharkie

In the acknowledgements from our first edition, I thanked my wonderful wife, Jen-
nifer, for allowing me to type into the wee small hours and my parents for allowing
me to read into the wee small hours when I was wee. Now Jennifer and I have a
wee one of our own, Jemima, and I want to thank her for making every day so much
more than a wee bit wonderful. Together with Earle and SitePoint, I'm privileged
to be able to bring jQuery to a new generation of coders, but as good as it was to
work with Earle and SitePoint once again, it’s only a wee privilege compared to
watching Jemima grow.

Conventions Used in This Book

You’ll notice that we’ve used certain typographic and layout styles throughout the
book to signify different types of information. Look out for the following items.

XXiii

XXiV

Code Samples

Code in this book will be displayed using a fixed-width font, like so:

<h1>A Perfect Summer's Day</h1>
<p>It was a lovely day for a walk in the park. The birds
were singing and the kids were all back at school.</p>

If the code is to be found in the book’s code archive, the name of the file will appear

at the top of the program listing, like this:

example.css

.footer {
background-color: #CCC;
border-top: 1px solid #333;

}
If only part of the file is displayed, this is indicated by the word excerpt:
example.css (excerpt)

border-top: 1px solid #333;

If additional code is to be inserted into an existing example, the new code will be

displayed in bold:

function animate() {
new_variable = "Hello";

}

Also, where existing code is required for context, rather than repeat all the code, a
vertical ellipsis () will be displayed:

function animate() {

return new_variable;

}

Some lines of code are intended to be entered on one line, but we’ve had to wrap
them because of page constraints. A = indicates a line break that exists for formatting

purposes only, and should be ignored:

URL.open("http://www.sitepoint.com/blogs/2007/05/28/user-style-she
wets-come-of-age/");

Tips, Notes, and Warnings

Hey, You!

Tips will give you helpful little pointers.

@ Ahem, Excuse Me ...

Notes are useful asides that are related—but not critical—to the topic at hand.

Think of them as extra tidbits of information.

Q Make Sure You Always ...

... pay attention to these important points.

@ Watch Out!

Warnings will highlight any gotchas that are likely to trip you up along the way.

XXV

Chapter

Falling in Love with jQuery

So you have the coding chops to write lean, semantic HTML, and can back it up
with masterful CSS to transform your design ideas into gorgeous websites that en-
thrall your visitors. But these days, you realize, inspiring designs and impeccable
HTML alone fall short when you’re trying to create the next Facebook or Twitter.

So, what’s the missing piece of the front-end puzzle?

It’s JavaScript. That rascally scripting language, cast as the black sheep of the web
development family for so many years. JavaScript is how you add complex behaviors,
sophisticated interactions, and extra pizzazz to your site. To conquer the sleeping
giant that is JavaScript, you just need to buckle down and spend the next few years
learning about programming languages: functions, classes, design patterns, proto-

types, closures ...

Or there’s a secret that some of the biggest names on the Web—Ilike Amazon, Google,
Microsoft, Mozilla, Twitter, and WordPress—will probably be okay about us sharing
with you: “Just use jQuery!” Designers and developers the world over are using the
jQuery library to elegantly and rapidly implement their interaction ideas, completing

the web development puzzle.

jQuery: Novice to Ninja

In this chapter, we’ll have a look at what makes jQuery so good, and how it comple-
ments HTML and CSS in a more natural way than our old friend and bitter enemy:
plain old JavaScript. We’ll also look at what’s required to get jQuery up and running,
and working with our current sites.

What's so good about jQuery?

You've read that jQuery makes it easy to play with the DOM, add effects, and execute
Ajax requests, but what makes it better than, say, writing your own library, or using
one of the other (also excellent) JavaScript libraries out there?

First off, did we mention that jQuery makes it easy to play with the DOM, add effects,
and execute Ajax requests? In fact, it makes it so easy that it’s downright good, nerdy
fun: you’ll often need to pull back from some craziness you just invented, put on
your web designer hat, and exercise a little bit of restraint (ah, the cool things we
could create if good taste were not a barrier!). But there are a multitude of notable
factors you should consider if you’re going to invest your valuable time in learning
a JavaScript library.

Cross-browser Compatibility

Aside from being a joy to use, one of the biggest benefits of jQuery is that it handles
a lot of infuriating cross-browser issues for you. Anyone who has written serious

JavaScript in the past can attest that cross-browser inconsistencies will drive you

mad. For example, a design that renders perfectly in Firefox and Internet Explorer
8 just falls apart in Internet Explorer 7, or an interface component you’ve spent days
handcrafting works beautifully in all major browsers except Opera on Linux. And
the client just happens to use Opera on Linux. These types of issues are never easy

to track down, and even harder to completely eradicate.

Even when cross-browser problems are relatively simple to handle, you always
need to maintain a mental knowledge bank of them. When it’s 11 p.m. on the night
before a major project launch, you can only hope you recall why there’s a weird
padding bug on a browser you forgot to test!

The jQuery team is keenly aware of cross-browser issues, and more importantly
they understand why these issues occur. They have written this knowledge into the
library—so jQuery works around the caveats for you. Most of the code you write
will run exactly the same on all the major browsers, including everybody’s favorite

Falling in Love with jQuery

little troublemaker: Internet Explorer 6. We’re quite sure your company is progressive
enough to not require you to support IE6, but it certainly gives you a nice warm
feeling to know that jQuery has your back there too.

This feature alone will save the average developer a lifetime of headaches. Of course,
you should always aim to keep up to date with the latest developments and best
practices in our industry, but leaving the task of hunting down obscure browser
bugs to the jQuery Team (and they fix more and more with each new version) allows

you more time to implement your ideas.

CSS3 Selectors

Making today’s technologies cross-browser compliant is all well and good, but
jQuery also fully supports the upcoming CSS3 selector specification. Yes, even in
Internet Explorer 6! You can gain a head start on the future by learning and using
CSS3 selectors right now in your production code. Selecting elements you want to
change lies at the heart of jQuery’s power, and CSS3 selectors give you even more

tools to work with.

Helpful Utilities

Also included is an assortment of utility functions that implement common functions
useful for writing jQuery (or are missing from JavaScript): string trimming, the
ability to easily extend objects, and more. These functions by themselves are partic-
ularly handy, but they help promote a seamless integration between jQuery and

JavaScript that results in code that’s easier to write and maintain.

One noteworthy utility is jQuery.support (or $.support), which tests to see if
certain features are available on the current user’s browser. Traditionally, developers
have resorted to browser sniffing—determining which web browser the end user is
using, based on information provided by the browser itself—to work around known
issues. This has always been an unsatisfying and error-prone practice. Using the
jQuery supports utility, you can test to see if a certain feature is available to the
user, and easily build applications that degrade gracefully on older browsers, or

those not standards-compliant.

4

jQuery: Novice to Ninja

And while you might gain a little more power and a few extra features from more
dedicated feature detection micro-libraries like Modernizr' , making use of the tools
to hand is a ninja’s signature. It’s bad form to add even a micro-library when you
don’t need to.

jQuery Ul

jQuery has already been used to make some impressive widgets and effects, some
of which were useful enough to justify inclusion in the core jQuery library itself.

Past plugins like Paul Bakaus’s and Brandon Aaron’s Dimensions, and Ben Alman’s
Unwrap are a couple that spring to mind. As you learn more about jQuery and the
jQuery community, you’ll find further examples. However, the jQuery team wisely
decided that, in order to keep the core library focused, they’d separate out higher-

level constructs and package them into a neat library that sits on top of jQuery.

The first library of this type is called jQuery UlI, and the latest is jQuery Mobile
(which we’ll look at more closely in Chapter 9). jQuery UI comprises a menagerie
of useful effects and advanced widgets that are accessible and highly customizable

through the use of themes. Some of these features are illustrated in Figure 1.1.

Tabs Slider

Second hird
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do Datepicker
eiusmod tempor incididunt ut labere et dolore magna aliqua. Ut enim

ad minim veniam, quis nstrud exercitation ullamco laboris Aisi ut
aliquip ex ea commedo consequat.

Dialog

Open Dialog

Overlay and Shadow Classes

Lorem, ipsum dolor. sit. amet, Nulla nec tortor. Donec id glit quis purus
conse

Nam g Lorem ipsum dolor sit amet, consectetur adipisicing penatis Progressbar
omare elit, sed do eiusmod tempor incididunt ut labore et gui nec
velit. £ dolore magna aligua. Ut enim ad minim veniam, id,
sem. | quis nostrud exercitation ullamco laboris nisi ut

aliquip ex ea commodo consequat.
Nullag I Nam

molest Jsum Highlight / Error
dolor & immodo

vitae, | = i 2id elit

quis purus consectelur consequat. Hey! Sample ui-state-highlight style.

Figure 1.1. A few jQuery Ul widgets

Accordions, sliders, dialog boxes, date pickers, and more—all ready to be used right
now! You could spend a bunch of time creating them yourself in jQuery (as these

! http://www.modernizr.com/

http://www.modernizr.com/

Falling in Love with jQuery

have been) but the jQuery UI controls are configurable and sophisticated enough
that your time would be better spent elsewhere: namely implementing your unique
project requirements rather than ensuring your custom date picker appears correctly
across different browsers!

We’ll certainly be using a bunch of jQuery UI functionality as we progress through
the book. We’ll even integrate some of the funky themes available, and learn how
to create our own themes using the jQuery UI ThemeRoller tool.

Plugins

The jQuery team has taken great care in making the jQuery library extensible. By
including only a core set of features while providing a framework for extending the
library, it’s made it easy to create plugins that you can reuse in all your jQuery
projects, as well as share with other developers. A lot of fairly common functionality
has been omitted from the jQuery core library, and relegated to the realm of the
plugin. Don’t worry, this is a feature, not a flaw. Any additional required function-
ality can be included easily on a page-by-page basis to keep bandwidth and code
bloat to a minimum.

Thankfully, a lot of people have taken advantage of jQuery’s extensibility, so there
are already hundreds of excellent downloadable plugins available from the jQuery
plugin repository, with new ones added all the time. A portion of this can be seen
in Figure 1.2.

PLUGINS
Browse by category Browse by name Browse by date

Categories

Ajax (142)

Animation and Effects (178)
Browser Tweaks (56)

Data (96)

DOM (99)

Figure 1.2. The jQuery plugin repository

Whenever you're presented with a task or problem, it’s worth checking to see if

there’s a plugin that might suit your needs. That’s because almost any functionality

6

jQuery: Novice to Ninja

you might require is likely to have already been turned into a plugin, and is available
for you to start using. Even if it turns out that you need to do some work yourself,
the plugin repository is often the best place to steer you in the right direction.

@ Where Are My Plugins?

At the time of publication, the jQuery plugin® repository is under development.
A placeholder warning at the site says: “We've been looking to provide a higher-
quality, spam-free experience at the plugins site for some time, and a major error
on our part forced us to shut down the current site before we could put the new
one in place.” The full backstory on the change, plus information about the progress
of the site’s development and where you can find various plugins, is on the jQuery
blog.3 You can follow progress of the plugin site’s development on GitHub.”

Keeping Markup Clean

Separating script behavior from page presentation is best practice in the web devel-
opment game, though it does present its share of challenges. jQuery makes it a cinch
to completely rid your markup of inline scripting, thanks to its ability to easily hook
elements on the page and attach code to them in a natural, CSS-like manner. jQuery
lacks a mechanism for adding inline code, so this separation of concerns leads to
leaner, cleaner, and more maintainable code. As a result, it’s easy to do things the
right way, and hard to do them the wrong way!

And jQuery isn’t limited to meddling with a page’s existing HTML,; it can also add
new page elements and document fragments via a collection of handy functions.
There are functions to insert, append, and prepend new chunks of HTML anywhere
on the page. You can even replace, remove, or clone existing elements: all functions
that help you to progressively enhance your sites, thus providing a fully featured
experience to users whose browsers allow it, and an acceptable experience to

everyone else.

2 http://plugins.jquery.com/
3 http://blog.jquery.com/2011/12/08/what-is-happening-to-the-jquery-plugins-site/
4 https://github.com/jquery/plugins.jquery.com

http://plugins.jquery.com/
http://blog.jquery.com/2011/12/08/what-is-happening-to-the-jquery-plugins-site/
http://blog.jquery.com/2011/12/08/what-is-happening-to-the-jquery-plugins-site/
https://github.com/jquery/plugins.jquery.com

Falling in Love with jQuery

Widespread Adoption

If you study usage trends on Google Trends,” you’ll witness jQuery’s exponential
rise to superstardom. If you're wisely wary of trying that, you can always take a
look at BuiltWith’s graphs.® It’s good to be in the “in” crowd when it comes to lib-
raries, as popularity equates to more active code development and plenty of inter-
esting third-party goodies.

Countless big players on the Web are jumping on the jQuery bandwagon: IBM,
Netflix, Nokia, Wikipedia, and even Google (which both uses and hosts the jQuery
library), and Microsoft, which now includes jQuery with its MVC framework and
even in its IDE (integrated development environment), Visual Studio. With such a
vast range of large companies on side, it’s a safe bet that jQuery will be around for
some time to come, so the time and effort you invest in learning it will be well worth
your while. In fact, jQuery can be found on nearly 40% of sites that use JavaScript,

so honing your jQuery skills can really open some doors for you.

jQuery’s popularity has also spawned a large and generous community that’s sur-
prisingly helpful. No matter what your level of skill, you’ll find other developers
patient enough to help you out and work through any issues you have. This caring
and sharing spirit has also spread out to the wider Internet, blossoming into an en-
cyclopedia of high-quality tutorials, blog posts, and documentation.

What's the downside?

There barely is a downside! The main arguments against using any JavaScript library
have always been speed and size: some say that using a library adds too much
download bloat to pages, while others claim that libraries perform poorly compared
with leaner custom code. Though these arguments are worth considering, their
relevance is quickly fading.

First, as far as size is concerned, jQuery is lightweight. The core jQuery library has
always had a fairly small footprint: about 19kB for the basics, less than your average
JPG image. Any extras your project needs (such as plugins or components from the
jQuery Ul library) can be added in a modular fashion, so you can easily count your
bandwidth calories.

> http://www.google.com/trends
® http://trends.builtwith.com/javascript/jQuery

http://www.google.com/trends
http://trends.builtwith.com/javascript/jQuery

8

jQuery: Novice to Ninja

Speed (like size) is becoming a decreasing concern as computer hardware specific-
ations rise and browsers’ JavaScript engines grow faster and faster. Of course, this
is far from implying that jQuery is slow; the jQuery team seem to be obsessed with
speed! Every new release is faster than the last, so any benefit you might derive

from rolling your own JavaScript is shrinking every day.

When it comes to competing JavaScript libraries (and there are more than a handful
out there), jQuery is the best at doing what jQuery does: manipulating the DOM,
adding effects, and making Ajax requests. Still, many of the libraries are of excellent
quality and it’s always worth looking at the alternatives, but if the reasons we’ve

outlined appeal to you, jQuery is probably the way to go.

Enough talk: time for jQuery to put its money where its mouth is!

Downloading and Including jQuery

Before you can fall in love with jQuery (or at least, judge it for yourself) you need
to obtain the latest version of the code and add it to your web pages. There are a
few ways to do this, each with a couple of options available. Whatever you choose,
you’ll need to include jQuery in your HTML page, just as you would any other

JavaScript source file.

It's Just JavaScript

Never forget that jQuery is just JavaScript! It may look and act superficially differ-
ent, but underneath it’s written in JavaScript, and consequently it’s unable to do
anything that plain old JavaScript can’t. This means we’ll include it in our pages
the same way we would any other JavaScript file.

Downloading jQuery

This is the most common method of acquiring the jQuery library, and the latest
version is always available from the jQuery website.” The big shiny download button
will load the latest code from jQuery’s own code repository, or you can visit the
download page to grab the latest “production compression level” version from
jQuery’s Content Delivery Network (CDN), Google’s CDN, or even a CDN from Mi-
crosoft. A CDN is a network of computers that are specifically designed to serve

7 http://jquery.com/

http://jquery.com/

Falling in Love with jQuery

content to users in a fast and scalable manner. These servers are often distributed

geographically, with each request being served by the nearest server in the network.

Click the download link and save the JavaScript file to a new working folder, ready
for playing with. You’ll need to put it where your HTML files can see it: commonly
in a scripts or javascript directory beneath your site’s document root. For the following

example, we’ll keep it very simple and put the library in the same directory as the
HTML file.

To make it all work, we need to tell our HTML file to include the jQuery library.
This is accomplished by using a <script> element inside our HTML document.
The <head> element of a very basic HTML file including jQuery would look a little
like this:

<head>
<title>Hello jQuery world!</title>
<script type="text/javascript" src="jquery-1.7-min.js"></script>
<script type="text/javascript" src="script.js"></script>

</head>

The first script tag on the page loads the jQuery library, and the second script tag
points to a script.js file, which is where we’ll run our own jQuery code. And that’s
it: you’re ready to start using jQuery.

But let’s not stop there. While we’re looking at including the jQuery library in our
HTML code, it’s important to remember that we aren’t restricted to only including
our files in the document’s head; in fact, current wisdom suggests that the head isn’t
even the best place for our include. If you’re feeling adventurous, you can add the
includes right before you close the body element, like so:

</section>
<script type="text/javascript" src="jquery-1.7-min.js"></script>
<script type="text/javascript" src="script.js"></script>
</body>
</html>

The first script tag on the page loads the jQuery library, and the second still points
to our script.js file, but now our files will load after the content of our page (more
on this later).

10

jQuery: Novice to Ninja

We said earlier that downloading the jQuery file is the most common approach, but
there are a few other options available to you, so let’s have a quick look at them
before we move on. If you just want to start playing with jQuery, you can safely

skip the rest of this section.

The Google Content Distribution Network (CDN)

An alternative method of including the jQuery library that’s worth considering is
via the Google CDN.

Google hosts several popular, open-source libraries on its CDN, including jQuery
(and jQuery Ul, which we’ll visit shortly). So, instead of hosting the jQuery files on
your own web server as we did above, you have the option of letting Google pick
up part of your bandwidth bill. You benefit from the speed and reliability of Google’s

vast infrastructure, with the added bonus of always using the latest version of jQuery.

Another benefit of using the Google CDN is that many users will already have
downloaded jQuery from Google when visiting another site. As a result, it will be
loaded from thecache when they visit your site (since the URL to the JavaScript file
will be the same), leading to significantly faster load times. You can also include
the more hefty jQuery Ul library via the same method, which makes the Google
CDN well worth thinking about for your projects: it’s going to save you money and

increase performance when your latest work goes viral!

There are a few ways of including jQuery from the Google CDN. We're going to use
the simpler (though slightly less flexible) path-based method:

<head>

<title>Hello jQuery world!</title>

<script type="text/javascript" src="http://ajax.googleapis.com/
wajax/libs/jquery/1.7.0/jquery.min.js"></script>

<script type="text/javascript" src="script.js"></script>
</head>

It may look suspiciously like our original example, but instead of pointing the

script tag to a local copy of jQuery, it points to one of Google’s servers.

Falling in Love with jQuery

Obtaining the Latest Version with Google CDN

If you look closely at the URL pointing to Google’s servers, you’ll see that the
version of jQuery is specified by one of the path elements (the 1.7.0 in our ex-
ample). If you like using the latest and greatest, however, you can remove a
number from the end of the version string (for example, 1.7) and it will return the
latest release available in the 1.7 series (1.7.1, 1.7.2, and so on). You can even take
it up to the whole number (1), in which case Google will give you the latest version,
even when jQuery 1.8 and beyond are released!

Be careful, though: the shorter the string, the shorter the caching life. If you go all
the way to single digits, there will be no need to update the CDN URLs in your
HTML files when a new version of jQuery is released, but it will be necessary to
look out for any library changes that might affect your existing functionality.

If you’d like to examine the slightly more complex “Google loader” method of in-
cluding libraries, there’s plenty to read about the Google CDN on its website.®

Other CDN Options

It’s not just Google that wants to lend a hand in helping your visitors enjoy your
site. jQuery itself has recognized the value in providing its own CDN option,” and
Microsoft have come to the party, too. As part of its commitment to the open Web,
Microsoft hosts a version you can their commitment to the open Web, Microsoft

host a version you can hotlink to; there are plenty of details on its site.'?

Nightlies and Github

Still more advanced options for obtaining jQuery are listed on the official Down-
loading jQuery documentation page.' ' The first of these options is the nightly builds.
Nightlies are automated builds of the jQuery library that include all new code added
or modified during the course of a day. Every night, the very latest development
versions are made available for download, and can be included in the same manner
as the regular, stable library.

8 http://code.google.com/apis/ajaxlibs/documentation/
o http://code.jquery.com

10 http://asp.net/ajaxlibrary/cdn.ashx

" http://docs.jquery.com/Downloading jQuery

11

http://code.google.com/apis/ajaxlibs/documentation/
http://code.jquery.com
http://asp.net/ajaxlibrary/cdn.ashx
http://docs.jquery.com/Downloading_jQuery
http://docs.jquery.com/Downloading_jQuery

12

jQuery: Novice to Ninja

And if every single night is still too infrequent for you, you can use the Github re-
positories to retrieve the latest up-to-the-minute source code. Github' 2is a distributed
version control system that the jQuery team uses. Every time a developer submits
a change to jQuery, you can download it instantly.

Beware, however, that both the nightly and Github jQuery libraries are often untested.
They can (and will) contain bugs, and are subject to frequent changes. Unless you're
looking to work on the jQuery library itself, it’s probably best to skip these options.

Uncompressed or Compressed?

If you looked closely at the big shiny button on the jQuery home page, or had a poke
around on the jQuery download page, you might have also spied a couple of
download format options: compressed (also known as minified), and uncompressed

(also called development).

Typically, you’ll want to use the minified version for your production code, where
the jQuery source code is compressed: spaces and line breaks have been removed
and variable names are shortened. The result is exactly the same jQuery library, but
contained in a JavaScript file that’s much smaller than the original. This is great for
reducing bandwidth costs for you, and speeding up page requests for the end user.

The downside of the compressed file is readability. If you examine the minified
jQuery file in your text editor (go on!'?), you’ll see that it’s practically illegible: a
single line of garbled-looking JavaScript. The readability of the library is incon-
sequential most of the time, but if you're interested in how jQuery is actually
working, the uncompressed development version is a commented, readable, and
quite beautiful example of JavaScript.

Anatomy of a jQuery Script

Now that we’ve included jQuery in our web page, let’s have a look at what this baby
can do. The jQuery syntax may look a little odd the first time you see it, but it’s
really quite straightforward, and, best of all, it’s highly consistent. After writing
your first few commands, the style and syntax will be stuck in your head and will

leave you wanting to write more.

12 http://github.com/jquery/jquery
13 http://code.jquery.com/jquery-1.7.0.min.js

http://github.com/jquery/jquery
http://code.jquery.com/jquery-1.7.0.min.js

Falling in Love with jQuery

The jQuery Alias

Including jQuery in your page gives you access to a single magical function called
(strangely enough) jQuery. Just one function? It’s through this one function that
jQuery exposes hundreds of powerful tools to help add another dimension to your
web pages.

Because a single function acts as a gateway to the entire jQuery library, there’s little
chance of the library function names conflicting with other libraries or your own
JavaScript code. Otherwise, a situation like this could occur: let’s say jQuery defined
a function called hide (which it has), and you also had a function called hide in
your own code; one of the functions would be overwritten, leading to unanticipated
events and errors.

We say that the jQuery library is contained in the jQuery namespace. Namespacing
is an excellent approach for playing nicely with other code on a page, but if we're
going to use a lot of jQuery (and we are), it will quickly become annoying to have
to type the full jQuery function name for every command we use. To combat this

issue, jQuery provides a shorter alias for accessing the library. It’s simply $.

The dollar sign is a short, valid, and cool-looking JavaScript variable name. It might
seem a bit lazy (after all, you're only saving five keystrokes by using the alias), but
a full page of jQuery will contain scores of library calls, and using the alias will
make the code much more readable and maintainable.

Q Using Multiple Libraries

The main reason you might want to use the full jQuery call rather than the alias
is when you have multiple JavaScript libraries on the same page, all fighting for
control of the dollar sign function name. $ is a common function name in several
libraries, often used for selecting elements. If you’re having issues with multiple
libraries, check out the section called “Avoiding Conflicts” in Chapter 9.

Dissecting a jQuery Statement

We know that jQuery commands begin with a call to the jQuery function or its alias.
Let’s now take out our scalpels and examine the remaining component parts of a
jQuery statement. Figure 1.3 shows both variants of the same jQuery statement
(using the full function name or the $ alias).

13

14

jQuery: Novice to Ninja

selector action parameters
JQuerv('p') .Css ('color', 'blue');
$('p") .CSS ('color', 'blue');

Figure 1.3. A typical jQuery statement

Each command is made up of four parts: the jQuery function (or its alias), selectors,
actions (or methods), and parameters. We already know about the jQuery function,
so let’s look at each of the other elements in turn. First, we use a selector to select
one or more elements on the web page. Next, we choose an action to be applied to
each element we’ve selected. We’ll see more and more actions as we implement
effects throughout the book. And finally, we specify some parameters to tell jQuery
how exactly we want to apply the chosen action. Whenever you see jQuery code,
try to break it up into these component parts. It will make it a lot easier to compre-

hend when you’re just starting out.

In our example above, we’ve asked the selector to select all the paragraph tags (the
HTML <p> tags) on the page. Next, we’ve chosen jQuery’s c¢ss action, which is used
to modify a CSS property of the paragraph elements that were initially selected.
Finally, we’ve passed in some parameters to set the CSS color property to the value
blue. The end result? All our paragraphs are now blue! We’ll delve deeper into se-
lectors and the css action in Chapter 2.

Our example passed two parameters (color and blue) to the css action, but the
number of parameters passed to an action can vary. Some require zero parameters,
some accept multiple sets of parameters (for changing a whole bunch of properties
at once), and some require that we specify another JavaScript function for running
code when an event (such as an element being clicked) happens. But all commands
follow this basic anatomy.

This anatomy also gives us powerful chaining opportunities, where we can pass a
series of actions to our selector and have them all applied in order. Now that’s
power!

Falling in Love with jQuery

Bits of HTML, aka “The DOM"

jQuery has been designed to integrate seamlessly with HTML and CSS. If you’re
well-versed in CSS selectors and know, for example, that div#heading would refer
to a <div> element with an id of heading, you might want to skip this section.
Otherwise, a short crash course in CSS selectors and the Document Object Model
(DOM) is in order.

The DOM doesn’t pertain specifically to jQuery; it’s a standard way of representing
objects in HTML that all browser makers agreed to follow. A good working knowledge
of the DOM will ensure a smooth transition to jQuery ninja-hood.

The DOM is what you call bits of rendered HTML when you’re talking to the cool
kids around the water cooler. It’s a hierarchal representation of your HTML markup,
where each element (such as a <div> or a <p>) has a parent (its “container”), and
can also have one or more nested child elements. Each element can have an id
and/or it can have one or more class attributes, which you generally assign in your
HTML source file. When the browser reads an HTML page and constructs the DOM,
it displays it as a web page comprising objects that can either sit there looking pretty
(as a static page) or, more interestingly, be manipulated by our code.

A sample DOM fragment is illustrated in Figure 1.4. As you can see, body has two
child elements: an <h1> and a <p>. These two elements, by virtue of being contained
in the same parent element, are referred to as siblings.

15

16 jQuery: Novice to Ninja

-
-
-

Figure 1.4. An example of a DOM fragment

An element’s id uniquely identifies the element on the page:
<div id="farewell">Come back and visit us soon!</div>

The <div> has been assigned an id of farewell. It uses an id because it’s unique:
there should be one, and only one, on the page. The DOM also lets us assign the
same name to multiple page elements via the class attribute. This is usually done
on elements that share a characteristic:

<p class="warning">Sorry, this field must be filled in!</p>
Please try again

In this example, multiple elements on the same page are classified as a warning.
Any CSS applied to the warning class will apply to both elements. Multiple class
attributes on the same element (when they’re required) are separated by spaces.

When you write your CSS, you can hook elements by id with a hash symbol, or by
class with a period:

Falling in Love with jQuery

#footer { border: 2px solid black }
.warning { color: red }

These CSS rules will give a black border to the element with an id of farewell,

and ensure that all elements with a class of warning will be displayed in red text.

When it comes time to write some jQuery, you’ll find that knowing about CSS se-
lectors and the DOM is important: jQuery uses the same syntax as CSS for selecting
elements to manipulate on the page. And once you’ve mastered selecting, the rest

is easy, thanks to jQuery!

If You Choose to Accept It ...

jQuery is a stable and mature product that’s ready for use on websites of any size,
demonstrated by its adoption by some of the veritable giants of the Internet. Despite
this, it’s still a dynamic project under constant development and improvement,

with each new version offering up performance boosts and clever additional func-

tionality. There’s no better time than the present to start learning and using jQuery!

As we work through the book, you’ll see that there’s a lot of truth in the jQuery

motto, “write less, do more.” It’s an easy and fun library with a gentle learning curve
that lets you do a lot of cool stuff with very little code. And as you progress along
the path to jQuery ninja-hood, we hope you’ll also acquire a bit of respect for and

understanding of JavaScript itself.

In Chapter 2, we’ll dive into jQuery and start using it to add some shine to our client’s
website. Speaking of client, it’s time we met the team ...

17

Chapter

Selecting, Decorating, and Enhancing

“In phase two, we’re going to want to harness the social and enable Web 2.0 com-
munity-based, crowd-sourced, Ajax, um, interactions,” says one of our new client’s

team members. “But for now, we just need some basic stuff changed on our site.”

The client is launching a startup called StarTrackr! It uses GPS and RFID technology
to track popular celebrities’ exact physical location, then sells that information to
fans. It’s been going great guns operating out of a friend’s local store, but now they’re

taking the venture online.
“Can you do it? Here’s a list that needs to be live by Friday night, close of business.”

You survey the list. As an amazing coincidence, you notice that all the requests can
be implemented using jQuery. You look at your calendar. It’s Friday morning. Let’s
get started!

The first task on the list is to add a simple JavaScript alert when the existing site
loads. This is apparently a temporary measure just to let visitors know that
StarTrackr! is not currently being sued for invasion of privacy (which was recently

implied in a local newspaper).

20

jQuery: Novice to Ninja

Sure, we could use plain old JavaScript to do it, but we know that using jQuery will
make our lives a lot easier. Plus, we can learn a new technology as we go along. We
already saw the anatomy of a jQuery statement in Chapter 1; now let’s look at the
steps required to put jQuery into action: we wait until the page is ready, select our
target, and then change it.

Adding an alert probably seems a little boring, and you might suspect that jQuery
can be more complicated than this—and it can ... but only a little! Even advanced
effects will rely on this basic formula (albeit with multiple iterations of the last two
steps, and perhaps a bit of JavaScript know-how). For now, let’s start nice and easy.

Making Sure the Page Is Ready

Before we can interact with HTML elements on a page, those elements need to have
been loaded: we can only change them once they’re already there. In the old days
ofJavaScript, the only reliable way to do this was to wait for the entire page (includ-

ing images) to finish loading before we ran any scripts.

Fortunately for us, jQuery has a very cool built-in event that executes our magic as
soon as possible. Because of this, our pages and applications appear to load much
faster to the end user:

chapter_02/01_document_ready/script.js

$(document) .ready(function() {
alert('Welcome to StarTrackr! Now no longer under police
investigation!);

})s

The important bits here (highlighted in bold) say: “When our document is ready,
run our function.” This is one of the most common snippets of jQuery you're likely
to see. It’s usually a good idea to do a simple alert test like this to ensure you’ve

properly included the jQuery library, and that nothing funny is going on.

0 You'll Be Seeing $(document).ready() a Lot!

Almost everything you do in jQuery will need to be done after the document is
ready, so we’ll be using this action a lot. It will be referred to as the document-

ready event from now on. Every example that follows in this book, unless otherwise

Selecting, Decorating, and Enhancing

stated, needs to be run from inside the document-ready event. You should only

need to declare it once per page though.

The document-ready idiom is actually a little advanced, but it is so common that
jQuery includes a shortcut version that removes the “(document)” and the “ready”:

$(function() {
alert('Ready to do your bidding!');
});

If you’d like to use the shortcut method, go ahead. The expanded version is arguably
a better example of self-documenting code; it’s much easier to see exactly what’s
going on, especially if it’s buried in a page of another developer’s JavaScript!

At a cursory glance, the document-ready event looks much removed from the
structure we encountered back in our jQuery anatomy class, but on closer inspection
we can see that the requisite parts are all accounted for: the selector is document;

the action is ready; and the parameter is a function that runs some code (our alert).

Selecting: The Core of jQuery

Time is ticking, and deadlines wait for no one. The client team has noted that people
have been quoting incorrect celebrity IDs from the website. This is because the
celebrities’ names are all laid out in one big table, and it’s difficult for users to line
up a celebrity with the correct reference ID. A client team member tells us that he
wants every other row to be a light gray color so that the users can easily find their
favorite celebrity.

We have jQuery ready to do our bidding; it just needs us to choose a target for it.
Selecting the elements you want to modify on the page is really the art of jQuery.
One of the biggest differences between being a novice and being a ninja is the amount

of time it takes you to grab the elements you want to play with!

You might remember from our jQuery anatomy class that all our selectors are

wrapped in the jQuery function:
jQuery(<selectors go here>)

Or the alias:

21

22

jQuery: Novice to Ninja

$(<selectors go here>)

We’ll be using the shortcut alias for the remainder of the book as it’s much more
convenient. We mentioned earlier that there’s no real reason to use the full jQuery
name, unless you're having conflict issues with other libraries (see the section called
“Avoiding Conflicts” in Chapter 9).

Simple Selecting

Our task is to select alternate table rows on the celebrity table. How do we do this?
When selecting with jQuery, your goal is to be only as specific as required: you
want to find out the most concise selector that returns exactly what you want to
change. Let’s begin by taking a look at the markup of the Celebrities table, shown
in Figure 2.1.

Our Celebrities [o5 class="heading">

We have an ever changing roster of newly chipped celebrities. But it can take as little as a week for the
little critters to realise th| <p class="info"> pu have to be fast!

D Name - Deey oatioe Ao Lacarign Price
<table id="celebs" class="data"> ——
203A Johny Starduster , $39.95
141E Beau Dandy (pic,bio) Singer MNew York $39.95
2031 Mo’ Fat (pic) Producer MNew York $19.95

Figure 2.1. class and id attributes in the HTML page

We could start by selecting every table row element on the entire page. To select
by element type, you simply pass the element’s HTML name as a string parameter
to the $ function. To select all table row elements (which are marked up with the
<tr> tag), you would simply write:

$('tr")

Selecting, Decorating, and Enhancing

@ Nothing Happens!

If you run this command, nothing will happen on the page. This is expected; after
all, we’re just selecting elements. But there’s no need to worry; soon enough, we’ll
be modifying our selections in all sorts of weird and wonderful ways.

Similarly, if we wanted to select every paragraph, <div> element, <h1> heading, or
<input> box on the page, we would use these selectors accordingly:

$('p')
$('div')
$('h1")
$('input')

But we don’t want to change every table row on the celebrity page, just the rows in
the table that have the celebrity data. We need to be a bit more specific, and first
select the containing element that holds the list of celebrities. If you have a look at
the following HTML and at Figure 2.1, you can see that the table that contains our
celebrity data has an id of celebs and a class of data. We could use either of these
to select the table.

chapter_02/02_selecting/index.html (excerpt)

<table class="data" id="celebhs">
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>0ccupation</th>
<th>Approx. Location</th>
<th>Price</th>
</tr>
</thead>

jQuery borrows the conventions from CSS for referring to id and class names. To
select by id, use the hash symbol (#) followed by the element’s id, and pass this as

a string to the jQuery function:

$('#celebs')

23

24

jQuery: Novice to Ninja

You should note that the string we pass to the jQuery function is exactly the same
format as a CSS id selector. Because ids should be unique, we expect this to only
return one element. jQuery now holds a reference to this element.

Similarly, we can use a CSS class selector to select by class. We pass a string
consisting of a period (.), followed by the element’s class name to the jQuery
function:

$('.data')

Both of these statements will select the table but, as mentioned earlier when we
talked about the DOM, a class can be shared by multiple elements, and jQuery will
happily select as many elements as we point it to. If there were multiple tables (or
any other elements, for that matter) that also had the class data, they’d all be selec-
ted. For that reason, we’ll stick to using the id for this one!

Can You Be More Specific?

Just like with CSS, we can select either $(' .data') or the more specific
$('table.data'). By specifying an element type in addition to the class, the
selector will only return table elements with the class data, rather than all
elements with the class data. Additionally, like CSS, you can add parent container
selectors to narrow your selection even further.

Narrowing Down Our Selection

We’ve selected the table successfully, though the table itself is of no interest to us;
we want every other row inside it. We’ve selected the containing element, and from
that containing element we want to pick out all the descendants that are table rows:
that is, we want to specify all table rows inside the containing table. To do this,
we put a space between the ancestor and the descendant:

$('#celebs tr')

You can use this construct to drill down to the elements that you’re looking for, but
for clarity’s sake, try to keep your selectors as succinct as possible.

Selecting, Decorating, and Enhancing

Let’s take this idea a step further. Say we wanted to select all elements inside
<p> elements, which are themselves inside <div> elements, but only if those <div>s
happen to have a class of fancy. We would use the selector:

$('div.fancy p span')
If you can follow this, you're ready to select just about anything!

Testing Our Selection

Right, back to our task at hand. It feels like we’re getting closer, but so far we’ve just
been selecting blindly with no way of knowing if we’re actually selecting any ele-
ments. There are some great debugging tools at our fingertips these days (we’ll look
at them shortly), but for now, a simple trick is to interrogate the selection’s length
property. length returns the number of elements currently matched by the selector.
We can combine this with the good ol’ trusty alert statement to ensure that our
elements have been selected:

chapter_02/02_selecting/script.js

$(document) .ready(function() {
alert($('#celebs tr').length + ' elements!');

P

This will alert the length of the selection—seven elements—for the celebrity <table>.
This result might be different from what you’d expect, as there are only six
celebrities in the table! If you have a look at the HTML, you’ll see where our problem
lies: the <table> header is also a <tr>, so there are seven rows in total. A quick fix
involves narrowing down our selector to find only table rows that lie inside the
<tbody> element:

chapter_02/03_narrowing_selection/script.js

$ (document) .ready (function() {
alert($('#celebs tbody tr').length + ' elements!');

P

This will alert the correct length of six elements. The jQuery object is now holding
our six celebrity table row elements.

25

26

jQuery: Novice to Ninja

If the alert shows 0, you’ll know there’s a mistake in your selector. A good way to
troubleshoot this sort of issue is to reduce your selector to the smallest, simplest
one possible.

In our example, we could simply write $('#celebs'), which would select just the
table element and alert a length of 1. From here you can make your selectors more

specific, and check that you’re selecting the correct number of elements as you go.

Filters

With the knowledge that we’ve successfully selected all the table rows, narrowing
our selection down to every other row is simple, because jQuery has a filter to do
it. A filter removes certain items, and keeps only the ones we want. You’ll acquire
a feel for what can be filtered as we work through some more examples; for now,

we’ll just jump straight to the filter we need for our zebra stripes:

chapter_02/04 filters/script.js

$ (document) .ready (function() {
alert ($('#celebs tbody tr:even').length + ' elements!');
1)

Filters are attached to the item you want to filter (in this case, the table rows) and
are defined by a colon, followed by the filter name. The : even filter used here keeps
every even-indexed element in the selection and removes the rest, which is what
we want. When we alert the selection length now, we see three, as expected. All
our odd-numbered rows have been filtered out of the selection. There is a wide array
of jQuery selector filters available to us: :odd (as you might expect), :first, :last,
:eq() (for selecting, for example, the third element), and more. We’ll look at each
of these in more detail as needed throughout the book.

Using Multiple Selectors

One last trick for basic selecting is the ability to perform multiple queries in a single
statement. This is very useful, as we’ll often want to apply the same action to several
elements in unrelated parts of the page. Separating the selector strings with commas
allows you to do this. For example, if we wanted to select every paragraph and

every <div> element, and every <h1> heading, and every <input> box on the page,

we’d use this selector:

Selecting, Decorating, and Enhancing

$('p,div,h1,input')

Learning how to use all these different selectors together to access precisely the
page elements you want is a big part of mastering jQuery. It’s also one of the most
satisfying parts, since you can pack some fairly complex selection logic into a single,
short line of code!

Becoming a Good Selector

Selecting may seem quite easy and, up to a point, it is. But what we’ve covered so
far has only just scratched the surface of selecting. In most cases, the basics are all
you’ll need: if you're simply trying to target an element or a bunch of related ele-
ments, the element name, id, and class are the most efficient and easiest ways to
achieve this.

When moving around the DOM from a given element, the situation becomes a little
trickier. jQuery provides a myriad of selectors and actions for traversing the DOM.
Traversing means traveling up and down the page hierarchy, through parent and
child elements. You can add and remove elements as you go, applying different
actions at each step, letting you perform some mind-bogglingly complex actions in

a single jQuery statement.

If you're a wiz at CSS, you’ll already be familiar with a lot of the statements; they’re
mostly borrowed directly from the CSS specification. But there are probably a few
that you’re unfamiliar with, especially if you're yet to spend much time learning
CSS3 selectors. Of course, we’ll be covering and learning advanced selection tech-
niques as we implement them in our examples and demos. For this reason, anytime
you want to find out more about all the jQuery selectors available, you can just head
over to the online documentation and browse away.'

Decorating: CSS with jQuery

Selecting elements in jQuery is the hard part. Everything else is both easy and fun.
After we have selected our targets, we’re able to manipulate them to build effects
or interfaces. In this section, we will cover a series of jQuery actions relating to CSS:

adding and removing styles, classes, and more. The actions we execute will be ap-

! http://api.jquery.com/category/selectors/

27

http://api.jquery.com/category/selectors/

28

jQuery: Novice to Ninja

plied individually to every element we’ve selected, letting us bend the page to our
will.

Reading CSS Properties

Before we try changing CSS properties, let’s look first into how we can simply access
them. jQuery lets us do this with the css function. Try this:

chapter_02/05_reading_css_properties/script.js

$(document) .ready(function() {
var fontSize = $('#celebs tbody tr:first').css('font-size');
alert(fontSize);

1)

This code will alert the font size of the first element matched by the selector (as
you’ve likely guessed, the : first filter will return the first element among those
matched by the selector).

CSS Properties of Multiple Elements

You can ask for a CSS property after selecting multiple elements, but this is almost
always a bad idea: a function can only return a single result, so you'll still only
obtain the property for the first matched element.

The nifty aspect about retrieving CSS properties with this method is that jQuery
gives you the element’s calculated style: you’ll receive the value that’s been rendered
in the user’s browser, rather than the value entered in the CSS definition. So, if you
gave a <div> a height of, say, 200 pixels in the CSS file, but the content inside it
pushed the height over 200 pixels, jQuery would provide you with the actual height
of the element, rather than the 200 pixels you’d specified.

We’ll see why that’s really important when we come to implement some funky
tricks a bit later.

Setting CSS Properties

So far we’ve yet to see jQuery actually do anything, and it’s high time to remedy
that. We know the page is ready (since we popped up an alert), and we’re fairly sure
we’ve selected the elements we're interested in. Let’s check that we really have:

Selecting, Decorating, and Enhancing

chapter_02/06_zebra_striping/script.js

$ (document) .ready (function() {
$('#celebs tbody tr:even').css('background-color','#dddddd');

});

You probably saw that coming! This is the same c¢ss function we used to read a CSS
property, but now it’s being passed an extra parameter: the value we wish to set for
that property. We’ve used the action to set the background-color to the value
#dddddd (a light gray). Open the file from the code archive in your browser and test
that it’s working correctly. You can see the result in Figure 2.2.

D Name Occupation Approx. Location Price

203A Johny Stardust (bio) Front-man Los Angeles $39.95
141E Beau Dandy (pic.bio) Singer New York $39.95
2031 Mo’ Fat (pic) Producer New York $19.95
007F Kellie Kelly {bio,press) Singer Omaha $11.95
8A05 Darth Fader (pic) DJ London $19.95
6636 Glendatronix (bio,press} Keytarist London $39.95

Figure 2.2. Zebra striping implemented with jQuery

0 Were you ready?

As mentioned previously, this command must be issued from within our
$(document) . ready function. If we run the command before the DOM is ready,
the selector will go looking for the #celebs element, but will find nothing that
matches. At this point it will give up; it won’t even look for the tr elements, let

alone change the background style.

This is true for all the examples that follow, so remember to wrap your code in
the $(document) .ready function.

It’s looking good! But perhaps we should add a little extra to it—after all, more is
more! What about a shade lighter font color to really define our stripes? There are
a few ways we could add a second CSS property. The simplest way is to repeat the

entire jQuery statement with our new values:

29

30

jQuery: Novice to Ninja

chapter_02/07_multiple_properties_1/script.js (excerpt)

$('#celebs tbody tr:even').css('background-color', '#dddddd');
$('#celebs tbody tr:even').css('color', '#666666');

These lines are executed one after the other. Though the end result is correct, it will
become quite messy and inefficient if we have to change a whole slew of properties.
Thankfully, jQuery provides us with a nice way to set multiple properties at the
same time, using an object literal. Object literals are a JavaScript concept beyond
the scope of this book, but for our purposes, all you need to know is that they provide
an easy way of grouping together key/value pairs. For CSS, object literals allow us
to match up our CSS properties (the keys) with the matching CSS values (the values)

in a neat package:

chapter_02/08_multiple_properties_2/script.js (excerpt)

$('#celebs tbody tr:even').css(
{'background-color': '#dddddd', 'color': '#666666'}

)

The object literal is wrapped in curly braces, with each key separated from its cor-
responding value by a colon, and each key/value pair separated by a comma. It’s
passed as a single parameter to the css function. Using this method, you can specify
as many key/value pairs as you like; just separate them with commas. It’s a good
idea to lay out your key/value pairs in a readable manner, so that you can easily
see what’s going on when you come back to your code later. This is especially

helpful if you need to set a larger number of properties. As an example:

chapter_02/09_multiple_properties_3/script.js (excerpt)

$('#celebs tbody tr:even').css({
'background-color': '#dddddd',
‘color': '#666666',
'font-size': '11pt’',

‘line-height': '2.5em'

1)

Selecting, Decorating, and Enhancing

\Fg To Quote or Not to Quote

N

©

In general, when dealing with JavaScript objects, it’s unnecessary for the keys to
be in quotes. However, for jQuery to work properly, any key that contains a hyphen
(as our background-color and font-size examples do) must be placed in
quotes, or written in camel case (like backgroundColor).

Additionally, any key that’s already a keyword in the JavaScript language (such
as float and class) must also be written in quotes.

It can be confusing trying to remember which keys need to be quoted and which
don’t, so the simple solution is to just put all object keys in quotes all the time.

Classes

Excellent! We’ve already struck two tasks off the client’s list, and we have some
funky jQuery happening. But if you stop and have a look at our last solution, you
might notice something a little fishy. If you were to inspect the zebra-striped rows
in a development tool such as Firebug, you’d see that the CSS properties have been
added to the table rows inline, as illustrated in Figure 2.3.

L] <table id="celebs" class="data"=
¥ <tbody>
B <tr=

<tr sty'le—'1buckground—color: rgb(221, 221, 221); }-

>
b <tr>
p <tr style="background-color: rgbh(221, 221, 221);"=
b <tr>
p <tr style="background-color: rgbh(221, 221, 221);"=
</thody=
</ table=

Firebug & Co.

Firebug (or an equivalent tool such as Google Chrome’s Developer Tools?) lets

Figure 2.3. Inline styles viewed with Firebug

you examine the DOM in your browser, as well as monitor and edit CSS, HTML,
and JavaScript (including jQuery). It’s like having a Swiss Army knife for the Web,

and it will save you hours by helping you see exactly what your browser thinks

3

is going on. Firebug is available as a Mozilla Firefox extension,” or as a stand-

2 https://chrome.google.com/webstore/category/ext/11-web-development
3 https://addons.mozilla.org/en-US/firefox/addon/firebug/?src=search

31

https://chrome.google.com/webstore/category/ext/11-web-development
https://addons.mozilla.org/en-US/firefox/addon/firebug/?src=search
http://getfirebug.com/firebuglite

32

jQuery: Novice to Ninja

alone JavaScript file* that you can include in your projects if you develop using
another browser.

Inline styles are a big no-no in HTML/CSS best practice, right? That’s quite true,
and this also applies in jQuery: to keep your code clear and maintainable, it makes
more sense for all the styling information to be in the same place in your CSS files.
Then (as we’ll soon see), you can simply toggle those styles by attaching or removing
class attributes to your HTML tags.

There are times when it is a good idea to use the css jQuery method in the way
we’ve just seen. The most common application is when quickly debugging code: if
you just want to outline an element in red to make sure you’ve selected it correctly,
switching to your CSS file to add a new rule seems like a waste of time.

Adding and Removing Classes

If we need to remove the CSS from inline style rules, where should we put it? In a
separate stylesheet, of course! We’ll put the styles in a CSS class, and use jQuery
to add and remove that class from targeted elements in the HTML. Naturally, jQuery
provides some handy methods for manipulating the class attributes of DOM ele-
ments. Let’s use the most common of these, addClass, to move our zebra-stripe
styles into the CSS file where they belong.

The addClass function accepts a string containing a class name as a parameter.
You can also add multiple classes at the same time by separating the class names
with a space, just as you do when writing HTML.:

$('div').addClass('class_name');
$('div').addClass('class_namel class name2 class _name3');

We only want to add one class name, though, which we’ll call zebra. First, we’ll
add a link to the CSS file from within our HTML.:

chapter_02/10_adding_classes/index.html (excerpt)

<head>

<title>StarTrackr!</title>

4 http://getfirebug.com/firebuglite

http://getfirebug.com/firebuglite

Selecting, Decorating, and Enhancing

<link rel="stylesheet" href="zebra.css" type="text/css" />

</head>

And then we’ll add the new rule to a new CSS file:

chapter_02/10_adding_classes/zebra.css

.zebra {
background-color: #dddddd;
color: #666666;

}

Then, back in our JavaScript file, we’ll modify the selector to use jQuery’s addClass
method rather than css:

chapter_02/10_adding_classes/script.js (excerpt)

$('#celebs tbody tr:even').addClass('zebra');

The result is exactly the same, but now when we inspect the table in Firebug, we’ll
see that the inline styles are gone, replaced by our new class definition. This is

shown in Figure 2.4.

¥ <table class="data"=
p <thead=
v <tbody}
B <tr class="zebra">
=tr=
<tr class="zebra">
=tr=

YYVYY

<tr class="zebra">
b <tr>
</thody>
</tablex=

Figure 2.4. Adding classes to table rows

That’s much better. Now, if we want to change the appearance of the zebra stripes
in the future, we can simply modify the CSS file; this will save us hunting through

our jQuery code (potentially in multiple locations) to change the values.

There will also be times when we want to remove class names from elements (we’ll
see an example of when this is necessary very soon). The action to remove a class

33

34

jQuery: Novice to Ninja

is conveniently known as removeClass. This function is used in exactly the same

way as addClass; we just pass the (un)desired class name as a parameter:
$('#celebs tr.zebra').removeClass('zebra');

Adding and removing classes is a powerful ability, as these operations are the
building blocks of many visual effects.

Enhancing: Adding Effects with jQuery

Now you’ve reached an important milestone. You've learned the component parts
of a jQuery statement: the selector, the action, and the parameters. And you’ve
learned the steps to use the statement: make sure the document is ready, select

elements, and change them.

In the following section, we’ll apply these lessons to implement some cool and

useful effects and, with any luck, reinforce your understanding of the jQuery basics.

Hiding and Revealing Elements

The client team dislike the disclaimer on the site—they feel it reflects badly on the
product—but the lawyer insists that it’s necessary. So the client team have requested
that you add a button that will remove the text after the user has had a chance to
read it:

chapter_02/11_hiding/index.html (excerpt)
<input type="button" id="hideButton" value="hide" />
We’ve added an HTML button on the page with an id of hideButton. When a user
clicks on this button, we want the disclaimer element, which has an id of
disclaimer, to be hidden:
chapter_02/11_hiding/script.js (excerpt)

$('#hideButton').click(function() {
$('#disclaimer').hide();
})s

Selecting, Decorating, and Enhancing 35

Run this code and make sure the disclaimer element disappears when you click the
hide button.

The part in this example that makes the element actually disappear is the hide action.
So, you might ask, what’s all the other code that surrounds that line? It’s what’s
called an event handler, an understanding of which is crucial to becoming a jQuery
ninja. There are many event handlers we can use (we’ve used the click event
handler here) and we’ll be using a lot of them as we move on.

Event Handlers

Event handlers are named thus as they handle events. Events are actions (taken by
either the user or the browser itself) that occur on the web page. When an event
happens, we say that it has fired. And when we write some code to handle the event
(which will be wrapped inside a regular JavaScript function), we say we caught the
event.

There are thousands of events fired on a web page all the time: when a user moves
the mouse or clicks a button, or when a browser window is resized, or the scrollbar
is moved. We can catch, and act on, any of these events.

The first event that you were introduced to in this book was the document-ready
event. Yes, that was an event handler: when the document said, “I'm ready,” it fired

an event, which our jQuery statement caught.

We used the click event handler to tell jQuery to hide the disclaimer when the
button is clicked:

$('#hideButton').click(function() {
$('#disclaimer').hide();
1)

this

When an event fires, we’ll often want to refer to the element that fired it. For ex-
ample, we might want to modify the button that the user has just clicked on in some
way. Such a reference is available inside our event handler code via the JavaScript
keyword this. To convert the JavaScript object to a jQuery object, we wrap it in the

jQuery selector:

36

jQuery: Novice to Ninja

chapter_02/12_this/script.js (excerpt)

$('#hideButton').click(function() {
$(this).hide(); // a curious disappearing button.

P

$(this) provides a nicer way to talk about the element that fired the event, rather

than having to re-select it.

Where's the action?

This might be a bit confusing when you're starting out, as the “action” component
of a jQuery statement seems to have several purposes: we’ve seen it used to run
animations, retrieve values, and now, handle events! It’s true—it gets around!
Usually the action’s name gives you a good clue to its purpose, but if you become
lost, it’s best to consult the index. After a while, you’ll sort out the handlers from

the animations from the utilities.

Revealing Hidden Elements

On with our task! The client team have also specified that the user needs to be able
to retrieve the disclaimer in case they close it by mistake. So let’s add another button
to the HTML, this time with an id of showButton:

chapter_02/13_revealing/index.html (excerpt)

<input type="button" id="showButton" value="show" />

We’ll also add another jQuery statement to our script file, to handle showing the
disclaimer when the show button is clicked:

chapter_02/13_revealing/script.js (excerpt)

$('#showButton').click(function() {
$('#disclaimer').show();

P

Toggling Elements

Having separate buttons for hiding and showing the disclaimer seems like a waste
of valuable screen real estate. It would be better to have one button that performed
both tasks: hiding the disclaimer when it’s visible, and showing it when it’s hidden.

Selecting, Decorating, and Enhancing

One way we could do this is by checking if the element is visible or not, and then
showing or hiding accordingly. We’ll remove the old buttons and add this nice new
one:

chapter_02/14_toggle_1/index.html (excerpt)

<input type="button" id="toggleButton" value="toggle" />

When it’s clicked, we check to find out if we should show or hide the disclaimer:

chapter_02/14_toggle_1/script.js (excerpt)

$('#toggleButton').click(function() {
if ($('#disclaimer').is(':visible')
$('#disclaimer').hide();
} else {
$('#disclaimer').show();

) {

}
P

This introduces the is action. is takes any of the same selectors we normally pass
to the jQuery function, and checks to see if they match the elements it was called
on. In this case, we’re checking to see if our selected #disclaimer is also selected
by the pseudo-selector :visible. It can also be used to check for other attributes;
for example, if a selection is a form or a div, or if the selection is enabled, and so
on.

@ The if Statement

If you're entirely new to programming (that is, if you’ve only ever worked with
HTML and CSS), that whole block of code is probably quite confusing. Don’t
worry, it’s actually straightforward:

if (condition) {

// this part happens if the condition is true
} else {

// this part happens if the condition is false

}

The condition can be anything that JavaScript will evaluate to true or false.
This sort of structure is extremely common in any type of programming, and we’ll

37

38

jQuery: Novice to Ninja

be using it a lot for the rest of the book. If you’re uncomfortable with it, the best
way to learn is to play around: try writing different if/else blocks using jQuery’s
is action like the one we wrote above. You’ll get the hang of it in no time!

is will return true or false depending on whether the elements match the selector.
For our purposes, we’ll show the element if it’s hidden, and hide it if it’s visible.
This type of logic—where we flip between two states—is called a toggle, and is a
very useful construct.

Toggling elements between two states is so common that many jQuery functions
have a version that allows for toggling. The toggle version of show/hide is simply
called toggle, and works like this:

chapter_02/15_toggle_2/script.js (excerpt)

$('#toggleButton').click(function() {
$('#disclaimer').toggle();
})s;

Every time you click the button, the element toggles between visible and hidden.

@ Clean Up Your Old Code

We’ve now just added another event handler to the toggle button, so you need to
be sure to remove the previous event handler code (containing the if/else
statement); otherwise, both will run!

It would be nice, however, if the button was labeled with a more useful word than
“toggle,” which might be confusing to our users. What if you want to toggle the text
of the button as well? As is often the case when working with jQuery, there are a

few ways we could approach this problem. Here’s one:

chapter_02/16_toggle_text/script.js (excerpt)

$('#toggleButton').click(function() {
$('#disclaimer').toggle();

if ($('#disclaimer').is(':visible')) {
$(this).val('Hide");
} else {

Selecting, Decorating, and Enhancing

$(this).val('Show');
}
1)

There’s a lot in this code that will be new to you. We’ll save most of the details for
later, but have a look at it and see if you can figure it out yourself. (Hint: remember
that the selector $(this) refers to the element that caused the event to fire; in this

case, the button.)

Progressive Enhancement

Our disclaimer functionality is working perfectly, and our client will doubtlessly
be impressed with it. However, there’s one subtle aspect of our solution that we
should be aware of: if a user came to our site using a browser without support for
JavaScript, they’d see a button on the page that would do nothing when they clicked
it. This would lead to a very confused user, who might even abandon our site.

“No support for JavaScript?” you might snort. “What kind of browser is unable to

run JavaScript?!”

There might be more people than you think browsing the Web without JavaScript:
users on very old computers or limited devices (like some mobile phones); people
surfing from inside locked-down intranets; and those who worry that JavaScript is

an unnecessary security risk and choose to disable it.

Depending on your site’s demographic, up to 3% of your users might be browsing
without JavaScript capabilities,5 and if you have a million customers, that’s 30,000
alienated customers! The solution is to provide an acceptable experience to these
users, and beef it up for everyone else. This practice is known as progressive en-

hancement.

For our disclaimer functionality, we might settle on this compromise: we want the
disclaimer to be visible to all users, so we place it in our HTML. Then, we add the
ability to hide it for users with JavaScript. That said, we’d prefer to avoid displaying
the show/hide button to users who’ll be unable to make use of it.

> http://developer.yahoo.com/blogs/ydn/posts/2010/10/how-many-users-have-javascript-disabled/

39

http://developer.yahoo.com/blogs/ydn/posts/2010/10/how-many-users-have-javascript-disabled/
http://developer.yahoo.com/blogs/ydn/posts/2010/10/how-many-users-have-javascript-disabled/

40

jQuery: Novice to Ninja

One way of accomplishing this might be to hide our button with CSS, and only
show it via a jQuery css statement. Another way is to add the button to the page
via jQuery; that way, only users with JavaScript will see the button at all. Perfect!

Adding New Elements

So far we’ve seen the jQuery function used for selecting, but it does have another
function of equal importance: creating new elements. In fact, any valid HTML string
you put inside the jQuery function will be created and made ready for you to stick

on the page. Here’s how we might create a simple paragraph element:
$('<p>A new paragraph!</p>")

jQuery performs several useful actions when you write this code: it parses the HTML
into a DOM fragment and selects it, just as an ordinary jQuery selector does. That
means it’s instantly ready for further jQuery processing. For example, to add a class

to our newly created element, we can simply write:
$('<p>A new paragraph!</p>').addClass('new');

The new paragraph will now be given the class new. Using this method, you can
create any new elements you need via jQuery itself, rather than defining them in
your HTML markup. This way, we can complete our goal of progressively enhancing

our page.

innerHTML

Internally, the HTML string is parsed by creating a simple element (such as a
<div>) and setting the innerHTML property of that <div> to the markup you
provide. Some content you pass in is unable to convert quite as easily, so it’s best
to keep the HTML fragments as simple as possible.

Once we’ve created our new elements, we need a way to insert where we’d like

them to go in the page. There are several jQuery functions available for this purpose.
The first we’ll look at is the insertAfter function. insertAfter will take our current
jQuery selection (in this case, our newly created elements) and insert it after another

selected element, which we pass as a parameter to the function.

Selecting, Decorating, and Enhancing

An example is the easiest way to show how this works. This is how we’d create the
toggle button using jQuery:

chapter_02/17_insert_after/script.js (excerpt)

$('<input type="button" value="toggle" id="toggleButton">')
.insertAfter('#disclaimer');

$('#toggleButton').click(function() {

$('#disclaimer').toggle();

1)

As shown in Figure 2.5, the button is inserted into our page after the disclaimer,
just as if we’d put it there in our HTML file.

Disclaimer! This service is not intende
pecple so their privacy should be resp

ftoggle 3
Figure 2.5. A button created and inserted with jQuery

The insertAfter function adds the new element as a sibling directly after the dis-
claimer element. If you want the button to appear before the disclaimer element,
you could either target the element before the disclaimer and use insertAfter, or,
more logically, use the insertBefore method. insertBefore will also place the
new element as a sibling to the existing element, but it will appear immediately

before it:

chapter_02/18_insert_before/script.js (excerpt)

$('<input type="button" value="toggle" id="toggleButton">")
.insertBefore('#disclaimer');

A quick refresher: when we talk about the DOM, siblings refer to elements on the
same level in the DOM hierarchy. If you have a <div> that contains two

elements, the elements are siblings.

If you want to add your new element as a child of an existing element (that is, if
you want the new element to appear inside the existing element), you can use the
prependTo or appendTo functions:

41

42

jQuery: Novice to Ninja

chapter_02/19_prepend_append/script.js (excerpt)

$('START!').prependTo('#disclaimer');
$('END!"').appendTo('#disclaimer');

As you can see in Figure 2.6, our new elements have been added to the start and
the end of the actual disclaimer <p>, rather than before or after it. There are more
actions for inserting and removing elements, but as they’re not required in this

round of changes, we’ll address them later on.

START! Disclaimer! This service is not intended for the those with
criminal intent. Celebrities are kind of like people so their privacy
should be respected. END!

Figure 2.6. prependTo and appendTo in action

Q Inserting Multiple Elements

A new item is inserted once for each element that’s matched with the selector. If
your selector matches every paragraph tag, for example, the insertAfter action
will add a new element after every paragraph tag. Which makes it a fairly powerful

function!

Avoiding Repetition

If you’re flying along so far, here’s a bonus advanced tip for creating elements.
Once you’ve inserted a few bits of HTML here and there, you’ll become annoyed
at the repetitive process of creating elements, selecting them, and adding event
handlers to them. One way around this is to add information directly to the new

elements as you create them using advanced creation syntax:

$('<div>"', {
id: 'specialButton',
text: 'Click Me!',
click: function(){
alert("Advanced jQuery!")
}

}) .insertBefore('#disclaimer');

To use the advanced syntax, you create the element as usual (in this case, a simple
<div>), but you add the element properties as a key/value pair object like we did

Selecting, Decorating, and Enhancing

with the CSS styles at the beginning of the chapter. The properties include normal
attributes that belong on HTML elements, but you can also add your event handlers
directly on creation.

Removing Existing Elements

We informed the client team that up to 3% of users might be without JavaScript
capabilities, therefore missing out on some of the advanced features we’re building.
Members of the client team asked if we could add a message explaining that
JavaScript was recommended for such users. Obviously the message should be
hidden from those who do have JavaScript.

The correct solution is to put the message inside the <noscript> tag that was
provided for this purpose. On the other hand, breaking the rules is fine by us in the
interests of self-education, and this looks like the perfect opportunity to learn how
to remove HTML elements from a page using jQuery. We’ll put the message in our
HTML and remove it with jQuery; that way, only those visitors without JavaScript
will see it.

Let’s go ahead and add the new warning to our HTML page:

chapter_02/20_removing_elements/index.html (excerpt)

<p id="no-script">
We recommend that you have JavaScript enabled!
</p>

Now we need to run our code to remove the element from the page. If a user has
JavaScript disabled, our jQuery statements will fail to run and the message will re-
main on the screen. To remove elements in jQuery, you first select them (as usual)
with a selector, and then call the remove method:

chapter_02/20_removing_elements/script.js (excerpt)

$('#no-script').remove();

The remove action will remove all the selected elements from the DOM, and will
also remove any event handlers or data attached to those elements. The remove action
does not require any parameters, though you can also specify an expression to refine
the selection further. Try this example:

43

44

jQuery: Novice to Ninja

chapter_02/21_removing_with_selector/script.js (excerpt)

$('#celebs tr').remove(':contains("Singer")"');

Rather than removing every tr in the #celebs <div>, this code will remove only
those rows which contain the text “Singer.” This will come in handy when we look
at some advanced effects in the next chapter.

Thanks to these changes, our page will work nicely for the potential 3% of our users
without JavaScript, and even better for the remaining 97%. This is a very simple
example of progressive enhancement, but it gives you a good understanding of the
fundamental idea: rather than using jQuery as the underpinnings of your UI, use it
to add some sugar to an already functioning experience. That way, you know no
one’s left behind.

In the interests of keeping our sample code small and focused, we’ll skip delving
much further into the topic. But go off and research it for yourself: it’s the kind of

best practice that makes you a better web developer.

Modifying Content

We can do just about anything we want to our elements now: show them, hide them,
add new ones, remove old ones, style them however we like ... but what if we want
to change the actual content of an element? Again, jQuery provides a couple of
methods for just this purpose: text and html.

The text and html actions are similar, as both set the content for the elements we’ve
selected. We simply pass a string to either function:

chapter_02/22_modifying_content/script.js (excerpt)

$('p').html('good bye, cruel paragraphs!');
$('h2").text('All your titles are belong to us');

In both these examples the matched elements’ contents will change to the string
we’ve provided: every paragraph and <h2> tag on the page will be overwritten with
our new content. The difference between text and html can be seen if we try adding
some HTML to the content string:

Selecting, Decorating, and Enhancing

chapter_02/23_text_vs_html/script.js (excerpt)

$('p').html('Warning! Text has been replaced .. ');
$('h2").text('Warning! Title elements can be ..');

In this case, our paragraphs will contain some bold-faced text, but our <h2> tags
will contain the entire content string exactly as defined, including the
tags. The action you use to modify content will depend on your requirements: text
for plain text or html for HTML.

You might wonder, “Can these new actions only set content?” At this stage, it should
be no surprise to you that we can also fetch content from our jQuery selections using
the same actions:

chapter_02/24_get_content/script.js (excerpt)

alert($('h2:first').text());

We use the text action supplying no parameters, which returns the text content of
the first <h2> tag on the page (“Welcome!”). Like other actions that retrieve values,
this can be particularly useful for conditional statements, and it can also be great
for adding essential information to our user interactions.

Basic Animation: Hiding and Revealing with Flair

All this showing and hiding and changing is useful, though visually it’s somewhat
unimpressive. It’s time to move on to some jQuery techniques that are a bit more,
shall we say, animated.

The core jQuery library includes a handful of basic effects that we can use to spice
up our pages. And once you’'ve had enough of these, mosey on over to the jQuery

plugin repository, where you’ll find hundreds more crazy effects.

Keep It Sensible

When dealing with effects and animation on the Web, it’s a wise idea to proceed
with your good-taste sensors engaged. Remember, at one time the <blink> tag
was considered perfectly acceptable!

45

46

jQuery: Novice to Ninja

Fading In and Out

One of the most common (and timeless) effects in jQuery is the built-in fade effect.
To use fading in its simplest form, just replace show with fadeIn or hide with
fadeOut:

chapter_02/25_fade_in_out/script.js (excerpt)

$('#hideButton').click(function() {
$('#disclaimer').fadeOut();
})s

There are also a few optional parameters we can use to modify the effect, the first
of which is used to control the time it takes for the fade to complete. Many jQuery
effects and animations accept the time parameter, which can be passed either as a

string or an integer.

We can specify the time span as a string using one of the following predefined
words: slow, fast, or normal. For example: fadeIn('fast'). If you'd rather have
more fine-grained control over the duration of the animation, you can specify the
time in milliseconds, as in: fadeIn(1000).

Toggling Effects and Animations

jQuery also includes a fadeToggle action that will fade the element in if it’s hidden,
and fade it out if it’s displayed. Additionally, our original toggle action we saw
earlier has a few more tricks up its sleeve than we first thought. If we pass it a time

span parameter, we’ll see that toggle has the ability to animate:

chapter_02/26_toggle_fade/script.js (excerpt)

$('#toggleButton').click(function() {
$('#disclaimer').toggle('slow');
})s

You can see that the width, height, and opacity of the entire element are animated.
If this is a bit much for you, there’s another core jQuery animation effect that also

includes built-in toggle actions: sliding.

Sliding eases an element into and out of view, as if it were sliding out from a hidden

compartment. It’s implemented in the same manner as our fade, but with the

Selecting, Decorating, and Enhancing

slideDown, slideUp, and slideToggle actions. As with the fade effect, we can also

specify a time span:

chapter_02/27_slide_toggle/script.js (excerpt)

$('#toggleButton').click(function() {
$('#disclaimer').slideToggle('slow');
1)

Callback Functions

Many effects (including our slide and fade effects) accept a special parameter known
as a callback. Callbacks specify code that needs to run after the effect has finished
doing whatever it needs to do. In our case, when the slide has finished sliding it
will run our callback code:

chapter_02/28_callback_functions/script.js (excerpt)

$('#disclaimer').slideToggle('slow', function() {
alert('The slide has finished sliding!')

b

The callback is simply passed in as a second parameter to the effect action, as an
anonymous function, much in the same way we provide functions as parameters

to event handlers.

g Anonymous Functions

In JavaScript, functions that are defined inline (such as our callbacks and event
handlers) are called anonymous functions. They are referred to as “anonymous”
simply because they don’t have a name! You use anonymous functions when you

only require the function to be run from one particular location.

In any situation where we’re using anonymous functions, it’s also possible to pass
a function name yet define the function elsewhere. This is best done when the
same function needs to be called in several places. In simple cases like our ex-
amples, it can make the code a bit harder to follow, so we’ll stick with anonymous

functions for the moment.

Let’s put our callback functions to practical use. If we want to hide our button after
the disclaimer has finished sliding out of view, we do the following:

47

48

jQuery: Novice to Ninja

chapter_02/29_callback_functions_2/script.js (excerpt)

$('#disclaimer').slideUp('slow', function() {
$('#hideButton').fadeOut();
})s

The disclaimer will slide up, and only once that animation is complete will the
button fade from view.

A Few Tricks

Now that we’ve struck a few high-priority requests off the client’s to-do list, let’s
be a bit more showy and add some extra sizzle to the site. We’ll add a few effects
and visual highlights by building on what we’ve learned so far. There’ll be some
new constructs and actions introduced, so it’s worth working through them if this
is your first venture into the world of jQuery.

Highlighting When Hovering

The client is really keen about the zebra-striping usability issue. The team have re-
quested that, as well as changing the row colors, there should be an additional
highlight that occurs when the user runs the mouse over the <table>.

We could implement this effect by adding event handlers to the <table> that deal
with both the mouseover and mouseout events. Then we could add or remove a CSS
class containing a background color specific to elements over which the mouse is
hovering. This is much the same way we’d do it in plain old JavaScript:

chapter_02/30_hover_highlight/script.js (excerpt)

$('#celebs tbody tr').mouseover(function() {
$(this).addClass('zebraHover');

1)
$('#celebs tbody tr').mouseout(function() {
$(this).removeClass('zebraHover');

P

Remember that $ (this) refers to the selected object, so we’re adding and removing
the zebraHover class to each row as the user hovers the mouse over it. Now we
simply need to add a style rule to our CSS file:

Selecting, Decorating, and Enhancing

chapter_02/30_hover_highlight/zebra.css (. excerpt)

tr.zebraHover {
background-color: #FFFACD;
}

Try this out in your browser and you’ll see how great it works. However, it turns
out there’s an even simpler way of achieving the same result: jQuery includes a
hover action, which combines mouseover and mouseout into a single handler:

chapter_02/31_hover_action/script.js (excerpt)

$('#celebs tbody tr').hover(function() {
$(this).addClass('zebraHover');

}, function() {

$(this).removeClass('zebraHover');

1)

Notice something odd about the hover event handler? Instead of one, it requires
two functions as parameters: one to handle the mouseover event, and one to handle
the mouseout event.

@ How Many Callbacks?

A couple of the jQuery event handlers require a different number of functions.
For example, the toggle event handler can accept any number of functions; it
will simply cycle through each callback one by one each time it fires. The hover
action can take one or two functions: if you pass it one, it will get called for both
mouseover and mouseout events. Reading the docs for each action will help you
to find any cool features you might have missed.

We’re becoming handy at adding and removing class attributes, so it’s probably a
good time to point out another helpful class-related action: toggleClass. You can
guess what it does. It’s incredibly useful in that it adds a class if the element doesn’t
already have it, and removes it if it does.

For example, say we wanted users to be able to select multiple rows from our table.
Clicking once on a table row should highlight it, and clicking again should remove
the highlight. This is easy to implement with our new jQuery skills:

49

50

jQuery: Novice to Ninja

chapter_02/32_toggle_class/script.js (excerpt)

$('#celebs tbody tr').click(function() {
$(this).toggleClass('zebraHover');
})s

Try clicking on the table rows. Cool, huh? The toggleClass action accepts multiple
class names too, if you separate them by spaces. All will be toggled depending on

their current state.

Spoiler Revealer

The latest news section of the StarTrackr! site provides up-to-the-minute juicy
gossip about a range of popular celebrities. The news is a real drawcard on the site:
most users return every day to catch the latest update. The client would like to build
on the hype it’s generating and add to the excitement, so the team have asked for
our help. We’ve suggested a spoiler revealer, where the user tries to guess which
celebrity the news is about before clicking to find the answer.

This kind of functionality would make a great addition to a site containing movie
reviews, for example. You could hide any parts of the review that give away details
of the movie’s story, but allow users to reveal them if they’ve already seen the film.

To set up our spoiler revealer, we need to add a new element to the news section
of the site. Any “secrets” that should be hidden by default will be wrapped in a
span element with the class spoiler attached to it:

chapter_02/33_spoiler_revealer/index.html (excerpt)

Who lost their recording contract today?
The Zaxntines!

Let’s break down what our script needs to do: first, we hide the answers and add a
new element that enables them to be revealed if the user desires. When that element
is clicked, we disclose the answer. Hiding? Adding? Handling clicks? We know
how to do all of that:

Selecting, Decorating, and Enhancing

chapter_02/33_spoiler_revealer/script.js (excerpt)

$('.spoiler').hide();

$('<input type="button" class="revealer" value="Tell Me!"/>")
.insertBefore('.spoiler');

$('.revealer').click(function(){
$(this) .hide();
$(this).next().fadeIn();

1)

There’s a lot going on here, some of it new, but if you read through the lines one at
a time, you’ll make sense of it. First, we instantly hide all the spoiler elements, and
use the insertBefore action to add a new button before each one. At this point,
the page will display the new Tell Me! buttons, and the original spoiler spans will
be hidden.

Next, we select the new buttons we just added and attach click event handlers to
them. When one of the buttons is clicked, we remove the new revealer element
(which we find with $(this)), and fade in the spoiler element that’s next to it. next
is an action we’ve yet to cover. It’s used for traversing the DOM, and gives us access
to an element’s next sibling (that is, the next element inside the same container).

If we look at our modified DOM (shown in Figure 2.7), we can see that the spoiler
span is the next element after the revealer button. The next action simply moves
our selection to that element. jQuery also gives us access to a prev action, which
moves the selection to the element before the one that’s currently selected.

¥ <p>
Who lost their recording contract today?
<input class="revealer" type="button" wvalue="Tell Me!"/>
<span class="spoiler" style="display: none;"=The Zaxntines!

<p=

Figure 2.7. The modified DOM

In fact, jQuery has about a dozen different actions you can use to move around the
DOM; prev and next are just two particularly useful ones. We’ll discover more of
them as we proceed through the book, or you can consult the jQuery API document-

ation to see them all.®

® http://docs.jquery.com/Traversing

51

http://docs.jquery.com/Traversing
http://docs.jquery.com/Traversing

52

jQuery: Novice to Ninja

With the hidden spoiler element now under jQuery’s control, we can simply call

fadeIn to reveal the spoiler with a smooth transition.

Before We Move On

We’ve covered so much in the initial chapters that you should now be gaining a
sense of jQuery’s structure and power. With any luck, you’ve already hatched plans
for using it in your current projects. Please do! Whether you’re using it to solve a
pernicious problem, or just to add a bell here and a whistle there, getting your hands
dirty is by far the best way to cement your knowledge.

One small word of warning—remember the old saying: “When the only tool you
have is a hammer, everything looks like a nail.” jQuery is a great tool, but may be
inappropriate in some instances. If a problem is better solved with simple changes
to your CSS or HTML, that’s what should be done. Of course, while you’re learning,
feel free to do everything with jQuery; just remember that when the time comes to

put your skills into practice, you should always use the best tool for the job.

In the pages that follow, we’ll take the simple jQuery building blocks we’ve learned
here and use them to construct some very cool widgets, effects, and user interaction

that you can start using immediately.

Chapter

Animating, Scrolling, and Resizing

The client team is extremely happy with our rapid and inspired first-round changes,
and want to take it further. The company deals with the entertainment industry,
and believe that the website should reflect what’s perceived as the exciting and
dynamic nature intrinsic to the business. The team are also of the opinion that flashy

animations will help boost sales.

“I think it needs some of that Web 2.0 that I’ve been hearing about,” one of them

says confidently. “Can you make it look more like a Web 2.07”

“Errrm, indeed we can,” you assure him, as he passes you their next wish list chock-
full of exciting changes: a list that will allow us to move beyond hiding and showing,

and closer to our goal of being a jQuery ninja.

Animating

jQuery was built to animate. Whether it’s fading out a warning message after a failed
login, sliding down a menu control, or even powering a complete side-scrolling,
“shoot ’em up” game, it’s all a snap with some powerful built-in methods, augmented

with an extensive array of plugins.

54

jQuery: Novice to Ninja

Animating CSS Properties

We have mastered some valuable examples of animation so far—sliding, fading,

and some fancy hiding and showing—but we haven’t had a lot of control over what
exactly is animated and exactly how it happens. It’s time to introduce a very exciting
jQuery function, helpfully called animate, which lets you animate a whole host of
CSS properties to fashion some striking effects of your own. Let’s have a look at an

example of animate in action:

chapter_03/01_animating_css/script.js (excerpt)

$('p').animate ({
padding: '20px',
fontSize: '30px'
}, 2000);

This code will animate all paragraphs on the page, changing the padding from its
initial state to 20 pixels, and increasing the font size to 30 pixels over a period of 2

seconds (2,000 milliseconds).

To use animate, we pass an object literal containing the properties we would like
to animate specified as key/value pairs, much the same as when you assign multiple
properties with the css function. There’s one caveat that you’ll need to remember,
though: property names must be camel-cased in order to be used by the animate
function; that is to say, you’ll need to write backgroundColor instead of background-
color, and marginLeft instead of margin-left. That is unless of course you opt
for "background-color", and "margin-left". Any property name made up of
multiple words needs to be modified with quotes in this way.

The time frame parameter works exactly the same way as the simple animations
we saw in Chapter 2: you can pass a number of milliseconds, or one of the strings
slow, fast, or normal. Values for CSS properties can be set in pixels, ems, percent-

ages, or points. For example, you could write 100px, 10em, 50%, or 16pt.

Even more excitingly, the values you define can be relative to the element’s current
values: all you need to do is specify += or -= in front of the value, and that value
will be added to or subtracted from the element’s current property. Let’s use this
ability to make our navigation menu swing as we pass our mouse over the menu
items using the hover function:

Animating, Scrolling, and Resizing

chapter_03/02_relative_css_animation/script.js (i excerpt)

$('#navigation 1i').hover(function() {
$(this).animate ({paddinglLeft: '+=15px'}, 200);

}, function() {

$(this).animate ({paddingLeft: '-=15px'}, 200);

1)

Mouse over the navigation menu, and you’ll see the links wobble around nicely.

You can also use animate to achieve fine-grained control over the showing, hiding,
and toggling functions we saw in Chapter 2. We simply specify a property’s anima-
tion value as show, hide, or toggle, rather than a numeric amount:

chapter_03/03_animate_show_hide/script.js (excerpt)

$('#disclaimer').animate({
opacity: 'hide',
height: 'hide'

}, 'slow');

It’s terribly satisfying seeing elements animate. As an exercise, try animating every
element property you can think of, and you’ll stumble on some interesting effects!
The animate function also has some powerful advanced options, which we’ll exam-
ine in detail over the course of this chapter.

@ CSS Animation

Unless you’re reading this chapter in 2022, HTML5, and hence CSS3, is likely to
still be a Living Standard.' That’s a nice way of saying that there are still areas
that are yet to be finalized. There are even areas being added as we read this. Talk
about your exciting times!

Obviously, though, it’s not all good. The cross-browser concerns that we’re used
to are tricky enough with our 10-year-old HTML 4, so it’s no surprise they can be
a little fraught for what lies ahead. What is good news is that we can rest assured
that as soon as they can, the jQuery team will make use of the evolving standards
to improve the library. Sure, libraries exist that aren’t so careful of cross-browser
concerns, but we want all our site’s visitors to have a great experience. We’ll take

! http://wiki.whatwg.org/wiki/FAQ#What_does_.22Living Standard.22_mean.3F

55

http://wiki.whatwg.org/wiki/FAQ#What_does_.22Living_Standard.22_mean.3F

56

jQuery: Novice to Ninja

a look later at how we can nudge things along a little, but till then we’ll keep an
eye out for what HTML5 and CSS3 can offer, and make use of our powerful jQuery
technology.

Color Animation

Once you realize how cool the animate function is, you’ll probably want to animate
an element’s color. However, animating color is a little bit tricky, because the color
values “in between” the start and end colors need to be calculated in a special way.
Unlike a height or width value that moves from one value to another in a simple,
linear manner, jQuery needs to do some extra math to figure out what color is, say,
three-quarters of the way between light blue and orange.

This color-calculating functionality is omitted from the core library. It makes sense
when you think about it: most projects have no need for this functionality, so jQuery
can keep the size of the core library to a minimum. If you want to animate color,

you’re going to need to download the Color Animations plugin.2

9 Using Plugins

The official jQuery plugin repository3 used to contain an ever-increasing number
of plugins, some more useful than others, where you could search for plugins by
name, category (such as effects or utilities), or by the rating it received from the
jQuery community.

As we mentioned in Chapter 1, the plugin repository is now under development,
but the project can be tracked on GitHub, and you can always do an online search
for the particular plugin you’re looking for.

After downloading and including the Color Animations plugin, you can now animate
color properties in your jQuery animation code, just as you would other CSS prop-
erties. Let’s gradually highlight our disclaimer message over a period of two seconds
as the page loads, to make sure no one misses it:

chapter_03/04_color_animation/script.js (excerpt)

$('#disclaimer').animate ({'backgroundColor':'#ff9f5f'}, 2000);

2 http://plugins.jquery.com/project/color
3 http://plugins.jquery.com/

http://plugins.jquery.com/project/color
http://plugins.jquery.com/

Animating, Scrolling, and Resizing

Does anything about that last example make you animated? Remember, we said you

can use camel case or quotes? Well here’s another combination—quoted camel case.

Rather than setting out to confuse you, we’re just letting you know you have options.
In your object literals, the key can either be unquoted, single-quoted, or double-
quoted—take your pick. The only point to remember is that if you use anything
other other than letters and numbers, you have to use one of the quoting options.
So anything that’s not a valid variable name needs quoting.

Easing

Easing refers to the acceleration and deceleration that occurs during an animation
to give it a more natural feel. Easing applies a mathematical algorithm to alter the
speed of an animation as it progresses. Thankfully, we’re using jQuery, so you can

leave your high-school math skills safely locked away.

There are two types of easing available to use in jQuery: linear and swing. Any
time you use an animation function in jQuery, you can specify either of these
parameters to control the animation’s easing. The difference between them can be
seen in Figure 3.1, which shows how a property is adjusted over the period of an

animation depending on which easing option you select.

linear swing

Figure 3.1. jQuery's easing options

swing easing starts off slowly before gaining speed, then towards the end of the
animation it slows down again, nice and gently. Visually, swing easing looks far
more natural than linear easing, and jQuery uses it by default if no easing parameter
is specified.

The linear easing method has no acceleration or deceleration: animations occur
at a constant rate. It looks fairly boring and a bit rigid in most circumstances, but

it’s worth giving it a try; it might just be appropriate for your purposes.

57

58

jQuery: Novice to Ninja

As an example, we’ll animate the first paragraph tag so that when clicked, it grows
and shrinks; we’ll use linear easing as it grows, and swing easing as it shrinks. The
difference is quite subtle, but if you repeat the animations a few times you should
be able to distinguish between them; the shrinking animation feels more natural:

chapter_03/05_easing/script.js (excerpt)

$('p:first').toggle(function() { o
$(this).animate({'height':'+=150px'}, 2000, 'linear'); 9

}, function() {

$(this).animate({'height':'-=150px'}, 2000, 'swing'); 9

1)

There’s quite a lot of jQuery in this statement, so now might be a good time to pause
and make sure you understand everything that’s going on here:

@ We use a filter with a selector to grab only the first paragraph tag. A toggle
event handler (which executes each passed function on successive clicks) is

attached to the paragraph.

@ Inside the handlers we select this, which refers to the element that triggered
the event (in our example, it’s the paragraph itself). The first handler uses the
+= format to grow the paragraph’s height by 150 pixels using the 1inear easing
function.

€) The second handler uses the -= format to shrink the paragraph’s height by 150
pixels using the swing easing function.

If you managed to follow along and understand each of these steps, pat yourself on

the back! You're really getting the hang of jQuery!

Advanced Easing

As stated, swing easing provides a more visually pleasing transition, and is probably
adequate for most tasks. But swing and linear easing are just the tip of the iceberg.
There is a vast array of easing options beyond these two basic types included in the
core jQuery library. Most of these are available in the easing plugin,* available from

the jQuery plugin repository.

4 http://plugins.jquery.com/project/Easing

http://plugins.jquery.com/project/Easing

Animating, Scrolling, and Resizing

jQuery Ul Includes Several Plugins

The easing library is also included in the effects section of the jQuery UI library,
which we’ll be visiting shortly. If you're starting to suffer from plugin fatigue, you
might like to skip forward to the section called “The jQuery UI Library”: this library
includes several common plugins, including color animation, class transitions,
and easing. By including the jQuery Ul library, you’ll avoid needing to include
each plugin separately in your pages.

Just download and include the plugin’s JavaScript file in your HTML page, anywhere
after the jQuery library. Rather than providing you with new functions, the easing
plugin simply gives you access to over 30 new easing options. Explaining what all
these easing functions do would test even the most imaginative writer, so we’ll
simply direct your attention to Figure 3.2, where you can see a few of the algorithms
represented graphically.

You’ll notice that some of the algorithms move out of the graph area; when animated
elements reach this part of the transition, they’ll move past their destination and
then turn back to settle there. The effect is that of an element attached to a piece of
elastic, which gently pulls everything back into place.

easelnCirc easelnOutExpo easeQuiBack
/\ easeQutElastic easeQutBounce easelnOutElastic
\g
NS

Figure 3.2. Advanced easing options

To use one of the new algorithms, we just need to pass its name to our animate
function. There are lots to choose from, so we might as well jump straight into it
and try a few:

59

60

jQuery: Novice to Ninja

chapter_03/06_other_easing_options/script.js (excerpt)

$('p:first').animate({height: '+=300px'}, 2000, 'easeOutBounce');
$('p:first').animate({height: '-=300px'}, 2000, 'easeInOutExpo');
$('p:first').animate({height: 'hide'}, 2000, 'easeOutCirc');
$('p:first').animate({height: 'show'}, 2000, 'easeOutElastic');

Look at that paragraph go! You might want to know where these easing option names
are coming from, or where you can see the full list. The algorithms originated from
Robert Penner’s easing equations, which are described in detail on his website.

The best way to see all the available equations is to view the plugin’s source code,
or take a look at the jQuery Ul easings demo. If you’re keen to use your text editor,
open up the file you downloaded and there will be a list of functions you can use
in jQuery animations. If you’re keen to see an effect in your browser, the jQuery Ul

canvas-based solution is for you.®

Time to Play Around

Take a break and test out all the easing functions that the plugin makes available.
It’s unlikely you’ll ever need to use all of them, but becoming familiar with them
will let you choose the right one to give your interface the precise feel you want.
Moreover, playing around with the animate function will cement your knowledge

of it: it’s an important part of a jQuery ninja’s arsenal!

Bouncy Content Panes

Now that we’ve learned a bit about how the animate function works, let’s have a
look at our client’s latest round of requests. Today’s to-do list includes the addition
of a vitally important page component: the StarTrackr! Daily “Who’s Hot Right
Now?” List (or the SDWHRNL for short). The list consists of the latest celebrities to
fall in or out of favor, along with an accompanying photo and brief bio. We’ll apply
some of the animation and easing techniques we’ve just learned to implement the

list as panes that can be opened and closed independently.

The appearance of the widget in the page is shown in Figure 3.3.

> http://www.robertpenner.com/easing/
® http://jqueryui.com/demos/effect/#easing/

http://www.robertpenner.com/easing/
http://jqueryui.com/demos/effect/#easing/
http://jqueryui.com/demos/effect/#easing/

Animating, Scrolling, and Resizing

Who’s Hot Right Now?

Beau Dandy

Johnny Stardust

After smashing into the limelight with a controversial run as “local weather
forecaster with something to say”, Johnny Stardust has gone from success to
success. His current spot as front-man of super-group Pahoopt makes his exact
location a valuable commaodity.

Glendatronix

Figure 3.3. Biography panes

In our HTML, we’ll implement the section as a div element containing all our
celebrities. Each celebrity’s pane will be marked up as an h3, followed by another

div containing an image and a short paragraph:

chapter_03/07_bouncy_content_panes/index.html (excerpt)

<section id="bio">
<h2>Who’s Hot Right Now?</h2>

<h3>Beau Dandy</h3>
<div>
<img src="../images/beau_100.jpg" width="100"
height="100" alt="Beau Dandy"/>
<p>Content about Beau Dandy</p>
</div>

<h3>Johnny Stardust</h3>
<div>
<img src="../images/johnny 100.jpg" width="100"
height="100" alt="Johnny Stardust"/>
<p>Content about Johnny Stardust</p>
</div>

<h3>Glendatronix</h3>
<div>
<img src="../images/glenda_100.jpg" width="100"
height="100" alt="Glendatronix"/>
<p>Content about Glendatronix</p>
</div>
</section>

61

62 jQuery: Novice to Ninja

When a user clicks on one of the headings, we want the associated content pane to
toggle open and closed. You can style your panes however you see fit, but having
a block-level element for a heading with a different-colored background is a common

technique: it provides a clear call to action for the user to click on it.

“Jumpy"” animation?

One quirk to be aware of is that animating an element directly next to a heading
tag can sometimes look “jumpy,” especially when the element hides. This is due
to the heading’s margin, which collapses as the following element hides. A simple
workaround, which we’ve used here, is to remove margins from the heading tag
entirely.

We want to avoid showing any content when the page loads, so our first task is to
hide all the content containers:

chapter_03/07_bouncy_content_panes/script.js (excerpt)

$('#bio > div').hide();

If, instead, you’d prefer to have one pane open by default, you could specify it here.
This can help to make it more evident to users that there’s content “hidden” in the
panes, and that they’re meant to click on the headings to reveal it. Making this work
in jQuery is simple: we merely apply the : first filter and call the show action to
reveal only the first pane:

$('#bio > div:first').show();

9 The Child Selector

There’s a new selector feature in these examples that we’ve yet to cover. It’s the
child selector, and it’s indicated by the greater-than angle bracket (>). A child se-
lector selects all the immediate children that match the selector. If we’d omitted
the child selector, our code would select all div elements underneath the bio div
element, even if they were nested inside other elements. For more details and

code examples using this selector, check out the jQuery API documentation.’

7 http://docs.jquery.com/Selectors/child

http://docs.jquery.com/Selectors/child

Animating, Scrolling, and Resizing

Now that our content is marked up the way we want it, we simply add some jQuery
interaction magic to it. To reveal our secret content we’ll take the familiar approach
of capturing the click event, finding the next element (which contains our content),
and showing it, as we did in Chapter 2. But this time, we’ll employ a touch of

“bounce” easing to the content’s height, so that the panes bounce in and out of view:

chapter_03/07_bouncy_content_panes/script.js (excerpt)

$('#bio h3').click(function() {
$(this).next().animate(
{'height':'toggle'}, 'slow', 'easeOutBounce'

);
P

The easing function easeOutBounce produces a great bouncing-ball effect, which
works wonderfully for content panes like this. Give it a spin in your browser and

see for yourself!

The Animation Queue

The last topic we’re going to look at concerning animation is another advanced use
of the animate function. It turns out animate can be called with a set of extra options,
like this:

animate(parameters, options);

The options parameter is a bundle of options packaged together as an object literal
made up of key/value pairs. We’re already familiar with several of the available
options: duration, easing, and complete (the callback method). There are, however,
a couple of new ones: step and queue. Before we explain them, let’s take a look at
the syntax for calling the animate function with an options parameter:

chapter_03/08_animation_queue/script.js (excerpt)

$('p:first').animate(

{
height: '+=100px',
color: 'green'

}s

{

duration: ‘'slow',

63

64

jQuery: Novice to Ninja

easing: 'swing',
complete: function() {alert('done!');},
queue: false

}
);

Notice that you can accomplish almost all of this with the simpler format that we’ve
already seen. You only need the advanced version if you want to specify additional
settings, like the queue parameter.

The queue is the list of animations waiting to occur on a particular element. Every
time we ask jQuery to perform an animation on an element, that animation is added
to the queue. The element executes the queue one at a time until everything is
complete. You’ve probably already seen this if you’'ve gone click-happy on one of
our demos.

There are many situations where this will be undesirable, though. Sometimes you’ll
want multiple animations to occur at the same time. If you disable the queue when

you specify an animation, further animations can run in parallel.

The animation queue can be controlled by using the queue option, as well as with
the jQuery actions stop, queue, and dequeue. This combination of actions and op-
tions gives us super-fine control over how our animations run. But before we can
really sink our teeth into these juicy options, it’s time to unveil one of the most
important jQuery techniques around.

Chaining Actions

So far, we’'ve been writing statements one at a time: either one after the other, or
nested inside callback functions. We’ve needed to either rewrite our selectors, or
make use of the this keyword to find our targets again. However, there’s a technique
that allows us to run multiple jQuery commands, one after the other, on the same
element(s). We call this chaining, so to release the ninja inside of you, you’d better
pay attention to this bit.

Chaining links two or more jQuery actions, or methods, into a single statement. To
chain an action, you simply append it to the previous action. For example, let’s
chain together the hide, slideDown, and fadeOut actions. Our element quickly hides
and then slides into view, before fading away:

Animating, Scrolling, and Resizing

$('p:first').hide().slideDown('slow').fadeOut();

You can chain together as many actions as you like. Be careful, though: chaining
can quickly become addictive. As well as being able to chain actions based on your
initial selector, you can also move around the DOM, adding and removing elements
as you go, which can lead to some quite hairy statements.

It’s often good to lay out your actions on separate lines for clarity. This takes up a
lot more space, but is much easier to read and maintain. Our previous example
could be rewritten like this:

$('p:first')
.hide()
.slideDown('slow"')
.fadeOut();

It’s important to realize that the jQuery selector contains the modified results of
each action that runs before launching the next action. This means that we can add
and remove elements as we go along, only applying actions to the current selection.

If you revisit some of our earlier examples, you might spot a few chained actions
hidden in the code; for example, when we wrote: $ (this) .next().animate(). The
next action moved our selection to the next DOM element, and then the animate

action animated it without affecting the original element.

You’ll have plenty of chances from now on to play with chaining; the rest of this
book is going to be filled with it. It’s the most fun part of jQuery!

Pausing the Chain

If you’d like to pause briefly in the middle of a jQuery chain, you can use the delay
action. Simply give it a number, and it will delay the queue for that many milli-

seconds before continuing. So, referring to the same example, we could write:

$('p:first")
.hide()
.SlideDown('slow")
.delay(2000)
.fadeOut();

65

66

jQuery: Novice to Ninja

This code will slide down the paragraph, and then wait two seconds before fading
it out. It can be a great way to control your animations more precisely.

Animated Navigation

The client team is sticking to its guns on this issue: the team members want the top-
level navigation to be a Flash control that wobbles and zooms around as the user

interacts with it. Flash just looks better, they claim. You assure them that your Flash
skills are second to none, and will whip up a proof of concept for them right away.

Okay. Now, with the client team out of the room, let’s apply our newly discovered
jQuery power to create a Flash-like navigation bar. It will have a background “blob”
that wobbles around to highlight the menu choice the user is hovering over. And
we’ll do it all with free, standard technologies: HTML, CSS, and JavaScript. Flash?
We don’t need no stinkin’ Flash!

We’'re sticking with a basic animation so that the steps are easier to follow. First off,
we have modified the CSS pertaining to our navigation menu, so that it’s laid out
horizontally rather than vertically. As a refresher, here’s what the HTML for the
navigation looks like:

chapter_03/09_animated_navigation/index.html (excerpt)

<ul id="pavigation">
Home</1li>
About Us
Buy!</1li>
Gift Ideas

Our background color blob will be an empty div element, positioned behind
whichever navigation link the user is mousing over. Our first task, therefore, will

be to create the element and append it to the document:

chapter_03/09_animated_navigation/script.js (excerpt)

$('<div id="navigation_blob"></div>"').css({

width: 0,

height: $('#navigation li:first a').height() + 10
}) .appendTo('#navigation');

Animating, Scrolling, and Resizing

Notice that we’re selecting the navigation link inside the object literal to provide
values for the width and height. This may seem strange if you’re new to program-
ming, but you shouldn’t let it frighten you; in general, you can use the returned (or
calculated) value of a function anywhere you can put a static value. We're also
adding 10 pixels to each of those values, so that the blob is slightly larger than the
anchor tag it will sit behind.

@ Unit'ed We Stand

In order to normalize dimensions when you use ¢ss () or width () in your code,
jQuery converts all the properties with units (em, in, pt, and so on) to pixels.
That’s what is happening when you set a width to, say, 30em and jQuery returns
480 and omits the unit.

It certainly makes it a lot easier to manipulate dimensions, and it’s why we were
able to simply add 10 in our code. If you omit the unit type yourself, jQuery goes
right ahead and assumes you meant pixels.

With the blob in place, we need to establish a trigger that will set it in motion. This
should occur when the user hovers over a navigation link, so we’ll use the hover
function. Remember that hover accepts two parameters: the function that runs when
the mouse moves over the element, and the one that runs when the mouse moves
off the element. This is the general outline of our event handler:

chapter_03/09_animated_navigation/script.js (excerpt)

$('#navigation a').hover(function() {
// Mouseover function

}, function() {
// Mouseout function

P

Now for some fun stuff. Let’s look at the first function, which occurs when the
mouse moves over the element:

67

68

jQuery: Novice to Ninja

chapter_03/09_animated_navigation/script.js (excerpt)

// Mouseover function
$('#navigation_blob').animate (
{
width: $(this).width() + 10,
left: $(this).position().left
}s
{
duration: 'slow',
easing: 'easeQOutCirc',
queue: false

})

When the user mouses over the menu item, we animate two properties of the blob:

its width and its position.

The link’s position on the page can be determined using a jQuery method called

position. This is an action that does nothing on its own, but when called exposes
two properties: left and top; these are the left and top offsets of the selected element
relative to its parent. In this case we want the left property, so we know where to

move the blob to in our navigation menu.

We set the queue option to false, ensuring that our animations won'’t pile up in a
line waiting to execute if our user is hover-happy. When you move to a different
link, a new animation will start regardless of whether the current one is finished

or not.

We still need to tell jQuery what to do when our user moves the mouse off the link.
This block of code is similar to the one we just saw, although it includes more

chained actions:

chapter_03/09_animated_navigation/script.js (excerpt)

// Mouseout function
$('#navigation_blob').animate (

{
width: $(this).width() + 10,
left: $(this).position().left
s
{

duration: 'slow',

Animating, Scrolling, and Resizing

easing: 'easeOutCirc',
queue: false

})

.animate (

{
left: $('#navigation li:first a').position().left
}, 'fast'
)

This time, we’ve chained two animate actions together: the first one hides the blob
with a bit of nice easing applied, and the second whisks it off to the side (to the
position of the first link in the navigation).

@ Hide and Go Seek

We can’t blame you for having read the first edition of JQuery: Novice to Ninja.
Heck, we did! And that’s why we spotted that this code had width: hide in the
mouseout’s first animation. So what’s happened? jQuery is evolving and maturing,
that’s what’s happened. It means that we need to watch changelogs (records of
alterations made to any project) and have our code mature correspondingly.

Give the menu a spin in your browser, and see how the appropriate use of easing

has given our control a natural feel.

Now is a great time to try some different easing functions. Just replace the ones used
here with any of the others from the easing plugin; you’ll be amazed at how much
difference they make to the feel of the component. You can also try animating other
values: changing the blob’s color, for instance.

Animated Navigation, Take Two

One of the great advantages to using a library such as jQuery is that you can try out
a bunch of different alternatives fairly quickly, and pick the one you like best.

We still have a few hours left before the client team return to see the progress of
our animated navigation. Let’s try to approach the same problem from a different

angle and see what we can come up with.

For this animation, our menu items will each have a hidden icon that will bounce

into view when the link is moused over (as shown in Figure 3.4).

69

70

jQuery: Novice to Ninja

Buy Now! About Us Gift Ideas

Figure 3.4. Bouncy animated menu

The setup for this effect is nice and simple. It’s a regular unordered list, configured
as a horizontal menu, but we’ve stashed a secret icon underneath the normally
visible area. This is just a matter of setting the list item’s height so that you can only

see the link text by default, but as we animate the height the icon bounces into view.

We’ll start with the CSS: we’ve moved our menu to be absolutely positioned at the
top-right of the container div, where there’s space for the icons to expand. We’ve
set a background color for the icons to be set against, and employed a clever trick
to keep the background images out of view; notice that the list items are 20 pixels
in height, but that the background is offset 30 pixels from the top. As aresult, they’ll
be invisible until we expand the height of the list items.

We’ll also set the background image of each link to a different icon:

chapter_03/10_animated_navigation_2/navigation.css (excerpt)

#container {
position: relative;

}

#navigation {
position:absolute;
width: inherit;

top: 0O;
right: 0;
margin: 0;

}

#navigation 1i {
height:20px;
float:left;
list-style-type: none;
width:70px;
padding:3px;
border-right:1px solid #3687AF;
background-color: #015287;

Animating, Scrolling, and Resizing

background-repeat: no-repeat;
background-position: center 30px;

}

#navigation 1i a {
color: #FFFFFF;

}

#navigation #home {
background-image:url('home_icon.png');

}

The only new aspect for this effect’s code is that we use the stop action to clear the
queue for both the mouseover event and the mouseout event. Then we just animate
the height to display the hidden icons, and shrink it back to normal when the hover
finishes. Some carefully chosen duration and easing settings give us the groovy

bouncing effect that we’re after. Make sure you experiment with the settings in order

to match the feel of your site:

chapter_03/10_animated_navigation_2/script.js (excerpt)

$('#navigation 1i').hover(function() {
$(this)
.stop(true)
.animate (
{height: '60px'},
{duration: 500, easing: 'easeOutBounce'}

)

b
function() {
$(this)
.stop(true)
.animate (
{height: '20px'},
{duration: 500, easing: 'easeOutCirc'}
)
}

)

Now we have not one, but two funky examples of animated navigation to show our

client.

71

72

jQuery: Novice to Ninja

The jQuery Ul Library

As mentioned in Chapter 1, the jQuery Ul library is a collection of advanced jQuery
widgets, effects, and interactions—such as date pickers, accordions, and drag-and-
drop functionality—that are widely applicable to web development. But before we
start the fun stuff, it’s time to have a look at downloading and including the jQuery
UI library. It’s a procedure that’s marginally more complicated to set up than the
core library and plugins we’ve been using so far. This is because the full jQuery UI
library, as of 1.8.17, is 367kB in size (197kB when minified). That’s a lot of code!
Fortunately, any given project will normally only require a small subset of the
functionality contained in the jQuery UlI, and the jQuery website provides us with
a handy tool to create our own custom version of the jQuery Ul containing only
what we need and nothing more.

The options can appear a bit daunting the first time you visit the download builder
page,8 which you can reach by clicking the Build custom download link from the
jQuery UI home page.

The download builder is broken into several sections: Core, Interaction, Widgets,
Effects, and Themes. Core is the main jQuery Ul library: the Widgets and Interaction
components all rely on it. A good way to approach the builder is to deselect
everything and then add only what you require. If a component relies on another

component to function, it will be automatically selected for you.

While we’re developing, it’s safe to grab the full library. That way, everything will
be there for us to use if we need it. Once you’re happy with the functionality on
your website, you can always return to the download builder and create a custom
library, omitting anything unused. The difference in file size between the full library
and a customized version can be quite significant.

One option that will greatly affect the visual output of the widgets and interactions
is the theme. There are a number of themes you can choose from using the drop-
down box. In Chapter 9, we’ll have an in-depth look at themes, including making
your own. But in the interests of progressing with this exciting stuff, we’ll use the
default theme and return to work.

8 http://jqueryui.com/download

http://jqueryui.com/download
http://jqueryui.com/download

Animating, Scrolling, and Resizing

The custom download archive contains a lot of files. There are heaps of demos and
documentation for you to try out and explore in the development-bundle directory,
but to use jQuery Ul, you’ll simply need the jQuery-ui-1.8.17-min.js file (or whichever
version is current at the time you’re reading this) and the directory that contains
the theme you’ve chosen.

You’ll have to put the theme’s directory in a location where your HTML page can
reach it. For this book’s examples, jQuery UI has been placed in the lib directory
(alongside jQuery itself), and the theme files in the css directory.

The jQuery Ul library contains an Effects package that enables us to implement
some interesting effects. It also includes useful methods and functionality for doing
advanced animation. We’ve seen some of this functionality already, thanks to the
Color Animation plugin and the Easing plugin. These are included in the Effects
package, so you no longer need to include them if you’re going to use the jQuery
UI effects library.

Before we move on, let’s have a quick look at a few of the available effects. We’ll
take our much-maligned first paragraph element and shake it about, highlight it in
yellow, then explode it to pieces:

chapter_03/11_jquery_ui_effects/script.js (excerpt)

$('p:first')
.effect('shake', {times:3}, 300)
.effect('highlight', {}, 3000)
.hide('explode', {}, 1000);

Look at it go! Of course, this is just a tiny sample of the available effects. Some of
them can only be used in this way, via the effect action, while others can be used
this way or in place of hide, show, or toggle parameters. Some examples of the
latter are blind, clip, puff, fold, and slide.

We’ll refrain from going through all of them in detail here; you’re best off spending
your Sunday afternoon exploring them. Not all the effects are pure flair, but many
are useful in common user interaction scenarios, such as highlight, which is a

standard way to indicate a new message to the user.

73

74

jQuery: Novice to Ninja

It’s a good idea to test out each function, so you’ll remember them when appropriate.
And if the jQuery Ul assortment of effects just isn’t enough for you, never mind:
there are hundreds more available from the plugin repository!

Get Animated!

You now understand all the fundamentals of animating with jQuery: selectors, event
handlers, callbacks, chaining, and the all-important animate function. You’ve also
become briefly acquainted with the extensive jQuery Ul library. The best way to
really master these skills, however, is to put them into practice. Go out and animate
everything you can get your hands on. Try playing with every property of every
element on every page, until you feel like you can really manipulate them.

Before we move on from animation to the next jQuery skill set for you to master,
we’ll turn our attention to scrolling and resizing: these topics might be less flashy
than animation, but they’re essential to a good many user interface components.
They’ll also help cement your understanding of jQuery selectors, actions, and
chaining. So what are we waiting for?

Scrolling

Scrolling is, in a way, similar to animation, in that elements are moving around the
page. Unlike animation though, the user is the one in control. Still, there’s a plethora
of ways to customize these interactions. In this section, we’ll have a look at menus
that stay put when the user scrolls, custom-themed scrollbars, and even how we
can use the animation techniques we’ve just learned and apply them to scrolling
the document.

The scroll Event

Before we can improve our users’ scrolling experience, we need to know when and
what they are scrolling. It turns out there is an event called scroll, which fires
when the user updates the scroll position of an element, such as the window or a
scrollable div. So, every time one of your users interacts with a scrollbar on your

site, an event will be fired that you can catch and respond to.

To capture the scroll event, we attach an event handler to an element that has
scrollbars, most often the window element. The window itself is a JavaScript object,
so all we need to do is wrap it in our jQuery function to select it.

Animating, Scrolling, and Resizing

Of course, to see the scroll event in action, we have to set up an area with scrollbars!
We have a few ideas for scrolling effects that we’d like to pitch to the client, but in
the interests of learning how the scroll event works, let’s just fake a scrolling en-
vironment by setting overflow: scroll; on one of the divs in our page:

chapter_03/12_scroll_event/scroll.css (excerpt)

finews {
height: 100px;
width: 300px;
overflow: scroll;

}

This will turn our news section into a smaller scrolling pane inside the page. Now
let’s capture the scroll event, and add some arbitrary text to the page every time
the scroll event fires:

chapter_03/12_scroll_event/script.js (excerpt)

$('#news').scroll(function() {
$('#header"')
.append('You scrolled!');

P

Now whenever you scroll the news section, the text “You Scrolled!” will appear at
the top of the page. Very annoying, but you get the picture. Try scrolling in different
ways: dragging the scrollbar, using the mouse wheel, and clicking inside the scrol-
lable zone to use the arrow keys. In all the above cases, the scroll event will fire.

Floating Navigation

We now know when a user scrolls, so how can we make use of this information to
improve our site? Well, one fairly common example of a page reacting to users’
scrolling is a floating navigation pane. This is when the main navigation element
is always present at the top of the visible part of the screen, regardless of the scroll
position; it’s as if the navigation menu follows users as they scroll down the page.
This is easy to implement using the scroll event.

Our first task is to set up our CSS to prepare for the animated navigation. For the
purpose of this exercise, we’ve applied a very large height property to the content
in order to force it to have a scrollbar (unless, of course, you have a huge monitor!):

75

76 jQuery: Novice to Ninja

chapter_03/13_floating_nav_1/scroll.css (excerpt)

#navigation {
position: relative;

}

#content {
height: 2000px;
}

Now we can take a stab at our floating pane. At first glance, it seems that nothing
could be simpler. We just respond to the scroll event of the main window by up-
dating the top position of the navigation block if the block would normally be out

of the viewport:

chapter_03/13_floating_nav_1/script.js (excerpt)

$(window) .scroll(function () {
$('#navigation').css('top', $(document).scrollTop());

P

Test this out in your browser and you’ll see that we’ve achieved our goal: as you
scroll down the page, the navigation box locks to the top of the window. How does
it know when it’s reached the top? We asked for the top of the screen by using the
scrollTop action. scrollTop returns the top offset of the matched element; in our
example, we asked for the entire document’s top position: $ (document) .scroll-

Top(). This will always be at the very top of the screen.

It works, sure, but why, you might ask. Were you paying attention earlier when we
first introduced the scroll event? Every time the user moves the scrollbar, it fires
many scroll events. Each one of those events triggers our code to update the nav-
igation position, so we expect the navigation to be jittery and jump around.

It’s not jumpy because we’re embracing our ninja-nature. Ninjas know that browsers
should only do as much as they need to nail a goal. Sure, we could have opted for
position: relative and then set the element’s top every time a scroll event fired,
but that would have been jittery. Our solution works, nailing the task at hand.

Despite that, how about we smarten it up with some logic? Here’s how we do that:

Animating, Scrolling, and Resizing

chapter_03/14_floating_nav_2/script.js (excerpt)

var $window = $(window),
$navigation = $(“#navigation”);

$window.scroll(function() {
if (!$navigation.hasClass("fixed") && ($window.scrollTop >
w$navigation.offset().top)) {
$navigation.addClass("fixed") .data("top",
w$navigation.offset().top);

}

We’ve also added in a data method to record what our element’s initial top property
is. We don’t actually need that while we’re scrolling down the page, but we sure
do when we scroll back up. In our code example in 13_floating_nav_1/script.js, when
we scrolled back to the top of the page, the navigation kept going past its initial
position. We’re now going to fix that:

chapter_03/14_floating_nav_2/script.js (excerpt)

$window.scroll(function() {
if (!$navigation.hasClass("fixed") && ($window.scrollTop() >
wS$navigation.offset().top)) {
$navigation.addClass("fixed") .data("top",
w$navigation.offset().top);
}
else if ($navigation.hasClass("fixed") && ($window.scrollTop()
w< $navigation.data("top"))) {
$navigation.removeClass("fixed");
}
1)

Now we’re checking if the fixed class has been set, and if the window has scrolled
up past where the navigation should be sitting. We do that by referring to the data
attribute we set. When this condition is met, we simply remove the fixed class,

and the element drops back into the document flow.

Scrolling the Document

When a long list of information about related (yet varied) subjects needs to be dis-
played on a single HTML page, it’s common to include a hyperlinked list of the
subjects at the top of the page.

77

78

jQuery: Novice to Ninja

These internal links will immediately jump to the correct position for the menu
item you select. After the content, there’s often a link to take you back to the top of
the screen, so that you can select another menu item. Let’s try adding this function-

ality to our page.

The first task is to add the link to our page’s footer. To jump to the top of the page,

we set our link’s href attribute to #.

If we think about it, all we want to do is animate the page’s scrolling position, which
is represented by scrollTop in jQuery. We’ll also need to cancel the default link
action, otherwise the page will jump before our animation has time to occur. If
you’re new to JavaScript, there’s an easy way to accomplish this: any function
handling a link’s click event receives the event as a parameter—we’re calling it
e—and then we use the event object’s preventDefault method:

$('a[href=#]"').click(function() {
$('html').animate({scrollTop: 0}, 'slow');
return false; // Return false to cancel the default link action

}

This code introduces a new kind of selector: the attribute selector. By enclosing an
attribute and the value we want to look for in square brackets ([1), we can narrow
a selection to include only elements with a specific attribute value. In this case,

we’re looking for only those links with an href value of #.

This code works, and is certainly clear and simple, but it does encounter a slight
issue. If the user’s browser is operating in quirks mode, the $('html"') selector will
fail. (Unsure what quirks mode means? Take the time to read the SitePoint CSS
reference page on the topic® for a detailed explanation.) While you should be
marking up your pages in a way that triggers standards mode, sometimes you’ll be
working with legacy code, and thus be without that luxury. To make the above code
work in quirks mode, you need to use the selector $('body'). We could also target
both, just to be sure: $('html, body'). This in turn causes issues in certain versions
of the Opera browser, which (probably correctly) tries to scroll both elements at the

same time.

o http://reference.sitepoint.com/css/doctypesniffing

http://reference.sitepoint.com/css/doctypesniffing
http://reference.sitepoint.com/css/doctypesniffing

Animating, Scrolling, and Resizing 79

“But you said jQuery sorts out all our cross-browser issues!” you might exclaim.
To be fair, it sorts out most cross-browser issues. This is a slightly trickier one, and
is not addressed in the core jQuery library. Fortunately for us, it’s fairly simple to
work around. Even more fortunately for us, someone has taken the time to package
that workaround (as well as a plethora of other scrolling functionality) into a plugin
called ScrollTo.

The ScrollTo plugin, available from the plugin repository,' is a stable plugin for
scrolling the screen and overflowed elements. It’s more than capable of handling

any of the scrolling tasks we’ve seen so far.

After you’ve downloaded and included the plugin, you can rewrite the top link
functionality, and forget all your worries about obscure browser bugs:

chapter_03/15_page_scroll/script.js (excerpt)

$('a[href=#]"').click(function(e) {
$.scrollTo(0, 'slow');
e.preventDefault();

P

This syntax probably looks a little strange to you, in that we’re calling scrollTo
directly from the jQuery alias. The plugin is clever, and knows that if we call it
directly in this way, we want to scroll the entire window. If we wanted to scroll a
specific overflowed element, we’d use the traditional selector syntax; for example,
$('div#scrolly').scrollTo(0, 'slow').

The ScrollTo plugin is feature-packed and not limited to scrolling by an integer
value. You can pass in a relative value (like +=50px), a DOM element (it will scroll
the page to find that element), a selector string, a hash value containing x and y co-
ordinates, or the keyword max, which will scroll to the end of the document. You
can scroll horizontally as well as vertically, and it also has some great options for
fine-tuning your destination. You can learn about all these options on the plugin’s
home page.'"

10 http://plugins.jquery.com/project/ScrollTo
" http://flesler.blogspot.com/2007/10/jqueryscrollto.html

http://plugins.jquery.com/project/ScrollTo
http://flesler.blogspot.com/2007/10/jqueryscrollto.html
http://flesler.blogspot.com/2007/10/jqueryscrollto.html

80

jQuery: Novice to Ninja

Custom Scrollbars

One of the client team strolls over to your desk with a furrowed brow, holding a
copy of the “absolutely final” signed-off designs in her hand. “Now,” she starts,
“these scrollbars here won'’t look like this, will they? I mean, they're all gray, and
stand out badly.”

Usually you only have to be working as a web developer for a very short time before
a client asks you to replace the standard operating system scrollbars with custom
ones, especially for internal elements such as scrolling divs. It does seem like a
reasonable request, but it has some usability implications of which you should be

aware.

People have certain expectations about how core interface components of their op-
erating system function, and custom implementations sometimes have different
features from the core elements they replace. Breaking users’ expectations in this
way can be extremely frustrating, so this type of UI customization should be under-

taken with extreme care.

That said, there are times when a well-placed custom UI element makes a world of
difference to the overall feel of an interface. Ultimately, you have to weigh up the
benefits and drawbacks for your intended audience. In our case, the client is paying,

so we’ll do it.

There’s no need, however, to try and build it from scratch: a scrollbar is a complex
user interface element, and the client would be unhappy if she found out we’d
wasted precious development hours building it ourselves, especially when there’s
a perfectly suitable plugin ready to go: it’s called jScrollPane.

jScrollPane is a jQuery plugin that allows you to replace the browser’s default ver-
tical scrollbars with custom ones in any element with overflowed content. You can
find the plugin in the official repository, but a more up-to-date version is available
on Google Code.'?

There are two files to include: the JavaScript code file, jquery.jscrollpane.min.js, and
the accompanying CSS file, jquery.jscrollpane.css. The CSS file sets out some default
styles for the scrollbars, and gives you a starting point for implementing your own

12 http://code.google.com/p/jscrollpane/

http://code.google.com/p/jscrollpane/
http://code.google.com/p/jscrollpane/

Animating, Scrolling, and Resizing

customizations. Simply extend or overwrite the styles contained in this file with
your own colors and images to create your customized scrollbars. We’ll stick with
the default style for our example: a sleek-looking gray bar that fits in on just about

any site (as illustrated in Figure 3.5).

Fine Print

labore et dolore magna aligua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit
esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in

Figure 3.5. A custom scrollbar

You can activate custom scrollbars on any element by simply calling the jScrollPane
function on it. Although parameters are optional, there are more than a dozen for
you to tweak, such as showing scrollbar arrows, or moving the scrollbars to the left-
hand side of the panel. You can see the full list on the plugin’s home page.'* For
our example, we’ll set a margin between our content and the scrollbar, set the width
of the scrollbar, and choose to hide the top and bottom arrows:

chapter_03/16_custom_scrollbar/script.js (excerpt)

$('#fine_print').jScrollPane({
verticalGutter: 20
});

Our new scrollbar looks and works great, but you might notice that it fails to respond
when you scroll the mouse wheel over the element. jQuery’s core library has delib-
erately left out mouse wheel functionality to keep the library’s size to a minimum,
but there’s a plugin to add it back in,'* and jScrollPane has been written with this
plugin in mind. As a result, all you need to do is include the mouse wheel plugin
in your page (jquery.mousewheel.js), and jScrollPane will automatically add mouse
wheel event handling to all your scrolling content panes, letting you scroll them

however you please!

13 http://jscrollpane.kelvinluck.com/
1% http://plugins.jquery.com/project/mousewheel

81

http://jscrollpane.kelvinluck.com/
http://plugins.jquery.com/project/mousewheel

82

jQuery: Novice to Ninja

Resizing

Resizing has a few different meanings in relation to a user interface. The first that
comes to mind is the ability to resize the browser window (an event that has often
caused headaches for web developers). Additionally, resizing windows inside ap-
plications, and resizing images or other elements are also common.

jQuery includes a way of gathering information about user-initiated window resizing,
and also (via jQuery UI) a way to give users ultimate resizing power over any element
on the page. Let’s dive in!

The resize Event

The resize event is a core jQuery event that fires when a document view is resized.
There are a number of reasons why you’d want to react to this event, but before we
examine a practical example, let’s make sure we understand how the event works:

chapter_03/17_resize_event/script.js (excerpt)

$(window) .resize(function() {
alert("You resized the window!");

P

Load the index.html page in your browser and try resizing the window. Every time
you do, an alert will pop up. Annoying users every time they change their browser
window size will probably keep us from winning any user-experience points, so

let’s put this event to use in a more practical example.

Layout Switcher

If you’ve worked with CSS for any length of time, you’ll know that there’s a constant
debate about which is best: fluid or fixed-width layouts. On one hand, fluid layouts
make maximal use of a user’s screen real estate; on the other hand, fixed-width
layouts allow you to design a pixel-perfect layout that won’t break when a user
views it in a different viewport size.

For StarTrackr! we can offer the best of both worlds: design two separate, fixed-
width layouts, and switch between them by catching the resize event.

Animating, Scrolling, and Resizing

Let’s get started. The default StarTrackr! website we’ve been working with so far is
a modest 650 pixels wide. Our first task is to write some styles to make it wider.

We’ll go for 850 pixels for the wider version:

chapter_03/18_layout_switcher/wide.css

body #container {
width: 850px;
}

body #container p {
width: 650px;
}

body #header {
background-image: url('../../css/images/header-corners-wide.png');

}

body #celebs table {
width: 650px;
margin-left: 5px;
}

Notice that we’ve added a seemingly superfluous body to the beginning of each rule.
This is so they’ll take precedence over any rules in our base stylesheet targeting the

same elements, because they’re more specific, or have more specificity.

The next step is to write the jQuery code to add or remove our new stylesheet. All
we need to do is test to see if the body element’s width is greater than 900 pixels,

append the stylesheet to our head element if it is, or remove it if it’s not:

chapter_03/18_layout_switcher/script.js (excerpt)

if ($('body').width() > 900) {
$('<link rel="stylesheet" href="wide.css" type="text/css" />')
.appendTo('head');
} else {
$('link[href=wide.css]').remove();

}

This puts us in a tight spot. We need to run this code in two situations: once when

we first load the page and then again whenever the page is resized.

83

84

jQuery: Novice to Ninja

You might be tempted to just copy and paste that chunk of code, and be done with
it. Resist that temptation! Repeating yourself in code is almost always a bad idea.
Imagine a situation where, a few months down the line, you decide that 900 pixels
was the wrong cutoff point. You're now thinking that you should switch stylesheets
only around the 1000 pixels mark. You go into your code, change the value, and
reload the page. But it’s broken, because you forgot to change the same value in the
other, identical block of code. This kind of scenario can happen all too easily in
any type of software development, and the more complicated your code becomes,
the more likely it will happen, and the harder it will be to track down.

Fortunately, almost every programming language has constructs to help us out in
these kinds of situations, and JavaScript (and hence jQuery) is no exception. So far
we’ve been passing anonymous functions to all our event handlers, but now it’s

time to give our function a name:

chapter_03/18_layout_switcher/script.js (excerpt)

$(document) .ready (function() {
stylesheetToggle();
$(window) .resize(stylesheetToggle) ;

P

function stylesheetToggle() {
if ($('body').width() > 900) {
$('<link rel="stylesheet" href="wide.css" type="text/css" />')
.appendTo('head');
} else {
$('link[href="wide.css"]"').remove();

}
}

We’ve named our function stylesheetToggle and used it twice: once when the
document first loads, and again whenever we resize. You’ll notice that we only
need to pass the function name to the resize event handler, and we’ll let the event
call the function. When we pass the function and aren’t declaring a function, we

have no need for the function keyword, any parentheses, or any curly braces.

Once you get this passing-versus-invoking distinction under your belt, it can come
in really handy in shortening how you write setTimeout ()s, so let’s look again.

When a function name is used in our code and is followed by parentheses, we invoke
the function and it executes. When we use the function name in our code without

Animating, Scrolling, and Resizing

those parentheses, we pass a reference to the function, and another piece of script
is needed to invoke it.

Resizable Elements

The jQuery Ul library contains a Resizable plugin as part of its interaction function-
ality. The Resizable plugin makes elements that you select able to be resized by
adding a small handle to the bottom corner of the element. This can be stretched
around with the mouse (much like your operating system’s windows). Like all
jQuery Ul components, it’s highly configurable and easy to use. If you downloaded
the full jQuery Ul library earlier, you’ll already have the class ready to go. Otherwise,
you’ll need to head back to the download builder and include the Resizable com-
ponent; this will also require the UI Core’s core, widget, and mouse dependencies,
and a theme.

Using the Resizable component in its most basic form is very easy. We simply select

the element or elements we want to modify, and call the resizable function:

chapter_03/19_resizable_elements/script.js (excerpt)

$('p').resizable();

If we run this on our StarTrackr! site, we’re in for some unusual results: every

paragraph element instantly becomes resizable!

It’s a lot of fun to see this in action; suddenly our whole web page becomes malleable.
By default, the Resizable interaction adds small handles in the bottom-right corners
of the elements. These are styled in the jQuery Ul stylesheet, so have a look in there
if you’re interested in changing the way they look. The default handles are illustrated
in Figure 3.6.

85

86 jQuery: Novice to Ninja

Welcomel!

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aligua. Ut
enim ad minim veniam, quis nostrud exercitation ullamco labaris nisi
ut aliguip ex ea commodo conseguat. Duis aute irure dolor in
reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaecat cupidatat non proident, sunt in i

Disclaimer! Not under ... =

Figure 3.6. Resizable paragraphs

Now let’s look at a simple situation where this functionality is very handy: resizing
textarea elements.

Resizable textarea

Sometimes providing a usable interface can conflict with the desire to keep a design
balanced and beautiful. Thanks to jQuery, though, we can have our cake and eat it
too, justifying our way through those tricky client walk-throughs.

One area where form and function often clash is in HTML form design. This is partly
because users of your site will often have wildly different requirements. For example,
if you're providing an area for feedback, users will either want to write nothing, a
little, or a lot. To strike a balance, you could start a small textarea, but make it
resizable. Therefore, the users with a lot to say will feel as if you’re letting them say

it. Here’s how we can go about doing this using jQuery UI’s Resizable functionality:

chapter_03/20_resizable_textarea/script.js (excerpt)

$('textarea').resizable({
grid : [20, 20],
minWidth : 153,
minHeight : 30,
maxHeight : 220,

containment: 'parent'

P

This makes all our textarea elements resizable, just like we did with the paragraph
elements. The effect is shown in Figure 3.7. However, we’ve specified a few new

Animating, Scrolling, and Resizing
parameters to improve the feel, and to show the Resizable component’s flexibility.
It has a plethora of configuration options, which you can explore in more detail on

the jQuery UI documentation site.'”

Leave a comment

name:

Satisfied customer

comment:

Need some more room to write? Just stretch vourself
some |

Figure 3.7. Resizable textarea

We’ve also constrained how far the element can be stretched by specifying the
minHeight, minWidth, and maxHeight properties. You’ll notice that we’ve omitted
the maxWidth property in favor of the containment parameter: this lets you specify
a container restricting the resizable element. You can use either a jQuery selector
as the parameter, or the special keyword parent to refer to the resizable element’s
parent element.

We’ve also used the grid option to confine the resizable object to steps of a certain
size. For some reason, this seems to add a nice feel to the resizing interaction. The
grid is specified as an array containing two elements: the horizontal grid size and

the vertical grid size.

One other parameter you’ll want to look into is the handles parameter. This specifies
which sides of the element the handles will be attached to and, consequently, in
which directions the element can be stretched. The parameter accepts the following
options: n, e, s, w, ne, se, sw, nw, and all. You can specify any number of these by
separating them with a comma. For example, { handles : 'n, se'} adds handles
to the top- and bottom-right of the element.

It’s common to see this kind of functionality built into input pages where content
length will vary significantly.

'3 http://jqueryui.com/demos/resizable/

87

http://jqueryui.com/demos/resizable/

88

jQuery: Novice to Ninja

Pane Splitter

Despite the disclaimer message functionality we’ve provided, our client’s legal team
is still worried about the possible repercussions that might extend from failing to
properly outline the company’s terms and conditions. The problem, from a design
and usability perspective, is that there are pages and pages of terms and conditions
divided into many subsections, yet they need to be prominently displayed on the
home page. Perhaps a splitter could help us out.

A splitter is a Ul component that divides multiple areas on a page in a way that al-
lows users to resize elements; this way, users are able to decide how much space
they want to allot each area. Splitters are commonplace in desktop applications,
and with the explosion of Rich Internet Applications, they’re making their way onto
the Web. We can build on our experience with the Resizable component to simulate
a simple splitter containing a “Table of Contents” in one pane and StarTrackr!’s
“Terms and Conditions” content in the other. The widget’s appearance is shown in
Figure 3.8.

Terms & Conditions

L. Your Privacy User Generated Material m
2. Celeb's Privacy
3. Ownership & Intellectual Property
i. Liability
il. Exclusive & Non-exclusive rights
jii. User Generated Material

This website contains messaging systems and
other user generated content toward the purpose
" and fulfillment of directory or indirectly contacting
or stalking celebrities and/or their family andfor
people in their vaguely related social sphere. Such
content is here forth and eternally regarded as
rranarty nf SrarTrackr and narant Fomnany ar

Figure 3.8. A horizontal pane splitters

For now, we’ll focus solely on the resizing functionality. Dynamically loading each
section’s content into the panes will be covered in plenty of detail in Chapter 5.

Our splitter will consist of two div elements representing each pane, nested inside
a containing element that has fixed dimensions. We’ll encase the table of contents
in a block-level element, so that when the user resizes the panes, the text won’t
wrap and mess up our nested list:

Animating, Scrolling, and Resizing

chapter_03/21_horizontal_pane_splitter/index.html (excerpt)

<div id="splitter">
<div class="pane" id="tocPane">
<div class="inner">

</div>

</div>

<div class="pane" id="contentPane">
<div class="inner">

</div>
</div>
</div>

We’ll now add some simple styles in a new splitter.css stylesheet. You can see that
we’ve fixed the height of the containing div, and made the child elements each
consume 50% of the width by default. You could change this to specify different
values if it was necessary to start with an alternative to a 50:50 split. If you need to

use a CSS border, you’ll have to specify your widths in pixels and make sure they
all add up:

chapter_03/21_horizontal_pane_splitter/splitter.css

#splitter {
height: 150px;
margin-top: 30px;
margin-bottom: 50px;

}

#splitter .pane {
width: 50%;
height: 100%;
float: left;

}

#splitter h2 {
margin-bottom: 0;
padding-bottom: 0;

}

#tocPane {
overflow: hidden;
background: #d6édde5 url(../images/handle.png) no-repeat

89

90 jQuery: Novice to Ninja

wright center;

}

#tocPane .inner {
width: 300px;
}

#contentPane {
overflow: auto;

}

#contentPane .inner {
padding: 0 5px;
}

Next, our jQuery code. To create a horizontal splitter, we make the first element
resizable and specify an east-facing handle, so that only the right edge of the div
will be resizable.

If you were to run the example with only a simple resizable statement, you’d notice
that we’re almost there: the two elements act somewhat like a split pane, except
that the right element’s width remains constant rather than expanding to fill the
remaining space when you drag the handle. To take care of that, we’re going to have
to do some calculations inside the resizable widget’s resize function. This is an
event handler that fires as the component is being resized:

chapter_03/21_horizontal_pane_splitter/script.js (excerpt)

$('#splitter > div:first').resizable({
handles: 'e',
minWidth: '100',
maxWidth: '400°',
resize: function() {
var remainingSpace = $(this).parent().width() -
w$(this).outerWidth();
var diviwo = $(this).next();
var divTwoWidth = remainingSpace - (divTwo.outerWidth() -
wdivTwo.width());
divTwo.css('width', divTwoWidth + ‘'px');
}
})s;

Animating, Scrolling, and Resizing

Every resizing will now also trigger a change in the second element’s width. A bit
of basic math helps us work out what the widths should be. We take the parent
container’s width (that is, the total width), and subtract the first div’s outerwidth.
The outerWidth function is a useful way to grab the total width of an element, in-
cluding any padding and borders (additionally, it can include margins if you pass
it the optional parameter true). Perhaps unsurprisingly, there’s a corresponding
outerHeight function as well.

Having calculated how much space is left to use up, we’re almost ready to set the
first element’s width. There’s just one remaining catch: if the second div has borders
or padding, we need to take these into consideration. Unfortunately, the outerWidth
function is read-only, so we can’t use it to set the total width.

To calculate how much of the element’s width consists of borders and padding, we
need to subtract the element’s outerWidth from its width. Subtracting that from the
remainingSpace variable gives us exactly how many pixels wide the second div
needs to be, and we can complete our horizontal splitter.

g JavaScript Variables

The line var remainingSpace = $(this).parent().width() -
$(this).outerWidth () ; assigns the result of the calculation to a variable called
remainingSpace. From now on, we can simply write remainingSpace in our
code whenever we need to access this value.

The following line (var divTwo = $(this).next() ;) is performing a very
similar function, except that this time we’re assigning a jQuery selection to a
variable (divTwo). This can subsequently be used like any other jQuery selection.

Using variables like this helps to make your code more readable, as you can keep
each line as concise as possible. It also makes your code more efficient; retrieving
a value from a variable is much quicker for JavaScript than figuring out the value
in the first place.

If we then wanted to have a go at implementing a vertical splitter, there’s little to
change: our pane elements stack on top of each other (rather than side by side), and
our resizable call uses a south-facing handle instead of an east-facing one. The code
is also almost identical, except now we’re interested in the element’s heights, not
widths:

91

92 jQuery: Novice to Ninja

chapter_03/22_vertical_pane_splitter/script.js (excerpt)

$('#splitter > div:first').resizable({
handles: 's',
minHeight: '50',
maxHeight: '200',
resize: function() {
var remainingSpace = $(this).parent().height() -
w$(this) .outerHeight();
var diviwo = $(this).next();
var divTwoHeight = remainingSpace -
w (divTwo.outerHeight() - divTwo.height());
divTwo.css('height', divTwoHeight + 'px');
}
1)

These simple splitters are quite useful, require very little code, and will be suitable
for many purposes. But if you require complex splitter behavior, such as multiple
split panes or nested panes, head over to the plugin repository and check out the
jQuery Splitter plugin.

That's How We Scroll. And Animate

What a chapter! We’ve mastered animation, scrolling, and resizing, and seen how
chaining can help us easily write succinct, powerful functionality in areadable and
natural manner. We’re starting to apply our jQuery knowledge to create some great

effects.

What’s important to concentrate on as you move through the book, though, is not
the effects themselves, but the underlying concepts that we use to implement them.
Even the most complex-looking effects tend to come out of a few simple actions
chained together cleverly. It’s up to you to sit down, think up some ideas, and try

to implement them for yourself.

Chapter

Images and Slideshows

There’s no more fooling around now. With the basics well and truly under our belts,
we already have unlimited potential to create some world-class effects. Our client
is over the moon; we’ve dragged his website into the present, and now his question-
able startup has found favor with several of the big social networking sites. He’s
asked us to add in some “stuff” that really cooks: “image galleries, slideshows,
fading effects—the works!” And why not? We have the tools, and we have the talent!

It would be a fairly boring Internet (at least visually) without images; much of the
content we receive on our web-based travels is in the form of pictures and design
elements such as borders, icons, and gradients that help to define our interaction
with a web page. When we combine all these elements with a healthy dose of jQuery,
we start to see some vibrant and startling effects emerge. As well as the bog-standard
components we’ve come to know and love, jQuery provides the means for imple-
menting some less common, relatively new effects and features that would be hard

to do in JavaScript alone.

94

jQuery: Novice to Ninja

Lightboxes

Our client wants Web 2.0, so let’s give him the quintessential Web 2.0 effect that is
still popular as ever today: the lightbox. A lightbox—a term borrowed from photo-
graphy—is used is to display full-sized versions of an image thumbnail in a modal
dialog. Typically, the entire background becomes darker to indicate that it’s been
disabled. The user must interact with the image (by pressing a close button, for ex-
ample) to continue working on the page.

Custom Lightbox

Lightboxes are very common these days, and many feature some very complex
functionality: animations, transitions, as well as the ability to display video, or to
load content via Ajax. As always, there are some excellent plugins available that
do all this, and we’ll be visiting one of them in the next section—but for the moment,
we’ll build our own lightbox.

Why build our own? For one thing, we initially just want a basic image view without
any fanciness, and the extra kilobytes that fanciness costs us. We’ll also have the

chance to look under the hood and see how this type of functionality is implemented.

Our lightbox will be extremely simple: any HTML link that has a class name of
lightbox will, when clicked, pop up the image file that the link points to. The
picture will be centered on the screen, and the surrounding areas will be disabled

and darkened as a visual cue. The effect is demonstrated in Figure 4.1.

Let’s start with the HTML links. They’re just tags pointing at image files with a
lightbox class, so we can target them in our jQuery:
chapter_04/01_lightbox/index.html (excerpt)
pic
When the image is displayed, we want the entire screen to go dark. How do we do

this? The easiest way is to add a large div to the page that’s as tall and wide as the
screen itself. Inside that div, we’ll add another div into which we’ll load the image.

Images and Slideshows 95

Figure 4.1. Our lightbox effect

The styling for the overlay is quite straightforward: 100% height and width, and
a black background. Later, we’ll fade the opacity of the element to give it its shadowy
appearance. The div is positioned fixed to lock it in place if the user resizes the
window, for example. One other trick is to add a spinning loader image to the center
of this element. When we start loading the image the spinner will display as part
of the background. It will appear to vanish when the image loads, but in reality it
will simply be hidden behind the image:

chapter_04/01_lightbox/lightbox.css

#overlay {
position:fixed;
top:0;
left:0;
height:100%;
width:100%;
background:black url(loader.gif) no-repeat scroll center center;

96

jQuery: Novice to Ninja

#lightbox {
position:fixed;

}

Next, we add a click handler to our lightbox links. When they’re clicked, we’ll add
the dark overlay element, the image container, and the image itself. The container
isn’t strictly necessary for our bare-bones example, but is helpful when you want

to extend the lightbox’s functionality, such as adding borders, descriptions, or Next

and Previous buttons:

chapter_04/01_lightbox/script.js (excerpt)

$('a.lightbox"').click(function(e) {
// hide scrollbars!
$('body').css('overflow-y', 'hidden');

$('<div id="overlay"></div>")
.css('top', $(document).scrollTop())
.Css('opacity', '0')
.animate({'opacity': '0.5'}, 'slow')
.appendTo('body');

$('<div id="lightbox"></div>")
.hide()
.appendTo('body');

$('")
.attr('src', $(this).attr('href'))
.load(function() {
positionLightboxImage() ;

})
.click(function() {
removeLightbox();

})
.appendTo('#lightbox');

return false;

P

The overlay is positioned at the top of the screen, and quickly faded from invisible
to 50% opacity to provide the background effect. The lightbox container is added
to the page and immediately hidden, awaiting the loading of our image. The image

is added to the container, and its src attribute is set to the location of the image

Images and Slideshows

(extracted from the link’s href). To do this we use jQuery’s powerful attr method,
which can be used to retrieve or set any attribute of a DOM element. When called

with only one parameter (such as $(this).attr('href')), it returns the value of

that attribute. With a second parameter (for instance, $('"').attr('src',

' /images/rockstar.jpg'), it sets the attribute to the value provided.

Then we attach a few event handlers to the image. One of these events is new to us:
load. It’s a close cousin to the ready event, but fires when an element (in this case

our image) is 100% loaded.

Quick Element Construction

As we mentioned briefly in Chapter 2, we have to create new DOM elements fre-
quently, and there are a couple of ways to do it: setting the individual element
parameters as we’ve done above, or with the quick element construction—passing
a JavaScript object containing all the parameters we want to bind to the element.
For the lightbox code we could specify this:

$('", {
src: $(this).attr('href'),
load: function() {
positionLightboxImage();

}s
click: function() {

removelLightbox();

}
}) -appendTo('#lightbox"');

The results are the same, but now all the properties and event handlers are grouped
together. jQuery has a bit of smarts in how it reacts to the properties you set. If
you give it an event, it will bind the provided handler to the event (as we’ve done
with 1oad and click). If you use a jQuery method name like text, html, or val,
it will use the jQuery methods to set the property. Everything else will be treated
as an attribute, as done with the src property. The end result is the same jQuery
object as the one we constructed before, but if you’re comfortable with JavaScript
object notation, you might prefer this method of element construction.

Finally, we add a return false; to prevent the default behavior of the HTML link
from occurring. Otherwise, the user would navigate away from our page and to the

image itself.

97

98 jQuery: Novice to Ninja

Now let’s have a look at the positionLightbox function:

chapter_04/01_lightbox/script.js (excerpt)

function positionLightboxImage() {
var top = ($(window).height() - $('#lightbox').height()) / 2;
var left = ($(window).width() - $('#lightbox').width()) / 2;
$('#lightbox')

.css({
"top': top + $(document).scrollTop(),
"left': left

})

.fadeIn();

When the image is done loading, the positionLightboxImage function is called.
This takes care of displaying the image in the center of the screen. It calculates the
central point by taking the window’s height or width and subtracting the image’s
height or width, then dividing the result by 2. It then performs a nice fade to display
the image.

The last task left to do is remove the lightbox when the user clicks on the image.
We simply fade out our new elements and then remove them, so that the lightbox

is ready to be triggered again for the next image:

chapter_04/01_lightbox/script.js (excerpt)

function removeLightbox() {
$('#overlay, #lightbox')
.fadeOut ('slow', function() {
$(this).remove();
$('body').css('overflow-y', 'auto'); // show scrollbars!
1)

This is probably the most bare-bones lightbox you can imagine, but it’s still satisfying
to see in action. Now that you have an idea of how a lightbox is built, you can come
up with improvements and customizations. Even though plugins may be plentiful,
sometimes building them yourself is more satisfying!

Images and Slideshows

Troubleshooting with console.log

If you’ve had a go at extending or customizing this simple lightbox (or, for that
matter, any of the code we’ve seen so far), you’ll no doubt have encountered a
situation where your code fails to do what you expect it to. Figuring out exactly
what’s going on at any given moment in your code can be frustrating. Sometimes
you need to know if a certain function is being called, or what the value of a variable
is at a specific point in time.

Traditionally, this sort of debugging is often achieved with the trusty old alert
method. For example, if you need to to know what value the code has stored in the
top variable, you type alert(top) ;. But this interrupts the flow of the program—and
forces you to close the alert before continuing. And if the code you’re interested in
is in the middle of a loop, you might wind up having to close a lot of alerts.

Thankfully, web development tools are constantly advancing, and if you use the
excellent Firebug plugin for Firefox (introduced back in Chapter 2), or your browser’s
debugging tools, you can take advantage of the built-in debugging options. One of
Firebug’s most handy debugging features is the console, where instead of alerting
the value of variables, you can use the command console.log:

console.log(top,left);

Just open the Console tab of Firebug (you may need to enable it first), and you’ll see
the values displayed. No more annoying alert windows! You can specify as many
variables or expressions as you would like in a single statement by separating them
with commas. The outputs generated by different types of log statements are depicted
in Figure 4.2: two simple string outputs, a multivariable output consisting of two

numbers, and a jQuery selection.

99

100

jQuery: Novice to Ninja

‘ér.' o oL Console~ | HTML CS5 Script DOM Net
Clear Profile

The calculated position is:

-53.5 448

A jQuery selection:
[div#lightbox J

fhtml/body/div(3]

Figure 4.2. The Firebug console

If the variable is a JavaScript object, you can even click on it in the console to exam-
ine its contents. If it’s a DOM node or jQuery object, clicking on it will highlight it
on the page and jump to it in the Firebug DOM tree. This will save your sanity when
stuck on those obnoxious bugs! Just remember to remove any console.log lines

from your code when you release it.

@ Console Yourself

console.log is used to log interesting events—but there are a few other console
methods for being a bit more specific. console.warn shows a small warning
icon, and console.error will print a scary red message. This lets you quickly

see when something has really gone wrong!

ColorBox: A Lightbox Plugin

Our custom lightbox is a fine solution for our modest needs, but you’ll have to admit
that it’s fairly limited as far as features go. Sometimes you’ll need more. The jQuery
community will not leave you short on choice in this area; in fact, the current range
of available lightbox plugins is downright overwhelming. Some are extremely feature-
heavy, some concentrate on small file size, some on cross-browser support, some

on extensibility, some on particular blogging platforms... a lightbox plugin for every

occasion.

The “paradox of choice” can be tough here; while there are so many great options,
you’ll only find the one that’s right for you with a bit of trial and error. Some mature

Images and Slideshows

options include Shadowbox,' FancyBox,? and Lightbox2,? but there are so many
more out there for you to try.

We’ve decided to go with ColorBox*—the brainchild of Jack Moore. It’s a mature,
stable, and well-tested lightbox plugin. It contains a vast array of public methods
and event hooks—it’s likely that even seasoned users won’t touch on everything it
has to offer. Given ColorBox’s focus on standards-based HTML, reliance on CSS for
styling, and wide support of content options, it’s easy to see that the “lightweight”
tag line on its web page refers only to its tiny 10kB footprint—and not to its huge
feature set!

Grab ColorBox from the download area of the website and examine its contents.
There’s a directory called ColorBox that contains both the minified and uncom-
pressed version of the plugin code. As usual, you should use the minified version
unless you're keen to understand the inner workings of ColorBox (or want to keep
your sanity during development!).

Also included in the download are a number of example directories; the examples
all use the same markup and JavaScript code, but show how the lightbox can be
styled to look completely different. The best way to start out is to have a look at the
examples and choose the CSS file (and corresponding images) that you like best,
and then build on that for your implementation.

We’ve copied over the CSS and image files from one of the example directories, and
included both that CSS file and the minified plugin file in our HTML:

chapter_04/02_colorbox_plugin/index.html (excerpt)

<link rel="stylesheet" href="colorbox.css" type="text/css">
<script src="jquery.colorbox-min.js" type="text/javascript">
w</script>

ColorBox can work on a single image as we did in the previous section, but it excels
at displaying slideshow-style galleries—letting the user move between the images,
as illustrated in Figure 4.3. To take advantage of this we need to group the images

! http://www.shadowbox-js.com/

2 http://fancybox.net/

3 http://www.huddletogether.com/projects/lightbox2/
4 http://colorpowered.com/colorbox/

101

http://www.shadowbox-js.com/
http://fancybox.net/
http://www.huddletogether.com/projects/lightbox2/
http://colorpowered.com/colorbox/

102 jQuery: Novice to Ninja

we want to show. One method is to give all the related images the same class name.

Another is to use the rel attribute of links to define a semantic relation between
them.

1 of 6 celebrity photos

Figure 4.3. A styled gallery using the ColorBox plugin

In the markup, we’ve included rel="celeb" on all the images we want to group
together. Now we can use the jQuery attribute selector to find those images:
a[rel="celeb"]. Calling the colorbox method on the selection gives us a fantastic-
looking lightbox:

chapter_04/02_colorbox_plugin/script.js (excerpt)

$(document) .ready(function() {
$('al[rel="celeb"]"').colorbox();
1)

Images and Slideshows

@ That's class

If we had chosen to group our images by class name, ColorBox still allows us to
specify a relationship between the images by specifying a rel option like this:

$(".celeb").colorbox({rel:'celeb'});

It looks and works brilliantly by default, but there are stacks and stacks of options
to play around with. In the following example we give it a fading transition, rather
than the default elastic resize (the speed option, as you might have guessed, specifies
the duration of the fade). To suit the StarTrackr! style, we’ll also customize the
wording of the lightbox text. This is just the tip of the iceberg, though—poke around
on the ColorBox site to explore all the other options and events available for cus-
tomizing the lightbox:

chapter_04/02_colorbox_plugin/script.js (excerpt)

$('a[rel=celeb]"').colorbox({

transition: ‘fade',

speed: 500,
current: “{current} of {total} celebrity photos"
})s

What'’s great about ColorBox is that it’s highly unobtrusive and customizable: you
can alter behavior settings, add callbacks, and use event hooks without modifying
your markup or the plugin’s source files. ColorBox preloads any required images
—and can even start preloading your gallery images—so it always appears snappy
on your pages.

Finally, the code for ColorBox is maintained on GitHub,5 and there is a strong
community if you need help. ColorBox is released under the permissive MIT Li-

cense,’ so you can use it in your commercial projects as you see fit.

> http://github.com/jackmoore/colorbox/
® http://creativecommons.org/licenses/MIT/

103

http://github.com/jackmoore/colorbox/
http://creativecommons.org/licenses/MIT/
http://creativecommons.org/licenses/MIT/

104

jQuery: Novice to Ninja

Cropping Images with Jcrop

While we’re looking at mature and excellent plugins and lightbox effects, we’d be
remiss if we skipped over the Jcrop plugin for defining regions of an image.” The

plugin adds a lightbox-style overlay on an image and lets the user drag a rectangle
to select a required area of an image. This functionality is common on many large

websites, where it allows users to crop an uploaded image for their profile picture.

If you know a little about image manipulation on the Web, you’re likely to know
that image manipulation of this sort usually takes place on the server side. Right?
Yes, that’s correct—the Jcrop plugin doesn’t actually crop images, it provides an
intuitive interface for defining the bounding edges where the user would like to
crop an image. The results returned from the plugin can then be fed to the server
to perform the actual image manipulation. You can see an image being cropped
with Jecrop in Figure 4.4.

Figure 4.4. The Jcrop plugin in action

7 http://deepliquid.com/content/Jcrop.html

http://deepliquid.com/content/Jcrop.html

Images and Slideshows

The typical workflow for using the Jcrop plugin would be to display an image that
needs to be cropped by the user (either a stored image or a freshly uploaded one),
and overlay the Jcrop interface. When the user has made their selection the coordin-
ates are posted to the server, where the resulting image is created and saved for
display or download.

To apply the Jcrop interaction, you first need to download it and extract the files.
Contained in the download bundle is the Jcrop JavaScript file, a small CSS file, a
clever animated GIF (that’s responsible for the “moving lines” effect when you select
a region), and some demo pages that highlight all of Jcrop’s features.

You’ll need to include the CSS (at the top of the page) and JavaScript (at the bottom
of the page) files. The Jcrop.gif image should be in the same directory as your CSS
file:

chapter_04/03_jcrop/index.html (excerpt)

<link rel="stylesheet" href="css/jquery.Jcrop.css" type="text/css">
<script src="jquery.dJcrop.min.js" type="text/javascript"></script>

Once everything is in place, you just need to add an image that you’d like to make
selectable to the page. We’ve given the image an ID so that it’s nice and easy to select
with jQuery. If you want the user to signal that they’re happy with their selection,
you can add a clickable button too:

chapter_04/03_jcrop/index.html (excerpt)

<div id="crop">

<input type="button" value="crop"/>

</div>

In its simplest form, you just have to apply the jQuery plugin to the image. When
you reload the page, the image will be augmented with draggable handles and an

overlay:
$('#mofat').dcrop();

The plugin exposes a couple of useful events that you can use to keep an eye on
what the user is selecting. It also has a handful of default options for customizing

105

106

jQuery: Novice to Ninja

how the selector works. You can restrict the aspect ratio of the crop area and the
minimum and maximum selection sizes, as well as the color and opacity of the
background overlay:

var jcrop = $('#mofat).dcrop({
setSelect: [10,10,300,350],
minSize:[50,50],
onChange: function(coords) {
// use the coordinates

}s
onSelect: function(coords) {

// use the coordinates
}
});

Here we’ve included some default properties. setSelect allows us to define a default
cropping area; we need to pass it an array of coordinates, in the format [x1, y1,
x2, y2].TheminSize option is an array containing the selection’s minimum width
and height. We’ve also illustrated how you’d capture the onChange and onSelect
events. The onChange event will fire many times as the user is dragging the handles
or the selection around the image. The onSelect event, on the other hand, will only
fire when a selection has been defined; that is, when the user has stopped dragging.

The handlers for the events receive a coordinates object that contains the x, y, x2,
y2, w, and h properties. So, in your handler code, you’d write coords.w to obtain

the current selection’s width.

By far the most common use for the Jcrop plugin is to define points to send to the

server after the user is done selecting. The events that the plugin fires are of no use
to us for this purpose, as we have no way of knowing if the user is really finished

selecting—that’s why we added a button! We want to know where the selection is
when the user clicks the button.

In order to do this, we’ll need to modify our original code a little. When you call
Jcrop on a jQuery object as we did above, the jQuery object is returned, ready to
be chained into more jQuery methods. However, this gives us no access to the selec-
tion coordinates. In order to grab these, we’ll need to call Jcrop differently, directly
from $. When called in this way, it will return a special Jcrop object, which has
properties and methods for accessing the selected coordinates (as well as modifying

Images and Slideshows

the selection programmatically). We need to pass it both a selector for the image to

crop, and the set of options:

chapter_04/03_jcrop/script.js (excerpt)

var jcrop = $.Jdcrop('#mofat',{
setSelect: [10,10,300,350],

minSize:[50,50]

})s

$('#crop :button').click(function() {
var selection = jcrop.tellSelect();
alert('selected size: ' + selection.w + 'x' + selection.h);

})

We’re using the tellSelect method to obtain the current selection; this has the
same properties as the event coordinates, so we can use them to send to the server
and chop up our picture! In the absence of a server, we’ve chosen to simply alert
them, to let you know what’s going on.

Jerop has a vast array of available options and methods, so it’s strongly recommended
that you inspect the demos included in the plugin download to see what’s available.

Slideshows

Every night, customers of the StarTrackr! site use the location information they
purchase to hunt down and photograph the world’s social elite. Many of the photos
are posted back to the web site, and the client wants to feature some of them on the
home page. We’re increasingly comfortable with jQuery, so we’ve told our client
we’d mock up a few different slideshow ideas for him. First, we’ll look at some
ways of cross-fading images; that is, fading an image out while another is fading in.
Then we’ll look at a few scrolling galleries, and finally a more sophisticated flip-

book style gallery. Along the way we’ll pick up a bunch of new jQuery tricks!

Cross-fading Slideshows

If you work in television, you’ll know that unless you’re George Lucas, the only
transition effect they’ll let you use is the cross-fade (aka the dissolve). The reason

for this is that slides, starbursts, and swirl transitions nearly always look tacky. This

107

108

jQuery: Novice to Ninja

also applies outside the realm of television; just think back to the last PowerPoint

presentation you saw.

There are different techniques for cross-fading images on the Web—all with pros
and cons mostly boiling down to simplicity versus functionality. We’ll cover some
of the main methods used to cross-fade items, so that you have a selection to choose

from when necessary.

Rollover Fader

The first cross-fader we’ll have a look at is a rudimentary rollover fader; it’s much
like the hover effects we’ve already looked at, except this time we’ll perform a
gradual fade between the two states. First, we need to tackle the problem of where
and how to store the hover image.

This solution works by putting both of our images into a span (or whatever container
you like). The hover image is positioned on top of the first image and hidden until
the user mouses over it; then the hidden image fades in. To start, we set up our

rollover container:

chapter_04/04_rollover_fade/index.html (excerpt)

<img src="../../images/glenda_200.jpg"
walt="Glendatronix" />

<img class="to" src="../../images/fader_200.jpg"
walt="Darth Fader"/>

To hide the hover image, we employ the usual position and display properties:

chapter_04/04_rollover_fade/style.css (excerpt)

#fader {
position: relative;

}

#fader .to {
display: none;
position: absolute;
left: 0;

}

Images and Slideshows

We now have something juicy to attach our hover event handler to.

Knowing that we have two images trapped inside the container, we can access them
with the :eq filter—short for “equals”, this filter selects the element from a group
whose index is equal to the number we pass in. Image 0 is our visible image, and
image 1 is our hover image.

Here’s the code we’ll use to perform the rollover:

chapter_04/04_rollover_fade/script.js (excerpt)

$('#fader').hover(function() {
$(this).find('img:eq(1)"').stop(true,true).fadeln();
}, function() {
$(this).find('img:eq(1)"').fadeOut();
})

There’s nothing new to us here—except that we’re using the stop command. stop
does exactly what you’d expect—it stops the animation! It accepts two optional
parameters: clearQueue and gotoEnd. We're setting the clearQueue parameter to
true, so that any queued animations are cleared.

The gotoEnd parameter is used if you want jQuery to determine what an element’s
state will be at the end of the current animation queue, and then jump immediately
to that state. We’re specifying true for gotoEnd as well. So, to reiterate, our fade
animation will immediately stop any other queued animations and jump straight
to where it was headed (in this case, it will jump straight to the fully faded-out state,
so we can fade it back in). This prevents animations from banking up if you mouse
over and out quickly.

@ There's More than One Way to Select a Cat

We’ve used this method primarily to highlight the : eq selector attribute. There
are several other ways we could’ve accessed the two images inside the container:
by using the : first and :1last filters, the corresponding . eq, .1last,or . first
methods, the child (>) selector, or simply a c1ass name. There are usually multiple
ways to accomplish tasks with jQuery, and the choice often boils down to personal
preference.

109

110

jQuery: Novice to Ninja

You’d probably be thinking of using this effect for navigation buttons—which is a
good idea! Another consideration, though, is adding the hover image as the link’s
thover state background image in CSS too. That way, your rollover will still work
as a traditional hover button for those without JavaScript.

JavaScript Timers

The Web is an event-driven environment. Elements mostly just sit on the page
waiting patiently for a user to come along and click or scroll, select or submit. When
they do, our code can spring to life and carry out our wishes. But there are times
when we want to avoid waiting for the user to act, and want to perform a task with
a regular frequency. This will be the case with the next few slideshows we’re going
to build: we want to rotate automatically through a series of images, displaying a
new one every few seconds.

Unlike many other areas of the library, there’s been no need for jQuery to expand
on JavaScript’s timer functionality; the basic JavaScript methods are simple, flexible,
and work across browsers. There are two common timers: setTimeout and
setInterval.

@ A New Kid Is Coming to Town

The timers we’ll be using work as required, but they were created for a simpler,
less animation-heavy time! There are a couple of new timer specifications on the
horizon, the most interesting of which is the requestAnimationFrame timer,
which will only update when your web page tab has focus. It’s not supported
everywhere just yet, but there is some good information around on how you can
start using it today!®

The timer functions both work the same way: they wait a certain amount of time
before executing the code we give them. The syntax used to call them is also much
the same:

setTimeout (<code to run>, <number of milliseconds to wait>);
setInterval(<code to run>, <number of milliseconds to wait>);

8 http://paulirish.com/2011/requestanimationframe-for-smart-animating/

http://paulirish.com/2011/requestanimationframe-for-smart-animating/
http://paulirish.com/2011/requestanimationframe-for-smart-animating/

Images and Slideshows

The key difference is that setTimeout will wait the specified period of time, run
the code we give it, and then stop. setInterval, on the other hand, will wait, run
the code—then wait again and run the code again—repeating forever (or until we
tell it to stop). If the code we pass it updates a visible property of an element, and
the delay we assign it is relatively small, we can achieve the illusion of animation.
In fact, behind the scenes, this is what jQuery is doing when we use any of its an-

imation functions!

Timers can be tricky to use correctly, largely because they cause problems of scope,
which we’ll discuss in more detail in the section called “Scope” in Chapter 6.
However, we want to master them, as timers are the key to freeing our pages from

the tyranny of user-initiated events!

Setting up a Timer

Here’s a small example to demonstrate timers at work: we’ll simply move a green
box smoothly across the screen. Of course, we could rely on jQuery’s animate
method to do this for us, but we want to learn what is really going on in the JavaS-
cript. This will involve positioning a square div and continuously updating its left

CSS property. Let’s set up our boxes:

chapter_04/05_timers/index.html (excerpt)

<div>
<div id="green" class="box">Go!</div>
<div id="red" class="box">Go!</div>
</div>

The boxes are sitting still; to animate them we’re going to need a timer. We’ll use

the setInterval timer, because we want our code to be executed repeatedly:

chapter_04/05_timers/script.js (excerpt)

var $green = $('#green');
greenLeft = $green.offset().left;
setInterval(function() {
$green.css('left', ++greenLeft);
}, 200);

Our div moves slowly across the screen: every 200 milliseconds, we’re pushing it

a pixel to the right. Changing the size of the delay affects the speed of the animation.

m

12

jQuery: Novice to Ninja

Be careful, though: if you set the delay very low (say, less than 50 milliseconds)
and you’re doing a lot of DOM manipulation with each loop, the average user’s
browser will quickly grind to a halt. This is because their computer is not given
enough time to do everything you asked it to before you come around asking it
again. If you think your code might be at risk, it’s best to test it on a variety of ma-

chines to ensure the performance is acceptable.

It’s also possible to replicate setInterval’s functionality using the setTimeout

function, by structuring our code a bit differently:

chapter_04/05_timers/script.js (excerpt)

var $red = $('#red'),
redLeft = $('#red').offset().left;
function moveRed() {
$red.css('left', ++redLeft);
setTimeout (moveRed, 200);

}

moveRed () ;

Here we have a function called moveRed, inside of which we have a setTimeout
timer that calls ... moveRed! As setTimeout only runs once, it will only call moveRed
once. But because moveRed contains the timer call, it will call itself again and

again—achieving the same result as setInterval.

Stopping Timers

Usually it’s undesirable (or unnecessary) for our timers to run forever. Thankfully,
timers that you start running can be forced to stop by calling the appropriate
JavaScript command, clearInterval or clearTimeout:

clearInterval(<timer id>);
clearTimeout (<timer id>);

To call either of these functions you need to pass in the timer’s ID. How do we know
what the ID is? The ID is an integer number that’s assigned to the timer when you
create it. If you know you might want to stop a timer in the future, you must store

that number in a variable:

var animationTimer = setInterval(animate, 100);

Images and Slideshows

The timer can now be stopped at any time with the following code:
clearInterval(animationTimer);

And that’s all there is to know about setTimeout and setInterval! Don’t worry if
they still seem a little fuzzy: we’ll be using them as required through the rest of the
book, and seeing them in context will help you become more accustomed to them.

Fading Slideshow

Cross-fading between two images is fairly straightforward: it’s always fading one
image in as the other fades out. If we extend the idea to a whole bunch of images
for, say, a rotating image gallery the task becomes a little more difficult. Now we’ll
need to calculate which picture to show next, and make sure we wrap around after
we’ve shown the last image.

A common trick you’ll see with jQuery image galleries is to fake the cross-fade by
hiding all of the images except for the current image. When it comes time to swap,
you simply hide the current image, and fade in the next one. Because there’s no
true overlap occurring with the images, this doesn’t really qualify as a cross-fade;
however, it’s a simple solution that might be all you need, so we’ll look at it first.
The next example we’ll look at will be a true cross-fader.

Our basic slideshow will consist of a bunch of images inside a div. We’ll designate

one of the images as the visible image by assigning it the class show:

chapter_04/06_slideshow_fade/index.html (excerpt)

<div id="photos">
<img alt="Glendatronix" class="show"
wsrc="../../images/glenda_200.jpg" />

</div>

We’ll hide all the images by default. The show class has a double purpose for this
slideshow: it enables us to target it in CSS to display it, and—equally importantly—it

gives us a handle to the current image. There’s no need to keep track of a variable,

13

14

jQuery: Novice to Ninja

such as var currentImage = 1, because the class name itself is functioning as
that variable.

Now we need to start running a JavaScript timer so we can loop around our images.

We’ll write a function that calls itself every three seconds:

chapter_04/06_slideshow_fade/script.js

$(document) .ready(function() {
slideShow();

P

function slideShow() {

var current = $('#photos .show');

var next = current.next().length ? current.next()
wcurrent.siblings().first();

current.hide().removeClass('show');
next.fadeIn().addClass('show');

setTimeout(slideShow, 3000);
}

We know the current image has the class show, so we use that to select it. To find
the next image we want to show, we use a bit of conditional logic. If the next sibling
exists, we select it. If it doesn’t exist, we select the first image, so the slideshow
wraps around.

@ Ternary Operator

You might be a little confused by the syntax we’ve used to assign a value to the
next variable. In JavaScript (and in many other programming languages), this is
called the ternary operator. It’s a shortcut for setting a variable conditionally.

The syntaxa ? b : c means thatif a is true, return b; otherwise, return c. You
can use this in variable assignment, as we did above, to assign different values to
the same variable depending on some condition. Of course, a longer if / else
statement can always do the same job, but the ternary operator is much more
succinct, so it’s well worth learning.

So, to resume, the line:

Images and Slideshows

var next = current.next().length ? current.next()
wcurrent.siblings().first();

can be translated into English as follows: if the current element has a sibling after
it in the same container (if the next method returns a non-empty array), we’ll use
that. On the other hand, if next returns an empty array (so length is 0, which
is false in computer terms), we’ll navigate up to the current element’s first sibling
(which will be the first photo in the slideshow).

Finally, we hide the current image and fade in the next one. We also swap the show
class from the old photo onto the new one, and set a timeout for the s1ideShow

method to call itself again after three seconds have passed.

True Cross-fading

Our last solution looks nice—but it’s just a fade, rather than a true cross-fade. We
want to be able to truly cross-fade: as the current picture is fading out, the next
picture is fading in. There is more than one way to skin a jQuery effect, and the

approach we’ll take for our implementation is as follows:

1. Stack the images on top of each other, so that the picture with the highest z- index
will be showing.

2. Fade out the top image so that the next image appears to fade in.

3. Once the fade has completed, reorder the z- index of the images so that the current

image is on top.
4. Repeat steps 2 and 3.

A disadvantage of this technique is that we’ll be stacking the images on top of each
other, so they must all be the same size. This usually is a small issue, as it’s fairly
common on the Web to be constrained to a certain area. It should also be noted that
it’s very easy to switch out the images for divs and be able to cross-fade any HTML
in their place.

V%\ z-index

=
z-1index is a CSS property used to specify the visual stacking order of an element.
Elements with higher z-index values will appear in front of those with lower

115

116 jQuery: Novice to Ninja

values. This can be used in conjunction with absolute or relative positioning to
stack elements on top of each other.

Looking back at our outline, you should be able to tell that steps 1 and 2 are
straightforward. Let’s start by stacking up our images:

chapter_04/07_slideshow_cross_fade/index.html (excerpt)

<div id="photos">

</div>

We need to position the images absolutely and contain them within a bounding

box:

chapter_04/07_slideshow_cross_fade/style.css (excerpt)

#photos img {
position: absolute;

}

#photos {
width: 180px;
height: 180px;
overflow: hidden;

}

Now that our images are stacked, let’s step back and do some planning. In order to
be able to execute step 4 (repeating the fade for the next image), we’ll need to put
our fading code in some sort of loop. As the loop needs to keep track of the current
photo, we’re going to move our code out into a named function, which we’ll call
from our $(document) .ready block:

chapter_04/07_slideshow_cross_fade/script.js (excerpt)

$(document) .ready(function() {
rotatePics(1);

}

Images and Slideshows

Now we’ll create the rotatePics function, which will do all the hard work. This
method accepts a number, which should be the index of the current photo. We’ll
see how this is used shortly, but first, we store the total number of photos in a
variable. We do this because we’re going to be reusing it a few times in the code—and
storing it in a variable means jQuery is spared from wasting time doing the same
calculations over and over:

chapter_04/07_slideshow_cross_fade/script.js (excerpt)

function rotatePics(currentPhoto) {
var numberOfPhotos = $('#photos img').length;
currentPhoto = currentPhoto % numberOfPhotos;

The second line of code is a common JavaScript trick for ensuring that values are
confined to a given range. We never want the currentPhoto to be greater than the
total number of photos, so we perform a calculation to ensure that the index of the
photo we passed in is valid—by taking the modulus of the length. Modulus, repres-
ented in JavaScript by the % symbol, returns only the remainder of a division. So if
we have five photos in total, and we pass in an index of six, the operation gives 6
% 5 = 1. The number is effectively wrapped around back to the start, and we can

be sure we’re never trying to display a photo that’s nonexistent!

Now we can finally proceed with doing the actual cross-fade. As we described in
our outline, the effect works by fading out the current image. This will give the ap-

pearance of the next image fading in.

We use jQuery’s eq traversing command to grab the current photo. We pass it our
currentPhoto variable to select the current image. With the image selected, we
simply fade it out and run a callback function to take care of the setup for the next
fade:

chapter_04/07_slideshow_cross_fade/script.js (excerpt)

$('#photos img').eq(currentPhoto).fadeOut (function() {
// re-order the z-index
$('#photos img').each(function(i) {
$(this).css(
‘zIndex', ((numberOfPhotos - i) + currentPhoto) %

17

118

jQuery: Novice to Ninja

wnumberOfPhotos
);
});

$(this) .show();
setTimeout (function() {rotatePics(++currentPhoto);}, 4000);

P

There are a few things happening here. First, we do a bit of math to reorder the
images. We offset each photo’s index by the currently displayed photo index. Then
our new modulus trick is put to use again, and the end result is each image’s z- index
shuffled along by 1. To see this in action, open up Firebug and inspect the images
as the effect is running: you’ll see the z- index properties shuffling each time a new
image displays.

Once we’ve completed the reordering, the picture we just faded out will be on the
bottom of the pile. This means that it’s safe to show it again, ready for the next time
it rises to the top: an easy $(this) .show().

Then there’s a call to the timer function setTimeout to set up the function to be run
again after a delay of 4,000 milliseconds. We pass it the next photo’s index by
writing ++currentPhoto. If this code looks a bit too cryptic for you, you could im-

prove the clarity by moving the increment onto a separate line, like this:

function() {
currentPhoto += 1;
rotatePics(currentPhoto);

}

The two versions are synonymous, but the second way is more explicit in what it’s

doing.

@ Increment and Decrement

In JavaScript, if you follow or precede a numeric variable with - - or ++, the
variable will be decremented or incremented by 1, respectively. This is a handy
shortcut for the -= and += operators we’ve already seen.

The difference between ++a and a++ is subtle, but important. If you are using it

in your code, the first form (with the ++ or - - preceding the variable name) will

Images and Slideshows

increment the variable before returning it. The second form will return the unmod-

ified value, then increment it.

In our code above, we want to call our function with the new incremented value,
so we use ++currentPhoto.

Feel free to experiment with the type of effect; as well as fades, you can try using
the s1ideUp effect, or one of the jQuery Ul effect plugins.

Advanced Fading with Plugins

As you’d imagine, there are countless jQuery plugins already built for transitioning
between images. If you have some advanced requirements (sometimes you just need
to have a starburst wipe), heading straight for the plugin repository could be a good
idea.

Before Using a Plugin

Many jQuery plugins you find on the Web were developed quite some time ago,
and have been more or less abandoned since then. Without continued development
and improvement, they’ll often be comparatively slow and buggy. It’s always a
good idea to try to understand what you’re adding to your site, instead of blindly
including a half-dozen plugin files. If the code is heavy (in terms of file size) and
has a lot of functionality unnecessary for your requirements, perhaps a more
lightweight, tailor-made solution is in order.

That said, many plugins provide excellent, well-documented code that will save
you enormous amounts of time and effort. Just be sure to adequately consider

your options!

Now we’ll look at two plugins you can use to achieve a slideshow effect; one is ex-
tremely lightweight, while the other has more features.

News Ticker with InnerFade

InnerFade” is a small plugin that lets you transition between a series of elements,
much like the fading image gallery we just built. It does have a few benefits over
our code that makes it worth considering. For one, it’s a plugin—which means it’s

easy to drop in wherever we need it. Of course, we can easily turn our code into a

o http://medienfreunde.com/lab/innerfade/

119

http://medienfreunde.com/lab/innerfade/

120

jQuery: Novice to Ninja

plugin too (just jump to the section called “Plugins” in Chapter 9 to see how easy
it is). It also has some extra options that give us more flexibility: the ability to show
the items in a random order, give a class name to the active element, and choose

different animation types.

You might be thinking that all these features would be fairly easy to add to our
custom code—after all, we’re well on our way to becoming jQuery ninjas! If you're
feeling adventurous, open up the InnerFade plugin file to see how these features
have been developed in there, which should give some idea about how you would
implement them yourself.

As a departure from our image rotations, let’s have a look at rotating list items to
create a simple news ticker, where a list of text links will be displayed randomly.
To kick it off, we need to include the plugin in our page.

To fetch the plugin, you need to download it from the Git repository'® (the easiest
way to do this is to navigate to the jquery.innerfade.min.js file, then click the “raw”
link to get the plain text version). Once you have the file, add it your project:

chapter_04/08_innerfade/index.html (excerpt)

<script type="text/javascript" src="jquery.innerfade.js"></script>

Next, we’ll set up our containing element and the items we’d like to scroll. The
plugin will treat all first-level children of the container we pass to it as fair game
to cycle through. We’ll use an unordered list as the container, and the list items as
the elements:

chapter_04/08_innerfade/index.html (excerpt)

<div id="news">
<h2>News</h2>

Barron Von Jovi spotted .. </1li>
Mo'Fat signs up-and-coming rapper .. </1li>
Glendatronix rumored to be ..
Man claims to be Darth Fader's son .. </1li>

</div>

10 https://github.com/wesbaker/jquery.innerFade

https://github.com/wesbaker/jquery.innerFade

Images and Slideshows

When our document is ready, we use the plugin’s provided innerfade method on
the list. There are a number of options available to customize the way this method
works; we’re using a few here, and you should consult the plugin’s documentation
to discover all of them. We’ll specify a slide effect, rather than a fade effect, to round

out our news ticker style, and we’ll have the elements rotate at random:

chapter_04/08_innerfade/script.js (excerpt)

$('#news ul').innerfade ({
animationtype: 'slide',
speed: 750,
timeout: 3000,

type: 'random'

P

And there we have it: a simple and cool effect for displaying news items. The Inner-
Fade plugin is also perfectly suitable for image galleries like the ones we’ve already
built, though you should be aware of one important difference. InnerFade handles
all of the item hiding, showing, and positioning in its code—so without JavaScript
all of the elements will be displayed (whereas in our custom code, we hid all but
one in CSS). You’ll need to take this into consideration, and decide what you want
the baseline experience of your site to be and how you’d like to enhance it with

jQuery.

The Cycle Plugin

The Cycle plugin'' is a very mature, full-featured plugin that—like all the fading
we’ve been doing—enables you to transition between elements in a container. Its
completeness results in a comparatively hefty download (but still only around 50kB
for the complete, unminified version), but offers some impressive transition effects,

well suited for displaying image galleries in a more interesting manner.

The setup should be very familiar to you now; download the plugin and include
the link to the JavaScript file in the head of your page. There are actually a couple
of different versions of the plugin contained in the download: the full-featured
version with a wide range of available transitions (jquery.cycle.all.min.js), and a
stripped-down version with only the most basic options (jquery.cycle.lite.min.js, 7.5kB

" http://malsup.com/jquery/cycle/

121

http://malsup.com/jquery/cycle/

122

jQuery: Novice to Ninja

unminified). For our example, we’ll use the full-fledged version for the sake of illus-
trating the available options.

We’ll start off with exactly the same markup we used for our previous slideshows.
You can easily cross-fade images with the Cycle plugin, but given that it’s provided
us with a number of fancier options, let’s try one and “shuffle” the images:

chapter_04/09_cycle_plugin/script.js (excerpt)

$('#photos').cycle({
fx: 'shuffle'
});

This effect is illustrated in Figure 4.5.

Celebrity Photos

Our Celebrities

We have an ever changing roster of newly

Figure 4.5. The shuffle effect included in the Cycle plugin

The plugin gives us more than 20 ways to move around our gallery: shuffle, fade,
zoom, wipe, toss, curtainX, growY ... for starters. Additionally, the plugin can be
customized to include your own transition effects, if you’re unable to find one that
suits your needs.

The number of options offered in Cycle is quite astounding, probably far more than

you’ll ever need. Let’s try out a more complicated example:

Images and Slideshows

chapter_04/10_cycle_plugin_2/script.js (excerpt)

$('#photos').cycle({
fx: 'scrollDown',
speedIn: 2500,
speedOut: 500,
timeout: O,

next: '#photos'

1)

The timeout setting controls the time between transitions—but what would a value
of 0 mean? In this case it means “don’t animate.” Instead, we’ve used the next option
to select an element that, when clicked, will advance to the next slide. That selector
is the slideshow itself—so to move to the next picture, you just need to click on the

picture.

Additionally, we’ve used the speedIn and speedOut options to specify the duration
of the “in” and “out” animations: we’ve chosen to sloooowly bring the next picture
into view, while quickly dismissing the last. The net effect is as if the images are
dropping from a printer. Probably not something you really want on your startup’s
website—but there are so many options available that you’ll need some serious

playing with it to exhaust the possibilities for usable effects.

Scrolling Slideshows

As we saw when using the Cycle plugin, cross-fading is far from being the only way
to transition between a set of images. In the next few examples, we’ll explore another
technique for creating interactive slideshows. We’re going to throw all our images
in a giant container, and use a wrapper element to hide all but one or a few from
view. Then, when we want to display a different image, we’ll just scroll the element
to the desired position.

Thumbnail Scroller

Our first stab at a scrolling gallery will be a horizontal list of thumbnails. If you

click on the control, the list scrolls along to reveal more images.

To build this control we’ll need to have two nested elements. The child element
will be large and contain all the images. The parent element is only as big as the
viewing area; that is, the area we want the user to see. As the child element moves

around, it appears to the user that the content is scrolling in. Here’s the markup:

123

124 jQuery: Novice to Ninja

chapter_04/11_thumbnail_scroller/index.html (excerpt)

<div id="photos">
<div id="photos_inner">

</div>
</div>

The outer element needs to hide the excess content, and so needs to have overflow:
hidden. For our scroller, we define the inner element to have a width wide enough
to fit our 15 thumbnails:

chapter_04/11_thumbnail_scroller/style.css (excerpt)

#photos {
overflow: hidden;
width: 600px;

}

#photos_inner {
height: 100px;
width: 1500px;
overflow: hidden;
position: relative;

}

#photos_inner img {
float: left;
width: 100px;
height: 100px;

}

With our container all set up, and an armful of images to show, let’s take a first pass
at scrolling the images:

chapter_04/11_thumbnail_scroller/script.js (excerpt)

$('#photos_inner').toggle(function() {
var scrollAmount = $(this).width() - $(this).parent().width();
$(this).animate({'left':'-=' + scrollAmount}, 'slow');

Images and Slideshows

}, function() {
$(this).animate({'left':'0'}, 'slow');
})s

First we need to calculate how much to scroll. We take the width of the overflowed
element that contains images and subtract that from the width of the parent container.
The parent action selects an element’s immediate parent (see the section called
“Bits of HTML, aka “The DOM”” in Chapter 1). We use this to tell us how far we
need to scroll to reach the very end of the images. When we click on the images,

our scroll effect toggles between the start and end of the thumbnails.

This is great if we have less than two screen width’s worth of images. But if we have
more, we’ll be unable to see all the images that lie in between the six on either end,
so we need a different approach. A better way is to scroll, say, a half-screen’s worth
of images at a time. When we reach the end of the list, we’ll scroll back to the start.

Let’s expand on our code to make it more bulletproof:

chapter_04/12_thumbnail_scroller_improved/script.js (excerpt)

$('#photos_inner').click(function() {
var scrollAmount = $(this).width() - $(this).parent().width(); o
var currentPos = Math.abs(parseInt($(this).css('left'))); 9
var remainingScroll = scrollAmount - currentPos; 9

// Scroll half-a-screen by default
var nextScroll = Math.floor($(this).parent().width() / 2); @

// But if there isn’t a FULL scroll left,

// only scroll the remaining amount.

if (remainingScroll < nextScroll) { @
nextScroll = remainingScroll;

}

if (currentPos < scrollAmount) { @
// Scroll left

$(this).animate({'left':'-=' + nextScroll}, 'slow');
}
else{

// Scroll right

$(this).animate({'left':'0'}, 'fast');
}

P

125

126

jQuery: Novice to Ninja

Woah, that’s certainly more code—but if you walk through line by line, you’ll see
that it’s all fairly uncomplicated. We’re using quite a lot of variables, and because
we’ve given them clear names, it helps to make the code a little easier to understand:

@ As in the previous example, we first calculate the total amount of scrolling
space we have: our scrollAmount variable.

@ Because our new scroller needs to be able to handle more than two screens’
worth of images, we also need to figure out how far along we currently are. We
use the JavaScript function Math.abs () to convert the current scroll position
to a positive number, because scrolling to the left means we’re moving the
elements into negative territory. If your high school math is deep down in your
memory, here’s a refresher: the absolute value of a number will always be its
positive value, whether the number itself is positive or negative. So Math.abs (3)
is 3, and Math.abs(-3) is also 3.

€ We know how much space there is in total, and we also know how far along
we are—so it’s simple to find out how far we have to go! Just subtract the latter
number from the former.

@ Now for the real business: we need to calculate how far to scroll. By default,
this will be half of the total width of our image container. (Math.floor() is a
way of rounding an image down, so we’re sure we end up with a round number.)

We store the distance we want to scroll in the nextScroll variable.

@ If there’s less space left than what we want to scroll, we’ll change our
nextScroll variable to only bring us to the end of the images.

(® Finally, we scroll. If we’ve yet to reach the end of the images (if our current
position is less than the total scrollable width), we scroll to the left by the
amount we calculated. Otherwise (if we’re at the end of the images), we scroll
all the way back to the beginning.

If you think that’s a lot of code for a fairly basic effect, you're right! If only there
was a way of scrolling content without doing all that math ...
A Scrolling Gallery with scrollTo

You might remember that back when we looked at scrolling in Chapter 3, we men-
tioned a particularly useful plugin for scrolling the page: scrollTo. As well as

Images and Slideshows 127

scrolling the entire page, the scrollTo plugin excels in scrolling overflowed elements
(like those in a picture gallery) too! In our first stab at a scrolling thumbnail gallery,
we had to do quite a few of our own calculations to determine how big the scrollable
area was, and whether we were at the end or the start of the container.

The scrollTo plugin automatically figures a lot of this out for us, so we can concen-
trate on adding more complex features. In this demo we’re going to remove our list
of thumbnails, and replace them with larger images. The large images will be con-
tained in a grid—but we’re only going to display one at a time. When the user clicks
on the image, we’ll scroll around the grid, and stop on a new random picture.

To start off, we’ll need a list of pictures. For simplicity, we’ll just set it up as a swag
of image tags, inside a div container—itself contained inside another div. You might
like to set it up as an unordered list of images inside a div, to be semantically nicer,
but what we need to end up with is a block level element that’s as big and wide as
our grid. This needs to be inside an element with overflow: hidden (or auto).
Here’s what we mean:

chapter_04/13_scrolling_gallery/index.html (excerpt)

<div id="pic_container">
<div id="pic_scroller">

</div>
</div>

We’ll make the pic_container div the width of, say, three images and the height of
four images; the pictures, therefore, will be confined to a 3x4 grid. For this demo,

we’ll be using images that are 200x200px, so our container needs to be 800px wide
and 600px high. We’ll then make the visible region the size of a single image, and
hide all the rest:

chapter_04/13_scrolling_gallery/style.css (excerpt)

#pic_container {
overflow: hidden;
height: 200px;
width: 200px;

128 jQuery: Novice to Ninja

margin-bottom: 15px;

}

#pic_scroller {
height: 600px;
width: 800px;
overflow: hidden;

}

#pic_scroller img {
float: left;
}

Now that our grid is ready, we can add some random scrolling pixie dust. We first

grab all the images, then choose a random one and scroll to it using scrollTo:

chapter_04/13_scrolling_gallery/script.js (excerpt)

$('#pic_container').click(function() {
var numberOfPics = $(this).find('div > img').length;
var next = Math.floor(Math.random() * numberOfPics);
$(this)
.scrollTo(
'#pic_scroller>img:eq(' + next + ')',
{duration: 1000}
);
});

That’s certainly a lot simpler than our last example! The plugin takes care of almost
all the complicated parts. That said, there are two new bits of jQuery in there: the
find action, and the :eq filter. find functions in much the same way as the main
jQuery $ selector itself, except that it searches only within the currently selected

element, rather than the whole document.

We pass the :eq filter a random number between 0 and the total number of images

to select a random image.

i @1 Random Numbers

Math.random will give you a random number between 0 and 1. More often,
though, you’re looking for random whole numbers in a given range. The easiest
way to achieve this is by writing Math.floor (Math.random() * maximum).

Images and Slideshows

You multiply the fraction by the maximum number you’d like, then round it down
to the nearest whole number.

Notice how easy it is to ask scrollTo to scroll to a specific element: we simply pass
it a selector that will match that element!

Smarter Scrolling with the data Method

There’s a fairly big problem with the component we’ve built, however, especially
if you have a small number of images: the next random image to display might be
the same one we’re currently on! In this case no scrolling takes place, making it feel

like a bug. To remedy this, we need to keep track of what the last image was:

chapter_04/14_scrolling_gallery_improved/script.js (excerpt)

$('#pic_container').click(function() {
var numberOfPics = $(this).find('div > img').length;
var last = $(this).data('last');
var next = Math.floor(Math.random() * numberOfPics);
if (next == last) {
next = (next + 1) % numberOfPics;

}
$(this)
.data('last’', next)
.scrollTo(
'#pic_scroller>img:eq(' + next + ')',
{duration: 1000});
1)

We’re using a new and extremely powerful jQuery action: data. This method is
unlike any action we’ve seen so far, because it allows us to store information in any
jQuery object. We call it with two parameters to store data. The first parameter be-
comes the name of the data item, and the second is the value to store. To retrieve

data, we then pass in only one parameter: the name of the data item.

In our improved example, once we find the image we’re going to scroll to, we store
the number element with the command $(this).data('last', next). The next
time the scroller element is clicked, we read it back again with the command
$(this).data('last'). If our new element is the same as our last, we simply add
1 to it to scroll to the next image. (We use the modulus again to ensure we stay
within the total number of images).

129

130

jQuery: Novice to Ninja

You should carefully study the two lines of code where we retrieve and set data on
the element (highlighted above). We’ll be using this amazing jQuery feature a lot in
the coming chapters, so do yourself a favor—commit it to memory, and play with
it as much as you can!

iPhoto-like Slideshow Widget

We’ll look at a more advanced slideshow by building an iPhoto-like widget (iPhoto
is the included image gallery application in Mac OS X). Mousing over the left or
right side of the current image will scroll to the next or previous image, so the user
can flip casually through the gallery. This is the most advanced jQuery we’ve seen
so far, and it might be difficult for you to make complete sense of it the first time
around. We’ll be exploring many of the concepts employed here in more detail in
the coming chapters, so don’t worry if you need to skip this one for now and come
back to it later.

Let’s base our slideshow on a familiar list of images. We’ll wrap the list in a div,
which will allow us to constrain the thumbnails and add an anchor that will serve

as our trigger:

chapter_04/15_iphoto_style_slideshow/index.html (excerpt)

<h2>Around town last night</h2>
<div id="photos">
Image Gallery
<ul id="photos_inner">

</1li>

</1li>

</div>

If a user views our page with both CSS and JavaScript turned off, they’ll simply see
a huge stack of images. While it’s far from being the great experience we hoped to
provide, we have given them full access to our content. If only JavaScript is disabled,
all but one of the images will be hidden—but we’ll overlay a link to the full gallery

Images and Slideshows

page on top of the gallery, so clicking it will bring users through to a traditional

HTML gallery page. Let’s start our slideshow enhancements with the CSS:

f#iphotos {

}

border: 1px solid #BEBEBE;

height: 400px;
overflow: hidden;
position: relative;
width: 400px;

f#fphotos ul {

}

left: 0;
list-style-type: none;
margin: O;

padding: O;

position: absolute;
top: 0;

width: 2400px;

f#fphotos 1i {

}

float: left;

#iphotos .trigger {

left: 0;

position: absolute;
top: 0;

z-index: 10;
text-indent: -9999px;
height: 400px;

width: 400px;
display: block;

chapter_04/15_iphoto_style_slideshow/style.css (excerpt)

Starting with the container div, we set up the display constraints. Our images are

400 pixels square, so that’s the dimensions for our container. Should the images

have been of varying sizes, you could simply set the container’s proportions to the

size of the largest image it would need to contain. The overflow: hidden means

that none of our thumbnails will peek through unexpectedly. For our unordered

list of images, we control the positioning ahead of creating the slide, and as we

131

132

jQuery: Novice to Ninja

know we’ll be using ten images, we set the list width to 2400px. In a dynamic web
application, this would need to be set on the server side—depending on how many

images were in the gallery, of course.

The last touch with the CSS positions the trigger anchor to cover the gallery image
completely, and hide its text with text-indent: -9999px. That sorted, let’s dive
into the jQuery!

Creating a Widget

The definition of a widget is quite varied, but we’re using it here to mean a stand-
alone piece of functionality that we can reuse in our future projects. The real purpose
of a widget is to cordon off our code into a handy package. We’ll be doing this more
and more throughout the book (and there’s an in-depth look at it coming up in the
section called “Namespacing Your Code” in Chapter 6), so the structure and ideas
will become quite familiar to you by the end!

The basis for our widget is a JavaScript object literal (the same kind we’ve been
using to pass sets of multiple options to jQuery actions) that defines the name of
our widget: var gallery = {};. As we've seen so far, object literals are enclosed
in curly braces ({}). The object is empty to start with, but we’ll be filling it up soon
enough. Putting all our code in an object like this will give our code a named
boundary, which limits the chance of any of our scripts conflicting with others that
may be in the page. Setting up an empty object is how we’ll begin implementing
most of our widgets.

Next, we can add properties and methods to make our widget actually perform
functions. By adding properties to our object, we remove the risk that any variables
in the page might be overwritten by other scripts:

chapter_04/15_iphoto_style_slideshow/script.js (excerpt)

gallery.trigger = $("#photos .trigger");
gallery.content = $("#photos_inner");
gallery.scroll = false;

gallery.width = 400;

gallery.innerWidth = gallery.content.width();
gallery.timer = false;

When we write gallery.timer = false, it’s the same as if we’d written:

Images and Slideshows

var gallery = {
timer: false;

}

The . (dot) notation is a shortcut for reading and writing properties of objects from
outside of the object’s declaration. If it’s a little unclear, be assured it will make

more and more sense as you see it used in our examples.

Let’s take a look at what we’ve made for ourselves: gallery.trigger is a reference
to a jQuery selection of our trigger link, and gallery.content is our list of images.
We can now utilize these much shorter names, which saves us typing out the full
selector string every time we want to use them. It also means we can easily point

out a script at a different gallery on a different page, just by changing these values.

The next properties we assign to our gallery object are functions. We have
gallery.offset, which sets how far we move the sliding list; gallery.slide,
which moves the list and causes it to keep moving; the cunningly named
gallery.direction that sets the direction of the slideshow’s scroll; and a trusty

initializing method, gallery.init. Let’s take a look at each in turn:

chapter_04/15_iphoto_style_slideshow/script.js (excerpt)

gallery.offset = function() {
var left = gallery.content.position().left;
if (gallery.scroll == '>') {
if (left < 0) {
left += gallery.width;
}
} else {
if (left <= 0 && left >= ((gallery.innerWidth * -1) +
= (gallery.width * 2))) {
left -= gallery.width;
}
}

return left + "px";

}

The first task we do in gallery.offset is set a variable holding the left property
of our list relative to the holding div. By using position rather than offset, jQuery
saves us the trouble of working where the gallery is relative to the viewport.

133

134

jQuery: Novice to Ninja

We then check the direction we want to scroll the thumbnails, and that we still
have room to scroll, and if all’s well we generate the new value for 1left (by adding
our 400px width property to the current left value) and return it. Note that we
need to add "px" to the value before returning it, since we’ll be using it as a CSS

property.

So gallery.offset does nothing but calculate how far to slide the gallery along.
You might be thinking, “Why not just calculate that inside the gallery.slide
function?” By moving this functionality into its own method we make it more usable,
should we ever need to access it from a different context than sliding the gallery.
It also helps us to avoid nesting our code too deeply, which would make it more
difficult to read. Here’s the function:

chapter_04/15_iphoto_style_slideshow/script.js (excerpt)

gallery.slide = function() {
if (gallery.timer) {
clearTimeout(gallery.timer);

}
if (gallery.scroll) {

$(gallery.content)

.stop(true,true)

.animate({left: gallery.offset()}, 500);
gallery.timer = setTimeout(gallery.slide, 1000);

}
}

Our slide method’s first job is to check if gallery. timer is set. If it is, setTimeout
has already been called, so we call clearTimeout just to be on the safe side. We
don’t let the scroll happen unless we want it! We then check gallery.scroll to
see if the scroll should happen. If the user moves the cursor off the widget between
scrolls, we want to stop any more scrolling from occurring. If they’re still hovering
over the widget, though, we call jQuery’s animate method on the left property of
gallery.content. This will scroll our gallery smoothly to the side. We’re again

making use of stop (true, true) to prevent animations from piling up in the queue.

The animate duration is set to 500, so it’s nice and zippy, and happens in plenty
of time before the next scroll is scheduled using setTimeout. setTimeout is assigned
to the gallery.timer property, which is what we checked for earlier, and 500
milliseconds after the animation finishes the next scroll attempt occurs (since we

Images and Slideshows

set the timer for 1,000, which is 500 more than the animation). But which way are
we going to scroll? gallery.direction sorts that out for us, like so:

chapter_04/15_iphoto_style_slideshow/script.js (excerpt)

gallery.direction = function(e,which) {

var x = e.pageX - which.offset().left;

gallery.scroll = (x >= gallery.width / 2) ? ">" : "<";
}

When the initializing method calls gallery.direction, it passes in two parameters:
e for the event that’s causing the scroll, and which to hold a reference to the element
that triggered the scroll. We’ll be diving in to the e parameter in the section called
“Event Handler Parameters” shortly, but for now all you need to know is that this
parameter allows us to access the coordinates on the page where the event took
place. Using this e.pageX, we can calculate the distance from the left-hand edge of
the trigger link to the cursor. This number in hand, we use the ternary operator (see
the section called “Fading Slideshow™) to assign a value to gallery.scroll: ">" if
the cursor is right of center, or else "<".

The last method we need to look at is our widget’s initializer, gallery.init:

chapter_04/15_iphoto_style_slideshow/script.js (excerpt)

gallery.init = function() {
$(gallery.trigger)
.mouseout (function
.mousemove (function
.mouseover (function
gallery.direction
gallery.slide();

P

{gallery.scroll = false;})
) {gallery.direction(e,gallery.trigger);?})
)

{
,gallery.trigger);

e
e
e

By now you should be quite accustomed to everything we’re doing. gallery.init
just chains jQuery methods on the jQuery object selected by gallery.trigger. Let’s
break that chain down a little.

mouseout sets gallery.scroll to false. This is the property we check to make
sure the user wants to continue scrolling. mousemove calls gallery.direction,
which in turn sets gallery.scroll as we saw earlier. And lastly, mouseover also

135

136

jQuery: Novice to Ninja

calls gallery.direction, but also adds gallery.slide to the mix. By calling
gallery.direction from the initial mouseover and from any subsequent mouse

moves, we ensure that the direction of the scrolling is always properly set.

And there you have it. Add in a $(document) .ready () to delay the enhancement
until the DOM is available, and all you need now are happy site visitors who want

to see what your gallery has to offer.

Many of the techniques we employed in building this widget are probably new to
you, so you might be feeling a little overwhelmed! In the coming chapters we’ll be
revisiting them in different forms, and before you know it, they’ll be second nature.
Before moving on to the next round of changes to StarTrackr!, let’s just have a quick
look at how we accessed the mouseover event’s position on the page from within

our callback.

Event Handler Parameters

We’ve seen more than our fair share of event handler callback functions now, but
if you look closely at the mouseover handler above, you might notice an imposter:
e. This is the name we’ve given to the optional parameter that all jQuery event
handlers can receive. We’ve not seen it until now as it hasn’t been required for any

of the effects we’ve implemented so far.

When an event handler is called, jQuery passes in an event object that contains
details and data about the event that occurred. The kind of data depends on the
kind of event: a keypress event will contain information about which key was
pressed, a click event will contain the location of the click, and so on. jQuery
performs some magic on the events so that the same information is available, regard-

less of which browser the user has.

@ Naming the Event Parameter

You certainly don’t have to call the event object e—it’s just a parameter name, so
you can call it whatever you want. The aliases e or evnt are fairly standard. People
often shy away from using event, as Internet Explorer responds to event as a
global keyword (window.event).

Anyway, back to the code! The mouseover event fires whenever the user moves

their mouse over the navigation item. We catch the e parameter in our event handler

Images and Slideshows

and pass it on to gallery.direction. As we’ve seen, this contains some specific
information about the event, such as where it occurred. We use this information to
calculate the mouse’s horizontal position on the gallery widget:

chapter_04/15_iphoto_style_slideshow/script.js (excerpt)

var x = e.pageX - which.offset().left;

This gives us a number in pixels. We then compare this value to half of the gallery’s
width. If the number is smaller, we’re on the left side; otherwise, we’re on the right.
This allows us to determine which direction to scroll:
chapter_04/15_iphoto_style_slideshow/script.js (excerpt)
gallery.scroll = (x >= gallery.width / 2) ? ">" : "<";
pageX is just one of the many available properties of the event object. We’ll be seeing

a few more in the next chapter, and there’s a full list in the section called “Events”

in Appendix A.

Image-ine That!

Milestone time! The widget object we’ve created, using named variables and func-
tions, is the weapon of choice of a true jQuery ninja! It makes your code readable,
concise, and, most importantly, reusable. You’ve also mastered timers and event
objects, which could be equated to flash-bombs and throwing stars, were one feeling
particularly metaphorical. There’ll be no holding you back soon.

The StarTrackr! site is definitely looking more alive, now that we have added

slideshows, lightboxes, and some classy cross-fades. Our client (and his investors)
are ecstatic, and he has another series of changes he’d like to see on the site as soon
as possible. That’s more work for us, which means more jQuery goodness is on the

way!

137

Chapter

Menus, Tabs, Tooltips, and Panels

jQuery is certainly a master of the DOM—effortlessly moving things around, anim-
ating CSS properties, and manipulating element attributes to help us spice up our
static content. But static content is a shrinking part of the Web; more and more fully
featured, highly functional, and impressive-looking applications are sprouting up
every day. This chapter sees us move away from static documents, and into the
world of bells and whistles for Rich Internet Applications (RIA).

The client team have been reading business magazines and learned of the term RIA,
and they’re determined to use it as much as possible. They’d like to see the site
move away from simple brochureware and become an online application where
users can easily hunt their favorite stars. This, of course, means we can move on to

some really fun stuff.

This chapter is all about the user interface: we’ll look at grouping content logically
and providing the user with easy access through drop-down menus, tabbed interfaces,
sliding panels, tooltips, and accordion controls. With these tools under your belt,
you’ll be ready to organize even the most complex interface into discrete chunks

that are easy and fun to play around with!

140

jQuery: Novice to Ninja

Menus

We’ve tinkered with a few menus already, but they’ve mostly been simple, top-level
navigation panes. In this section, we’ll have a look at applying jQuery to more in-

tricate menu-style navigation controls: collapsible and drop-down menus.

As the StarTrackr! site grows larger (and our client’s requests become more elaborate),
the navigation structure can grow unwieldy and become potentially confusing to
our users. A well-crafted menu allows us to categorize our content structure while
minimizing the valuable screen space it consumes.

Expandable/Collapsible Menus

A common feature of vertical site navigation is a submenu system, where links are
grouped into similar categories. This makes it easy for the user to find relevant in-
formation and, by allowing the top-level categories to be expanded and collapsed,
lets us store a large amount of information in a relatively small area. It also looks
cool when menus slide open and close shut. A simple and effective expandable
menu is very easy to set up; in fact, we learned most of the code required for a menu
way back in Chapter 2. We’'ll start by creating a simple menu, and then add a few
extra features to it. Our initial menu will look like the one in Figure 5.1.

What's new?

Member extras
Premium Celebrities
24-hour Surveillance

About us

Figure 5.1. Expandable menus

These days almost all navigational controls are unordered lists that are doing
higher duties. Even with the HTML5 nav element, it’s still only going to be a
wrapper for our tried-and-tested list elements. From a semantic standpoint, this is

Menus, Tabs, Tooltips, and Panels

perfectly reasonable; after all, a navigation menu is just a list of links. For our ex-
pandable menu, we’ll start off with a set of nested lists:

chapter_05/01_expandable_menus/index.html (excerpt)

<nav role="navigation">
<ul id="menu">
What's new?
<ul class="active">
Weekly specials
Last night's pics!</1li>
Users' comments

</1li>
Member extras

Premium Celebrities</1li>
24-hour Surveillance

Now let’s give it a few basic styles so that we’re working with a nicer-looking menu:

chapter_05/01_expandable_menus/menus.css (excerpt)

#menu, #menu ul {
list-style-type: none;

padding: O;
margin: 0;
}
#menu 1i {

cursor: pointer;

background: #94C5EB;

border-bottom: 1px solid #444;
}

#menu 1i a { text-decoration: none; }

#menu > 1li > a {
padding: 2px 10px;
font-weight: bold;

}

#menu 1i 1i {
cursor: auto;

141

142

jQuery: Novice to Ninja

border: 0;

padding: 0 14px;

background-color: #fff;
}

We’re using a CSS child selector to style the top-level links differently from the
nested ones. This is supported in all modern browsers, but if you require support
for Internet Explorer 6, you can simply add a class to your markup and base your
styles on that.

Since we’ll be reacting to a click event anywhere on the top-level list items (including
areas not covered by the anchors), we set a pointer cursor on those elements so that
users can easily tell that they’re clickable.

As it stands, we have a nice, multilevel menu. All the items are visible, which is a
fine behavior for browsers without JavaScript capabilities. Now we can progressively
enhance this behavior. First, we hide all of the categories’ items:

chapter_05/01_expandable_menus/script.js (excerpt)

$('#menu > 1i > ul')

.hide()
.click(function(event) {
event.stopPropagation();
1)

We’re using the child selector to ensure we avoid accidentally hiding elements that
are nested further down the menu structure. This way, if you decide to nest your
menu more than one level deep, your code will still function as intended.

You may be wondering about the strange event.stopPropagation() line in this
block. We’ll cover that shortly, but first let’s finalize our effect with a toggle function
to slide the menu up and down:

chapter_05/01_expandable_menus/script.js (excerpt)

$('#menu > 1i').toggle(function() {
$(this).find('ul').slideDown();

}, function() {

$(this).find('ul').slideUp();

1)

Menus, Tabs, Tooltips, and Panels

Run this in your browser and you’ll see that we’ve created a perfectly functional
multilevel menu. Before we move on to enhancing it with some additional niceties,
let’s have a look at what that stopPropagation method is doing.

Event Propagation

Event propagation describes the flow of an event through the DOM hierarchy. When
an event is fired from an element, any handlers on that element will be given a
chance to catch the event. After this processing has occurred, the event is passed
further up the DOM tree, giving parent elements a chance to process the event. This
makes sense: when you click on a link inside a paragraph, you’re also clicking on
the paragraph itself, so event handlers on both elements should have the chance to
react.

The easiest way to understand event propagation is to see it in action. To illustrate
this concept, we’ll set up a quick little experiment. It will consist of the following
basic markup: two divs, one inside the other. The outer and inner divs will have
ids of outer and inner, respectively:

chapter_05/02_event_propagation/index.html (excerpt)

<div id="outer">
Click Outer!
<div id="inner">
Click Inner!
</div>
</div>

Next, we’ll add a click handler to each of the div elements, so that when we click

on an element an alert will pop up and tell us the element’s name:

chapter_05/02_event_propagation/script.js (excerpt)

$('div').click(function() {
alert('Hello from ' + $(this).attr('id'));
})s

First, click on the outer div: unsurprisingly, you’ll see an alert saying “Hello from
outer.” Now, click on the inner div. You'll see the expected “Hello from inner.”
But then you’ll also see “Hello from outer” ... what gives? We only clicked once,

so why are we seeing two click events?

143

144

jQuery: Novice to Ninja

As you probably guessed, rather than two click events, it’s actually one click event
happening in two different places. The event starts at our inner div and checks to
see if there are any event handlers attached to it. It then bubbles (or propagates) up
to the div’s parent element (in this case the outer div), and checks to see if there

are any event handlers attached to that element. The event continues to bubble up

the DOM hierarchy until there are no more parents available.

This event bubbling is desirable in many cases; we’ll often want to handle the same
event at multiple levels of the DOM. For example, if we wanted to set a parent
node’s class when any children were clicked, it would be far more efficient to add
an event handler to the parent node itself than to add a handler to each child. You
might have heard of this approach as event delegation: one event handler set to
catch events from many descendants. But we still want to be able to attach individual
click handlers to any of the children.

On the other hand, it can be undesirable to have an event to bubble up. Sometimes
we want the child node to stop the event from going any further. As an example,
imagine we were making a Whac-A-Mole-type game. The game is made up of two
parts: a game board and some moles. The moles randomly appear on the screen for
a few seconds and then disappear. We might want to attach a handler to each mole
to detect a direct hit, and another handler to the game board to detect a miss. With
event propagation, we’d end up recording both a hit and a miss as the event bubbled
up to our game board. Sure, we could check the event’s target property to see what
was hit, but let’s focus on propagation.

There are a few techniques available for controlling event propagation. A common
JavaScript technique is simply to return false from the event handler. This works
fine, and is supported across all major browsers. However, jQuery’s event system
normalizes all events to the W3C standard, which means there’s no need to worry
about how different browsers treat different edge cases.

To stop event propagation using jQuery, we use the stopPropagation method as
we’ve already done. Our anonymous callback function is passed a parameter we’ll
name event. Then we simply call stopPropagation on that event, and it will cease
propagating further up the DOM.

Menus, Tabs, Tooltips, and Panels

Default Event Actions

Now is probably a good time to discuss another common method for controlling
event flow: preventDefault. The preventDefault method stops the browser from
executing the default action that an event would normally perform. Its most common

use is stopping a link from loading its target when clicked:

$('a').click(function(event) {
event.preventDefault();

P

This code effectively disables every link on the page. It’s highly unusual to want to
do this to every link, of course, but it’s common to override a link’s action this way
when we’re implementing progressive enhancements—such as the lightbox effect
we saw in Chapter 4. If JavaScript is unavailable to a particular user, the link will
work as normal. But if JavaScript is available, the normal link is replaced with our

jQuery functionality.

Now you're in control and can either prevent the element’s default response, or
stop the event from propagating. Why are we pointing this out? Because the tech-
nique we mentioned where you simply return false from the event handler has
the same effect as calling both preventDefault and stopPropagation. And maybe
that’s not what you were expecting.

You can also use the commands isDefaultPrevented and isPropagationStopped
to test whether an event’s flow has been modified. As might be implied from their
names, these functions will return true if the default action has been prevented or
the event propagation stopped, respectively, and false otherwise.

Open/Closed Indicators

Our menu control is functioning as planned, so it’s time to abide by the inescapable

jQuery law: if it ain’t broke, add some bells and whistles to it!

The first tweak we’ll implement is the addition of open/closed indicators to the
right of the section headings, as shown in Figure 5.2.

145

146 jQuery: Novice to Ninja

What's new?

Member extras
Premium Celebrities
24-hour Surveillance

About us

Figure 5.2. Open/closed indicators

You’ve probably seen this kind of indicator before on the Web (or in desktop applic-
ations, for that matter). They usually take the form of small triangles whose direction
serves to indicate whether the menu is open or closed. They’re extremely helpful,
as they provide a hint to the user that there’s hidden information to be revealed.

We’ll use a CSS sprite to add an indicator to our menu; a single image will contain
both the contracted (down-facing) and expanded (up-facing) arrows for our menu
sections.

By default, all of the sections are closed, so we show the contracted arrow state in
our CSS. In our sprite image the contracted state is aligned to the top, while the
expanded state is 20 pixels below the top. We apply this background image to 11

elements inside the menu, and then remove it from deeper nested items:

chapter_05/03_open_closed_indicators/menus.css (excerpt)

#menu 1i {

cursor: pointer;

border-bottom: 1px solid #444;

background: #94C5EB url(arrows.png) no-repeat right top;
}

#menu 1i 1i {
cursor: auto;
border: 0;
padding: 0 14px;

Menus, Tabs, Tooltips, and Panels

background-color:#fff;
background-image: none;

}

With our background image in place, we now need to adjust the CSS sprite’s position
whenever we toggle a menu item. When the menu item slides down we show the
expanded state, and when it slides up we show the contracted state. We’ll make
clever use of chaining to apply the css action before we drill down to find the ul
to show or hide:

chapter_05/03_open_closed_indicators/script.js (excerpt)

$('#menu > 1i').toggle(function() {
$(this)
.css('background-position', 'right -20px')
.find('ul').slideDown();
}, function() {
$(this)
.css('background-position’', 'right top')
.find('ul').slideUp();
})s

Menu Expand on Hover

For our next trick, we want to make the menu respond to hover events as well as
click events. When a user hovers over one of our parent menu items, we’ll pause
briefly, then expand the menu. Now, you’ve already seen enough toggle and hover
effects to last a lifetime (and don’t worry, there’s plenty more to come!) so we’ll
give this one a twist. The jQuery hover event fires the instant you move your mouse
over the target item. But for this effect we’ll delay the execution so that it only fires
if the user hovers for a short while. Otherwise, the control would be virtually unus-

able, as it would snap open and closed if you so much as grazed it with the mouse.

It’s a subtle but important change—and if you try the menu both with and without
a delay as follows, you’ll notice that the feel of the control is altered dramatically:

chapter_05/04_menu_expand_on_hover/script.js (excerpt)

$('#menu > 1i').hover(function() {
$(this) .addClass('waiting');
setTimeout (function() {

147

148

jQuery: Novice to Ninja

$('#menu .waiting')
.click()
.removeClass('waiting');
}, 600);
}, function() {
$('#menu .waiting').removeClass('waiting');

P

When the user first mouses over the menu element, we add a class called waiting
to the menu item, then set a timer for 600 milliseconds. If the user moves the mouse
away from the menu item before the delay concludes, we remove the class.

Once the delay expires it looks for a menu item containing the waiting class (which
will only exist if the user hasn’t moved the mouse away). If the user is still waiting,
we “click” the menu item, causing the effect to fire. This is the first time we’ve seen
the click action used in this way; when called without parameters, it actually fires
the click event on the targeted element(s), rather than setting up an event handler.
Finally, once we fire the effect we remove the class—so we’re back to square one.
We also need to modify the click action we defined earlier. As it is, if a user mouses
over a menu and then clicks it, the waiting class will cause it to close when the
timer goes off. We simply need to add the same removeClass call to the click
handler.

What we're doing—and we’ve done this before with earlier effects—is use classes
to provide state management. State management is just a fancy way of saying we
provide the control with a way of remembering what “state” it is in. We want to
remember if the user has moved away from the menu before the delay expires, so
we add and remove the waiting class appropriately. Using class names for state
management is a nifty trick—but it’s certainly not the only (or best) way. We've
already seen the data functionality provided by jQuery, which is a great way to store
simple state information. For larger and more complex controls, we can also integrate
state management into the widget’s code—as we saw at the end of Chapter 4. As
always, the method you use is dependent on the circumstance, and on what feels

simplest to you.

Drop-down Menus

If you ever had to code a drop-down menu in the old days of the Web (using what

was at the time referred to as DHTML), you’ll know just how harrowing an experience

Menus, Tabs, Tooltips, and Panels

it can be. There’s an abundance of terrible scripts lingering online from those days
but, thankfully, CSS has since stepped in to banish reams of JavaScript spaghetti
code to the trash heap. That said, there’s still enough edge cases to show us how
jQuery helps bridge the gaps. The Suckerfish Drop-down' technique, and subsequent
derivatives, provides an elegant solution to the problem of drop-down menus.

Suckerfish drop-downs work by carefully styling a list of lists into a drop-down
structure, and then hiding the child menu items. The stylesheet uses a :hover
pseudo-selector to trigger the showing and hiding of the child items. We should
always aim to use simpler technologies such as CSS when they’re suitable. That
said, there are some issues with using pure CSS drop-down menus. Really old
browsers are unable to style the :hover pseudo selector on non-link elements, and

even for those that can, the showing/hiding effect can be a little abrupt.

The Suckerfish drop-downs make an excellent base for enhancement: they provide
an adequate solution, which can then be improved and streamlined with jQuery.
In this example, we’ll be adapting the Suckerfish technique to work with browsers
that have incomplete support for :hover. We’ll also make the drop-down effect a
little sleeker with some jQuery animation; for instance, delaying the drop-down

from hiding when the user mouses out.

Cross-browser Menus

First, let’s set up a simple Suckerfish drop-down as our baseline. We’ll be using the
same markup we used for the expandable navigation in the section called “Expand-
able/Collapsible Menus”.

The CSS is straight out of the Suckerfish playbook, and will mold the unordered
list into a simple horizontal menu. The only additional aspect to pay attention to
is the extra class we’ve attached to the :hover CSS declaration. We’ll need this to

keep our menu drop-down visible when it otherwise wouldn’t be:

chapter_05/05_dropdown_menu/menus.css

#container {
position: relative;

}

! http://www.alistapart.com/articles/dropdowns

149

http://www.alistapart.com/articles/dropdowns

150 jQuery: Novice to Ninja

#menu {
position: absolute;
top: 0O;
right: 0;

}

#menu, #menu ul {
padding: O;
margin: 0;
list-style: none;

}

#menu 1i {
float: left;
background: #FFF;

}

#menu a {
display: block;
padding: 4px;
width: 10em;

}

#menu 1i ul {
position: absolute;
width: 10em;
left: -999em;

}

#menu li:hover ul, #menu 1i ul:hover {
left:auto;

}

If you try this on most browsers, you’ll be pleasantly surprised: a fully working
menu system with no JavaScript! What we want to do now is layer some jQuery on
top of this effect so that it functions in older browsers, and animates a bit more

smoothly. Our target functionality is illustrated in Figure 5.3.

What's new? Member extras & About Us

Premium Celebrities

24-hour Surveillance

Figure 5.3. Our drop-down menu in action

Menus, Tabs, Tooltips, and Panels 151

So how do we replicate this effect using jQuery? “Simple,” you might say. “Just add
a hover action with a slide-down effect.” And you’d be right: adding a simple hover
function would give us the desired behavior, but there’s a problem. What happens
when we implement the same functionality in both our CSS and our script? Who

wins in the fight between CSS :hover and jQuery hover? It’s messy—they’re very

evenly matched!

One obvious workaround would be to override the CSS class in our hover event
handler. But this will fail, as you’re unable (currently) to target pseudo selectors in
jQuery to set CSS properties:

$('#nav li:hover ul').css('left', '-999em'); // doesn’t work!

That puts us in a quandary: how can we keep the goodness of Suckerfish CSS menus,
but still apply our jQuery enhancements? One solution would be to carefully undo
the CSS properties as we hover—but an easier way is to take over the child menu

item’s CSS properties, regardless of whether we’re hovering or not:

chapter_05/05_dropdown_menu/script.js (excerpt)

$('#menu 1i ul').css({
display: "none",
left: "auto"
1)
$('#menu 1i').hover(function() {
$(this)
.find('ul')
.stop(true, true)
.slideDown('fast');
}, function() {
$(this)
.find('ul')
.stop(true,true)
.fadeOut ('fast');

1)

The first part of this script overrides the CSS we set earlier and hides the submenus
using display: "none". When the user hovers over a list item, we find the related
child list container and display it. Here we’ve used slideDown and fadeOut, but
you’ll be able to come up with some wacky easing options and CSS background

sprites to liven it up. The stop(true, true) command, as we saw in the section

152

jQuery: Novice to Ninja

called “Animated Navigation” in Chapter 3, ensures that the menu will refrain from
queuing up animations if we move the mouse around quickly. If you like, you could
even add in a delay, from the same chapter.

The best aspect of this menu control is that when a user visits the site with JavaScript
disabled, the Suckerfish drop-downs still work nicely, albeit without the animation

effects.

Hover Intent

We’ve seen a few effects that are triggered by the mouseover event—and you may

have noticed that they can sometimes feel a bit too eager to activate. The very instant
you pass your mouse over a target element the effect springs to life, even if you’re
just passing through. This is excellent for making fluid animated effects, but some-
times we’re after a different result. With our drop-down menus, the false start can
appear unnecessary and distracting. We need a method of delaying the effect until

we’re sure that the user really wants to activate the target element.

Earlier, we saw a method for achieving this by setting a timer when the user moves
over the element. But this has a few side effects. For example, if you have a small
timer and a large target area, the user might fail to make it all the way across the
element before the timer expires.

Brian Cherne implemented a nice workaround for this issue, in the form of the
Hover Intent plugin.2 Hover Intent has some smarts built into it to calculate the
speed of the mouse as it moves across the elements. The effect will only kick in if

the mouse slows down enough for the plugin to think the user intends to stop there.

Once you’ve included the plugin, you can use it wherever you’d normally use the
hover action. As an example, if we wanted to add a delay to our drop-down menus
from the previous section, we’d just need to replace the command hover with the

command hoverIntent:

2 http://cherne.net/brian/resources/jquery.hoverIntent.html

http://cherne.net/brian/resources/jquery.hoverIntent.html

Menus, Tabs, Tooltips, and Panels

chapter_05/06_dropdown_with_hover_intent/script.js (excerpt)

$('#menu 1i').hoverIntent(function() {
},.function() {
1)

The menu will only reveal itself when it thinks a user wants to see it. The best way
to experience what this plugin is doing is to compare this example to the previous
one, dragging the mouse horizontally across the menu. In our previous example,
the menus will slide open in a wave as you move across them; when using
hoverIntent, the menus will only slide open when the mouse comes to rest.

As with most plugins, the documentation outlines the handful of options you can
specify to fine-tune the effect, so be sure to read through it if you plan on using this

functionality.

Accordion Menus

Accordion menus are named after the musical instrument, in the way the expansion
of one area leads to the contraction of another. Typically, accordions are fixed so
that one—and only one—of the areas must be visible at all times, though some ac-
cordions let you collapse an already open area so that all items are hidden.

A Simple Accordion

Creating accordions can be trickier than you’d expect. We saw earlier how a simple
expanding and collapsing menu system could be implemented in just a few lines
of jQuery code. It’s therefore reasonable for you to assume that adding a constraint
(that only one menu element can be open at any time) would be straightforward.
Although the basic implementation is indeed quite simple (this is jQuery, after all!),
there are some caveats involved in enforcing more complex constraints that you

should be aware of.

For this example, we’ll be building a simple accordion to group celebrities according
to their popularity; this will allow us to save quite a bit of precious screen real estate
on the StarTrackr! site. The result we’re aiming for is illustrated in Figure 5.4.

153

154 jQuery: Novice to Ninja

Qur Celebrities
A-List Celebrities A

The Jemimas New!
Computadors New!
Johny Stardust
Beau Dandy
B-List Celebrities S
Has Beens &

Barely Famous Celebrities 2

Figure 5.4. A simple accordion control

You can set up an accordion using virtually any structure of HTML markup; all you

really need is a set of clearly identifiable headers, each associated with a block of

content. For this example, we’ll be using a set of nested lists, like this:

chapter_05/07_simple_accordion/index.html (excerpt)

<li class="active">

"A" List

<a
<a
<a

</1li>

"B" List

<a

Celebrities
href="#">Computadors New!</1i>

href="#">Johnny Stardust
href="#">Beau Dandy</1li>

Celebrities

href="#">Sinusoidal Tendancies</1li>

Menus, Tabs, Tooltips, and Panels

Steve Extreme</1li>

</1li>

This list markup is an ideal HTML structure for a menu, but there are certainly
other options; you could just as easily use a set of nested divs, with header elements
providing the title of each section. Just about any structure is suitable, as long as
it’s consistent and allows you to select all the header triggers and related content.
We’ve styled the list with some CSS, which you can consult in the sample code
archive.

When our page loads, all our content areas are visible. By now you should know

what’s coming next: we need to hide all the content, except for our default item:

chapter_05/07_simple_accordion/script.js (excerpt)

$('#celebs ul > 1i ul')
.click(function(event) {
event.stopPropagation();

})
.filter(':not(:first)"')
.hide();

We’ve done this slightly differently from before. In this case we’ve also pre-empted
an issue that we’ll have with event bubbling (covered in the section called “Event
Propagation”). This sort of statement really shows the power of jQuery: we start by
attaching an event listener to every content area, then filter down our selection to
exclude the first area, and hide everything that’s left.

The filter command is a really handy way of narrowing down a selection mid-
statement. Any elements that don’t match the criteria passed to it are discarded
from the selection and are no longer affected by subsequent jQuery commands. You
can specify the criteria as a selector or as a function (see the note below). We’ve
used filter selectors in the previous example (:not and :first), but you can use
any jQuery selector to help you find the elements you're after.

155

156

jQuery: Novice to Ninja

:not is a neat utility selector, as it selects the opposite of whatever follows it in
parentheses. So $(' :not(p) ') will select every element that’s not a paragraph, and
$('p:not(.active) ') will select paragraphs without the active class.

And where the filter method does a smashing job of removing elements from a
selection, we can do the reverse with add, which appends new elements to the se-
lection. By combining filter and add you can do an awful lot of processing in a

single jQuery chain, adding and removing elements as necessary along the way.

@ Advanced Use of filter

Sometimes you’ll need to perform filters involving more sophisticated criteria; in
these cases you can use a custom function to define your rules. The function is
processed for each element in the jQuery selection. If it returns true, the element
stays in the selection; otherwise, it’s scrapped. As an example, let’s keep every
paragraph element that’s either the third in the selection or has the class active:

$('p').filter(function(index) {
return index == 2 || $(this).hasClass('active');

P

Notice that we have access to the zero-based index of each element in the selection,
and that the scope is of the current element? That’s why we can refer to it with
$(this). You can include any amount of processing in your criteria function—just
be sure to return true if you want to hold on to the element.

The code for the accordion effect needs to close any items that are open (as there
should only ever be one open at a time), then open the item we clicked on. But
there’s a problem with this logic: if we click on an item that’s already open, it will
unnecessarily slide up and down. So first we need to check that the item we clicked
on is already open:

chapter_05/07_simple_accordion/script.js (excerpt)

$('#celebs ul > 1i').click(function() {
var selfClick = $(this).find('ul:first').is(':visible'); ‘)
if (!selfClick) { @
$(this)
.parent ()
.find('> 1i ul:visible')

Menus, Tabs, Tooltips, and Panels 157

.slideToggle();
}
$(this)
find('ul:first')
.slideToggle(); €
})s

Let’s break this code down:

o We check to make sure if the nested ul is visible using the .is('visible")
construct, and store that result in a variable named selfClick (which will be

true if the user has clicked on a section that’s already open).

@ We use the JavaScript ! operator in an if statement to hide the visible section
if it’s not the one that was clicked on. ! means “not,” so the nested block of
code will only be run if selfClick is not true.

€) Finally, we toggle the state of the item we clicked on: it slides up if it’s open,
and down if it’s closed.

The way we’ve coded our solution, it’s possible for users to close the open section
of the accordion, thus collapsing it entirely. If you’d rather enforce the rule that one
item must always remain visible, you could adjust the code so that clicking on the
open item will have no effect. This is quite simply done with a little basic JavaScript;
if se1fClick evaluates to true, we simply exit the function using the JavaScript
return keyword:

chapter_05/08_simple_accordion_variant/script.js (excerpt)

$('#celebs ul > 1i').click(function() {
var selfClick = $(this).find('ul:first').is(':visible');
if (selfClick) {
return;
}
$(this)
.parent ()
.find('> 1i ul:visible')
.slideToggle();
$(this)
find('ul:first"')

158 jQuery: Novice to Ninja

.stop(true, true)
.slideToggle();

P

Multiple-level Accordions

Earlier, we saw that you should set up your accordion HTML structure consist-
ently—and here’s why! If we’ve been specific enough with our jQuery selectors,
adding another level to the accordion is as simple as including the next level in our
event handlers. First of all, we add in the second level of menu items. We use exactly
the same structure as the first level, but nest it inside the first level list item:

chapter_05/09_multi_level_accordion/index.html (excerpt)

<1li class="active">"A" List Celebrities

Computadors New!</1li>
Rising Stars

Johnny Stardust</1li>
Beau Dandy</1li>

</1i>
Falling Stars

Kellie Kelly</1li>
Darth Fader</1li>

For our single-level accordion, we attached our accordion code to all the first-level
children of the root list by using this code: $('#accordion > 1i').click(..). As
the structure of our nested list is exactly the same as before, we need to apply the
same code to the nested elements, which we can accomplish simply by adding them
to the selector:

chapter_05/09_multi_level_accordion/script.js (excerpt)

$('#accordion > 1i, #accordion > 1i > ul > 1i').click(..);

Menus, Tabs, Tooltips, and Panels

If you follow that selector chain, you’ll see that we’re adding the accordion code to
the correct list items. We could have just added it to every list item, but it may lead
to strange behavior with nested content, depending on your HTML structure.

Another option would be to select the #accordion’s direct children 1is; then find
any descendant lists and items, and use addSelf to bring those first child 1is back
into the equation:

$('#accordion > 1li).find('> ul > 1i').addSelf().click(..);

It can be easy to miss that leading > in the find, though, so see which style you
prefer. In either event, the resulting menu is shown in Figure 5.5.

Our Celebrities

A-List Celebrities T~
Rising Stars o
The Je”]”T]aS New!

Johny Stardust

Beau Dandy
Falling Stars o
B-List Celebrities (v
Has Beens &

Barely Famous Celebrities €

Figure 5.5. A multiple-level accordion menu

If you want to add more levels to the accordion, just repeat this process. If the long
selectors get out of hand, you could add an extra class to the root of each level; any

159

160

jQuery: Novice to Ninja

more than a few levels, though, and perhaps there are more appropriate controls to

better present your information, rather than accordions (see Chapter 8).

jQuery Ul Accordion

As we’ve seen, it’s easy to create a fairly complete accordion control from scratch
using jQuery. However, the jQuery UI library also contains an accordion control,
which not only animates consistently, but includes an impressive range of options,
and allows your accordion to synchronize animation in different directions—that’s
no mean feat. The options include changing icons, triggering on mouseover, and
reacting in specific ways to the accordion’s containing element (for example, you
can choose to let the content areas have a fixed height or an auto height). And as
if that weren’t enough, it’s also fully themed.

An example of the jQuery Ul accordion, using the Sunny theme, can be seen in

Figure 5.6.

"A" List Celebrities

« Johny Stardust
» Beau Dandy

» Kellie Kelly
« Darth Fader

» "B" List Celebrities
+ Has Beens

+ Barely Famous Celebrities

Figure 5.6. jQuery Ul accordion control, with the Sunny theme

Like our custom accordion, the markup for the jQuery Ul accordion requires pairs
of headers and content elements. By default, it assumes that the headers are link

tags and that the content immediately follows them; however, it will be confused
if the content includes links, so it’s usually best to specify a selector to help it de-

termine which part of your content is the title:

Menus, Tabs, Tooltips, and Panels

chapter_05/10_jquery_ui_accordion/script.js (excerpt)

$('#accordion').accordion({header: 'h3'});

This is all the code you’ll need to turn your content into a fully functional accordion,

as long as the h3’s next sibling is the content pane you want to hide or show.

The accordion also provides functionality to programmatically interact with the
control. For example, you can open a particular content pane using the activate
option, along with the index of the pane you want to open. To open the third pane

(remember, indexes start from zero), you’d write the following:

:chapter_05/10_jquery_ui_accordion/script.js (excerpt)

$("#accordion") .accordion('activate', 2);

There are many other options available for configuring and interacting with the

accordion, and these are well documented on the jQuery UL site.?

Using the jQuery Ul control comes at a significant cost in terms of file size and
bandwidth use compared with our custom control, but if you require advanced
functionality and prefer to avoid spending the time to implement it yourself, it can

be a viable option.

Tabs

Tabs provide a way to group content logically, and have become a staple of many
desktop applications’ interfaces. They’re also common on the Web, if you count
top-level navigation elements styled to look like tabs. However, in the world of
JavaScript, tabs are generally used to break content into multiple sections that can

be swapped in order to save space.

Basic Tabs

Our simple tabs have all the content of the page preloaded—all we need to do is
hide and show as required. If you’ve been following this book from the beginning,

you can probably take a good guess at how to approach this.

3 http://jqueryui.com/demos/accordion/

161

http://jqueryui.com/demos/accordion/

162

jQuery: Novice to Ninja

We’ll break the tabs control into two components: the tab navigation and a content
area. This lets us have an acceptable solution for browsers that are without support
for JavaScript: a simple list of anchor links to elements on the page. It might look
less spiffy than our cool tabs, but it’s perfectly functional and provides access to all
the same content. First, we’ll set up our tab contents as a simple collection of div
elements:

chapter_05/11_simple_tabs/index.html (excerpt)

<div id="info">
<p id="intro">
Welcome to StarTrackr! the planet's premier ..
</p>
<p id="about">
StarTrackr! was founded in early 2009 when a young ..
</p>
<p id="disclaimer">
Disclaimer! This service is not intended for those ..
</p>
</div>

Next, we need to create our tab navigation bar. As with so many controls and effects,
it’s the overall illusion that’s important. An unordered list of links will do nicely,
but we’ll style them to look like tabs:

chapter_05/11_simple_tabs/index.html (excerpt)

<ul id="info-nav">
Intro</1li>
About Us</1li>
Disclaimer</1i>

We’ve styled the links with CSS to have a tab-like appearance, but there are dozens
of different ways of accomplishing this, so use whatever you’re familiar with or
what seems most sensible. We’ve opted for extremely basic styles, since what we
want to focus on is the functionality.

The first task we’ll do (after our document’s ready) is hide all the tabs except the
first one—this will be our default tab. We could do this by hiding all the panes, and
then showing the first one, like this:

Menus, Tabs, Tooltips, and Panels

$('#info p').hide().eq(0).show();

But this makes jQuery do more work than is necessary; we want to avoid hiding a
tab only to show it again straight away. Instead, we can be more specific with our
selector; we can combine filters to select everything except the first element:

chapter_05/11_simple_tabs/script.js (excerpt)

$('#info p:not(:first)').hide();

The important point is that once the page loads, only one tab content pane is dis-
played to the user. The code to switch tabs is straightforward, and quite similar to
the other hide/show controls we’ve built so far:

chapter_05/11_simple_tabs/script.js (excerpt)

$('#info-nav 1i').click(function(event) {
event.preventDefault();
$('#info p').hide();
$('#info-nav .current').removeClass("current");
$(this).addClass('current');

var clicked = $(this).find('a:first').attr('href');
$('#info ' + clicked).fadelIn('fast');
}).eq(0).addClass('current');

There’s two peculiar aspects worth pointing out. Firstly, to select the content pane
corresponding to the clicked link, we’re joining the href attribute of the link directly
to our selector using the JavaScript + operator. This only works because anchor
links use the hash symbol (#) to identify their targets, and jQuery also uses the hash
symbol to select elements by id. This is pure coincidence, but it’s very fortunate
for us as there’s no need to parse the text or use regular expressions to create our
selector. Secondly, you’ll notice that we call preventDefault as early in the method
as possible. Here we’re ensuring that if there’s a problem with the code, at least the
default link will be prevented. Small comfort, but comfort nonetheless!

After we’ve attached the click handler, we filter our navigation list to just the first
element using the .eq selector and add the current class to it. In our example the
first tab is the default tab; if you want a different tab to be first, you need to change

the 0 (as it’s a zero-based index) to the one you’d prefer.

163

164

jQuery: Novice to Ninja

jQuery Ul Tabs

While our basic tab solution provides a good foundation for us to build on, we’re
by no means the first people to attempt to build a tabbed content pane using jQuery.
Enough people have demanded tabbed interfaces for the jQuery Ul library to include
a very feature-rich tab widget as part of its control collection.

Before you throw away our basic tabs in favor of the shiny jQuery UI tabs, think
about what you want your tabs to do. With the jQuery knowledge you’ve acquired
so far you should have no problems implementing many of the features yourself:
tasks like changing tabs on mouseover instead of on click, programmatically changing
tabs, or collapsing a tab’s content when you double-click on the tab itself.

One feature that would take us significantly more work to implement (at least for
the moment) is the ability to load content via Ajax. We’ll be looking at Ajax in a lot
more detail in Chapter 6, but for the meantime we can have a look at the simplest

possible use of it: loading content from the server into our page without refreshing.

By now you’re probably accustomed to including jQuery UI functionality. Make
sure you build a download that includes the Tabs component; then include the CSS
and JavaScript files into your HTML. You can have a look at what our jQuery Ul
tabs will look like in Figure 5.7.

Welcome to StarTrackr! the planet's premier celebrity tracking and
monitoring service. Need to know where in the world the best bands,
musicians or producers are within 2.2 square meters? You've come to the
right place. We have a very special special on B-grade celebs this week, so
hurry in!

Figure 5.7. jQuery Ul tabs

With the Ul library and CSS styles in place, adding the content is easy. Content
loaded via Ajax has no requirement for a container to be preset; the plugin automat-
ically generates the required DOM elements:

Menus, Tabs, Tooltips, and Panels

chapter_05/12_jquery_ui_tabs/index.html (excerpt)

<div id="info">
<ul id="info-nav">
Intro</1li>
About StarTrackr!</1li>
Disclaimer</1i>

<div>
<p id="intro">
Welcome to StarTrackr! the planet's premier ..
</p>
</div>
</div>

As we did before, we first create a tab navigation list. For static content, you need
to specify an anchor name that corresponds to the id of the element containing the
related content (#intro in our example). The next two tabs are our Ajax tabs; they
simply point to HTML files on the server (or in our case, on the hard disk). In a real
web application, they’d point to server-side scripts that generate dynamic content;
for the sake of illustrating how jQuery UI's Ajaxy tabs work, we’ll stick with a few
static HTML files. These can contain whatever content you’d like to load into your
tabs.

The functionality we’ll implement will degrade gracefully in the absence of Java-
Script; those tabs will simply act as links to the referenced files. When JavaScript
is enabled, however, jQuery will load the content of the target page into the tab
content pane without refreshing the page. There’s no need to worry about it pulling
in the whole HTML page; it’s smart enough to only include the content between
the opening and closing <body> tags.

To turn the above markup into an Ajax-enabled tab interface, all you need to write
is:

chapter_05/12_jquery_ui_tabs/script.js (excerpt)

$('#info').tabs();

Try it out in your browser to confirm that it works (it should say “Write less, do

more”).

165

166

jQuery: Novice to Ninja

Tab Options

The tab control comes with reams of customization options that you can find on
the jQuery UI tab demo page.” We’ll explore a few of the juicy ones now:

chapter_05/13_jquery_ui_tab_options/script.js (excerpt)

$('#info').tabs({
event: 'mouseover',
fx: {
opacity: 'toggle',
duration: 'fast'

b,
spinner: 'Loading...",
cache: true

P

As part of the control’s initialization, we’ve passed a JavaScript object containing
a collection of options: event, fx, spinner, and cache. The event option lets you
choose the event that changes tabs; here we’ve replaced the default click with
mouseover. To change tabs now, the user need only hover over the desired tab.

Next, we’ve added some animation options to specify a fast fade transition when
we switch between tabs. The fx option works exactly like the animate command,

letting you tweak the transition in whichever way you need.

The last two options are for our Ajax tabs. spinner specifies the HTML to display
while the content is being loaded. With all your pages sitting on your local machine,
you're likely to never see this text, but you’ll certainly notice the delay (and therefore
the spinner text) when you put your pages up on a real web server. It’s called
spinner as it’s often used to display an animated GIF image of a spinning icon,
which is meant to indicate loading and almost always named spinner.gif.

The cache option instructs the browser to hold on to a copy of the tab content after
it’s loaded. This way, if a user is clicky on your tabs—switching repeatedly back
and forth—the browser won’t need to download a fresh copy of the data each time.

4 http://jqueryui.com/demos/tabs/

http://jqueryui.com/demos/tabs/

Menus, Tabs, Tooltips, and Panels

Tab Control Methods

There are also a host of methods for interacting with the tabs programmatically.
You can add, remove, and reload tabs, and change the open tab automatically. For

example:

chapter_05/14_jquery_ui_tab_control/script.js (excerpt)

$('#info').tabs().tabs('rotate', 3500);

The first tabs call sets up our tab pane, and the second one instructs jQuery to cycle
through the tabs every 3,500 milliseconds (or 3.5 seconds). There’s a lot more you

can do with your tabs, so have a look at the documentation to see what’s possible.

The last item we’ll have a look at is selecting a tab programmatically. You can find
the currently selected tab by using the selected option:

$('#tabs').tabs('option', 'selected');

Of course, you can also set the current tab. This is handy if you want links in your
content to simply change the open tab rather than linking to a new page. For this
example, we’ve inserted a link to the About Us page in the content of the first tab.
We can hijack that link and have it open the About Us tab instead:

chapter_05/14_jquery_ui_tab_control/script.js (excerpt)

$("#info p a[href=about.html]").click(function(event) {
$('#info').tabs('select', 1);

event.preventDefault();

1)

Panels and Panes

Panels and panes are nothing more than controls that just hold other controls! When
used correctly they help organize a page into logical areas, minimizing complexity
for the user. This lets seasoned users take advantage of all your site or application’s
features without having your newbies drown in a sea of buttons and widgets. Panels
are most effective when they provide contextual tools and controls that users can

work with, while documents are open or in focus.

167

168

jQuery: Novice to Ninja

Slide-down Login Form

One increasingly popular method of reducing visible clutter is a hidden menu that
rests at the very top of the screen. A small button or link reveals to the user that
more information is available. Clicking the button causes a panel to slide into view,
and moving away from the panel causes it to slide right back.

This is a convenient and practical space saver for sure, and most users know that
these features are generally displayed to the top right of a site’s browser window,
so a well-placed icon or link will catch the attention of those looking to log in. The
login form we’ll create can be seen in Figure 5.8.

Log in

Usernamea:

— Password:

Loeg in!

Figure 5.8. Slide-down login form

This will be an easy addition to our site, as we already know most of the jQuery
commands involved. We’ll throw some quick CSS styles on the control, but, as al-
ways, it’s up to you to style it in a way that’s consistent with your site. Then comes
the by-now-familiar refrain: hide the form on page load, then capture the click event
to toggle it into and out of sight:

chapter_05/15_login_panel/script.js (excerpt)

$('#login form').hide();
$('#login a').toggle(function() {
$(this)
.addClass('active')
.next('form')
.animate({'height': 'show'}, {
duration: 'slow',
easing: 'easeOutBounce'
})s
}, function() {
$(this)

Menus, Tabs, Tooltips, and Panels

.removeClass('active')
.next('form')
.slideUp();

1)

The only difference between this code and the expandable menu from the beginning
of the chapter is that here we’re using a CSS class to control the position of our
background image, rather than the jQuery css action. Because these classes are only
really used when JavaScript is available (as otherwise we’ll be presenting a control
that’s always open), neither solution is necessarily better, and the one you choose

will depend more on your preference.

This was a bit too easy, so we’ll finesse it a touch. If our login form were to submit
via Ajax (without triggering a page refresh), we’d want the panel to disappear after
the form was submitted. Actually, even if we’re loading a new page, having the

menu slide up after clicking is a nice flourish:

chapter_05/15_login_panel/script.js (excerpt)

$('#login form :submit').click(function() {
$(this)
.parent()
.prev('a')
.click();
1)

We start by capturing the click event on the form’s submit button, and then move
back up the DOM tree looking for the containing element. We could just perform
our hide here, but given that we’ve already written code to handle the hiding in our
original handler, we can just step back through the DOM using the prev method,
and click on our hide/show link.

Sliding Overlay

Translucent sliding overlays have been popping up all over the place of late: from
message dialogs to shopping cart summaries, navigation controls, and more. The
reason for their popularity is simple: they look incredibly cool—like the highly
questionable interfaces from action-movie computer scenes—and they’re actually

useful!

169

170

jQuery: Novice to Ninja

The most important factors to consider in the creation of the sliding overlay are
where you want the contents to slide from, and how the overlay will be triggered.
The choices will affect how the user interacts with the control and how they expect
it to act. This type of control is fairly new to the Web—so there are no conventions
you need to adhere to—but you can look for analogies with the desktop for how
they should perform. Perhaps you’ll create a version of it that actually sets some
rules!

For example, you might like to include a content panel that slides out when the
user moves the mouse close to the edge of the page, such as the auto-hide taskbar
or dock on many operating systems. Or perhaps moving over the bottom edge of
the content area could cause a Next/Previous control to slide into view.

Our overlay will be triggered by moving the mouse over a shopping cart link.
Mousing over the link will cause a menu to slide down from under the header and
over the page, informing the user of the number of items currently in the shopping
cart and providing links to check out or view the cart. As illustrated in Figure 5.9,
the shopping cart icon that acts as the trigger is located in the top-right corner of
the content area.

You have 5 items in your cart.

View Cart Checkout

» Member extras
* About Us

Welcome to StarTrackr! the planet's premier celebrity tracking and
monitoring service. Need to know where in the world the best bands,

musicians or producers are within 2.2 square meters? You've come to the

right place. We have a very special special on B-grade celebs this week, so
b inl

Figure 5.9. A sliding shopping cart overlay

As always, styling provides the real basis of our effect. This determines what our
trigger will look like, and where our sliding commences. Our trigger will be abso-
lutely positioned in the top-right corner of the page contents:

Menus, Tabs, Tooltips, and Panels

chapter_05/16_sliding_overlay/panel.css (excerpt)

.cart a {
position: absolute;
width: 32px;
height: 32px;
right: 15px;
top: -10px;
background: transparent url(shoppingcart.png) no-repeat 0 O;
text-indent: -9999px;
}

.cart a:hover, .cart-hover {
background-position: 0 -32px;

}

#overlay {
position: absolute;
width: 100%;
height: 100px;
top: 0;
left: 0;
color: #fff;
background-color: #000;
display: none;
text-align: center;

}

#overlay a {
font-size: 130%;
font-weight: bold;

}

Because the overlay will only be triggered by jQuery, it stands to reason that it
should be added to the page markup with jQuery as well. The overlay is set up to
be 100% width of the page, and have a height of 100 pixels. We want the overlay
to slide down from the top, so we set the top position to 0. Of course, we also hide
it so that it’s absent from the page when it loads.

The first step is to add the overlay to the markup. We will give it a hover handler,
because when it slides into the page we want it to remain visible for as long as the
user keeps the mouse over it. We give it a class of active as long as it’s open, and
use that class to determine when it needs to be closed. This is another great can-

171

172 jQuery: Novice to Ninja

didate for data that we covered in the section called “Smarter Scrolling with the
data Method” in Chapter 4, although that might change if we were also using the
class to add styling. When the user mouses away from it, we remove the class, and
set a timer, which will look for an overlay without the active class and close it
after a little less than a second. This way, if the user re-opens the overlay while the
timer is running, the timer method will do nothing:

chapter_05/16_sliding_overlay/script.js (excerpt)

$('<div></div>")
.attr('id', 'overlay')
.css('opacity', 0.65)
.hover(function() {
$(this).addClass('active');
}, function() {
$(this) .removeClass('active');
setTimeout (function() {
$('#overlay:not(.active)').slideUp(function() {
$('a.cart-hover').removeClass('cart-hover');

1)
}, 800);
}) -appendTo('body');

We’re using the opacity CSS property to make our overlay semitransparent. opacity
values range from 0 to 1, with 1 being completely opaque and 0 being invisible.

@ Accessibility

Be careful when creating semitransparent controls that there’s sufficient color
contrast between your content and the background. Maybe it’s easy for you to
read, but always consider that some of your visitors may have less than perfect
vision, a poor monitor, or be viewing your site on a mobile screen in bad lighting
conditions. When in doubt, err on the side of caution, with higher contrasts than

you think are necessary.

Now let’s add the event listener to our trigger link:

chapter_05/16_sliding_overlay/script.js (excerpt)

$('.cart a').mouseover(function() {
$(this).addClass('cart-hover');
$('#overlay:not(:animated) ')

Menus, Tabs, Tooltips, and Panels

.addClass('active')
.html('<h1>You have 5 items in your cart.</hi1>

w<g href="#">View Cart Checkout")
.slideDown() ;

})s

There’s a new filter in our selector here: :animated, which allows us to select ele-
ments that are currently being animated (or, as in this case, combined with the :not
filter to select elements which are not mid-animation). We add some static markup
to our overlay, but in a real application you’d want to obtain the number of cart
items in order to display it here.

We are also adding a class to the trigger link to style it, as its hover style would
otherwise switch off when the overlay came between it and the cursor.

Of course, this is only one example of this sort of functionality; it’s likely you can
think of many others. Transparency is remarkably easy to manipulate in jQuery,
and really makes interface components feel a lot slicker.

Tooltips

A tooltip is an interface component that appears when a user hovers over a control.
They’re already present in most browsers; when you provide a title attribute for
alink or an alt attribute for an image, the browser will usually display it as a tooltip
when the user hovers over that element. Tooltips typically appear when the user
hovers over a hyperlink to provide additional information about where the link will
take them.

JavaScript tooltips have a bit of a bad rap. They tend to be implemented in an ob-
noxious manner, acting more like an ad popup than a useful information tool.
However, there are situations in which a tooltip can provide just the right touch to
your application, helping to inform your users in a contextual fashion without
cluttering the rest of your interface.

First, we’ll have a go at replacing the browser’s default tooltips with ones we can
style and animate. Then we’ll look at extending this to create a much more versatile
tooltip, which can contain HTML and be attached to any element on the page.

173

174

jQuery: Novice to Ninja

Simple Styled Tooltips

Of course, there’ll be other places where you’ll want to use tooltips, but on hyperlinks
is a good place to start. We’ll look at replacing the browser’s default tooltips with
our own custom-styled, animated ones, as illustrated in Figure 5.10.

Approx. Location Price

Los Apgela £3Q QK
Check out all the Celebs in LA this week!
New York $35.95

Figure 5.10. Our custom tooltips

For our simple control, we’ll use the title attribute of the links. This is great for
our ever-vigilant efforts to maintain acceptable functionality for users without
JavaScript support; depending on their browser, they’ll most likely see the text as
a basic browser tooltip:

chapter_05/17_simple_tooltips/index.html (excerpt)

New York

Using the title attribute can be a bit limiting: you’re unable (technically or reliably)
to have HTML nested inside your tooltip, and you’ll need to be careful with special
characters that might break the tag. There are a few alternate techniques for storing
the tooltip’s text. We’ll have a look at another method when we make our advanced
tooltip, but it’s important to note that any method will have upsides and downsides,
so you’ll need to decide what’s best in each particular circumstance.

Being able to style the tooltip is the main reason for implementing a custom control
in the first place—so go nuts with your styles! However, for our example, we’ll
define some very basic styles for our tooltips:

chapter_05/17_simple_tooltips/tooltips.css (excerpt)

.tooltip {
display: none;
position: absolute;
border: 1px solid #333;

Menus, Tabs, Tooltips, and Panels

background-color: #ffed8a;
padding: 2px 6px;
}

The tooltip control is positioned absolutely, which will allow us to move it around
as required. Next, we’ll set up some stubs for our code to sit in, which lets you see
the general structure: a simple hover function, followed by a chained mousemove

function. We want the tooltip to turn on and off with the hover event, and update

its position whenever the mouse is moved:

chapter_05/17_simple_tooltips/script.js (excerpt)

$('.location').hover(function(event) {
// Hover over code

}, function() {
// Hover out code

}) .mousemove (function(event) {

// Mouse move code

P

Starting with the overall structure and then filling in the details is a great way to
plan out your code, ensuring you know what’s going on before diving in. It helps
when writing code to always have a contextual understanding of where that piece

sits in the larger picture.

Let’s start filling in those stubs. The hover over code is the most interesting, so we’ll
start with that. Notice that we’re again naming that parameter event into the hover
code. This is important, as we’ll need to access the X and Y coordinates of the event

in order to position the tooltip:

chapter_05/17_simple_tooltips/script.js (excerpt)

// Hover over code
var titleText = $(this).attr('title');
$(this)
.data('tipText', titleText)
.removeAttr('title');

$('<p class="tooltip"></p>")
.text(titleText)
.appendTo('body"')

175

176

jQuery: Novice to Ninja

.css('top', (event.pageY - 10) + 'px')
.css('left', (event.pageX + 20) + 'px')
.fadeIn('slow');

First we need to grab the title from the link, which will be the text we want our
tooltip to display.

The next part of the code is a touch peculiar: it saves the tooltip text using the data
method that we saw in the section called “Smarter Scrolling with the data Method”
in Chapter 4. We need to do this because we’ll be removing the title from the link,
in order to prevent the browser from displaying its default tooltip that will conflict
with our custom one. By storing the text using the data method, we can recover
and replace the link title later.

We now have everything we need to create our tooltip control. We’ll create a new
paragraph element with a class of tooltip, in order to hook into the styles we
created earlier. Then we use the text method to set the tooltip’s contents. We could
use html instead of text here, but according to W3C standards, the title attribute
should not contain HTML. The advanced tooltip we’ll be looking at shortly will
allow us to include HTML, but for the moment we’ll stick with plain text.

@ A Question of Style

We’re setting a tooltip class, but could have just as easily specified the paragraph’s
id with jQuery like this: $ ('<p></p>').attr('id', 'tooltip').Likewise,
we could have used JavaScript string concatenation to populate the element’s
content: $('<p>' + titleText + '</p>'). The methods result in the same
DOM objects, and they’re all fairly clear and readable, so it’s up to your personal
coding style whether you prefer doing more with jQuery chaining or with plain
JavaScript.

After we add our new node to the page (using appendTo) we set a few inline styles,
using the event object (event) to obtain the position where we need to place the
tooltip. pageX and pageY are properties of the event object that allow you to find
out where the event took place on the page. This can be tremendously useful in a
lot of situations; you’ll often find yourself needing to position an element on the
screen based on an event that just fired:

Menus, Tabs, Tooltips, and Panels

chapter_05/17_simple_tooltips/script.js (excerpt)

// Hover out code
$(this).attr('title', $(this).data('tipText'));
$('.tooltip').remove();

The hover out code couldn’t be simpler: we just reverse what we did in the hover

over code, restoring the title attribute and removing the tooltip:

chapter_05/17_simple_tooltips/script.js (excerpt)

// Mouse move code

$('.tooltip')
.css('top', (event.pageY - 10) + 'px')
.css('left', (event.pageX + 20) + 'px');

Finally, we need to respond to mouse movement by updating the tooltip’s location.
This way the tooltip will follow the mouse around, just like the browser’s built-in
tooltips do. And presto! We’ve replaced the default tooltips with our own, and we’re

fully in control of their appearance and animation.

Advanced Tooltips and Dialogs

It’s good to know how to build a simple tooltip, but we also know that we can do
better. For more sophisticated tooltips, which can include other markup (such as
images or links) inside the content, we’ll need to move our thinking from tooltips
to dialogs, and move the tips from title attribute into our actual markup. We’ll
hide them with CSS, then reveal and position them using jQuery as required. The

final effect is illustrated in Figure 5.11.

Welcome to StarTpgckr! the planet's premier celet
where in the - ook mcrsm ks il [

to the right | Legal Disclaimer i

T T SRS s s el o s ey s

Figure 5.11. Our advanced tooltip

Our dialog markup will consist of two nested span elements, which will sit inside
the element we want to use to trigger the dialog. This may occasionally require some
creativity with your markup, but it helps us to position the dialog, as we can give

it an absolute position offset from the parent element. It also aids with triggering

177

178

jQuery: Novice to Ninja

events, since, if the user moves the mouse over the dialog, it will still be over the
triggering element, so no additional hover event handling is required.

Here’s an example of the dialog box markup:

chapter_05/18_advanced_tooltips/index.html (excerpt)

<p>
Welcome to
StarTrackr!

Legal Disclaimer

 the planet's premier celebrity tracking ..
</p>

When we’re done, the dialog will look great and will contain a link to the disclaimer
page. But let’s not hang around; we’ve considered a few dialog methods, so let’s
dive straight in.

As we’ll see when we start writing the code, our dialog will be quite clever, posi-
tioning itself on whichever side of the target element has enough room for it to be
displayed. In order to make a cool text-bubble graphic work in this context, we’ll
need four different bubbles: above-left, above-right, below-left, and below-right.
We’ll be using a single sprite for each of the dialog’s four possible states, as illustrated
in Figure 5.12.

Figure 5.12. Our dialog sprite

These dialog boxes require some fairly complex jQuery code. We’ll go over it bit by
bit, but don’t worry if you have trouble understanding all of it right now. There’s a
bit of a leap from writing quick two- or three-line scripts that replace and highlight
content on the page, to writing a more complex Ul widget. In the section called
“Construction and Best Practices” in Chapter 6, we’ll have a look at some of the

Menus, Tabs, Tooltips, and Panels

ways we can try to minimize complexity and keep our code readable, even as it

becomes longer and more involved.

For the moment, try to focus on seeing the bits of jQuery you already know employed
in a larger context; this should give you an idea of how you can go about combining
small pieces of logic into a larger picture that performs really impressively.

Our first task is to create a DIALOG object that will contain all our code. We set a
delay property at the top of the object (this will make it easier to modify the config-
uration of the widget without hunting through the code to find where this variable

was set):

chapter_05/18_advanced_tooltips/script.js (excerpt)

var DIALOG = {
current: null,
delay: 600,
timer: null,
setDialogs: function () {
//Determine dialog positions

Then we add a function called setDialogs, which we’ll run when the page loads
or is resized. This function will find all the dialogs on the page and determine their
position by looking at their parent elements. It will also set up a hover event on
each of them so that they’re displayed on mouse over. Here’s the hover event:

chapter_05/18_advanced_tooltips/script.js (excerpt)

$('.dialog').parent().hover(function() {

// store the dialog being hovered

DIALOG.current = $(this);

DIALOG.timer = setTimeout(function() { @
// find the dialog,
$(this).find(".dialog").fadeIn('fast');
}, DIALOG.delay);

}, function() {

// on mouseout, clear timer and hide dialog

clearTimeout (DIALOG.timer); e)

$(this).find(".dialog").fadeOut('fast');

}).attr("title", ""); // clear the title to stop browser tooltips

179

180

jQuery: Novice to Ninja

That’s a fairly dense block of code, so let’s see if we can make some sense of what’s
happening:

@ We're using the familiar setTimeout function, except that this time we’re saving
the timer to a variable. This is so we can turn it off by name if we need to.
We're accessing the delay property we set before as the second parameter for
setTimeout. As we’ve seen, this is how long the browser will wait before dis-
playing the dialog.

@ When the user mouses off the target, we want to stop the timer so that the
dialog will stay hidden after the delay expires. We do this with the JavaScript
clearTimeout method, passing in the reference to our timer.

@ for versus each

Before we try that function out, though, there’s enough noise in JavaScript circles
to take a quick look at an ongoing debate around our each loop:

chapter_05/18_advanced_tooltips/script.js (excerpt)

$(".dialog").each(function(){// grab the containing element

Anytime we replace a pure JavaScript method with a jQuery one, an overhead is
imposed. When we use each to replace a for loop, we have to call jQuery, and
that takes time. Tiny fractions of a millisecond, sure, but still time. And those
fractions add up.

So we should always use a for loop, right? Not at all! If you know that there will
be a time hit and are aware what its impact will be on your code, go for your life.
And more importantly, if you’re storing a value inside the loop for reference later,
an each loop provides that for free, whereas a for loop often needs extra legwork.
So it’s not always cut and dried, but as in this instance we store a value, we're
going to stick with our each loop.

Now that our hover handler is set up, we need to determine the position of each
dialog. We’ll use each to loop over them, but first we’ll grab the height and width
of the screen. If we were to do this inside the loop, jQuery would need to calculate
those values once for each dialog box, even though they’re always the same. By
storing the values outside the loop, we avoid this wasteful calculation and improve
the performance of our script:

Menus, Tabs, Tooltips, and Panels

chapter_05/18_advanced_tooltips/script.js (excerpt)

setDialogs: function () {
var screenWidth = $(window).width(),
screenBottom = $(window).scrollTop() + $(window).height();

$(".dialog").each(function(){// grab the containing element
wvar container = $(this).parent(),

top = container.height(), // default placement ‘)

totalHeight = top + $(this).outerHeight(), @

width = $(this).outerWidth(),

offset = container.offset(),
left = 0;

// give it relative position if required &)

if (container.css('position') != ‘'absolute' &&

wcontainer.css('position') != 'fixed') {
container.css({position: 'relative'});

}

}

}

This part of the code should be a little easier to understand. We loop over each
dialog box on the page, and first store a reference to the container element just to
avoid having to write $(this).parent() over and over. Here’s a breakdown of the
contents of the loop:

@ By default, we give the dialog box a top position equal to the height of the
container. This means it will appear directly below the container (since it is
offset from the top by exactly the container’s height).

@ We need to know the total combined height of both the dialog and the parent
element, so we store that in a variable to use later.

9 We check to see if the parent element has position: absolute; or position:
fixed;. It has to be positioned, since we’ll be using position: absolute; to
offset the dialog from it. If it already has absolute or fixed, we’ll leave it that
way. If it doesn’t, though, we’ll give it position: relative;.

181

182

jQuery: Novice to Ninja

@ Logical Operators

In JavaScript, when you’re testing for values in an if statement, you can use the
&& operator to mean and. So in the above example, the contents of the if block

will only execute if both conditions (on either side of &&) are met.

You can also write | | (two pipe symbols) to mean or. If we’d used that instead of
&& above, the contents of the if block would execute if either condition was met.

This is good work so far! We’re almost done, but we need to fix one small problem:
what if the dialog’s position takes it off the screen? If the target element is right at
the bottom of the screen, and we want the dialog box to appear below it, the dialog

will remain unseen!

It’s time for a little collision detection. We need to find out if the dialog box is hitting
either the bottom or right edge of the screen. Let’s have a look at how we accomplish
this:

chapter_05/18_advanced_tooltips/script.js (excerpt)

[/ re-position if it's off the right of the screen
if (offset.left + width > screenWidth) {

left = 0 - width + 42;

$(this).addClass('left');
} else {

$(this).removeClass('left');

}

/] re-position if it's off the bottom of the screen
if (offset.top + totalHeight > screenBottom) {
top = 0 - $(this).outerHeight();
$(this).addClass('above');
} else {
$(this) .removeClass('above');

}

We check to see if the dialog’s horizontal or vertical offset, plus its width or height,
is greater than the width or height of the screen (which we calculated earlier). If it
is, we modify the top or left property respectively, and assign a class that we’ll

use to display the appropriate part of our background image sprite.

Menus, Tabs, Tooltips, and Panels

The final (and easiest) step is to use the css action to assign the calculated top and
left properties to the tips:

chapter_05/18_advanced_tooltips/script.js (excerpt)

$(this).css({
"top": top,

"left": left

1)

We’ll call our setDialogs method on document-ready, and also each time the

window is resized, to ensure that our tips are always adequately positioned:

chapter_05/18_advanced_tooltips/script.js (excerpt)

$(document) .ready (function() {
DIALOG.setDialogs();

P

$(window) .resize(function() {
DIALOG.setDialogs();

P

With that code in place, we just need to add some CSS to position our background
sprite appropriately, based on the classes we assigned:

chapter_05/18_advanced_tooltips/dialog.css (excerpt)

span.dialog.left {
background-position: 100% O0;

}

span.dialog.left span {
padding: 15px 0 0 17px;
}

span.dialog.above {
background-position: 0 100%;

}

span.dialog.above span {
padding: 13px 0 0 12px;
}

183

184

jQuery: Novice to Ninja

span.dialog.above.left {
background-position: 100% 100%;
}

span.dialog.above.left span {
padding: 13px 0 0 17px;
}

@ IE6 Support

Although jQuery does a fantastic job of handling cross-browser issues in our
JavaScript code, it’s not so good for our CSS. The above style rules rely on chaining
several class selectors together. This will confuse Internet Explorer 6, which
will only see the last class in any style rule. Moreover, our PNG image relies on
alpha-channel transparency for the dialog’s drop shadow, and this is also unsup-
ported by IE6.

Over the last few years, several major sites (including YouTube and Facebook)
began phasing out support for IE6. This doesn’t mean that they totally ignore this
browser; rather, they accept that IE6 users will receive a degraded experience
(perhaps similar to what visitors without JavaScript will see).

For our dialog example, we could use conditional comments® to target some styles
specifically to IE6 and provide it with the same dialog functionality—except using
a flat background image without a thought-bubble style or a drop shadow. This

way, the background position would be inconsequential, and the PNG issue solved.

Another option for folks doggedly hanging on to IE6 is Google’s Chrome Frame.®

Chrome Frame brings Chrome’s Open Web technologies and JavaScript engine to
IE. If your environment lets you install plugins, and you need to hang onto IES6,
you might need to take a look at Chrome Frame.

And there you have it! The final dialog not only waits to see if you really meant for
it to display, but also shifts its position to make sure it’s fully visible whenever it
does display! Because we’ve avoided linking this code to anything specific on our
page, it’s easy to reuse this script on any other page; you just need to include a few
spans with a dialog class, and you’re off to the races. This is an important lesson:
you should always try to structure your code in such a way that you can reuse it

> http://reference.sitepoint.com/css/conditionalcomments/
® http://code.google.com/chrome/chromeframe/

http://reference.sitepoint.com/css/conditionalcomments/
http://code.google.com/chrome/chromeframe/

Menus, Tabs, Tooltips, and Panels

later. This will save you work in the long run, and give you more time to experiment
with cool new functionality instead of rebuilding the same old widgets every time

you need them.

Order off the Menu

Whew! That was a hard sprint to the finish line. Over the course of this chapter,
we’ve ramped up our jQuery know-how and used it to move beyond simple hiding
and revealing, well into the territory of the true Ul ninja.

You’ve learned how to reduce complexity on the screen by packaging up links and
widgets into collapsing menus, accordions, panels, tooltips, and dialog boxes. You've
also built a widget that’s aware of where it is placed on the viewport, adjusting its
position to make sure it stays in view. That’s a trick you can use not only on your

dialogs, but with drop-down menus featuring long text, and a host of other elements.

In the next chapter, we’ll look at reducing complexity in our code, and then tackle
what’s ostensibly the most important part of jQuery: Ajax!

185

Chapter

Construction, Ajax, and Interactivity

Throughout the preceding chapters, we’ve wowed and dazzled our client team with
a cornucopia of visual effects and optical magic tricks, giving their site a lifelike

appearance. Unfortunately, they’re becoming savvy: as well as wanting their pages
looking Web 2.0, they want them acting Web 2.0 as well. And having pages act Web

2.0 means one thing: Ajax!

And not just a little bit—they want the works: inline text editing, Twitter widgets,
scrolling image galleries ... they want StarTrackr! to have more Ajax-enabled bells

and whistles than Facebook, Twitter, and Google+ combined.

That’s fine by us. Implementing client-side Ajax functionality is easy, especially
with jQuery as our framework. But these cool new features come at a cost of increased
complexity. Some simple tasks (such as loading in a snippet of HTML) are no
problem, but as we start to tackle the business of creating advanced Ajax components,
the risk of making a mess of unmaintainable spaghetti code grows. So before we
jump into the deep end, we’ll review some ways we can manage complexity, and
write well-behaved code that will impress our peers.

188

jQuery: Novice to Ninja

Construction and Best Practices

JavaScript is a wonderful language. Don’t let anyone tell you any different. Its his-
torically poor reputation stems from years of misunderstanding and misuse: a near
infinite collection of inline scripts that display little regard for good coding practices
like encapsulation and reuse. But the past few years have ushered in a new era for
this underdog of the Web. Developers have begun to respect (and conquer) the lan-
guage, and the result has been some great code libraries—including our favorite,

jQuery.

jQuery has greatly simplified the process of dealing with Ajax and the DOM, but it
hasn’t changed the benefits of writing nice clean JavaScript code. There’s no need
for us to become masters of JavaScript, but there are a few steps we should take to
ensure we're writing the kind of code that will make future developers and main-

tainers of our projects want to buy us a beer.

Cleaner jQuery

We’ve done a fairly good job of steering clear of any involved JavaScript code—that’s
a testament to how good jQuery is at doing what it does. But as our jQuery compon-
ents and effects grow more complex, we need to start thinking about how to best

structure our code. Once again we should remember that, under the hood, jQuery
is just JavaScript, so it will serve us well to steal a few best practices from the world
of JavaScript. We already saw a bit of this kind of code organization when we built
our advanced tooltip script at the end of Chapter 5. Now let’s reveal the whys and

hows of writing cleaner jQuery code.

Code Comments

Just like HTML and CSS, JavaScript provides you with a way to comment your code.
Any line that you begin with two slashes (//) will be ignored by the browser, so
you can safely include explanations about what your code is doing. For example,
in this snippet the first line will be ignored, and only the second will be processed
as code:

// Assign the value '3' to the variable 'count':
var count = 3;

Construction, Ajax, and Interactivity

If you need to write comments that stretch over multiple lines, you can begin them

with /* and end them with */. For example:

/* An example of
a multiline
comment

*/

var count = 3;

Comments go a long way to making your code reusable and maintainable: they help
you see at a glance what each line or section is doing when you revisit code you

wrote months ago.

Map Objects

We’ve been dealing with key/value pair objects since way back in Chapter 2. We
use them to pass multiple options into a single jQuery method, for example:

$('p').css({color:'green', padding:'3px'});

These aren’t special jQuery constructs—once again, it’s just plain old JavaScript—but
they’re great for encapsulating data to pass around in your own functions and
widgets. For example, if you pull data out from some form fields, you can package
them up into key/value mapped pairs that you can then process further:

var id = $('input#id').val();
var name = $('input#name').val();
var age = $('input#age').val();

var data = {
type: 'person',

id: id,
name: name,
age: age

With the data all wrapped up, we’re able to easily pass it around and use it however
we like. To access any one of an object’s values, we simply need to type the object’s
name, followed by a period (.), followed by the key associated with that value we
wish to access. For example, given the data object defined above, if you wanted to

189

190

jQuery: Novice to Ninja

check to see if the type property contained the string 'person', and alert the name
property if so, you’d write:

if (data.type == 'person') {
alert('Hello ' + data.name);

}

Namespacing Your Code

Even the nicest of libraries still let you write the nastiest of spaghetti code, and
jQuery is no exception. Sorting through 20 pages of hover and toggle commands
will end up driving you crazy, so to save your sanity you’ll want to group logical
chunks of code together.

We already had a go at doing this in the section called “Advanced Tooltips and
Dialogs” in Chapter 5, and if you go back and have a look at that example, you’ll
notice that almost all the code is wrapped up in an object named TT. This object is
much the same as the previous data object (and all the object literals we’ve been

working with so far), except that it also contains functions, as well as static variables.

So when we wrote setTips: function() { .. }, we were assigning that function
to the setTips property of the TT object. Once that’s done, we can write TT.set-
Tips() to execute the function. Now every function we write that has to do with
tooltips can be contained inside TT. Because the only object we’re declaring in the
global scope (more on this in a second) is TT, we can rest assured that none of our
functions or variables will conflict with other JavaScript code on the page. We refer
to this technique as namespacing, and refer to all our TT variables and methods as
being part of the TT namespace.

Our namespace object can be given any name so long as it’s a valid variable name.
This means it can start with a dollar sign, underscore, or any alphabetical character,
lowercase or uppercase. Additionally, the more unique and helpful the name is,
the more successful it will be (well, it worked for jQuery ($) and underscore (_)!).

We’re aiming to avoid clashes in function names.

TRKR would be a good choice for StarTrackr! It’s short, helpful in that it alludes back
to our site name, and fairly unique.

Here’s what we’re looking to avoid. Say you have a function named exclaim:

Construction, Ajax, and Interactivity

function exclaim () {
alert("hooray");

}

exclaim();// hooray

It’s not especially inspired as function names go, but there you have it. Trouble is,
some third-party code that you want to put in your site also has a function named

exclaim:

function exclaim () {
alert("boooo0");

}

exclaim();// booooo

Now, when you expect the alert to show “hooray,” you instead see a disheartening
“booooo.” Rather than simply picking another function name and risking the same

result, let’s put our method inside the TRKR namespace:

var TRKR = {};

TRKR.exclaim = function () {
alert("hooray");

I

There’s no limit now to what we can do with the methods and properties of our

namespace:

var TRKR = {};
TRKR.namespaces = "cool";
TRKR.boolean = true;
TRKR.pi = 3.14159;
TRKR.css = {
"color": "#cOffee",
"top": O
s
TRKR.exclaim = function () {
alert("hooray");

b

Now we can still let out a buoyant “hooray,” but there’s much less chance of other

code stepping on our toes:

191

192 jQuery: Novice to Ninja

TRKR.exclaim (); // hooray
TRKR.namespaces; // “cool”
exclaim(); // boooooo

Namespacing code this way also means that it can be easily reused on other pages.
All we need to do is plunk the TRKR object down in another page, and we’ll have
access to all our juicy functions. Now that’s quality code!

Once you’ve set up your namespace, you can either add your properties one by one
after declaring the object, as we did above, or you can include them all inside the
object literal, like this:

var TRKR = {

namespaces: "cool",

boolean: true,

pi: 3.14159,

css: {
"color": "#cOffee",
"top": O

b,

setup: function() {
TRKR.one = 1;

s
exclaim: function() {
alert("hooray");
}
s

This code block results in exactly the same namespace object as the one we saw
before, and it’s up to you which you prefer. Most of the code you’ll encounter in

the remainder of the book will make use of namespacing, whenever it’s appropriate.

Scope

In programming, scope refers to the area of code where a defined variable exists.
For example, you can define a variable as global by declaring it outside of any
functions or literals. Global variables will be accessible from anywhere in your code.
Likewise, a variable that you declare inside a construct (such as a function or an
object) is said to be local to that construct.

Construction, Ajax, and Interactivity

This seems simple, but it can become messy when we start defining callback
methods for our Ajax requests, because the callback will often be run in a different
scope than the one where it was defined. So if you try to refer to this in a callback,
expecting it to point to your widget namespace, you’ll be unpleasantly surprised:
it might be the global DOM window object, or it might refer to something else
entirely. For example:

var WIDGET = {};

WIDGET.delay = 1000;

WIDGET.run = function() {
alert(this.delay); // 1000 .. good!
$(p).click(function() {

alert(this.delay) // undefined! bad!

1)

s

When a p tag is clicked, our event handler runs in a different context than the
widget object itself. So this.delay will most likely not exist (and if it does, it’s a
different variable to what we wanted anyway!). There are a few ways we can deal
with this, but without being too JavaScripty, the easiest way is to store the widget’s
scope in a variable:

var WIDGET = {};

WIDGET.delay = 1000;

WIDGET.run = function() {
alert(this.delay); // 1000 .. good!
var _widget = this;
$(p).click(function() {

alert(_widget.delay) // 1000 .. yes!

1)

s

By setting _widget to point to this in the context of the widget, we’ll always be
able to refer back to it wherever we are in the code. In JavaScript, this is called a
closure. The general convention is to name it _this (though some people also use
that). If it’s used in a namespacing object, it’s best to name it with an underscore
(), followed by the widget name. This helps to clarify the scope we’re operating
in.

193

194

jQuery: Novice to Ninja

We call “the scope we’re operating in” the context and there are a few ways to set
it. One is via closures as we saw beforehand, but jQuery also provides further
solutions too.

One more general-purpose approach is the proxy method. The proxy is a little un-
usual in that you give it a function, and it gives you one back. Only the returned
function will be bound to the context that you specify, which means no extra variable
is required (like _widget above) because this will refer to the correct scope:

var WIDGET = {
delay: 1000,
run: function() {
alert(this.delay); // 1000 .. good!
$("p").click(
$.proxy(function() {
alert(this.delay); // 1000 .. yes!
}, this);
)5
}
s

In this example we wrapped the click function in a proxy call. The first argument

was the function we want to run on click, and the second is the context this.

This might all seem a bit complex, but setting the context can be fiddly in JavaScript.
Just remember: if you have a callback function that appears to be working incorrectly,
debug the this property and ensure you are where you think you are! Keeping the
correct context becomes particularly important in Ajax, and, thankfully, jQuery

provides even more ways to help us out, as we’ll see shortly.

Client-side Templating

Most of the menus and effects we’ve seen so far have contained static content. Of
course, most menu text is unlikely to change, but as we explore Ajax-enabled wid-
gets, the need to inject and replace text dynamically becomes more of an issue. This
brings us to the problem of templating: where do you put the markup that will

structure the content you’re inserting into your pages?

There are a number of ways you can approach this issue. The simplest is to replace
the entire contents of the pane every time it’s displayed—say, via the html action.

Construction, Ajax, and Interactivity

Whenever we need to update a content pane, we replace its entire contents with

new markup, like so:

$('#overlay').html("<p>You have " + cart.items.length +
=" items in your cart.</p>");

@ Data Sources

Throughout our discussion of templating, we’ll be assuming that the content we
need to update is coming from some fictitious JavaScript data source (like
cart.items in the aforementioned example). The format of your data source is
likely to vary widely from project to project: some will be pulled in via Ajax, some
injected directly via a server-side language, and so on. Obviously those parts of
the code will need to be adapted to your needs.

Directly writing the HTML content is fine if we only have a small amount of basic
markup, but for more elaborate content it can quickly lead to a nasty mess of
JavaScript or jQuery string manipulation that’s difficult to read and maintain. You
will run into trouble if you try to build complex tables via string concatenation, and
your HTML will become deeply intertwined with your jQuery code.

One way of circumventing this problem is to provide hooks in your HTML content,

which can be populated with data when required:

<div id='overlay'>
<p>You have 0 items in your cart.</p>
<p>Total cost is $0</p>

</div>

We’ve now added a few container fields to the HTML. When an update of the data
is required, we use jQuery to update the text of the containers:

$(this).find('#num-items').text(cart.items.length);
$(this).find('#total-cost').text(cart.getTotalCost());

This is much nicer than our first attempt: it leaves all the markup in the HTML page

where it belongs, and it’s easy to see what the code is doing.

195

196

jQuery: Novice to Ninja

There’s one other (very handy) option for managing markup that will be manipulated
by jQuery. When you’re working with applications that return a list or grid of res-
ults—say, an item list for a shopping cart—you can include an element that acts as
a template for each item, and simply copy that element and edit its contents

whenever you need to add a new item.

Let’s put this into practice by doing a bit of work on the StarTrackr! shopping cart.
We’d like to be able to add and remove items using jQuery. The items sit in an
HTML table, and we’d prefer to avoid writing out whole table rows in our jQuery
code. It’s also difficult to use placeholders, as there’s no way of knowing in advance
how many items will be in the cart. What we’d like to do is simply prepare empty
table rows, and wait for jQuery to populate them with content.

Our first task is to create an empty row with display:none; to act as our template:

chapter_06/01_client_side_templating/index.html (excerpt)

<table id="cart">
<thead>
<tr>
<th>Name</th>
<th>Qty.</th>
<th>Total</th>
</tr>
</thead>
<tr class="template" style="display:none;">
<td>Name</td>
<td>Quantity</td>
<td>Total.00</td>
</tr>
</table>

Next we’ll create a helper function that does the templating for us. This keeps the
code centralized, making it easy to maintain when the template changes. The
template function accepts a jQuery selection of a table row, as well as a cart item
(an object containing the item name, quantity, and total price). The result is a filled-
in template ready to be inserted into our HTML document:

Construction, Ajax, and Interactivity

chapter_06/01_client_side_templating/script.js (excerpt)

function template(row, cart) {
row.find('.item_name').text(cart.name);
row.find('.item_qty').text(cart.qty);
row.find('.item_total').text(cart.total);
return row;

So for each new row of data, we need to copy the template, substitute our values,
and append it to the end of the table. A handy way to copy a selected element is
via the clone method, which creates a copy of the current jQuery selection. Once
you have cloned an element, the selection changes to the new element, allowing
you to insert it into the DOM tree:

chapter_06/01_client_side_templating/script.js (excerpt)

var newRow = $('#cart .template').clone().removeClass('template');
var cartItem = {
name: 'Glendatronix’',

qty: 1,
total: 450

s

template (newRow, cartItem)
.appendTo('#cart')
.fadeIn();

The template class is removed—because it’s not a template anymore! We then set
up our cart item (in a real example, this data would come from the server, of course),
and then use our template method to substitute the data into the row. Once the
substitution is complete, we add the row to the existing table and fade it in. Our
code is kept simple and all our markup stays in the HTML file where it belongs.

Are there other templating techniques around? Oh yes, dozens! The methods detailed
above are common, and are likely to be all you will need; but if you find yourself
repeating your templating code over and over, it might be time to check out a more
full-featured templating system.

Templating Systems

Although the concept of client-side templates seems straightforward enough, it
quickly becomes fantastically complicated. It’s especially so if there’s a lot of data

197

198

jQuery: Novice to Ninja

to template, or if you're tasked with injecting your users’ data into your pages, which

can introduce security issues.

The choice of templating systems is diverse, and there is certainly no clear winner
for “best system.” Some people like the cross-platform, no-logic style of a system
like Mustache templates,' while others prefer the flexibility of jQuery Templates.2
The latter has been quite popular since its introduction, but is in the process of being
superseded by the jsRender project.3 And this situation could well have changed
again by the time you read this, but one thing is for certain: you need to examine
all the options and determine which is best for you, your team, and your project.

Browser Sniffing (... Is Bad!)

Browser sniffing is fast becoming a relic, and is punishable by unfriending—or un-
following—or whatever the Web equivalent of death is. This is hard for many people
to believe or accept, because we’ve done browser sniffing for so long, and because
it seems so much easier than the alternative (which we’ll look at shortly). Browser
sniffing, if you’ve been lucky enough never to have encountered it, is the process
of using JavaScript to figure out which version of which web browser the user is
browsing with. The idea is that once you know this information, you can work
around any known bugs that exist in the browser, and your page renders and func-
tions correctly for that user.

But this technique has become far too unreliable: old browsers are updated with
patches, new versions are released, and new browsers are introduced—almost every
day! This means that workarounds in your code can (and will) break or become re-

dundant, and you’ll have to become a walking encyclopedia of browser bugs.

Now, having said this, there are a couple of functions in jQuery that assist with
browser sniffing. These are now deprecated, and may be moved into a separate

plugin in future versions.

$.browser has a few flags for determining if the current user’s browser is Internet

Explorer, WebKit, Opera, or Mozilla.

! http://mustache.github.com/
2 http://api.jquery.com/category/plugins/templates/
3 https://github.com/BorisMoore/jsrender

http://mustache.github.com/
http://api.jquery.com/category/plugins/templates/
https://github.com/BorisMoore/jsrender

Construction, Ajax, and Interactivity

$.browser.version is another try-not-to-use utility function that reports the current
version of the user’s browser.

Combining these two commands, you can execute conditional code, like so:

if ($.browser.mozilla && $.browser.version=="9.0") ({
// Only do this code in Firefox with version 9)

}

Relying on browser revision numbers and vendor names, though, is just asking for
trouble down the road. You want to avoid fixing old code, especially when you
could be writing shiny new code, so perhaps it’s time to talk about the alternative
to browser sniffing ...

Feature Detection

The reason browser sniffing has been exiled is that it targets the symptom instead
of the cause of the trouble. For example, Internet Explorer 8 and below have no
direct support for the opacity CSS property (for these browsers, opacity is set using
proprietary filter properties). Before we make use of opacity in our code, we
could test to see if the user is using Internet Explorer and act accordingly. But the
issue isn’t really Internet Explorer; the issue is opacity itself!

To replace browser detection, jQuery has introduced the $.support method to report
on the abilities of the user’s browser. Instead of asking, “Is the user’s browser Internet
Explorer?” you should now ask, “Does the user’s browser support the opacity
style?” like so:

if (!$.support.opacity) {
// Doesn’t support opacity: apply a workaround

}

The beauty of this approach is that if new browsers emerge in the future without
support for the opacity style, or if Internet Explorer suddenly starts supporting it,
your old code will still work perfectly.

There are a dozen or so properties you can test for besides opacity. For example:
$.support.boxModel returns false if a browser is in quirks mode (or just doesn’t
support the box model), $.support.leadingWhitespace returns true if a browser

199

200

jQuery: Novice to Ninja

preserves leading whitespace with innerHTML, and so on. Make sure you check the

full list in the documentation should your project require it.*

Ajax Crash Course

Where once “Ajax” was the buzzword du jour, today it’s merely another tool in our
web development arsenal—a tool we use to provide seamless and natural page in-

teractions. Ajax can be a bit finicky to implement ... unless you’re using jQuery!

What Is Ajax?

The term Ajax was coined in 2005 as an acronym for Asynchronous JavaScript and
XML. Many people found the term problematic, as they were already doing Ajax-
like work but without always using the technologies mentioned in the acronym.
Eventually the term has settled down to simply mean almost any technique or
technology that lets a user’s browser interact with a server without disturbing the

existing page.

These days there is so much Ajax around, it’s hard to remember what the alternative
was! The non-Ajax “postback” method of interacting with a server involves the user
clicking a link or submitting a form, which sends a request to the server. The current
browser page is removed and the server responds with a fresh page of HTML, which
isloaded and displayed to the user. And while the page is loading, the user is forced
to wait ... and wait.

Ajax lets us fire requests from the browser to the server without page reload, so we
can update a part of the page while the user continues working. This helps us
mimic the feel of a desktop application, and gives the user a more responsive and

natural experience.

As Ajax runs on the browser, we need a way to interact dynamically with the server.
Each web browser tends to supply slightly different methods for achieving this.

Luckily for us, jQuery is here to worry about these differences.

We’ve seen armfuls of jQuery functions for manipulating the DOM, so you might
be worried about the barrage of documentation you’ll need to absorb in order to
write killer Ajax functionality. Well, the good news is that there are only a handful

4 http://api.jquery.com/jQuery.support/

http://api.jquery.com/jQuery.support/

Construction, Ajax, and Interactivity

of Ajax functions in jQuery, and most of those are just useful wrapper functions to
help us out.

Loading Remote HTML

We’d better make a start on some coding; the StarTrackr! team is growing cranky,
as it’s been a while since we’ve given them an update and there’s yet to be any Ajax
gracing the site. We’ll put a quick Ajax enhancement up using the easiest of the

jQuery Ajax functions: load.

The load method will magically grab an HTML file off the server and insert its
contents within the current web page. You can load either static HTML files or dy-
namic pages that generate HTML output. Here’s a quick example of how you use
it:

$('div:first').load('test.html');

That’s a very small amount of code for some cool Ajax functionality! This dynamic-
ally inserts the entire contents (anything inside the <body> tags) of the test.html file
into the first div on the page. You can use any selector to decide where the HTML

should go, and you can even load it into multiple locations at the same time.

@ Which load?

Be careful—there are a couple of disparate uses for the 1oad keyword in jQuery.
One is the Ajax 1oad method, which we’ve just seen, and the other is the 1oad
event, which fires when an object (such as the window or an image) has finished

loading.

Enhancing Hyperlinks with Hijax

Let’s move this goodness into StarTrackr! We’re going to wow our client by setting
up a bunch of pages containing key celebrities’ biographies. The main page will
include a bunch of standard hyperlinks to take you to the biography pages. Then,
with our new Ajax skills, we’ll intercept the links when a user clicks on them, and
instead of sending the user to the biography page, we’ll load the information below
the links.

201

202

jQuery: Novice to Ninja

This is a great technique for loading external information; as well as our home page
loading snappily, any users who visit our site without JavaScript will still be able

to visit the biography pages as normal links. Progressively enhancing hyperlinks in
this manner is sometimes called hijax, a term coined by Jeremy Keith (you hijack

the hyperlinks with Ajax, get it?).

To start on our site, we’re going to need some HTML to load in. Keeping it nice and

simple for now, we’ll construct pages consisting of just a heading and a description:

chapter_06/02_hijax_links/baronVonJovi.html (excerpt)

<body>
<h1>Baron von Jovi</h1>
<p id="description">
It's a little known fact that Baron von Jovi ..
</p>
</body>

We’ll require one HTML page per celebrity. If you had millions of entries, you’d
probably want to avoid coding them all by hand—but you could load them from a
database, passing a query string to a server-side script to load the correct page. We

only have a few featured celebs, so we’ll do it the long way.

Q Limitations of the load Function

For security reasons, the content you load must be stored on the same domain as
the web page from which your script is running. Web browsers typically stop you
from making requests to third-party servers in order to prevent cross-site scripting
attacks: evil scripts being maliciously injected into the page. If you need to access
content hosted on a different domain, you may have to set up a server-side proxy
that calls the other server for you. Alternatively, if the third-party server can de-
liver JSONP data, you could have a look at the jQuery getJSON function. We’ll
be focusing on this function shortly.

Once we have our catalog, we’ll insert a regular old list of links into the StarTrackr!
page. We should then be able to click through to the correct biography page:

Construction, Ajax, and Interactivity

chapter_06/02_hijax_links/index.html (excerpt)

<ul id="biographies">
Baron von Jovi
The Computadors</1li>
Darth Fader</1li>
Mo' Fat</1li>

<div id="biography">
Click on a celeb above to find out more!

</div>

We’ve added an extra div underneath the list. This is where we’ll inject the response
from our Ajax calls. The next step is to intercept the links and do some Ajax:

chapter_06/02_hijax_links/script.js (excerpt)

$('#biographies a').click(function(e) {
var url = $(this).attr('href');
$('#biography').load(url);

e.preventDefault();

P

First, we select all the links inside the unordered list, and prevent the default event
from occurring (which would be to follow the link and load the target page). We
grab the original destination of the link (by retrieving the href attribute of the link
we clicked on), and pass it on to the load function.

This code works perfectly, but injecting the entire contents of the page turns out to
be a bit problematic. Our new content contains <h1> tags, which should really be
used to give the title of the entire page, instead of a small subsection. The problem
is that we don’t necessarily want to load the entire page via Ajax, just the bits we’re
interested in. And once again, jQuery has us covered ...

Picking HTML with Selectors

The load action lets you specify a jQuery selector as part of the URL string. Only
page elements that match the selector will be returned. This is extremely powerful,
as it lets us build a complete and stand-alone web page for our regular links, and
then pull out snippets for our Ajax links.

203

204

jQuery: Novice to Ninja

The format for using selectors with load is very simple: you just add the selector

string after the filename you wish to load, separated with a space:
$('#biography').load('computadors.html div:first');

The selector you use can be as complex as you like, letting you pick out the most
interesting parts of the page to pull in. For our StarTrackr! biographies, we’d like
to display the information contained in the description section. We’ll modify the
code to look like this:

chapter_06/03_load_with_selector/script.js (excerpt)

var url = $(this).attr('href') + ' #description';

Be sure to include a space before the hash to separate it from the filename. If you
run this version, you’ll see that now only the description div is loaded in. We will
have a proper look at adding loading indicators very soon, but until then you can
code up a quick-and-dirty solution: just replace the target element’s text with
“loading ...” before you call 1load. Again, with your files sitting on your local ma-

chine, you’ll never see the loading text, but it’s good to know how to do it:
chapter_06/03_load_with_selector/script.js (excerpt)
$('#biography').html('loadingm
i).load(url);
There you have it! Ready to show the client. But since it only took us 15 minutes,

perhaps we should look into the load function’s nooks and crannies a little so we

can spruce it up even more.

The Entire Page Is Still Loaded

You might think that specifying a selector could be a sneaky way to reduce the
bandwidth of your Ajax calls. It doesn’t work that way, unfortunately. Regardless
of whether or not you add a selector, the entire page is returned, and the selector
is Tun against it!

Construction, Ajax, and Interactivity

Advanced loading

There are a few additional tweaks you can make to your load calls if you need to.
A common requirement is to specify some data to pass along to the server; for ex-
ample, if you had a search function that returned information based on a query
string, you might call it like this:

$('div#results').load('search.php', 'g=jQuery&maxResults=10"');

The second parameter passed to load is called data. If you pass in a string (as we
did above), jQuery will execute a GET request. However, if you instead pass an object

containing your data, it will perform a POST request.

Additionally, we can perform processing when a request has finished by supplying
a callback function. The callback function will be passed three parameters: the re-
sponse text (the actual data), a string containing the status of the response (fingers
crossed for success—but here’s where you can gracefully handle errors), and the

full response object itself:

$('div#result').load('feed.php', function(data, status, response) {
/| Post-processing time!

P

The data parameter, as well as the callback parameters within the data parameter,
are optional. This allows you to use syntax as simple or as complex as you require

when calling load.

Prepare for the Future: on and off

You have the all-important Ajax component running, so it’s time to show the client
team, who are very excited. “This is great stuff!” they exclaim, but then there’s a
request: “Oh, can you also make it so that the background is highlighted when you
move your mouse over the biography?”

“Sure,” you say. “That’s just a two-second job ...” and you scribble out some simple

jQuery below your Ajax code:

205

206

jQuery: Novice to Ninja

$('p#description').mouseover(function() {
$(this).css('background-color', 'yellow');
})s

“There you go,” you say, confidently. But as you refresh the page, you notice that
this code fails to work! Why? If you think about it, it makes sense: we’re attaching
the event handler to the p#description element when the document loads, but
when the document first loads there’s no p#description element! We’re adding it
dynamically with Ajax later on. What to do?

We could work around this problem by only adding the mouseover event in the
callback function of our Ajax code, but there’s a nicer way: the on method. on lets
you bind a handler in a manner similar to what we’ve been doing so far, except that
it works for all current and future matched elements. How can it possibly do this?
Well, the trick is to add the handler to a parent element, but only fire for matching
children.

To fix up our example above, we’ll rewrite the mouseover event using the on
method, which needs to attach to the container element (#biography in our example),
and fire on any paragraph tags that are added:

chapter_06/04_live_event_handler/script.js (excerpt)

$('#biography').on('mouseover', function() {
$(this).css('background-color', 'yellow');
1)

@ What Happened to 1live and die?

As of jQuery 1.7, the 1ive and die methods have been deprecated. They were

essentially the same as on and of f, but instead of being associated with a contain-
er, they worked standalone. For example, you could add an event handler to any
link tag placed anywhere at anytime! Unfortunately, this has some performance
side effects; you could end up attaching hundreds of listeners for every Ajax call.

Now we’re forced to specify a parent container, so only one listener is added.

With this code running, the event handler lives on the #biography element, and
applies the callback to any children that match the p selector. Hence, the full form
of on in this case is $(container).on(event type, selector, callback).If you

Construction, Ajax, and Interactivity

want to stop the event from occurring later on, you need to unbind it with the off
method:

$('#biography').off('mouseover'),
Ipl;

The mouseover event handler will be removed, and no longer be attached to new
elements matching the selector.

Named Functions

If you attach a named function (rather than an anonymous function) with on, you
can remove individual functions by specifying their name as a third parameter to
off:$('#el').off('click', myFunction) ;. This way, any other handlers
that you have bound to the element will continue to run. In addition, specifying
no selectors or function will remove all click handlers, while specifying no para-
meters will remove every handler on the container.

Fetching Data with $.getJSON

“Now that you have all this Ajax stuff running,” says a member of the client team
in an alarmingly offhand manner, “could you just add a list of the latest Twitter

comments about celebrities at the top of the page? Our investors are coming around
this afternoon, and I promised them we’d have Web 2.0 mashup stuff to show them.
That should be easy, shouldn’t it? I mean, you already have Ajax working ... Thanks.”

A few years ago, the term mashup was coined to describe applications or sites that
grab data from multiple third-party websites and squish it together in a new and
(with any luck) interesting way. Many website owners recognized the benefit of al-
lowing access to their data, and opened up XML feeds for programmers to access.
This type of open data source is generally referred to as an API, or Application
Programming Interface; it’s a way for developers to programmatically access a site
or application’s data. However, XML is a bulky format, and difficult to process on
the client side.

Recently, JSON (JavaScript Object Notation, usually pronounced “Jason”) has become
a popular format for data interchange in Ajax applications. JSON is a lightweight
alternative to XML, where data is structured as plain JavaScript objects. No pro-

cessing or interpretation is required—it’s ready to go in our scripts!

207

208 jQuery: Novice to Ninja

jQuery provides us with a fantastic method for fetching JSON data: $.getJSON. The
basic version of this method accepts a URL and a callback function. The URL is a
service that returns data in JSON format. If the feed is in JSONP format, you’re able
to make requests across domains. As an example, let’s grab a list of posts that recently
mentioned “celebs” on Facebook’:

chapter_06/05_get)SON/script.js (excerpt)

$.getJSON('http://graph.facebook.com/search?q=celebs',
function(result) {

alert('Fetched ' + result.data.length + ' items!');

1)

Where did that URL come from? We found it by reading the documentation on the
site’s API help page.6 Every site will have different conventions and data formats,
so it’s important to spend some time with the API docs!

@ Watch Out for Those Real Live Wires!

Remember: we’re on the Internet now, playing with real live data, from real live
people who can be unpredictable. Although our tests seem innocent enough, it’s
possible you could receive some inappropriate content. If you’re concerned, we’d
suggest changing the “celebs” search term to a less spam-riddled one, like “jQuery”!

A Client-side Twitter Searcher

But why are we wasting time on Facebook? We have a Twitter stream to incorporate,
and we need to do it quick smart. Following the API link from the Twitter home
page’ will lead us to the information we need to get this show on the road. We’ll
use the search URL to return the JSON data for recent public tweets about celebrities:

chapter_06/06_twitter_search/script.js (excerpt)

var searchTerm = "celebs";

var baseUrl = "http://search.twitter.com/search.json?g=";

$.getJSON(baseUrl + searchTerm + "&callback=?", function(data) {
$.each(data.results, function() {

> http://facebook.com
® http://developers.facebook.com/docs/reference/api/
7 https://dev.twitter.com/docs/api

http://facebook.com
http://developers.facebook.com/docs/reference/api/
https://dev.twitter.com/docs/api
https://dev.twitter.com/docs/api

Construction, Ajax, and Interactivity

$('<div></div>")

.hide()
.append('')
.append('<a href="http://www.twitter.com/'

= + this.from_user + '">' + this.from_user

w + ' ' + this.text + '')
.appendTo('#tweets')

.fadeIn();

})s

The search results are returned in the form of an object containing a results array.
We iterate over each of the array items using jQuery’s $.each helper method. This
function will execute the function we pass to it once for each item in the initial array.
For each item we create a new div containing the user’s profile picture, a link to
their profile on Twitter, and the text of the celebrity-related tweet. The result: a cool
Twitter display in just a few lines of code!

@ Working with JSON

If you’ve tried a few getJSON calls to remote servers, you might have noticed that
the data returned requires a bit of work to decipher. You’ll (mostly) have to figure
it out for yourself. Different services have API documentation of varying quality
and clarity. Sometimes it will provide you with examples, but at other times you’ll
be left on your own. One way to examine an API’s data structure is to type the

API URL directly into your web browser and inspect the resulting JSON directly.

The jQuery Ajax Workhorse

If you were feeling particularly adventurous and hunted down the load function
in the jQuery core library source code, you’d find that sitting snugly at the bottom
of the function would be a call to the $.ajax method. In fact, if you were to inves-

tigate any of jQuery’s Ajax functions, you’d find it’s the same with all of them!

All of jQuery’s Ajax functions are simply wrappers around the $.ajax method, each
designed to provide you with a simple interface for a specific type of task. By having
these helper methods and additional functionality, jQuery gives you an Ajax Swiss

Army knife that strikes the perfect balance between power and ease of use.

The $.ajax method is the heart of jQuery’s Ajax abilities and is the most powerful
and customizable Ajax method available to us. Being the most complex in jQuery’s

209

210 jQuery: Novice to Ninja

arsenal, it can take a while to conquer, but it’s well worth the effort; this is the

creature you’ll be spending most of your Ajax time with.

@ Use the Source, Luke!

If you’ve made it this far in your jQuery quest, you should be bold enough to have
a peek at the JavaScript that makes up your library of choice. Even if you struggle
to understand everything that’s going on, it’s often helpful to see broadly what
the underlying code is doing—it can sometimes help you discover functionality
that you might have missed if you only read the documentation. Make sure you’re
looking at the unminified version, though, otherwise you will see nothing but
gibberish!

The syntax used with the $.ajax method is more complex than the others we’'ve
encountered so far, because you need to spell out everything you want it to do: it
will take nothing for granted. It’s still fairly straightforward to use, though. Here’s

a simple GET request:

$.ajax({
type: 'GET',
url: 'getDetails.php',
data: { id: 142 },
success: function(data) {
// grabbed some data!

}
P

We specify the request type, the URL to hit, and a success callback wherein we can
manipulate the data. Easy. The complexity emerges from the number of possible
options you can provide. There are over 20 available options ranging from error
callbacks, usernames and passwords for authentication requests, and data filter
functions for pre-processing returned information. The majority of the time you’ll
only need some of these options, as most common functionality uses just a few.
We’ll be putting a bunch of the options to good use in the coming sections and
chapters, so they’ll become familiar to you. A full reference of all the options

available can be found in Appendix A.

Construction, Ajax, and Interactivity

Common Ajax Settings

Often, you’ll want to apply several of the same settings to multiple Ajax calls in the
same script. Typing them out at length each time would grow tedious, so jQuery
allows you to specify global settings with the $.ajaxSetup action:

$.ajaxSetup({
type: 'POST',
url: 'send.php',

timeout: 3000

1)

This sets the defaults for further Ajax calls, though you can still override them if
you need to. By specifying the common defaults for the page, we can dramatically
simplify the code required to actually send a request:

$.ajax({
data: { id: 142 }
1)

This call will send a POST request to send.php, which will time out if it takes longer
than 3,000 milliseconds. Some settings are unable to be set via the $.ajaxSetup
method; error, complete, and success callback functions, for example, should be

handled with the global Ajax events described in the next section.

Loading External Scripts with $.getScript

Cramming desktop-style functionality into our web apps is great, but it suffers a
downside: as our applications become larger, download time increases proportion-
ately. The fickle public have better things to do with their time than just wait around
for our masterpieces to unveil themselves, and will go elsewhere. We need our ap-
plication to be as snappy as possible. And, unsurprisingly, jQuery is here to give
us a helping hand.

The $.getScript function will load and execute a JavaScript file via Ajax. How
does this help us out? Well, if we plan carefully, we can load a minimal amount of
our code when the page loads and then pull in further files as we need them. This

is particularly useful if we require any plugins that have a sizeable footprint, but

2N

212

jQuery: Novice to Ninja

regardless of size you should try to delay the loading of your code until it’s absolutely

necessary.

By way of example, let’s load in the Color plugin we saw in the section called

“Color Animation” in Chapter 3 from the jQuery plugin repository:

$.getScript('http://github.com/jquery/jquery-

color', function() {

$('body').animate ({'background-color': '#fff'}, 'slow');
})s

GET and POST Requests

Finally, jQuery packs in a couple of helper functions for performing GET and POST
requests. These are simple wrapper functions around the $.ajax method, and are
more convenient to use; just select a URL and any data you want to push—and off

you go!

The two calls are almost identical, with the only difference being the HTTP request
type: $.get will perform a GET request and $.post will perform a POST request.
Both requests accept the same parameters, which (besides the URL) are all optional:

$.get(url, data, callback, dataType);
$.post(url, data, callback, dataType);

The data parameter should contain any data that needs to be sent to the server. As
with the $.ajax function, the callback fires on success only, and will be passed the
response data and status. The type parameter lets you specify the data type that
will be passed on to the callback function; this can be xml, html, script, json,
jsonp, or text, but it’s unlikely you’ll ever need to use this parameter. Here’s what
these methods look like in action:

$.get("getInfo.php", function(data) {
alert("got your data:" + data);

P

$.post("setInfo.php", {id: 2, name: "DJ Darth Fader"});

Yes, they’re very easy and convenient, but beware! The $.get and $.post methods
will only give you data when everything goes hunky-dory—but it’s a big bad Internet

Construction, Ajax, and Interactivity

out there, and requests go missing all the time. How can we be prepared for these
situations?

Handling Responses with Promises

In older versions of jQuery, the $.get and $.post methods were limited in that
they didn’t provide explicit callbacks for handling errors; this made them less useful
for production-level purposes. Thankfully, this has been rectified by introducing
the Deferred object in jQuery 1.5. Deferred is a utility function that implements a
“promise.” A promise is what it sounds like: it’s a guarantee to do something in the
future. Promises are very useful in consolidating asynchronous code, to avoid
ending up with a tangled spaghetti mess of callback functions. jQuery’s Ajax func-
tions all use the Deferred objects to provide some chainable methods for handling

Ajax events.

The chainable methods available to us are done, fail, and always. These methods
all accept a function to execute as a parameter, and can be chained together as re-
quired (you can even call a method multiple times if you want more than one

function to run). Here’s an example of them in action:

$.get("index.html")
.done(function(data, status, xhr){
// Runs on success

})

.fail (function(data, status, xhr){
// Runs on failure

})

.always(function(data, status, xhr){
// Both success and failure

P

If you've used jQuery in the past, these methods might look very similar to the
success, failure, and complete callbacks from $.ajax. The reason for the change
is to take advantage of the consistency and flexibility offered by the Deferred object.
These chainable promises are also available on the regular $.ajax function (and
indeed, they are applicable far beyond Ajax—but that’s for later!).

The done method runs when an Ajax call successfully completes; the fail method
runs when something goes wrong; and the always method runs after the other

methods have fired, giving you a chance to gracefully clean up in either situation.

213

214

jQuery: Novice to Ninja

All three methods return the data from the server, a status message (for example,
success, error, or timeout), and a jQuery normalized XMLHTTPRequest object.

@ The jQuery XMLHTTPRequest Object

Microsoft introduced the XMLHTTPRequest object via Internet Explorer many
years before the term “Ajax” was coined. It is the primary mechanism for doing
client-side calls to the server. jQuery uses its own superset of this object for
working consistently across browsers, and most of the Ajax callbacks will also
include this object; this can be useful for interrogating response states at a lower
level. For the majority of the time, though, you’ll get everything you need from
the other parameters.

jQuery Ajax Events

When making Ajax requests with jQuery, a number of events are fired. These can
be handled anytime we’d like to do some extra processing—perhaps adding a
“loading” message when a request begins and removing it when it concludes, or
handling any errors that may have occurred.

There are two types of Ajax events in jQuery: local and global. Local events apply
only to individual Ajax requests. You handle local events as callbacks, just as you
do with any of the other events we’ve seen. Global events are broadcast to any
handlers that are listening, so they present a great way to implement functionality
that should apply to all requests.

As an example, jQuery defines a fail local event and an ajaxError global event.
The fail event can be handled for an individual request, whereas ajaxError can
handle an error that occurs in any request. Local events are handled inside the
$.ajax call, like this:

$.ajax({
url: "test.html"
})
.fail(function() {
alert('an error occurred!');

P

Construction, Ajax, and Interactivity

Global events, on the other hand, are generally attached to the DOM node where
you’d like to show a response to the user. For instance, you may have a div element

for displaying your Ajax error messages:

$("#msg").ajaxError(function(event, request, settings, ex) {
$(this).html("Error requesting page " + settings.url + "I!");
})s

Whenever any Ajax call from the page fires an error, this handler will be called.
We’re interested in more than just errors, though: there are a bunch of interesting
events we can hook into if need be. They’re all structured as in the aforementioned
script, and most have a corresponding local and global version, so you can choose
which granularity to handle them with.

The local done event (local) or the ajaxSuccess event (global) let us know when an
event has completed successfully. The always (local) and ajaxComplete (global)
events tell us when an Ajax request has concluded, regardless of its success or
failure. You will only receive either the success or the error event for each re-

quest—but you’ll always receive a complete or always event.

The beforeSend (local) and ajaxSend (global) events let us react just before an Ajax
request is sent into the world. And finally, the ajaxStart and ajaxStop global
events occur when an Ajax request fires and no others are already running, and
when all requests are finished, respectively.

We’ll be looking at some practical uses for these events in the coming examples of

Ajax interactivity.

Interactivity: Using Ajax

Phew! There was a lot to cover in reaching this point, but we’ve arrived. We know
how to nicely structure our ideas in JavaScript, and we’re ready to wield our shiny
new Ajax tools. It’s time to pull up the client’s requirements list and put our skills
to the test!

The client team is fully focused now. They’re confident that StarTrackr! will become
one of the biggest photo-sharing sites in the world. Accordingly, the staff have done
some business analysis on they’re competitors and have determined that the biggest
problem with most photo sites is that they aren’t primarily concerned with

215

216

jQuery: Novice to Ninja

celebrities. StarTrackr! is way ahead of the field here; in fact, it has thousands of
photos already uploaded by users from around the world. To capitalize on the
company’s strengths, the client wants to engage the site’s community in organizing
the collection.

Ajax Image Gallery

The first step to launching StarTrackr! into the photo-sharing space is to display

some pictures on the home page. Our initial version is intended as a proof of concept
to show the client team how the gallery might look. It will grab random images via
Ajax and display them in a container. Every few seconds, it will go and grab some

more.

The trickiest part of playing with Ajax is talking to your back-end coders about data
formats. You’ll need to sit down and come to an agreement on what the data you're
sending and receiving should look like. Will the server send XML, JSON, or some
custom text format? What fields do you need to pass to the server to update the
database? How do you specify empty fields? Will there be any success or error

messages sent back?

Our service returns half a dozen random image names every time we call it. We
have a particularly lazy developer who insists on giving us a simple, pipe-delimited

string of image names. A sample response might look like this:
computadors.jpg|night out.jpg|mr_speaker.jpg|dj_snazzy jeff.jpg

Many web frameworks will now happily return XML or JSON responses for you to
consume, but when working with hand-rolled APIs, it’s certainly not uncommon
to receive plain-text delimited messages that you’ll have to manipulate and convert
into usable data. In this case, we’ll use JavaScript to split the string on the pipe

symbol: data.split('|"');.Thiswill give us an array of image names to work with.

Our gallery is just a bunch of image tags inside a containing div element, so the
styling is up to you. The starting HTML is as simple as:

chapter_06/07_ajax_image_gallery/index.html (excerpt)

<div id="gallery"></div>

Construction, Ajax, and Interactivity

Next, we create a GALLERY object literal that will act as our widget namespace. We’ll
need to define a few constants: a selector for the gallery, the URL for our image
service, and a delay time (in milliseconds) for rotating our images. We’ll also stub
out a couple of methods that will form the backbone of the gallery:

chapter_06/07_ajax_image_gallery/script.js (excerpt)

var GALLERY = {
container: "#gallery",
url: "getImages",
delay: 5000,
load: function() {
// Load our data

s
display: function(image url) {
// Process the data

}
b

On to the good part: filling in the guts of the Ajax loader. The first task we’ll tackle
is to store a reference to the GALLERY object itself, because when our Ajax callback
methods run, the scope will be changed and this will no longer refer to GALLERY.
We saw in the section called “Scope” that this is simply a matter of storing the
current scope in a variable, so we can retrieve it later: var _gallery = this;.

For the sample code, we’re using a simple text file called getimages to substitute
for our server-side functionality; it contains an example of the kind of response
we’d expect to receive from the server. Note that for security reasons Internet Ex-
plorer will refuse to execute Ajax requests targeting the local file system. For testing
purposes, therefore, it’s best if you use another browser. Of course, if you have access

to a server, you should use that instead of a local file!

We could grab our data with the $.get helper method, but our gallery is going to
become more complex rather quickly, so we’ll be needing the advanced features of
the $.ajax function. We set up our callback using the success option. The callback
will split the data into an array, with each element containing a reference to an

image:

217

218 jQuery: Novice to Ninja

chapter_06/07_ajax_image_gallery/script.js (excerpt)

load: function() {
var _gallery = this;

$.ajax({

type:"get",

url: this.url,

success: function(data) {
var images = data.split('|');
$.each(images, function() {

_gallery.display(this);

})s

‘ @ ' Going Loopy

The $.each utility function is a nice jQuery way of looping through JavaScript
object and array elements: just pass it the array and a callback function for each
element. The callback function also accepts an optional parameter that provides
you with the index of the element in the original array, if you need it.

With a collection of filenames in hand, we now need to create the img tags and ap-
pend them to the document. We could do this in the success callback of our load
function, but it will quickly become confusing if we just throw all our functionality
into one big bucket like this. A neater approach is to separate the loading code from
the displaying code. That’s why we created the display stub earlier; it accepts our
image URL and adds a new image to the gallery’s containing element:

chapter_06/07_ajax_image_gallery/script.js (excerpt)

display: function(image_url) {
$('"')
.attr('src', '../../images/' + image_url)
.hide ()
.load(function() {
$(this).fadeIn();
})

.appendTo(this.container);

Construction, Ajax, and Interactivity

The load we call here isn’t GALLERY . load; it’s the regular jQuery load event. So

when the image tag has finished loading its source, we perform a fadeIn.

We’ve set up our gallery widget, but we’ve yet to set it in motion. All that’s required

is a GALLERY.load() call once our document is ready:

chapter_06/07_ajax_image_gallery/script.js (excerpt)

$ (document) .ready (function() {
GALLERY.load();

P

@ Where are my images?

If you're testing this example in any of the major browsers (apart from Safari) and
using the latest version of jQuery (1.7.1 at the time of writing), you might be a
little perplexed that things aren’t working according to plan—so much so that
your image gallery mightn’t actually load! Google Chrome, for example, will not
permit access to these local files for security reasons; they’re treated as if they
were from different domains, and access was a cross-site request. The easiest way
to get around this is to test your script using a an HTTP server or a web server run
on a localhost environment, such as Xampp.® There are other workarounds in-

volving the Unix command line, if you're keen.’

Randomizing the Images

Fire this up in your browser and you’ll see your new Ajax gallery in full swing!
Well, sort of ... it’s really just a static set of images being loaded separately from the
main page. That is not very Ajaxy! Ideally, we’d like to ping our server at regular

intervals to rotate the images at random.

@ Not so Random

Because we’re faking a server response with a static text file, the images won’t be
random: the same six images will load every time. If you have a little server-side

8 http://www.apachefriends.org/en/xampp.html

o http://code.google.com/p/chromium/issues/detail?id=40787&q=ajax% 20loc-

al&colspec=ID% 20Stars % 20Pri% 20Area% 20Feature % 20Type % 20Status % 20Summary % 20Modi-
fied%200wner% 20Mstone% 200S

219

http://www.apachefriends.org/en/xampp.html
http://code.google.com/p/chromium/issues/detail?id=40787&q=ajax%20local&colspec=ID%20Stars%20Pri%20Area%20Feature%20Type%20Status%20Summary%20Modified%20Owner%20Mstone%20OS
http://code.google.com/p/chromium/issues/detail?id=40787&q=ajax%20local&colspec=ID%20Stars%20Pri%20Area%20Feature%20Type%20Status%20Summary%20Modified%20Owner%20Mstone%20OS

220

jQuery: Novice to Ninja

know-how, it should be a simple task to build a quick script to serve up random

images.

There’s another problem with our current gallery: if you load the page without
JavaScript, you'll see an Image Gallery section with no images in it. Ideally, we’d
like some static images to be there by default, and then to replace them with Ajax
if JavaScript is available.

If we first solve the problem of periodically replacing the images, we should also
be set up to replace an initial batch of static images, so let’s look at that first. We’ll
need to set a timer that will call our loading function every few seconds.

The timer could be set in a few different places, each with a slight variation in effects.
We’d like to set it so that requests occur a set amount of time after the previous set
has finished loading. If we set a constant delay between requests (say, with the
setInterval function), a slow network response might cause some images to be
displayed for a very short time before being replaced by the next set.

We could avoid this by starting the timer after we process the last set. Perhaps we
should start our timer in the success callback? Think about that for a second: what
would happen if a request was unsuccessful? Our success callback would never
fire, so we’d never set up our timer and never reload new images.

The solution is to handle the complete event in our $.ajax call. We saw in the
section called “Ajax Crash Course” that complete is called whenever a request
concludes, regardless of success or failure. That seems like a perfect place to set
our timer:

chapter_06/08_ajax_image_gallery_improved/script.js (excerpt)

complete: function() {
setTimeout (function() {
_gallery.load();
}, _gallery.delay);

}

The setTimeout function waits for the delay period to expire before calling our
GALLERY.load method again. But our display method simply appends images to
the gallery’s containing element, so every call will just add another stack of images
to the page. That’s going to get out of hand quickly! It will obviously be necessary

Construction, Ajax, and Interactivity 221

to clear the existing images before we add the new ones. Again, there are few spots
where we could do this; the start of the success method is a good candidate, but we
could also experiment with other places.

For our effect, we’d like to fade out the images slowly as soon as the next set is re-
quested. This gives us a nice wash of images fading in and fading out over time.
The local beforeSend event is our friend here. It gives us a chance to react before

the user’s request is sent off to the server:

chapter_06/08_ajax_image_gallery_improved/script.js (excerpt)

beforeSend: function() {
$(_gallery.container)
.find('img")
.fadeOut('slow', function() {
$(this).remove();
1)

All we’ll do is grab the current set of images and slowly fade them out. When the
callback method of the fadeOut function fires (indicating that the fade is done),
we’ll remove the images from the page. The next set of images can now happily

take their place.

This also solves our progressive enhancement problem. Now that our gallery widget
is removing existing images from the page before loading new ones, we can safely

add a set of static images to our HTML page for visitors without JavaScript.

If we showed this cool gadget to the client representatives in its current state, they’d
find it hard to believe that it was really using Ajax, because there’s no animated
spinning GIF image! We’d better add one before they arrive ...

Adding a Spinner

A spinner is an animated image used to show the user that work is in progress on
the page; it usually indicates that an Ajax request is underway and we’re waiting

for the server to respond.

Because the spinner is a JavaScript-dependent feature, it should be added to the
page using JavaScript. Often a page will begin with one or more spinners in motion,
to show the user that additional information is being loaded. When the loading is

222

jQuery: Novice to Ninja

done, the spinner is removed. But a common practice among some web developers
is to include the image in the HTML or CSS code. This creates a problem: if users
have JavaScript disabled, they’re greeted with a page full of spinning GIFs, leaving
them wondering if anything is happening at all! The rule should always be: if you’re
going to remove it with JavaScript, you should add it with JavaScript!

You can be fairly flexible with exactly how you create your spinner. We’ll be setting
it as the background image of a block-level element, but you could just as easily
include it as an img tag. Here’s the CSS:

chapter_06/09_ajax_gallery_with_spinner/gallery.css (excerpt)
.spinner {
height: 100%;

background: transparent url(../../css/images/spinner.gif)
wno-repeat center center;

}

Our old images are being removed in the beforeSend event, before the Ajax request
is sent off. That sounds like a perfect spot to start our spinner, so that users will
never see a blank, empty page. The new element stretches over the entire gallery
display area, and our spinner is centered horizontally and vertically:

chapter_06/09_ajax_gallery_with_spinner/script.js (excerpt)

$('<div></div>")
.attr('class', 'spinner')
.hide()
.appendTo(_gallery.container)
.fadeTo('slow', 0.6);

All good things must come to an end, so after the Ajax call is done we need to
eliminate the new element. The optimal place for us to do that is in the complete
handler, to ensure that we remove the spinner no matter what the outcome of the

request. Preceding the removal with a slow fade seems like a nice touch:

chapter_06/09_ajax_gallery_with_spinner/script.js (excerpt)

$('.spinner').fadeOut('slow', function() {
$(this).remove();

1)

Construction, Ajax, and Interactivity

Simulating Server Latency

If you have your code running on a local server, your requests are often going to
be answered very quickly—far quicker than the time it takes to see your fading
animations in action. Most server-side languages have a method to “sleep” for a
given amount of time before returning. For example, in PHP you can use
sleep(4); to wait for four seconds before continuing. This can help make your

testing a bit more realistic.

Global Progress Indicator

We could add individual spinners to every part of the page that will be affected by
Ajax requests, but in the end our page is going to contain a whole bunch of Ajax
interactions which are all centered around the same widget. We might as well add
a global spinner that sits on top of our widget, and let this serve as an indicator for
all Ajax events. Whenever any Ajax requests commence, the spinner will be dis-

played. When all requests have completed, it stops.

Let’s start by adding a place for our progress indicator to go. (Although you could
add and remove it dynamically as we did earlier, our global element will be used
so often that we’ll leave it on the page.) We’ll also add a class that we’ll attach and

remove from the element at the appropriate times:

chapter_06/10_global_event_handlers/gallery.css (excerpt)

.progress {
background: #fff url(progress.gif) no-repeat center right;

}

Then we register the global Ajax event handlers ajaxStart and ajaxStop. Remember,
the ajaxStart method is run when an Ajax request occurs and no other requests

are currently running, and ajaxStop is fired after all requests have finished.
Here are our global handlers:

chapter_06/10_global_event_handlers/script.js (excerpt)

$('#ajaxInProgress')
.ajaxStart(function() {
$(this).addClass('progress');
})

223

224

jQuery: Novice to Ninja

.ajaxStop(function() {
$(this).removeClass('progress');

P

Set up the Progress Indicator First

There is one gotcha to look out for when you’re loading content via Ajax when
your page loads. You’ll need to define your global handlers before you do your

initial requests, otherwise they’ll miss the events being fired.

Endless Scrolling

Ajax allows us to grab more content from the server whenever we want. At some
stage, someone realized that this meant paginating data was no longer absolutely
necessary; instead of scrolling to the bottom of the page and hitting a Next link, we
could just load in more content automatically.

This kind of endless scrolling is a technique that’s gaining popularity as a way of
displaying large amounts of data: images, comments, RSS feeds, emails ... but it
has its detractors.

Endless scrolling can easily be misused; you need to gauge your needs and decide
ifit’s appropriate. You must ensure that the interaction makes sense to the user and
feels natural to use. For StarTrackr!, an endless scroll works, as the images are more
like a random stream of pictures, and the users are unconcerned with the scale of
the data; there’s no need for them to know they’re on picture 10 of 1037, for example.

Before we get underway on the second phase of our Ajax gallery, we will need to
remove the setTimeout call from the complete event handler. We want the user to
be in control now, instead of the timer.

The first requirement for an endless scrolling component is, unsurprisingly, a
scrollbar. We’ll display one by setting overflow:auto on our gallery container and
reducing its width a little.

We’ve added a couple of new methods to our GALLERY object: an init () function
for performing some necessary setup code, and a checkScroll() method which
will be called whenever the scroll event fires:

Construction, Ajax, and Interactivity

chapter_06/11_endless_scrolling/script.js (excerpt)

init: function() {
var _gallery = this;
$(this.container).scroll(function() {
_gallery.checkScroll();

})s
this.load();

b

We keep a local reference to the gallery object again, so it’s available inside our

event handler.

As you might remember from Chapter 3, the scroll event will notify us anytime the

user moves the scroll bar:

chapter_06/11_endless_scrolling/script.js (excerpt)

checkScroll: function() {
var gallery div = $(this.container);
if (gallery_div[O].scrollHeight - gallery div.height() -
wgallery div.scrollTop() <= 0) {
this.load();

}
}

Our checkScroll function looks complex at first, but there’s really little to it. We're
going to be messing around with the gallery’s containing object quite a lot in this
function, so we store a reference to it to avoid running the same selector over and
over. (This would lead to a significant performance hit—especially as jQuery will
generate lots of events whenever the user scrolls the scrollbar.)

Next, we do some math to determine whether the scrollbar has hit the bottom yet.
For this we’ll need to break out of jQuery for a bit and deal with some plain old
JavaScript. The scrollHeight property is a nonstandard JavaScript property that’s
nonetheless supported by all major browsers. It tells us the total scrollable height
of an element, unlike height, which only tells us how much vertical space the ele-
ment occupies on the page. In order to access it, we need to pull the raw DOM node
from the jQuery object; the shortcut for this is [0].

225

226

jQuery: Novice to Ninja

By subtracting the element’s height and the current scrolling position from this
scrollHeight property, we’ll determine how far from the bottom of the element
the user is scrolled to. If this equals 0, the scrollbar is resting at the bottom, and we

can load the images.

But what happens if the user starts scrolling up and down like a crazy person? Will
we start firing off requests willy-nilly? We sure will! And as the requests start re-
turning, our code will start adding in images—Ilots of them! That may be a little in-

appropriate for our gallery control, so as a final touch let’s build in a small safeguard.

We’ll add a Boolean property to our GALLERY object called running. When we’re
about to load some data, we’ll first check that the running variable is set to true.
If it is, this means an Ajax call is currently underway, and we won'’t start another
one: we’ll just return. If it’s false, we’ll go ahead with our call, but first set it to
true.

Finally, when the request is over (successful or not), we reset the running variable

to false, ready to start all over again:

chapter_06/11_endless_scrolling/script.js (excerpt)

var GALLERY = {
running: false,

load: function() {
// Don't call if we're already running!
if (this.running) {

return;
}
this.running = true;
var _gallery = this;

$.ajax({

complete: function() {
_gallery.running = false;
}
})s

3

Construction, Ajax, and Interactivity 227

Keeping Context

So far, we’ve been ensuring we can access the gallery object by storing it in a variable,
with var _gallery = this;. But if you’re comfortable with keeping track of any
scope changes yourself, there is a better way: the ajax action has an option called

context that allows you to set the scope without needing to keep a local reference:

var GALLERY = {
url: "getImages",
load: function() {
$.ajax({
type:"get",
url: this.url,
context: this,
success: function(data) {
// "this" now refers to the GALLERY object!
alert('loaded ' + this.url);
}
});
}
b

This makes your code neater and shorter, but you have to be aware that the scope

is being modified by jQuery in the function callbacks. Other code (such as the $.each
loop that displays the images) will still obey the regular JavaScript scope rules, so
for those you’ll have to keep your own reference. The context option doesn’t have

to be a custom object as shown previously; it can also be a jQuery or DOM object:

$("<div>").attr("id", "result").appendTo("body");
$.ajax({
type: "get",
url: "GetResults.html",
context: $("#result"),
success: function(data) {
// "this" now refers to the #result element
this.html(data);
}
1)

Handling Errors

Error handling in Ajax is often left in the “we’ll do it at the end” basket. But it’s a

basket that’s seldom emptied. There are a few reasons for this. One is that proper

228

jQuery: Novice to Ninja

error handling can be tricky to implement. Another is that errors might appear to
occur infrequently—especially when we’re developing on a local network. As a
result, it can sometimes feel like time spent on developing error handling is wasted.

Nothing could be further from the truth! Errors happen all the time. You know this
is true because you’'ve seen hundreds of them on websites and in desktop applica-
tions. How your application recovers from problems is key to the overall impression
your users will take away from your site.

One of the most common types of error that the end user will experience is when
an Ajax interaction starts ... but never ends. This will often be experienced as an
eternally spinning, animated GIF. It’s a torturous position to be in: Is the page still
working? Should I wait just a minute longer? Has my data really been submitted,
and if I refresh will it send it all again? Sometimes this will be caused by a JavaScript
error (usually when unexpected data is returned), but more often than not, it is be-

cause the developer failed to implement any timeout handling.

jQuery includes a simple method for handling timeouts—so there’s no excuse for
leaving this step out. Like many of the Ajax options, you can specify both local and
global level settings, so you can tailor your error handling to your application. To
set a global timeout for all requests, use the $.ajaxSetup method and set the timeout
property. Let’s set ours to 20 seconds:

$.ajaxSetup({
timeout: 20000

P

If you have some requests that you expect (or need) to come back faster, you can
override the global timeout in the request itself:

$.ajax({
timeout: 4000,

P

It’s all well and good to see that your request has timed out—but what are you
supposed to do about it? jQuery will give us a fairly good clue as to what went
wrong. The error event fires whenever something goes wrong—and this includes

when your timeout delay expires.

Construction, Ajax, and Interactivity

The handler we specify for this event will receive the XMLHTTPRequest object and
a status message that we can use to determine the cause of the error; timeout, error
(for HTTP errors, such as everyone’s favorite, 404), and parsererror (which would
indicate improperly formatted XML or JSON) are values you might see.

You can choose to react differently to different errors, but it’s typical to simply try
the request again. We’ll use the setTimeout function to wait for a second before
sending another request (you might need to add some code to make your server

sleep for the duration of the timeout, in order for an error to occur):

chapter_06/12_ajax_error_handling/script.js (excerpt)

var GALLERY = {
delay: 1000,
load: function() {

var _gallery = this;
$.ajax({

type:"get",

url: this.url,

error: function(xhr, status) {

setTimeout (function() {
_gallery.load();
}, _gallery.delay);
}

P

Any errors that arise from the load operation will fire the error code, which will
call load again ... over and over until it succeeds. Is that a good idea? Probably not!
If it has failed ten times in a row, it would seem unlikely to suddenly work the el-
eventh time around, so at some point we’re going to have to throw up our hands
and say, “That’s it!”

So to finesse this a little bit, we’ll make a couple of changes: first we’ll add a counter
variable, which we’ll call attempts. Secondly, we’re going to be modifying the delay
time on each request (we’ll see why soon), so we need to add a new method to reset
everything to the initial values:

229

230 jQuery: Novice to Ninja

chapter_06/12_ajax_error_handling/script.js (excerpt)

var GALLERY = {

delay: 1000,
attempts: 3,

reset: function() {
this.delay = 1000;
this.attempts = 3;
}s

The reset method will be called whenever a request successfully completes, or when
we give up entirely because of too many errors. And with the new properties in
place we can be a bit savvier with our retrying:

chapter_06/12_ajax_error_handling/script.js (excerpt)

error: function(xhr, status) {
if (_gallery.attempts-- == 0) {
[/ Sorry. We give up.
_gallery.reset();
return;

}

setTimeout (function() {
_gallery.load();

}, _gallery.delay *= 2);

}

@ Increment and Decrement

In JavaScript, if you follow a numeric variable with - - or ++, the variable will be
decremented or incremented by 1, respectively. This is a handy shortcut for the
-=and += operators we’ve already seen.

Every time there’s an error, we decrement the attempts variable. If we make it all
the way down to 0, we give up retrying. Also, we’ve made a subtle change to the
delay time in the setTimeout function: we double the length of the delay on each
attempt to call the load method. So on the first error we wait for one second, on
the second error two seconds, and if that call also fails, we wait four seconds. This

Construction, Ajax, and Interactivity

is known as exponential backoff, and is a handy way to decrease the frequency of
our requests when there’s a real problem; if a user’s internet connection has dropped,

there’s no sense pinging away madly waiting for it to come back up.

Code for Errors First!

Error handling can seem like a real pain, and the chances of it being skipped are
great indeed! One way to give error handling a fighting chance of making it into
your next project is by coding the error cases first. The bonus with this approach
is that if you do it well, you’re more likely to catch less obvious issues with your
other code, so you can end up saving time in the long run.

Even these few simple steps are going to save the day in the majority of cases, but
there’s a lot more we could do with error handling. For example, you could take

advantage of the global ajaxError handler to implement some general handlers for
your pages, respond differently to different types of errors, or provide error messages

to let your users know that something has gone wrong.

Image Tagging

Displaying the images is one thing, but our primary objective in Ajaxifying
StarTrackr! is to begin gathering data from the community. Tagging has proven itself
a great way to build up a collection of metadata that relates to your content. It works
by letting users add words that they think describe the item they’re looking at. If a
lot of people use the same words, you can be fairly confident there’s a correlation
between the two. This in turn can help other users browse your site for content

that’s relevant to them.

Consuming XML

You’ve had a chat with your developer, and told him that you need some additional
fields returned from the data service. He offered a solution that involved indicating
rows with pipe delimiters, fields with semicolons, attributes wrapped in curly
brackets and tildes, and ...

Luckily, you know a couple of Jedi mind tricks, and with a swift wave of your hand

you convinced him that XML was the format he was looking for.

Although JSON is the up-and-coming golden boy of data interchange formats on
the Web, you’re still going to find a lot of web services that spit out XML. XML is

231

232

jQuery: Novice to Ninja

more mature than JSON, so there are more libraries around for the back-end folks
to work with. And although JSON is much easier to play with (since it’s essentially
a JavaScript object ready to go), jQuery makes manipulating XML data a breeze.
We’ve been told that the data we’ll be receiving looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<celebs>
<celeb id="421">
<name>Johnny Stardust</name>

</celeb>
<celeb id="422">
<name>Kellie Kelly</name>

</celeb>
</celebs>

Now that we have our data, we need to update our initial implementation to make
use of it. For our first pass we just split the filenames and iterated over each of them
using $.each. But now our requirements are a little more complex. We’re receiving
XML nodes and we need to extract the information we require from them. The good
news is that jQuery lets us deal with XML documents exactly the same way we deal
with the DOM!

@ Setting the Correct Data Type

The browser is always sure what you’re looking for by default. Sometimes you
might think you’re getting XML, but you’re actually just working with plain text,
and trying to parse XML when it’s just returned as text is not much fun. Be sure
to add dataType: 'xml' to your Ajax requests, or specify the correct content-
type header.

This means we can use all the jQuery actions we already know to traverse the DOM
and pick out what we’re interested in. For example, we can use find() to search
for nodes by name, and next and prev to traverse siblings:

Construction, Ajax, and Interactivity

chapter_06/13_consuming_xml/script.js (excerpt)

success: function(data) {
$(data)

.find('celebs')

.children()

.each(function() {
var node = $(this);
var id = node.attr('id"');
var name = node.find('name').text();
var image = node.find('image').text();
_gallery.display({'id': id, 'image': image, 'name': name});

1)

We loop over each celeb node and extract its ID, name, and image URL, which we
then combine into an object literal and pass to our display method. (This is why
JSON is so handy: it already comes packaged up as a JavaScript object!)

We next have to amend the display function itself to accept our new data object
rather than a simple text string. Our data object has some additional information
that we’ll need to access when it comes time to load the tags: namely an ID, which
we’ll pass to the tag service. We’ll store that value in the img tag itself, via the jQuery
data function.

Now that we have access to a celebrity’s name in our data, we can also fix an access-
ibility and standards-compliance issue with our previous code: we can add an alt
attribute to our images, containing the celebrity’s name:

chapter_06/13_consuming_xml/script.js (excerpt)

display: function(dataItem) {

$('")
.attr({
src: '../../images/' + dataItem.image,
alt: dataItem.name
})
.hide()
.data('id', dataItem.id)

.load(function() {
$(this).fadeIn();
})

.click(function() {

233

234 jQuery: Novice to Ninja

CELEB.load($(this).data('id"));

})
.appendTo('#gallery');

Being able to augment DOM nodes with data is tremendously useful; we can now
know easily which ID we need to load tag data for inside the click handler. Once
we have the ID we’re ready to move on to the next stage of the image tagging feature:
grabbing and displaying the tag data itself.

We could lump this logic into the GALLERY widget, but now we’re dealing with a
whole new context. Instead, we’ll separate it out into a new CELEB widget to keep
it nice and readable:

chapter_06/13_consuming_xml/script.js (excerpt)

var CELEB = {
url: 'celebs.json',

load: function(image_id) {
var _celeb = this;
$('#details input').attr('disabled', 'disabled');
$.getJSON(
this.url,

function(data) {
$('#details input').removeAttr('disabled');
_celeb.display(data);
});
b,

display: function(data) {
$('#id').val(data.id);
$('#name').val(data.name);
$('#tags').val(data.tags.join(" "));
}
}

Thankfully our developer is now sold on the JSON idea, and has set up a JSON data
service to allow us to grab the tag information. This consists of an ID, a name, and
an array of tags for us to display.

Construction, Ajax, and Interactivity

We use $.getJSON to fetch the data—but this lacks a beforeSend or complete event
handler we can react to in order to give the user some visible feedback that a request
is occurring. What we’ll do instead is disable the form fields before we send the
request, and re-enable them when the data comes back, using the attr method to
set the disabled attribute.

Once the data comes back, we pass it to the display function and populate the

fields. Yet another successful Ajax implementation! Of course, with our simulated
JSON response, the celebrity name and tags will be the same no matter which image
you click. But you can try changing the contents of celebs.json to simulate different

SEerver responses.

Sending Form Data

All this displaying of data is great, but if we want to reap some of the benefits of
user-generated content and build up a loyal celebrity-obsessed community, we’ll

have to start moving some data in the other direction!

Naturally, jQuery can help us out with this; we just need to collate our data into a
form that can be sent. We could read all of the field values and concatenate them
into a string—which would be quite cumbersome, really—or create an object that
holds all the key/value pairs from the form. The latter would be a little less painful,
but there’s one more sneaky trick up jQuery’s magic Ajax sleeve: you can easily
collate data from a form, ready to send, with the serialize method.

The serialize method sucks up input fields that have a name attribute attached to
them. Therefore, if you want to take advantage of this feature, you’ll need to ensure
that your fields are named:

chapter_06/14_sending_form_data/index.html (excerpt)
<form>
;input type="text" name="name" />
;input type="text" name="tags" />

<input type="hidden" name="id" />

235

236

jQuery: Novice to Ninja

<input type="button" value="update" />

</form>

With our markup appropriately set up, we need only call serialize on a jQuery
selection of the form itself:

var form_data = $("form").serialize();

Serializing the data converts it into the typical query string format containing the
field name and value separated by ampersands:

name=Kellie+Kelly&tags=b-grade+has-been+rich&id=8

And if you’d rather have your data in a more organized format, you can use the
oddly named serializeArray action. It’s oddly named as it returns an object (not
an array) containing the key/value pairs of all the form fields.

Let’s take it for a spin:

update: function() {
var form_data = $('form').serialize();

$.post(this.set_url, form_data, function() {
$('#status').text('Update successful!');
1)
}

The $.post method is certainly easy to use! But, as we mentioned earlier, there’s
no way of knowing if something went wrong, so there’s no way we could tell the
user about it. You're better off replacing that call with our new friend $.ajax. That
way, as well as adding an “Update Successful!” message, we can also add error
messages and attach a class for a spinner too:

chapter_06/14_sending_form_data/script.js (excerpt)

$.ajax({
type: "POST",
url: this.url,
data: form_data,

Construction, Ajax, and Interactivity

error: function() {
$('#status').text('Update failed. Try again.').
wslideDown('slow');

}s
success: function() {

$('#status').text('Update successfull!');

by
complete: function() {

setTimeout (function() {
$('#status').slideUp('slow');
}, 3000);
}
})s

The last little interesting tidbit we added was a setTimeout, which runs in the
complete event handler to slide away the message after a few seconds. To tie this
all together, we simply call this update method when the Submit button is clicked:

chapter_06/14_sending_form_data/script.js (excerpt)

$('#update').click(function() {
CELEB.update();

P

This works nicely, and looks sharp—a job well done. Of course, as with the previous
examples, our mock server is unable to respond to the data being sent and update
the tags in a database. If you want to verify the data being sent, you can open up
the Console tab in Firebug (discussed in the section called “Troubleshooting with
console.log” in Chapter 4). Every Ajax request your page fires will show up in
this display, and you can inspect the contents of each request, as shown in Figure 6.1.

A%] o
& "% 1l Consolew | HTML €SS Script DOM Net

Clear Profile
¥ GET http://127.0.0.1:8000jquery-book-code (chapter_06/08_ajax_gallery_with_spinner/getlmages 200 OK 153ms

Headers Response

| johnny_ 200.jpa|kellie 200.jpg|mofat 200.jpg|beau_200.jpg|fader 200.jpg|glenda_200.jpg

p» GET http://127.0.0.1:8000jquery-book-code fchapter_06 [08_ajax_gallery_with_spinner/getimages 200 OK Z4ms

Figure 6.1. Inspecting Ajax requests with Firebug

237

238

jQuery: Novice to Ninja

Ajax Ninjas? Check!

Our client is going bananas—in a good way. But hey, it’s been a fairly impressive
effort on our part: a fully functional, stable, dynamic image gallery and image tagger
without doing a single page refresh. And we barely broke a sweat. But there’s still
plenty more we can do!

Ajax (as we know it) started life as a buzzword and quickly became overhyped and
misunderstood. Now that the hype has died down, we can all appreciate Ajax for
the nifty tool it is. Thanks to jQuery, it’s a tool that’s extremely easy to wield, and
a tool that’s extremely easy to become addicted to. With the growing number of cool
third-party JSON APIs and mashup tools becoming available, there seems to be no
limit to what you can accomplish with a little ingenuity!

Chapter

Forms, Controls, and Dialogs

In its infancy, the Web was a read-only medium. But early web developers wanted
more; specifically, they didn’t just want people to read their web pages about their
cats—they wanted them to sign their guest books and tell them how great their cats
were. HTML forms gave us a feedback mechanism that would eventually give rise
to the complex web-based applications we have today.

JavaScript stepped in to help simple HTML form elements emulate many of the
interactive input controls found in desktop applications, but the code has often
been unwieldy. jQuery allows us to simplify control creation and concentrate on

turning our ideas into functioning controls quickly and elegantly.

And it’s lucky for us that it’s quick! Our client is keen to elaborate on the fancy Ajax
controls that we’ve already built. Now that our system has buzzword-compliant
features, the client team concedes that they probably should have first fixed up
some of the forms on the site, which now look painfully 1999 in comparison. They
want “some inline editing, fancy form validation messages, and cool dialog boxes.
And everything—everything—should be drag-and-droppable, like it’s a website
from the future!” Fortunately for us, jQuery lets us build websites from the future.

240

jQuery: Novice to Ninja

Forms

HTML forms are old. And a bit clunky. Browsers vary wildly in how they deal with
them. Yet, thanks to JavaScript, these forms have become the basis for some cool
web applications. As always, if JavaScript can do it, jQuery can make it fun!

We know the drill by now: form elements are DOM elements, so jQuery is great at
manipulating them. But form elements aren’t your typical DOM elements, so there
are a handful of special jQuery tricks for dealing with them more specifically. We’ve
seen quite a few of them throughout the book so far—but now it’s time to focus on
them a little more closely.

Additionally, as we’ve seen in earlier chapters, jQuery is benefiting from advances
in HTMLS5. The latter is stepping in to deal with in the browser what we used to
have to do with libraries and JavaScript. As we proceed throughout this chapter,
we’ll highlight many of the opportunities HTMLS5 offers; but never fear, your carefully
crafted jQuery will be around for a while, as browser support for HTMLS5 still leaves
at least a little to be desired. And as it’s definitely still in draft, its support for forms

is one area where many browsers leave a lot to be desired.

Simple Form Validation

Form validation is essential, even if it often seems boring. Well-designed and imple-
mented forms can make or break how your users perceive your site. Who hasn’t had

the experience of giving up on a website because of a particularly frustrating form?

0 Server-side Form Validation

Client-side form validation with jQuery should only be used to assist your users
in filling out a form, and should never be relied upon to prevent certain types of
data being sent to the server. Users with JavaScript disabled will be unhindered
by your jQuery validation, so they can submit any values they want. Because of
this, if there’s any security risk from users submitting malicious data security issues
your forms, that data needs to be thoroughly validated on the server side. The

Open Web Application Security Project is a great place to start if you need some

pointers on securing your applications.]

! http://owasp.org

http://owasp.org

Forms, Controls, and Dialogs

Although jQuery avoids dealing with the nitty-gritty of form validation, it does

provide some convenient methods for accessing and setting form values—and that’s
half the battle! You can select form fields like any other element, and there are some
advances in HTML—well HTML5 actually—that can make selecting elements from

forms far more efficient.

jQuery has always tried to make selecting elements as efficient as possible, long
using getElementsByClassName for browsers that supported that method. Now it
is taking the bold step of supporting querySelectorAll for supporting browsers.
What does this mean for us? Being a method native to the browser,
querySelectorAll (qSA) is streets ahead in responsiveness for compliant browsers,
while those browsers lacking support for HTML5 continue to use the methods they
currently employ. And the best thing about qSA is that all we need to do is provide

jQuery with a selector that will invoke it:
$('input[type=text]').css('background-color', 'lemonchiffon')

jQuery offers us the potential to create extensions and custom selectors for CSS, but
these are always going to be slower than native methods, the only costs of which
are slightly longer selectors. Instead of using :input or :text in a filter, we use
our aforementioned selector. Filters still have their place, but you really should be
looking at why you’re using them, given the slowdown in selection speed as we see

in Figure 7.1.

Testing in Chrome 16.0.912.75 on Mac 0S X 10.7.2

Test Ops/sec

21,297

typa g | Toype="possword'1"); £0.84%
[20% slower

2,388

e rd $(" :password"); +0.64%
BRSO 91% slower

11,689

InpHEIRSY $("input:password"); 20.64%
password 56% slower

13,516

Hitogetied $C"input™). filter(":password"); +0.61%
password 49% slower

26,538

R Ope $("input[type="password']"); +1.11%

password

fastest

Figure 7.1. Indicative compliant browser selection speeds

The :password filter method, for example, selects all elements that are password
inputs from all the inputs in the page, and is reasonably quick at 13,589 operations

241

242

jQuery: Novice to Ninja

per second. If you preferred it over input[type="'password'], though, you’d be
losing out on nearly another 13,000 operations. You might not have over 26,000
elements on the page to select between, but it still means the selection will get
through your elements that much faster.

It works just as well with [type='radio'], [type='image'], or [type='submit'],
and as you can see by adding the preceding element type, you help the browser
help you even more.

Rumor has it that filters are slated to be deprecated, so use them at your own risk.
The :enabled and :disabled filters will fetch elements based on their disabled
attribute, and :checked and :selected help you find radio buttons, select box items,
and checkboxes that are checked or selected.

:checked and :selected in Conditional Logic

These filters are particularly helpful when you need to perform different actions
depending on the checked or selected state of a checkbox or radio button. For
example, you can use if ($(this).is(':checked')).

After you've chosen a method to select your elements, it’s time to find their values
so you can validate them against your requirements. We’ve already used the val
function enough to know what it does: it returns the value of a form field. We can
now perform some simple validation; let’s test to see if any text boxes in a form are
empty:

chapter_07/01_simple_validation/script.js (excerpt)

$('#myform').bind('submit', function(event) {
$('[type=text]').each(function() {
if(!$(this).val().length) {
event.preventDefault();
$(this).css('border', '2px solid red');

Fill out one or two of the text inputs, and try submitting the form; any input you
leave blank will be highlighted in red.

Forms, Controls, and Dialogs

The val action works for select boxes and radio buttons too. As an example, let’s

alert the radio button value when the user changes the selection:

chapter_07/02_radio_buttons/script.js (excerpt)

$('[type=input]').change(function(){
alert($(this).val());
1)

$('[name=sex]').bind('click', function(){
alert($(this).val());
1)

This change event is fired whenever a value in a form has changed. For a text input
or textarea, it fires whenever a user changes the element’s value, but only when
the focus is moved away from the element. This is a great way to implement some
simple inline validation. For checkboxes, select boxes, and radio buttons, the change
event occurs whenever the value changes from its current value. Mostly. In some
browsers, the change event on a radio button is triggered on click; in others, on a
blur of the control, just like inputs and textareas. You could use a change event
and hope for the best, or you could take our advice and opt to bind to the click that
we know we can trust.

Let’s revisit our simple validation example, except that this time we’ll test for empty
fields whenever the user moves to the next field. For this, we’ll need to capture the
blur event, which fires whenever a form field loses focus. This is perfect for inline

validation:

chapter_07/03_simple_inline_validation/script.js (excerpt)

$(':input').blur(function() {
if ($(this).val().length == 0) {
$(this)
.addClass('error')
.after('This field must .. ');
}
1)
$(':input').focus(function() {
$(this)
.removeClass('error')

243

244

jQuery: Novice to Ninja

.next('span')
.remove();

P

We’re just checking that the fields are filled in, but any type of validation can be
implemented in this way. You can check for a minimum or maximum number of
characters, or a specific format using regular expressions, or check that a password

confirmation field matches the original password field.

Q Avoid Over-validating!

One important point to consider when designing form validation: keep it simple!
The more rules you add, the more likely you’ll have forgotten an edge case, and
wind up frustrating some of your users. Offer hints, sample inputs, and guidance,
instead of rules that will prevent users from submitting the form if their postal
code is formatted differently to what you expected!

Speaking of Over-validating ...

Validating forms is one of those tasks that HTML5 will be hoisting from JavaScript
and running straight in the browser. To enable simple validation in HTML5, you

only need to add required as an attribute in a compliant browser:
<input value="Jemima” placeholder=”"Best new talent” required>

Now there are two simple steps. First, wait for all browsers to support this feature,
and second, wait for them all to implement an API for customizing the UI when a

user receives feedback. Okay, maybe “simple” isn’t the word for it!

Figure 7.2 shows the current state of play with browser validation. Of the big five,
two offer no solution, and there’s a wide variation among those that do. And unless
one of those Ul options matches your site’s style, the only way to change how it
looks is to turn it off.

Forms, Controls, and Dialogs

O _

This is a required field

|| Please fill out this field.

Please fill out this field.

e

Figure 7.2. Native browser validation Ul treatments

It’s safe to say that jQuery will be lending a hand with validation for quite a while,

so let’s return to it.

The submit Event

We also can hook into the submit event, which is fired when the form’s submitted.

This is a better technique than listening for a click event on the submit button, as
it will also fire if the user submits the form by pressing the Enter key. Once again,

we’re going to rely on our trusted event.preventDefault to ensure that the form

will only be submitted once we’re satisfied we have the required details in our form.

In our example following, we’ll check all the text boxes in the form. If any are left

empty, we’ll pop up a message and focus on the offending element:

chapter_07/04_submit_event/script.js (excerpt)

$("form").submit (function(event){
var error = false;
$(this).find("[type=text]").each(function(){
if (!$(this).val().length) {
alert("Textboxes must have a value!");
$(this).focus();
error = true;
return false; // Only exits the “each” loop

}

245

246

jQuery: Novice to Ninja

1)
if (error) {
event.preventDefault();
}
})s

With all these raw, form-based tools at your disposal, you can easily add validation
to your forms on a page-by-page basis. If you plan your forms carefully and develop
a consistent naming standard, you can use jQuery to generalize your validation so
that it can apply to many forms.

But—as we’ve already seen—there is an enormous number of edge cases to consider
when designing form validation. If you need really bulletproof validation and would
rather spend your time designing the user interaction, perhaps you should consider
the Validation Plugin.

Form Validation with the Validation Plugin

Building your own inline validation system can be a daunting endeavor; you need
to know regular expressions to be able to verify that an email address or phone

number is valid, for example. The Validation plugin can lend a hand here, as it lets
you add sophisticated and customizable inline validation to most forms with min-

imal effort.

We’ll stop short of going over every option available for use with this plugin here
(that would fill a whole chapter!), but we’ll look at the most common ones.

Let’s start with the form. To illustrate as many of the different validation options
as possible, we’ll go with a sign-up form that includes password and password
confirmation fields:

chapter_07/05_validation_plugin/index.html (excerpt)

<div id="signup">
<h2>Sign up</h2>
<form action="">
<div>
<label for="name">Name:</label>
<input name="name" id="name" type="text"/>
</div>
<div>

<label
<input
</div>
<div>
<label
<input
</div>
<div>
<label
<input
</div>
<div>
<label
<input
</div>

Forms, Controls, and Dialogs

for="email">Email:</label>
name="email" id="email" type="text"/>

for="website">Web site URL:</label>
name="website" id="website" type="text" />

for="password">Password:</label>
name="password" id="password" type="password"

for="passconf">Confirm Password:</label>
name="passconf" id="passconf" type="password"

<input type="submit" value="Submit!" />

</form>
</div>

/>

/>

To use the Validation Plugin, we simply need to call validate on a selection of our

form, passing it any options we want to use. The most important option is rules,

which is where you need to define rules used to validate the users’ input:

chapter_07/05_validation_plugin/script.js (excerpt)

$('#signup form').validate({

rules: {
name: {

required: true

}s
email: {

required: true,

email:

by

website:

true

{

url: true

by

password:

{

minlength: 6,
required: true

by

passconf:

{

equalTo: "#password"

}

247

248

jQuery: Novice to Ninja

b,
success: function(label) {

label.text('OK!"').addClass('valid');
}
})s

There are a considerable number of predefined validation rules available, and of
course you can define your own. You’ll need to consult the documentation to learn
about all of them. Here we’ve used required, email, url, minlength, and equalTo.

required marks a field as required, so it will be flagged as an error if it’s empty.
email and url validate the format of the field; emails must contain an @, URLs must
begin with http://, and so on. Inside the rules object, we define an object for each
form field, using the field’s name attribute. minlength is self-explanatory (and, as
you’d expect, there’s a corresponding maxlength). Finally, equalTo allows us to
specify a jQuery selector pointing at another form field, the contents of which will

be checked against the current field to see if they’re the same.

The Validation plugin will add a new label element after each form field to contain
the error message; by default, this will have a class of error, so you're free to style

it in as stern a fashion as you’d like.

The plugin will only display a message if a field’s value is invalid. User research
has shown, however, that users complete forms more quickly and confidently if
they’re also provided with feedback for correct entries. That’s why we’re using the
success callback to set the value of the message label, and giving it a class to style
it with a nice green check mark. success is passed the message element itself, so
you can manipulate it in any way you’d like. Our sample form is illustrated mid-

completion in Figure 7.3.

Forms, Controls, and Dialogs

Name:

Mr Speaker (/]

Email:

this is not an email Please enter a valid email address.
Web site URL:

http:/{sitepoint.com (/]

Password:

LA L L R LR L L L L) 0

Confirm Password:
LTI T Please enter the same value again.

ek
[Submit!)

Figure 7.3. Inline validation with the Validation plugin

It’s also possible to customize the error messages themselves, and it’s worth noting
that there are a number of localized variants in the localization folder of the plugin

directory.

This example is just the beginning of what’s possible with the Validation plugin.
Make sure you consult the documentation and the examples in the plugin’s demo
folder to explore all the available features. This is a powerful plugin with the sort

of features that we hope to see in the browser itself one day.

Maximum Length Indicator

Our client wants to limit the feedback form content field to 140 characters. “Like
Twitter?” you ask. “Why would you want to do that?” The team ramble off a spiel
about targeted feedback and attention span and ... but we know they just want to
copy Twitter. The “remaining characters” count is another popular feature, though

the idea of setting a limit on the length of input is as old as computers themselves.

By displaying the remaining characters next to the form field, users have clear ex-

pectations of how much they can type.

We’ll set a class of maxlength on the textarea we want to target with this effect.
Then, in our script, we append a span after it and add a new kind of event handler:

249

250

jQuery: Novice to Ninja

chapter_07/06_max_length_indicator/script.js (excerpt)

$('.maxlength')
.after("")
.next ()
.hide()
.end()
.keypress(function(event) {
// handle key presses;
1)

After we append the span, the textarea is still the selected element. We want to
modify the new span, so we move to it with the next action. Then we hide the span,
but now we need to go back to our form element to add an event handler, so we use
the end action. The end action moves the jQuery selection back to where it was before
the last time you changed it. In our example, hide doesn’t change the selection, but
next does. So when we call end, the selection moves back to the state it was in before
we called next.

Now that we’re back on the form element, we attach a keypress event handler. As
you might expect, this event fires whenever a key is pressed. Here we can check
whether another character is still allowed, and prevent the user from adding more
characters if it’s not:

chapter_07/06_max_length_indicator/script.js (excerpt)

var current = $(this).val().length;
if (current >= 130) {
if (event.which != 0 && event.which !== 8) {
event.preventDefault();

}
}

Now comes the meat of the effect: we grab the value of the element and use the
JavaScript length property to give us its length. If the current number of characters
is greater than the maximum length, we’ll prevent the key press from registering by
using the preventDefault action of the event.

When handling a keypress event, the event has a which property corresponding to
the ASCII code of the key pressed. Note that we’ve allowed the delete (ASCII code
0) and backspace (ASCII code 8) keys to function regardless of the number of

Forms, Controls, and Dialogs

characters. If we didn’t do this, the user could paste in a response that exceeded

the limit, yet be unable to delete any characters to make it fit:

chapter_07/06_max_length_indicator/script.js (excerpt)

$(this).next().show().text (130 - current);

The last task to do is display the number of remaining characters in the span we
created. We move to the next element, make sure it’s visible, and display the results
of our simple calculation to indicate how many more characters are allowed. If we
liked, we could add a method to change the span’s style, making it even easier to

know when the 140-character cap is reached.

Our solution is, admittedly, a little draconian for something as flippant as your av-
erage tweet, but it’s spot on if you want to limit the number of characters in a
credit card form, or even a software license registration.

Form Hints

A nice trick to decrease the amount of space a form takes up on the page is to move
the label for a form field inside the input itself. When users move their focus to the
field, the label magically vanishes, allowing them to start typing. If they leave the

field empty and move away, the original label text appears back in its place.

This technique is only appropriate for short and simple forms. In larger forms, it’s
too easy for users to lose track of what each particular field is for in the absence of
visible labels. This can be a problem if they need to revisit or change values they’ve
already entered.

That said, for simple forms like login or search forms, where most users are very
familiar with what each field is for, it can be a great way to save space and streamline
your interface. Looking at Figure 7.4, you could probably come up with a good guess
of how to implement the effect yourself. The only tricky part is how to return the
default value to the input when the user moves on without entering anything into
it.

251

252

jQuery: Novice to Ninja

Name

E-mail Address

Web Site URL

Figure 7.4. Form hints

If you guessed that we’d do it using the data action, you’d be correct. We’d love to
be able to use the HTML5 placeholder attribute, but we run into our usual support
troubles here: there’s still a considerable number of browsers that don’t support it,
and those that do require vendor-prefixed CSS to style it. So if we’re unable to trust
it being available in all browsers, you can see why we’re sticking with data. We’ll
store the default value in data for each clearable item, and if the value is still empty
when the user leaves, we’ll restore it from there:

chapter_07/07_form_hints/script.js (excerpt)

$('input.clear').each(function() {
$(this)
.data('default', $(this).val())
.addClass('inactive')
.focus(function() {
$(this) .removeClass('inactive');

if($(this).val() === $(this).data('default') ||
w$(this).val() === '') {
$(this).val('"');
}
})
.blur(function() {
if($(this).val() === '") {
$(this).addClass('inactive').val($(this).data('default'));
}
1)

P

We need to go through each element and save the default value when the document
loads. Then we keep track of the focus and blur events that will fire whenever the
user moves into or out of our inputs. On focus, we test if the value of the text box
is the same as our default text; if it is, we clear the box in preparation for the user’s
input.

Forms, Controls, and Dialogs

On the way out, we check to see if the text box is empty, and if it is we put the ori-
ginal value back in. We add and remove a class as we go; this allows us to style the
form fields differently when they’re displaying the hint. In our example, we have
simply made the text color a little lighter.

We know that we’re using jQuery to take on some of the load that HTML5 promises
to shoulder, but the support just isn’t there yet.

Check All Checkboxes

With text inputs firmly under our control, it’s time to move on to other form controls.
We’ll start off with a bugbear of StarTrackr’s users: there’s too much checkbox-
ticking required when filling in the various celebrity information forms. The result
is skewed data, bored users, and inaccurate reports on celebrities. Our client team
has asked that each category of statistic have a Check all box, so that the user can
toggle all the checkboxes off or on at once.

Knowing the jQuery form filters makes this task a walk in the park. We just have
to select all checkboxes in the same group, and check or clear them. The way we
group checkboxes together in HTML forms is by giving all the related items the

Same name:

chapter_07/08_check_all/index.html (excerpt)

<div class="stats">
Reason for Celebrity
<input name="reason"
type="checkbox" value="net" />Famous on the Internet

<input name="reason"
type="checkbox" value="crim" />Committed a crime

<input name="reason"
type="checkbox" value="model" />Dates a supermodel

<input name="reason"
type="checkbox" value="tv" />Hosts a TV show

<input name="reason"
type="checkbox" value="japan" />Big in Japan

<hr />
<input class="check-all"
name="reason" type="checkbox" />Check all
</div>

253

254 jQuery: Novice to Ninja

We’ve given the last checkbox the special class of check-all. This box will act as
our master checkbox: when it is checked or unchecked, our code springs to life.
First, we construct a selector string that will select all the checkboxes with the same
name as the master checkbox. This requires gluing a few strings together, to end up
creating a selector that looks like :checkbox[name=reason].

We then set all the related checkboxes to have the same checked value as our master
checkbox. Because our code is running after the user has changed the value, the
checked property will reflect the new state of the checkbox, causing all of the related
items to be either selected or deselected accordingly:

chapter_07/08_check_all/script.js (excerpt)

$('.check-all:checkbox').change(function() {

var group = ':checkbox[name=' + $(this).attr('name') + '1';
$(group) .attr('checked', $(this).attr('checked'));
1)

Performance Issues

If your page is large, trawling through every DOM node looking for checkboxes
can be slow. If you’re noticing pages becoming unresponsive, and you’ve taken a
look at making your selectors as efficient as possible, you might want to investigate
the context parameter of the jQuery selector, as it limits where jQuery will hunt
for your selections. We’ll cover the context parameter in Chapter 8.

Inline Editing

Inline editing (aka edit in place) was one of the first effects that truly showed Ajax’s
power to create naturally helpful controls. The first time you used an inline edit
box, you were amazed; every time after that, it was unnoticeable—it just worked
like it should work.

There are a number of ways you can recreate the effect. The easiest is to disguise
your form fields as labels: remove the borders, give them the same background
color as your page, and then add borders for when the user focuses on the fields.
This is a great cheat, and means your form acts just like a regular one (because it
is). However, this can be tricky to accomplish, and requires a lot of extra markup
and styles if you want different parts of the page to be editable.

Forms, Controls, and Dialogs

As aresult, a more common approach is to allow the editing of non-form elements:
p tags and title tags, for example. When the user clicks on the tag, the contents
are replaced with a text box or textarea that the user can interact with. When the

task is complete, the original tags are replaced with the new content.

We’ll use classes to mark content as being editable. For simple one-liners, we’ll use
input elements (by assigning the class editable), and for longer passages we’ll use
textareas (which we’ll give the class name editable-area). We’ll also be sure to
assign each element a unique id. This is so we can send the data to the server for
updating in the database, and reload the new data on the next pageload:

chapter_07/09_inline_editing/index.html (excerpt)

<h3 id="celeb-143-name" class="editable">Glendatronix</h3>

<p id="celeb-143-intro" class="editable-area">
When Glendatronix floated onto the scene with her incredible
debut ..

</p>

To make it work, we need to capture a few events. The first is the hover event,
which adds an effect that enables the user to see that the element is editable (we’ll

go with a tried-and-tested yellow background color).

We also want to capture the click event, which fires when the user clicks on the

editable content, and the blur event, which signifies the end of editing:

chapter_07/09_inline_editing/script.js (excerpt)

$('.editable, .editable-area')
.hover(function() {
$(this) .toggleClass('over-inline');
})
.click(function(event) {
// Start the inline editing
}) .blur(function(event) {
// End the inline editing

P

When the user clicks an editable area, our code kicks in. First, we grab a reference
to the element that was clicked and store it in the $editable variable (to prevent

us having to reselect it every time). We’ll also check for the active-inline class

255

256 jQuery: Novice to Ninja

with hasClass. If the element already has the active-inline class, it’s already an
edit box. We’d rather not replace the edit box with another edit box:

chapter_07/09_inline_editing/script.js (excerpt)

// Start the inline editing

var $editable = $(this);

if ($editable.hasClass('active-inline')) {
return;

}

Next up, we want to grab the contents of the element and then remove it. To obtain
the contents, we’ll just save the html data to a variable, but we’ll also use the $.trim
method to remove whitespace from the start and end of the content string. This is
necessary because, depending on how your HTML is laid out, the string could have
extra carriage returns and line spaces that we want to prevent showing up in the
text box. And as we’re sticklers for readable markup, we take our code-cleaning one
step further with our replace method. Our regular expression looks for closing p
tags, and adds two new line characters after them. When we edit an input we won’t
find any, but when we edit the textarea, our line breaks help to space the code out
nicely and make everything more readable. And as we know, if it’s more readable,
it’s more likely to be read!

Then we add our active class, which serves the dual purpose of indicating that
editing is in process, and providing a hook for our styles. Finally, we clear out the
current element with the empty action. This command is similar to remove, except
that calling empty on an element will result in all its children being removed, rather
than the element itself:

chapter_07/09_inline_editing/script.js (excerpt)

var contents = $.trim($editable.html().replace(/\/p>/g,"/p>\n\n"));
$editable
.addClass('active-inline")

-empty();

9 Chaining with empty and remove

It’s important to remember that any jQuery actions you chain after a remove or

empty command will be applied to the removed selection, and not the selection

Forms, Controls, and Dialogs

that you had before you removed the elements. The reasoning behind this is that
if you simply threw away the elements, they’d be lost forever. This way you have
the option to keep them around, process them, or store them for future use.

Finally, it’s time to insert our brand new text box or textarea. We’ll check for the
editable class to determine what kind of form element we need to append (remem-
ber that we indicated multiline content with editable-area). We then set the new
element’s value with the contents of the elements we removed, and append it to

the target element:

chapter_07/09_inline_editing/script.js (excerpt)

// Determine what kind of form element we need
var editElement = $editable.hasClass('editable') ?
= '<ipput type="text" />' : '<textarea></textarea>';

// Replace the target with the form element
$(editElement)
.val(contents)
.appendTo($editable)
.focus()
.blur(function(event) {
$editable.trigger('blur');

})s

You might be curious about the use of the trigger function. It’s simply a different
way to cause an event to fire (so, in this example, we could also have used the
$editable.blur () syntax we’ve already seen). The trigger action is more flexible
than its shorter counterpart, but for now we’ll just stick with the basic usage.

trigger is being used in this example for clarity: to show whoever is reading the
code that we want to manually fire an event. In this case, we’re just passing on the
event; the input was blurred, so we tell the original element that it’s time to finish
editing. We could manage all this inside the input box’s blur event handler, but
by delegating the event, we avoid nesting our code another level (which would
make it harder to read). It also makes sense to let the original element deal with its

own logic.

The counterpart to trigger is bind. bind lets us add event handlers to an object.
Sound familiar? So far we’ve been binding events by using shorthand convenience

257

258

jQuery: Novice to Ninja

methods like click, hover, ready, and so on. But if you pop the hood, you’ll see
that internally they all rely on bind.

The bind action takes a string containing the name of the event to bind, and a call-
back function to run. You can also bind multiple events to an item in a single call
by wrapping them in an object. For example, our code attached three separate events
to .editable and .editable-areaelements: click, hover, and blur. If you wanted
to, you could rewrite that with the bind syntax:

$('.editable, .editable-area').bind({
hover: function(e) {
// Hover event handler

s

click: function(e) {
// Click event handler

s

blur: function(e) {
// Blur event handler

}
P

Let’s return to our example; with the editing over, we can go back to our default
state. We’ll grab the value from the form element, and send it to the server with
$.post, putting a “Saving ...” message in place as we do so. When the POST is done,
we eliminate the message and replace it with the updated value. As with the Ajax
functionality we saw in the previous chapter, we’re faking a server-side response
with an empty save file. In a real world application, you’d want to check that the
changes had actually been saved to the database by checking the response data:

chapter_07/09_inline_editing/script.js (excerpt)

.blur(function(event) {
// end the inline editing
var $editable = $(this);

var edited = $editable.find(':first-child').val();
$editable

.children()

.replaceWith('<em class="ajax">Saving .. "');

// post the new value to the server along with its ID
$.post('save',

Forms, Controls, and Dialogs

{id: $editable.attr('id'), value: edited},
function(data) {
$editable
.removeClass('active-inline')
.children()
.replaceWith(edited);
if ($editable.hasClass('editable-area')) {
rapture($editable);
}
}
)5
1)

There is only one new jQuery function in this block of code, and it is fairly self-
explanatory. replaceWith() swaps whatever you’ve selected with whatever you
pass to it. Be careful when using it, though; in our example, we know that our se-
lector will only return one collection, but if it returned multiple collections, each
of those would be replaced with the same loading message!

The last method we call is rapture, and we pass it the $editable parameter that
we’ve been using. We wrap the method call in an if conditional to make sure we
only apply it to our edits to the textarea content. Speaking of content, this last
method introduces us to our last new jQuery function for the minute, contents:

chapter_07/09_inline_editing/script.js (excerpt)

var rapture = function (which) {
$(which).contents().filter(function() {
return this.nodeType === 3;
})
.wrap('<p></p>")
.end()
.filter('br")
.remove ()
.end()
.end()
.children().filter(function() {
$(this).html($.trim($(this).html().replace(/(\t|\n)/g,"")));
return !$(this).text().length
}) .remove();

259

260

jQuery: Novice to Ninja

We’re sure you’ve checked out the jQuery documentation by now, so you’re probably
going to recognize the use of the contents method here. contents is similar to
children in that the descendants of an element are selected. The big difference is
that the children method only collects elements, whereas the contents method
collects all nodes—text nodes as well as elements. This is useful in our editor, as
we’re unaware of the formatting for the copy added to the textarea. It could be
typed, or copied and pasted—we don’t know. What are we to do?

Like the documentation, we’re going to filter each member of the contents collection.
A nodeType of 3 means the node is text, so we wrap those nodes in paragraph tags
in order to manipulate them if we need. Now we start some fun with the end

method. Our first end sends us back to the contents collection, and we now filter
the br elements and remove them. We just talked about the remove method holding
DOM items we’ve removed, so we now need to call end or our next chained methods
will be acted upon. And as we’re in the mood for a little end action, let’s call another
to bring the focus of our chain right back to the original $(which) collection.

Calling children now means we once again have a collection of element nodes
only, and not all node types from our $(which). That’s an important difference,
and one to look out for. Next, we filter our child elements and use the filtering
method to help with cleaning our pasted content. Each child element is given a
trim, and has any tab and new-line special characters replaced with an empty
string. The result is well-formed, clean HTML, and when we then remove any empty
p elements, our code is certainly fit to be saved.

We paste this:

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et

dolore magna aliqua.

Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
nisi ut aliquip ex ea commodo consequat.

Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.

And it’s transformed to this:

Forms, Controls, and Dialogs

<p>Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua.</p>

<p>Ut enim ad minim veniam, quis nostrud exercitation ullamco
laboris nisi ut aliquip ex ea commodo consequat.</p>

<p>Duis aute irure dolor in reprehenderit in voluptate velit esse
cillum dolore eu fugiat nulla pariatur.</p>

Even better, by cleaning it and adding whitespace when we make the content edit-
able, it’s fit to be edited. Okay, it may well have been easier for our client to have
sourced the content through other channels, but now at least if a user needs to cut

and paste in to our editable areas they’ll enjoy doing it!

Autocomplete

We’ve appeased the client; the team are having a blast playing with the inline edit
fields over in the corner. While we have a few minutes before the next request, let’s
really aim to impress by having the Last known whereabouts field of the celebrity

form autocomplete from a list of major cities. The resulting functionality is illustrated

in Figure 7.5.

As of jQuery UI 1.8, we have two options up our sleeve. We could use the Autocom-
plete plugin from the jQuery plugin repository; it’s a full-featured and stable plugin
that provides exactly the functionality we need, with minimum weight. Or we could
use the variation from jQuery 1.7, which has far fewer options than the plugin, but
is still very powerful. Let’s try both options, just because we can.

Last known whereabouts:

| (Add)

Melbourne

Maontreal i
Mexico

Madrid

Figure 7.5. Autocompleting Last known whereabouts field

261

262

jQuery: Novice to Ninja

First, we need the plugin. Head over to the repository and grab it,? have a quick
look at the examples, and include it in your page.

We’ll also need to set some CSS styles. There’s an example CSS file included with
the plugin, so you can gain some idea of the classes that are added. We’ve used
several of these styles to give our drop-down suggestion list a standard appearance.

The Autocomplete plugin attaches itself to a select box. We're applying it to the
location field in our simple form:

chapter_07/10_autocomplete/index.html (excerpt)

<label for="location">Last known whereabouts:</label>
<input type="text" id="location"/>

Now let’s see what the Autocomplete plugin can do for us. By default, it requires a
local collection of data stored in an array; this is perfect for us, as we want to source
our data from an HTML list on the page:

chapter_07/10_autocomplete/script.js (excerpt)

var cities = ['Paris', 'New York', 'Milan', 'Stockholm' ..];
$('#location').autocomplete(cities, {
autoFill: true,
selectFirst: true,
width: '240px'
1)

We’ve simply passed in a JavaScript array, but the plugin also allows us to pass in
a URL, in which case it will retrieve the list of potential values via Ajax. Autocom-
plete will expect a plain-text return comprising one value per line, which should
be easy to obtain after a quick chat with your back-end developers!

The above code is enough to get it up and running, but we can also specify a bunch
of options. autoFill gives us a nice type-ahead effect (filling out the text box with
the currently suggested completion), while matchContains will cause it to match
substrings of words, rather than just the first letters, and so on. There’s a lot you
can fine-tune, so it’s worth having a quick study of the options list.

2 http://docs.jquery.com/Plugins/Autocomplete

http://docs.jquery.com/Plugins/Autocomplete

Forms, Controls, and Dialogs

The plugin also fires the result event when the user chooses an option. It will give
us the name of the tag that was selected as the second parameter passed to our event
handler (after the event object). For example, the following would alert the selected

option when it’s selected:

$('#location')
.autocomplete(cities)
.result(function(event, selection) {
alert(selection);

P

Very simple, but very funky. And the client team are still playing with the last toy
we built for them! Let’s use the time to swap our code using jQuery UI, like we said,

and aim for Figure 7.6.

Last known whereabouts
" (Add!
Milan

Melbourne
Montreal
Mexico

Madrid

Figure 7.6. jQuery Ul Autocompleting Last known whereabouts field

Our first task is to make sure we have a version of jQuery UI that incorporates
Autocomplete. That’s anything after 1.8, so we include it in our page as we’re used
to doing. And that’s almost it! No HTML changes and no CSS changes; we just use
the code from our plugin example. There are only minor changes to our code:

chapter_07/10a_uiautocomplete/script.js (excerpt)

var cities = ['Paris', 'New York', 'Milan', 'Stockholm' .. 1;
$('#location').autocomplete ({
source: cities

P

263

264

jQuery: Novice to Ninja

There are further options to try out if the client thinks that autocompleting is the
bee’s knees, and you can access them from the jQuery Ul site. It also has an excellent
blog post there describing some of the most powerful features that you’re going to
want to check out.

So that’s two Autocomplete options tested while the client team’s been briefly dis-
tracted. Perhaps we're a bit too good at playing with form elements, and had better
return to the to-do list.

Star Rating Control

Building a large celebrity-stalking community is our client’s primary goal. The team
are starting to realize that the site users are becoming their product, a product they
can start selling to advertisers. Keen to explore this possibility, they want to increase
user engagement, and help users feel important. After all, it’s important to look after
your product. We’ve thought about this a bit, and tossed them a star rating idea;
after all, people love nothing more than to express their feelings through the assign-
ment of gold stars. Our control will appear as shown in Figure 7.7.

(" Submit Rating 3
Figure 7.7. Star rating control

The basis for our star rating control is a radio button group. It’s perfect, as the browser
enforces a single selection from the group. You can select the range that you want

the user to choose from simply by adding the correct number of buttons:

chapter_07/11_star_ratings/index.html (excerpt)

<div class="stars">

<label for="rating-1"><input id="rating-1" name="rating"
wtype="radio" value="1"/>0.5 Stars</label>

<label for="rating-2"><input id="rating-2" name="rating"
wtype="radio" value="2"/>1 Star</label>

<label for="rating-3"><input id="rating-3" name="rating"
wtype="radio" value="3"/>1.5 Stars</label>

<label for="rating-4"><input id="rating-4" name="rating"
wtype="radio" value="4"/>2 Stars</label>

3 http://blog.jqueryui.com/2010/08/extensible-autocomplete/

http://blog.jqueryui.com/2010/08/extensible-autocomplete/

Forms, Controls, and Dialogs

<label for="rating-5"><input id="rating-5" name="rating"
wtype="radio" value="5"/>2.5 Stars</label>

<label for="rating-6"><input id="rating-6" name="rating"
wtype="radio" value="6"/>3 Stars</label>

<label for="rating-7"><input id="rating-7" name="rating"
wtype="radio" value="7"/>3.5 Stars</label>

<label for="rating-8"><input id="rating-8" name="rating"
wtype="radio" value="8"/>4 Stars</label>

</div>

The hard part, of course, is replacing these radio buttons with our star control. You
can try to grapple with styling the HTML controls with only CSS, but it will be
much easier and more flexible if you split the control into two parts: the underlying
model that stores the data, and the shiny view with stars. The model, in this case,
is the original HTML radio button group. Our plan of attack is to hide the radio
buttons, and display a list of links that we’ve added via jQuery, styled to look like
stars. Interacting with the links will switch the selected radio button. Users without
JavaScript will simply see the radio buttons themselves, which is fine by us.

We’ll call on sprites once more to help us easily style the stars. This way our control
will only be reliant on a single image (shown in Figure 7.8), which saves on HTTP

requests and makes it easier for our graphic designers to edit.

Figure 7.8. Star CSS sprite image

Our CSS will apply the CSS sprite image to the links we create that represent half-
stars. To move between the different image states, we just need to update the
background-position property:

chapter_07/11_star_ratings/stars.css (excerpt)

.stars div a {
background: transparent url(sprite_rate.png) 0 O no-repeat;
display: inline-block;

265

266 jQuery: Novice to Ninja

height: 23px;
width: 12px;
text-indent: -999em;
overflow: hidden;

}

.stars a.rating-right {
background-position: 0 -23px;
padding-right: 6px;

}

.stars a.rating-over {
background-position: 0 -46px;

}

.stars a.rating-over.rating-right {
background-position: 0 -69px;

}

.stars a.rating {
background-position: 0 -92px;

}

.stars a.rating.rating-right {
background-position: 0 -115px;

}

We’ve decided to make the user select a rating out of four stars, rather than the
usual five. Why? User psychology! Offer a person a middle road and they’ll take it;
by having no middle, we make the users think a bit more about their selection. We
achieve more accurate results, and we’re better able to present users with the best
content (as chosen by them).

But four is a limited scale; that’s why we want to allow for half-star ratings. This is
implemented via an optical illusion; you probably noticed that our star images are
chopped in half. Our HTML will contain eight radio buttons, and they’ll each be
worth half a star. There’s two parts to the code for transforming our eight radio
buttons into four stars. First, the createStars function will take a container with
radio buttons and replace it with star links. Each star will then be supplemented
with the proper event handlers (in the addHandlers method) to let the user interact
with the control. Here’s the skeleton of our starRating object:

Forms, Controls, and Dialogs

chapter_07/11_star_ratings/script.js (excerpt)

var starRating = {
create: function(selector) {
$(selector).each(function() {
// Hide radio buttons and add star links
1)
s

addHandlers: function(item) {
$(item).click(function(e) {
// Handle star click
})
.hover(function() {
// Handle star hover over
},function() {
// Handle star hover out
1)
}
}

The create method iterates through each container matching the selector we pass
in, and creates a list of links that act as a proxy for the radio buttons. These links
are what we’ll style to look like stars. It will also hide the original form elements,
so the user only sees our lovely stars:

chapter_07/11_star_ratings/script.js (excerpt)

$(selector).each(function() {
var $list = $('<div></div>');
// loop over every radio button in each container
$(this)
.find('input:radio')
.each(function(i) {
var rating = $(this).parent().text();
var $item = $('")
.attr('title', rating)
.addClass(i % 2 == 1 ? 'rating-right' : ''")
.text(rating)

)

starRating.addHandlers($item) ;
$list.append($item);

if ($(this).is(':checked')) {

267

268

jQuery: Novice to Ninja

$item.prevAll().andSelf().addClass('rating');
}
})s

We start by creating a container for the new links (a div element); we’ll be creating
one new link for each of the radio buttons we’re replacing. After selecting all the
radio buttons with the :radio selector filter, we take each item’s rating and use it

to create a hyperlink element.

@ Conditional Assignment with Modulus
—

For the addClass action, we're specifying the class name conditionally with a
ternary operator (see the section called “Fading Slideshow” in Chapter 4), based
on a bit of math. As we’ve done earlier in the book, we’re using the modulus (%)
operator to determine whether the index is even or odd. If the index is odd, we’ll
add the rating-right class; this makes the link look like the right side of a
star.

Once our link is ready, we pass it to the addHandlers method; this is where we’ll
attach the events it needs to work. Then we append it to the list container. Once
it’s in the container, we see if the current radio button is selected (we use the
:checked form filter). If it’s checked, we want to add the rating class to this half-
star, and to all the half-stars before it. Any link with the rating class attached will

be assigned the gold star image, allowing users to see the current rating.

To select all the elements we need to turn gold, we’re going to enlist the help of a
couple of new jQuery actions: prevAll and andSelf. The prevAll action selects
every sibling before the current selection (unlike the prev action, which only selects
the immediately previous sibling). For our example, we want to add the class to
the previous siblings and the current selection. To do so, we apply the andSelf
action, which simply includes the original selection in the current selection. Now
we have all the links that will be gold, so we can add the class.

Other Traversal Methods

You might have guessed that, along with prevAll, jQuery provides us with a
nextAll method, which grabs all of an element’s siblings occurring afterit in the
same container. jQuery 1.4 introduced two new companion methods: prevUntil

Forms, Controls, and Dialogs

and nextUntil. These are called with a selector, and will scan an element’s sib-
lings (forwards or backwards, depending on which one you're using) until they
hit an element that matches the selector.

So, for example, $('h2:first').nextUntil('h2"'); will give you all the
elements sitting between the first h2 on the page and the following h2 in the same
container element.

If you pass a second parameter to prevUntil or nextUntil, it will be used as a
selector to filter the returned elements. So, for example, if we had written next -
Until('h2', 'div'), it would only return div elements between our current

selection and the next h2.

After doing all this hard work, we can now add the new list of links to the control,
and get rid of the original buttons. Now the user will only interact with the stars:

chapter_07/11_star_ratings/script.js (excerpt)

// Hide the original radio buttons
$(this).append($list).find('label').hide();

The control looks like it’s taking shape now, but it doesn’t do anything yet. We need
to attach event handlers and add some behavior. We're interested in three events.
When users hover over a star, we want to update the CSS sprite to show the hover
state; when they move away, we want to revert the CSS sprite to its original state;
and when they click, we want to make the selection gold:

chapter_07/11_star_ratings/script.js (excerpt)

$(item).click(function(e) {
// Handle star click
})

.hover(function() {
$(this).prevAll().andSelf().addClass('rating-over');

},function() {

$(this).siblings().andSelf().removeClass('rating-over');

P

The hover function is the easiest: when hovering over, we select all the half-stars
before—including the current half-star—and give them the rating-over class using
prevAll and andSelf, just like we did in the setup. When hovering out, we cover

269

270 jQuery: Novice to Ninja

our bases and remove the rating-over class from all the links. That’s hovering

taken care of.

Now for the click:

chapter_07/11_star_ratings/script.js (excerpt)

// Handle Star click
var $star = $(this);
var $allLinks = $(this).parent();

// Set the radio button value

$alllLinks
.parent()
.find('input:radio[value=' + $star.text() + ']')
.attr('checked’', true);

// Set the ratings
$alllLinks.children().removeClass('rating');
$star.prevAll().andSelf().addClass('rating');

// prevent default link click
e.preventDefault();

The important part of handling the click event is to update the underlying radio
button model. We do this by selecting the correct radio button with the : radio filter
and an attribute selector, which searches for the radio button whose value matches

the current link’s text.

With the model updated, we can return to messing around with the CSS sprites.

First, we clear the rating class from any links that currently have it, then add it
to all the links on and before the one the user selected. The last touch is to cancel
the link’s default action, so that clicking the star doesn’t cause it to fire a location

change.

Controls

That takes care of our client’s primary concern: form usability. Now we can start
doing some of the really fun stuff. jQuery and jQuery UI are the perfect tools for
moving beyond the primitive HTML form controls we all know and accept. Once
we leave the stuffy confines of the Web’s ancient history behind, we find that the

Forms, Controls, and Dialogs

ability to create amazing new controls is limited only by our imagination. After all,
there should be more ways to interact with a website than entering some text in a

box!

Buttons

Our star rating control was a great example of masking semantic HTML to enhance
the user experience, but we don’t always have to be quite so flash. Often, we just
want a user to be able to respond without having to wonder what the little circles
and squares mean in the form elements at our disposal. jQuery Ul comes to the
rescue here as well. Whether you’re in the market for an entire toolbar of buttons,
a set of buttons to mask a group of radio buttons, or one of those sexy split buttons,

jQuery UI makes it oh-so-simple.

“How simple?” we hear you ask. Almost too simple: just add jQuery UI’s JavaScript
and CSS files to your page, build some semantic HTML, add a tiny script call, and

you’re done. But don’t take our word for it:

chapter_07/12_buttons/index.html (excerpt)

<fieldset id="radio">

<input type="radio" id="radiol" name="radio" /><label
wfor="radiol">Find a celebrity</label>

<input type="radio" id="radio2" name="radio" checked="checked"
w /><]abel for="radio2">Report a celebrity</label>

<input type="radio" id="radio3" name="radio" /><label
wfor="radio3">Become a celebrity</label>

</fieldset>

That’s all the code we need, and there’s nothing we weren’t already using. And

here’s all the script we’ll need:

chapter_07/12_buttons/script.js (excerpt)

$('#radio').buttonset();

So how good does it look? The first example in Figure 7.9 is our code, the second

is our enhanced solution.

271

272

jQuery: Novice to Ninja

An den ... ?

(OFind a celebrity ®)Report a celebrity () Become a celebrity

An den ... ?

Find a celebrity [: y Become a celebrity

Figure 7.9. jQuery Ul buttons

If you're anything like us, your mouse finger is itching to click those buttons right
now. The fact that they’re ARIA (Accessible Rich Internet Applications)-enhanced
just makes us want to click them even more.

Date Picker

Our client team want to add a “CelebSpotter” section to the site, where their users
will be able to report celebrity spottings. Of course, users will need to report the
date and time of the spotting. Early tests of this functionality showed that users
were often confused by the date format they were required to enter. This problem
was partially offset by adding sample data and format hinting, but the team want
to take it further and add a fancy date picker to the form.

If you've ever sat down to create a reasonably functional date picker in JavaScript,
you’d be inclined to avoid ever doing it again. It’s a lot of hard work for a control
that’s, in the end, just a date picker. Mind you, date pickers are crucial controls that
can be insanely frustrating when done wrong. The problem is that because they're
so involved, there are a lot of ways they can go wrong. Fortunately for our sanity,
jQuery Ul contains a highly customizable and full-featured date picker control that
lets us avoid many of the potential pitfalls of building one ourselves. An example
of this control is shown in Figure 7.10.

Forms, Controls, and Dialogs

Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr S5a

1 1

13 14| 15 16| 17| 18| 19
20 21| 22 23| 24| 25| 26

17 28| 29 o) 31

Done
Figure 7.10. jQuery Ul date picker control

We’ll start with the input field currently being used for the date:

chapter_07/13_date_picker/index.html (excerpt)

<input type="text" id="date" />

If you're just looking for the basic date picker, the jQuery code can be no more
complicated than a single line:

$("#date").datepicker();

The date picker is triggered when the input box receives focus, and slides into
view with the current month and day selected. When the text box loses focus, or
when a date is selected, it disappears. Sure, it looks very nice, and works with the
jQuery smoothness we expect—but what does it offer us over and beyond competing
date pickers? (Remember, just because you’re using jQuery, it doesn’t mean you
should ignore other suitable JavaScript components, or even HTML5.)

The date picker component in jQuery Ul is feature-packed. Packed! It is fully local-
izable, can handle any date formats, lets you display multiple months at once, has
a nifty date range mechanism, allows configurable buttons, is keyboard navigable
(you can move around with ctrl + arrow keys), and more.

All told, there are over 50 options and events available to you to tweak—almost
every tiny aspect of the date picker! To make the calendar you see in Figure 7.10,
we’ve used just a few of them:

273

274 jQuery: Novice to Ninja

chapter_07/13_date_picker/script.js (excerpt)

$('#date') .datepicker({
showOn: 'both',
buttonText: 'Choose a date',
buttonImage: 'calendar.png’,
buttonImageOnly: true,
numberOfMonths: 2,
maxDate: '0Od',
minDate: '-1m',
showButtonPanel: true

1)

The showOn lets us choose when the calendar will pop up. The available options
are 'focus' (when the text box receives focus), 'button’' (a button is added next
to the text box, which users can click to open the calendar), or 'both' (which allows
for both options). To use an icon for the button, we’ve specified a buttonImage. We
also set buttonImageOnly to true; this means that only the image will be displayed,
rather than a standard form button.

Next up, we’ve set the numberOfMonths to 2; this means the user will see two months’
worth of days at the same time. You can even specify an array instead of an integer;

for example, [3, 3] will show a 3x3 grid of months!

The maxDate and minDate options let you set the range within which the user can
select a date. You can specify a JavaScript date object, or you can use a string to
dictate relative dates. The latter option is usually easier, and that’s what we’ve done
here. We've set the maxDate as 0, which stands for today’s date. The minDate we’ve
set as -1m -1w; this means that the user can only select a date that is up to one
month and one week in the past. You can plus or minus as much time as you need:
y for year, m for month, w for week, and d for day.

Again, many of the options for our date picker will someday be championed by our
browsers and HTML5, but we’re not quite there yet. So again, familiarize yourself
with HTML5 and investigate a shim (software that implements a compatibility
workaround) to bolster older browser support, but be comfortable knowing that
what you learn about jQuery and JavaScript here will be useful to you for quite a
wee while.

Forms, Controls, and Dialogs

@ Date Validation

You may have set a maximum date for the date picker, but users are still able to
select a date outside of that range, and enter it into the text box manually. If you
must ensure that dates are within a given range, you need to be performing valid-
ation on the server side. The date ranges you specify in the date picker options
are to assist your users in picking valid options; that way, they avoid submitting

a form that contains frustrating errors.

Date Picker Utilities
The jQuery Ul library also provides a few date picker utilities to globally configure

the date pickers, as well as making it easy to play with dates.

The $.datepicker.setDefaults method accepts an object made up of date picker
settings. Any settings that you specify will be applied to all date pickers on the
page, unless you manually override the defaults. For example, if you want every

date picker to show two months at a time:

$.datepicker.setDefaults({
numberOfMonths: 2

P

The remaining utility functions are for manipulating or assisting with dates and
date formats. The $.datepicker.iso8601Week function accepts a date and returns
the week of the year it’s in, from 1 to 53. The $.datepicker.parseDate function
extracts a date from a given string; you need to pass it a string and a date format (for
example, "mm-dd-yy"), and you’ll receive a JavaScript date object back. Finally, the
$.datepicker.formatDate does the opposite. It will format a date object based ac-

cording to the format you specify—great for displaying dates on screen.

Sliders

Our client team want visitors to be able to find the celebrities they’re looking for

quickly and easily. The team also recognize that many of their own clients will be
looking for celebrities who command working prices within a particular range, so
they want us to add a price range filter to the site. This is a perfect opportunity to

introduce another great jQuery Ul component: slider!

275

276 jQuery: Novice to Ninja

We’ll start with a basic form, consisting of two select boxes: one for the maximum
price, and one for the minimum price. Then we’ll call on jQuery Ul to add a fancy
slider to control the values of those boxes. The end result is illustrated in Figure 7.11.

Drag the slider to filter by price:

203A Johny Stardust (bio) Front-man Los Angeles $79
141B Beau Dandy (pic,bio) Singer Mew York 339
6636 Glendatronix (bio,press) Keytarist London 355

Figure 7.11. A jQuery Ul slider

Let’s have a look at the basic markup:

chapter_07/14_sliders/index.html (excerpt)

<div id="price-range">
<form action="">
<fieldset>

<label for="min">Minimum Price:</label>

<select id="min" name="min">
<option value="0">0</option>
<option value="10">10</option>
<option value="20">20</option>

<option value="80">80</option>
<option value="90">90</option>
</select>

<label for="max">Maximum Price:</label>
<select id="max" name-"max">
<option value="10">10</option>
<option value="20">20</option>
<option value="30">30</option>

<option value="100">100</option>
</select>
</fieldset>
</form>
</div>

Forms, Controls, and Dialogs

Now for a look at the code. When the page loads, we first grab the current maximum
and minimum values in the select boxes. Then we initiate our slider by calling

the slider method on a newly created empty div:

chapter_07/14_sliders/script.js (excerpt)

var max
var min =

('#max').val();

$
$('#min').val();

var rangeSlider = $('<div></div>")
.slider({
min: O,
max: 100,
step: 10,
values: [min, max],
range: true,
animate: true,
slide: function(e,ui) {
$(this)
.parent ()
.find('#min')
.val(ui.values[O0]);
$(this)
.parent ()
.find('#max')
.val(ui.values[1]);
showCelebs();
}

})
.before('<h3>Drag the slider to filter by price:</h3>');

$('#price-range').after(rangeSlider).hide();

Whoa! That’s a lot of options. Let’s see if we can break them down: min and max are
the minimum and maximum values of the slider, respectively. step is the amount
by which the slider increments. values is used for specifying the default value of
the slider. Because we’ve specified an array of two values, the slider bar will have
two handles, each with a separate value. Here we’re using the values from the select
lists that we grabbed earlier, so that the slider will always match up with the data
in those boxes.

range and animate are helpful options when creating a slider with more than one
handle, as we’re doing here: range indicates that the area between the handles

277

278

jQuery: Novice to Ninja

should be styled differently, usually with a shadow or a different color. This option
can also be set to min (in which case the area between the minimum and the first
handle will be shaded) or max (which will shade the area between the last handle
and the maximum). animate simply tells jQuery to animate the handle’s position

smoothly if the user clicks elsewhere on the bar, rather than simply jumping there.

Finally, slide allows you to specify an event handler that will run whenever the
user moves the handles on the slider. The event handler can accept an optional ui
parameter that allows you to access some of the slider’s properties; here we’re using
the values property to adjust the values of our select boxes. We also call showCelebs,
a custom method in which we’ll show or hide celebrities, depending on whether
their prices fall within the chosen range.

It’s also possible to capture the change event, which is very similar to the slide
event except that it will also fire if the slider’s values are modified programmatically
(slide only fires when the user interacts directly with the slider).

The jQuery Ul slider component will create a horizontal slider by default—but if
you want a vertical one you can specify orientation: 'vertical'.

We’ve used before and after to add a title to our slider and affix it to the page,
and we’ve also hidden the original select boxes. Try this now, and you’ll see a
nicely themed slider that you can play with, and which will adjust the values of
the select boxes.

In order to make it filter the celebrities, we simply need to implement the showCelebs
method:

chapter_07/14_sliders/script.js (excerpt)

function showCelebs() {
min = $('#min').val();
max = $('#max').val();
$('.data tr').each(function() {
var price = parseInt($(this).find('td:last').text().
wsubstring(1));
if (price >= min && price <= max) {
$(this).fadeIn();
} else {
$(this).fadeOut();

Forms, Controls, and Dialogs

P

We extract the values of the select boxes, then cycle through each row in the
celebrities table, and hide or show it depending on whether or not the price is
within the selected range. The only tricky part here is a bit of JavaScript string
processing, required to extract the price from the row text; we use substring(1)
to extract everything from the first character on (which will conveniently strip the
prices of their dollar signs). Then we use parseInt to turn the string into a number.

We’ll also call showCelebs on document-ready, so that the list is prefiltered based

on the default values in the form.

This works as expected, and allows users to visually filter celebrities based on their
desired price range. Sliders are a great Ul widget because they’re so intuitive: users
will know how to use them without being told. You can probably come up with a
few other controls that could benefit from being sliderized!

Drag and Drop

Dragging and dropping is coming of age. It’s always been there in the background,
but has felt out of place (and therefore detrimental to a good user experience) next
to the mundane text boxes and radio buttons that make up a typical form. But that
was the olden days, with olden-day forms. Today, if done well, drag and drop can
augment forms in a highly usable way, providing a more natural experience that

increases productivity. It also supplies a dash of coolness.

If there’s one task that even beginner computer users know how to do, it’s to drag
an item to the trash. The metaphor is very satisfying: if you don’t want it, throw it
away! On the other hand, the standard web approach—click the checkbox and press
delete—is also well known, but far less fulfilling. Our client prefers the former
method, dragging stuff to its doom and having it literally disappear with a puff of
smoke to show that it’s truly been destroyed.

Figure 7.12 shows an image thumbnail in mid-destruction. The user has selected a
photo, and dragged it out of the grid and into the trash. The grid of photos is nothing
more than a set of img tags. You can choose any type of element to be draggable,
just as long as you can make it look pretty and work well for your users. A nice

279

280

jQuery: Novice to Ninja

touch is to set cursor: move on the draggable elements; that way, users will see
the “grabby hand” icon and know they can drag it.

Figure 7.12. Drag, drop, and destroy

As always, we’ll start with the markup:

chapter_07/15_drag_drop/index.html (excerpt)

<div class="trash">

Drag images here to delete
</div>
<div id="photo-grid">

</div>

Q Progressive Enhancement

For the sake of illustration, we’re including the .trash div in the markup here.
However, this poses a problem for users with JavaScript disabled; they’ll see a
trash area, but will be unable to do anything with it! In a real-world app, you’d
want to start with a fully functional, HTML form-based interface for deleting images
(or whatever it is you intend to use drag and drop for). Then you’d use all the
methods we’ve seen throughout the book to remove those interface elements from
the page, and replace them with the above drag-and-drop markup.

Drag and drop can be a real pain to make work across browsers. Instead of reinventing
the wheel, we’ll look to our trusted jQuery companion, jQuery UL It provides a
couple of very handy interaction helpers—draggable and droppable—to handle

smooth cross-browser drag and drop.

Forms, Controls, and Dialogs 281

@ No Theme Required!

You’ll need to include the jQuery Ul library in your page as we’ve covered before,
but this time no CSS theme file is required; draggable and droppable are beha-
viors, with no preset styling necessary. They do, however, give you some quite

handy class names to apply your own styles to, which we’ll look at shortly.

Let’s sketch out the basic structure of our interaction code:

chapter_07/15_drag_drop/script.js (excerpt)

$ (document) .ready (function() {
$('#photo-grid > img').draggable ({
revert: 'invalid'

1)
$('.trash').droppable({
activeClass: 'highlight',
hoverClass: 'highlight-accept',
drop: function(event, ui) {
puffRemove ($(ui.draggable));

function puffRemove(which) {
// Implement the “puff-of-smoke” effect

}

This is the skeleton of our interaction. There’s still a lot we need to do to achieve
a nice “puff” animation, but, incredibly, that’s everything we need for drag and

drop! Let’s take a closer look at what jQuery UI has given us.

draggable

The draggable interaction helper makes whatever you select draggable with the
mouse. Try this out for size: $('p').draggable(). It can make every <p> tag on the
page draggable. Test it out—it’s a lot of fun. Naturally, there are stacks of options
and events to customize the behavior. Here are some of the more helpful ones:

$('p').draggable({axis: 'y', containment: 'parent'});

282

jQuery: Novice to Ninja

The axis option restricts the object to be draggable along either the X or Y axis only,
and the containment option confines the object to a bounding box; acceptable values
are 'parent’', 'document’', and 'window' (to stay within the respective DOM ele-
ments), or an array of values to specify pixel boundaries in the form [x1, y1, x2,
y2]. You can also use the grid option to confine dragging to a grid, by specifying

a two-element array (for example, grid:[20,20]).

Let’s look at another example:

$('#draglt').draggable({ handle:
‘p:first', opacity: 0.5,
helper: 'clone'

P

For this next bunch of options, we’re operating on a div called dragIt, which
contains at least one <p> tag. We use the handle option to designate the first p ele-
ment as the “handle” users can use to drag the draggable element around. We also
specify the helper option, which allows you to specify an element to represent the
node being dragged around. In this case, we’ve set this option to clone. This causes
the element to be duplicated, so that the original element will stay in place until
you’ve finished dragging. The opacity applies to the helper element.

The other option worth noting is revert. If you set this to invalid (as we did in
our photo-dragging example), the element you drag will spring back to its original
position if you drop it outside of a droppable target area.

There are also three events you can catch—start, stop, and drag—that fire when
you start dragging, stop dragging, and are in mid-drag, respectively. In our example
we only need to react to drop, but you can easily conceive of situations where the

other two events could be put to good use.

droppable

The Bonnie to draggable’s Clyde is the droppable behavior. Droppable elements
are targets for draggable items. A droppable element has far fewer options than a
draggable element; we’ve used the most important, activeClass and hoverClass,
in the earlier example. The activeClass is added to the droppable element when
a draggable item is being dragged. Similarly, the hoverClass is added when a
draggable item is hovering over the droppable element.

Forms, Controls, and Dialogs

You can also specify a selector for the accept option, which restricts the draggables
that can be dropped. This lets you have multiple drop points, where only certain
draggable items can go. This can be great for list manipulation.

The events for a droppable element are similar to draggables. Instead of start, stop,
and drag, we have over, out, and drop. In our photo grid example, we’ve used the

drop event to know when to destroy the draggable item.

Both the draggable and droppable behaviors are complex beasts. Once you're over
the thrill of how easy they are to implement, you should have a further read through

the advanced options in the documentation.

Actually, a little birdie—and no, not that blue one—has let slip that in jQuery UI
2.0, we can expect some changes to the way drag and drop works. However, the
API should stay true to form, with the options merely being tweaked, and the behind-
the-scenes code receiving the lion’s share of the attention. Your existing code should
continue to work trouble-free, but we know you’re going to want to go back and add
in some of those new options!

The "Puff” Effect

With dragging and dropping all taken care of, you can walk away knowing you’ve
created a powerful yet cool control with just a few lines of code. But with all that
time we saved by using the existing drag-and-drop functionality, rather than writing
it ourselves, we might as well make this a little more impressive, and add the “puff
of smoke” as the image is removed.

Instead of using jQuery’s animate function, we’ll need to roll our own animation
solution. This is because we need to cycle through image frames, like creating car-
toons. To do this, we’ll use a PNG image that has five same-sized frames of animation
all stacked on top of each other, and then offset the image to show the correct frame.
This means we’ll need to change the position of the image in discrete chunks. If we
were to use animate instead, it would change the background position gradually,

resulting in chopped-off images halfway between frames:

chapter_07/15_drag_drop/script.js (excerpt)

// Implement the “puff-of-smoke” effect
var $this = $(which),
image_width = 128,

283

284 jQuery: Novice to Ninja

scale factor = $this.outerWidth() / image width,
frame_count = 5,
$trash, $puff;

To start off, we will store our selection and set up a couple of constants. The
image_width is the width in pixels of the animation image. The frame_count is the
total number of frames in the animation (the total height of the image, therefore,
should be image_width * frame_count). Of course, these will always be the same
in our example, but this way, if you ever want to use a different animation image,
you can find the numbers you need to change right at the top of the script, instead
of hunting through it to change them in multiple places.

We then set up a container to house the image. The container will be exactly the
same size, and in exactly the same place as the element we’re deleting:

chapter_07/15_drag_drop/script.js (excerpt)

// Create container
$trash = $('<div class="puff"></div>")
.Ccss({
height: $this.outerHeight(),
left: $this.offset().left,
top: $this.offset().top,
width: $this.outerWidth(),
position: ‘'absolute’,
overflow: 'hidden'

})
.appendTo('body"');

With the container in place we can now append the animation image to it. Because
the container has its overflow set to hidden, only a single frame of the image will

ever be seen:

chapter_07/15_drag_drop/script.js (excerpt)

$puff = $('")
.css({
width: image width * scale_factor,
height: (frame_count * image width) * scale_factor
})
.data('count', frame_count)
.appendTo($trash);

Forms, Controls, and Dialogs

@ Preloading the Image

If you have a lot of frames in your animation image, it could wind up being a fairly
large file and take a while to load. If your user deletes an element before the image
has loaded, the animation will be unable to display. A trick for preloading the
image is to load it into a jQuery selector in the document-ready function: $ (' ");. This will load the image without displaying it, so it

will be ready for your animation.

We also add a count property to the image via the data action. This contains the
total number of frames left to show. With all of this in place, we can go ahead and

delete the original element that was dropped:

chapter_07/15_drag_drop/script.js (excerpt)

// Remove the original element
$this.animate ({

opacity: O
}, 'fast').remove();

We’ve opted to animate with the animate method, rather than the more succinct
fadeOut, as the timing is different. We left both methods in the example code with
one commented out. Why not run a few tests for yourself? From where we sit, the
animation using fadeOut starts later, where using two animate methods allows

them to seem more like one process. Now let’s check on that second animate.

While our dropped image is fading out, we want to initiate the animation. This is
going to require a small amount of JavaScript-fu. We will set up a self-contained,
self-executing loop that plays the animation through once:

chapter_07/15_drag_drop/script.js (excerpt)

// Animate the puff of smoke
(function animate() { @

var count = $puff.data('count'); @

if (count) { €
var top = frame_count - count;
var height = $puff.height() / frame_count;
$puff.css({

285

286

jQuery: Novice to Ninja

"“top": - (top * height),
'position': 'absolute'

1)

$trash.css({
'height': height

})

$puff.data('count", count - 1); @

setTimeout (animate, 75); @

} else {
$puff.parent().remove(); (3

P Os

Inside this function, we’re executing the animation. Here are the highlights:

o We’ve wrapped the function in the (function myFunction(){}) () construct,

which is a way to create and execute an anonymous function that can nonethe-
less refer to itself by name. This is an odd JavaScript construct, and one that
you shouldn’t worry about understanding completely; in this case, it’s handy
as it allows us to create a self-contained piece of functionality that can call itself
(this will be useful when we use the setTimeout method).

We find out which frame we’re up to by checking the count data.

If there are still frames left to display, we calculate the offset of the image and
move the correct frame into view. (We can use if (count) in this way because
in JavaScript, the number 0 is equivalent to false.)

We decrease the frame count so that the next time the loop runs it will display

the next frame in the series.

Finally, we call setTimeout, specifying our anonymous function as the callback.

This way, after 75 milliseconds, the whole process will run again.

When the count reaches zero and the animation concludes, we remove the puff
container from the DOM.

Try it out. Drag an item to the trash, and watch it vanish in a cloud of smoke!

Forms, Controls, and Dialogs

jQuery Ul sortable

Another great feature of jQuery Ul is the sortable behavior. An element that you
declare as sortable becomes a droppable target to its children, and the children
all become draggable. The result is that you can reorder the children as you see fit.
While sortable allows us to order items within a container, it doesn’t actually sort
anything: the sorting is up to the user.

This makes it perfect for lists of elements where order needs to be managed. Rather
than using the fiddly move up the list or move down the list buttons that we usually
see next to lists, we can apply the sortable behavior to them and allow our users
to reorder the list in a more intuitive way.

On the front page of StarTrackr! there are two lists that show the ranking of the
week’s top celebrities. One is for the A-list celebrities, and the other for the B-list.
This is the perfect opportunity to show our client a cool trick: making the lists re-
orderable by the users. They can move the celebs up and down the lists, and even
swap them if they challenge their A/B list status. When they’re happy with their
reordering, they can click the Accept button and the changes will be submitted to
the server.

Lists are the primary targets for the sortable behavior. With a little extra work, a
div can also take up the challenge. For this example, we’ll use the following markup:

chapter_07/16_sortables/index.html (excerpt)

<ul id="a-list" class="connected">
Glendatronix</1li>
Baron von Jovi</1li>

<ul id="b-list" class="connected">
Mr Speaker</1li>

Like draggable and droppable, making an element sortable is straightforward:

$("#a-1list, #b-list").sortable();

287

288

jQuery: Novice to Ninja

There’s a raft of methods, events, and options that are available when an element
becomes sortable, and we can combine them to control the interesting moments

that occur during the course of the sorting:

chapter_07/16_sortables/script.js (excerpt)

$("#a-1list, #b-list").sortable({
connectWith: '.connected',
placeholder: 'ui-state-highlight',
receive: function(event, ui) { adopt(this) },
remove: function(event, ui) { orphan(this) }
}).disableSelection();

We’ve specified two options and two methods to our sortables, and we’ll build
on those methods to make our actions a little more user-friendly. A nice touch we
can exploit is that accessing this inside the callbacks (as we’ve done above) gives
us a reference to the sortable element.

@ disableSelection

Chained on the end of our sortable instantiation is a nifty action:
disableSelection. disableSelection, and its reverse, enableSelection,
are two really powerful methods in the jQuery Ul Calling disableSelection
makes it impossible for users to select text inside the target elements. It can be
used to stop text from being selected when users are dragging—or sorting—the
element, and prevents users from accidentally highlighting text when they just

want to drag an item.

Keep your eye on these methods: there’s much in store for them in UI 2.0!

Let’s look at the two methods we’ve assigned as event handlers:

chapter_07/16_sortables/script.js (excerpt)

function adopt(which) {
if ($(which).hasClass('empty')) {
$(which) .removeClass('empty').find('.empty').remove();
}
}

function orphan(which) {
if ($(which).children().length == 0) {

Forms, Controls, and Dialogs

$(which)
.append($('<li class="empty">empty</1li>"))
.addClass('empty');

These methods allow us to add the text empty to a list when its last item is removed,
and remove the text as soon as a new item is added. The receive event is fired
when a sortable list receives an item from a connected list. We use it to call our

custom adopt method, wherein we remove the “empty” text if it’s found.

Removing a child from a sortable fires the remove event, which we use to call our
orphan function. This method checks to see if the parent sortable has no children.
Should it be empty, we give it a child <1i> and assign it the empty class.

Progress Bar

After all our earlier talk of Twitter character counts, the client team want to imple-
ment a new feature they call StarChirp, which will enable users to communicate
via short status messages. We have no idea how they could have come up with this,
but we’re happy to give it a try. They specify that they want to differentiate the
product from other status update sites by displaying the remaining character count
in the form of a progress bar. This makes sense: it will display the percentage of
how much typing room is left, so that users can easily see if they’re approaching

their word limit.

A progress bar is one of the most recognizable messages a user can see. Even the
layperson understands that the progress bar is the ultimate technological ticking
clock. It effectively shows how far we are through a long-running process or set of

processes and, more importantly, how far we have to go.

The simplest way to simulate a progress bar is to include a block-level element inside
another block-level element. The outside element’s width is set to the length of the
progress bar, and the inside element’s width is set to the correct ratio in relation to
the outer element. Give the inside element a bit of color, and that’s it!

As we’ve been using the jQuery UI library for our recent tasks, we might as well

explore the whole gamut and see what the jQuery UI progress bar widget has to offer.

289

290 jQuery: Novice to Ninja

We’ve coded up a small form to hold the relevant elements, but for the progress bar

all that’s required is an empty div:

chapter_07/17_progress_bar/index.html (excerpt)

<form action="">
<fieldset>
<legend>StarChirp</legend>
<textarea id="chirper" rows="10" cols="50"></textarea>
<div id="console">
<div id="bar"></div>
<div id="count">0</div>
</div>
<button type="submit">Chirp!</button>
</fieldset>
</form>

Now we simply need to tell jQuery UI which element we’d like to transform:

chapter_07/17_progress_bar/script.js (excerpt)

$('#bar').progressbar();

That’s it. The progress bar is ready! There’s not much tweaking you can do. If you
want the bar to default at a value other than 0%, you can specify it like this:
$('#bar').progressbar({value: 50}).

For our StarChirp box, we’ll monitor the user’s key presses in much the same
manner as we did for the maximum length indicator earlier in this chapter. This

time, however, we need to update the progress bar as the user types:

chapter_07/16_progress_bar/script.js (excerpt)

$('#chirper')
.val('")
.keyup(function(e) {
var characters = 140;
var chirp = $('#chirper').val();
var count = chirp.length;

if (count <= characters) {
$('#bar').progressbar('value', (count / characters) * 100);
$('#count').text(count);

Forms, Controls, and Dialogs

} else {
$('#chirper').val(chirp.substring(0,characters));

}
P

The important point to remember about the jQuery UI progress bar is that its range
is from 0 to 100. It’s a percentage, so you’ll need to figure out the percentage to pass
in. We’ll divide the current number of characters by the total allowed, and multiply
the result by 100. Now we have a valid value to pass to the progress bar via the

value option.

If there are already more characters in the box than what’s allowed, we’ll use the

JavaScript substring function to chop off the excess.

The effect is that every character we add will move the progress bar to the right,

and every character we remove will move the progress bar to the left.

Dialogs and Notifications

In the olden days, there was little requirement for user messages on brochure sites;
perhaps just a “thanks for submitting the form,” or a JavaScript popup dialog box

telling us we forgot to fill out an email field.

These days, as our Ajax-enabled web applications become more complex, the breadth
of information that needs to be conveyed is growing: validation messages, status
updates, error handling messages, and so on. Doing it in a way that avoids over-

whelming or annoying the user can be quite an art form.

Simple Modal Dialog

Modal dialogs are notifications that pop up in the user’s face and must be acted on
if the user want to continue. It’s quite an intrusion; people tend to dislike popups,
so they should only be used if the interaction is essential. Our client informs us it’s
essential that users agree to an End User License Agreement (EULA) to use the
StarTrackr! application. Not all modal dialog boxes are as disagreeable as our
StarTrackr! EULA, however, so they’re a useful control to learn to build.

A modal dialog looks strikingly like a lightbox with some buttons. To supply the
contents of a dialog box, we’ll embed the HTML in a hidden div. When we want

291

292 jQuery: Novice to Ninja

to show it, we’ll copy the contents into the dialog structure and fade it in. That way

we can have multiple dialogs that use the same lightbox elements:

chapter_07/18_simple_modal_dialog/index.html (excerpt)

<!-- the dialog contents -->

<div id="overlay">
<div id="blanket"></div>

</div>

<div id="eula" class="dialog">
<h4>End User License Agreement</h4>

<div class="buttons">
Agree
Disagree
</div>
</div>

You'll see that we’ve included a couple of button links in the bottom of the dialog
box. These are where we can hook in our events to process the user interaction. It’s
a fairly simple HTML base so, as you can imagine, CSS plays a big part in how ef-
fective the dialogs look. We want to stretch our structure and lightbox “blanket”

over the entire screen. The modal dialog will appear to sit on top of it:

chapter_07/18_simple_modal_dialog/dialog.css

#overlay {
bottom: 0;
display:none;
left: 0;
margin-right: auto;
margin-left: auto;
position: fixed;
right: 0;
top: 0O;
width: 100%;
z-index: 100;

}

#blanket {
background-color: black;
bottom: 0;
display: block;
opacity: 0.8;

Forms, Controls, and Dialogs

position: absolute;
top: 0O;
width: 100%;

}

.dialog {

background: white;
border-radius: 10px;
display: none;
margin: 100px auto;
position: relative;
width: 500px;
padding: 40px;

Now to bring the dialog onscreen. We’ll create an openDialog function that will be
responsible for taking the dialog HTML, transporting it to the overlay structure and
displaying it. The “transporting” part is achieved via the clone action, which creates
a copy of the current jQuery selection, leaving the original in place. When we close
the dialog we’re going to remove the contents, so unless we cloned it each time,

we’d only be able to open it once:

chapter_07/18_simple_modal_dialog/script.js (excerpt)

function openDialog(selector) {
$(selector)
.clone()
.appendTo('#overlay')
.show()
.parent()
.fadeIn('fast');

Because we’ve added the behavior to a function, we can call it whenever we need
to open a dialog, and pass it the selector of the element we want to show:

chapter_07/18_simple_modal_dialog/script.js (excerpt)

$("#eulaOpen").click(function() {
openDialog("#eula");
1)

293

294

jQuery: Novice to Ninja

The second part is returning everything back to its initial state when the dialog is
closed. This is achieved by finding the overlay, fading it out, and then removing
the cloned dialog contents:

chapter_07/18_simple_modal_dialog/script.js (excerpt)

function closeDialog(selector) {
$(selector)
.parents("#overlay")
.fadeOut ('fast', function() {

$(this)
.find('.dialog"')
.remove();
})s

We need to call the closeDialog function from within the current dialog. But as
well as closing it, the buttons in a dialog should have other effects. By adding extra
buttons in the dialog’s HTML, and hooking onto them in the document-ready part

of your code, you can run any arbitrary number of event handlers and process them
as you need:

chapter_07/18_simple_modal_dialog/script.js (excerpt)

$('#eula')
.find('.ok, .cancel')
.on('click', function() {

closeDialog(this);
})
.end()
.find('.ok")

.on('click', function() {
// Clicked Agree!

})

.end()

.find('.cancel')

.on('click', function() {
// Clicked disagree!

})s

The important part of this code is that we’re using the on action. When we use clone
to duplicate a DOM node, its event handlers get lost in the process, but on keeps
everything in place no matter how often we clone and delete nodes!

Forms, Controls, and Dialogs 295

This is a simple but fairly crude way to handle the button events. In Chapter 9, we’ll
look at how we can set up a custom event-handling system. The advantage of the
method used here is that it’s extremely lightweight and targeted to our particular
needs. But manually creating buttons and handling the related events would quickly
become tiring if you have many complicated dialogs to look after, so you’ll probably
be interested in the jQuery UI Dialog widget.

jQuery Ul Dialog

As you’d expect by now, the jQuery Ul Dialog component is the complete bells-and-
whistles version of a dialog box. Out of the box it is draggable and resizable, can be
modal or non-modal, allows for various transition effects, and lets you specify the
dialog buttons programmatically. A sample dialog, styled with the UI lightness

theme, is shown in Figure 7.13.

o

You've assigned the current celebrity a
rating of 0...

Perhaps you are just judging them on the
terrible last movie...

o

r

]
7 g
7 7
/ Change Rating Continue /
7 /
////////////////A

Figure 7.13. A jQuery Ul dialog

Just like with our custom dialog box, the main contents are specified in the HTML
itself, then hidden and displayed as necessary by the library. This way you can put
whatever you like inside the dialog, including images, links, or forms:

chapter_07/19_jquery_ui_dialog/index.html (excerpt)

<div id="dialog" title="Are you sure?">
<p>You've assigned the current celebrity a rating of 0 ..</p>
<p>Perhaps you are just judging them on the terrible last =
movie ..</p>
</div>

296

jQuery: Novice to Ninja

We’re using the UI lightness theme for CSS, as it fits well with the StarTrackr! site,
but the dialogs are fully skinnable, and as always you can make a custom theme
with the ThemeRoller tool (more on this in the section called “Theme Rolling” in
Chapter 9). As you can see from the HTML snippet, the title attribute specifies
the text to be displayed in the title bar of the dialog. Other than that, there’s little
going on in our HTML ... so where do those buttons come from? Let’s have a look
at the script:

chapter_07/19_jquery_ui_dialog/script.js (excerpt)

$('#dialog').dialog({

autoOpen: false,

height: 280,

modal: true,

resizable: false,

buttons: {

Continue: function() {

$(this).dialog('close');
// Submit Rating

b,

'Change Rating': function() {
$(this).dialog('close');
// Update Rating

}

1)

Aha, interesting! The buttons, including their text, are specified via the options
passed to the dialog function.

The buttons are grouped together in an object and assigned to the buttons property
of the dialog. To define a button, you need to create a named function inside the
buttons object. The function code will execute whenever the user clicks the button,
and the name of the function is the text that will be displayed on the button. If you
want your button text to contain a space, you’ll need to wrap the function name in
quotes. The buttons are added to the dialog from right to left, so make sure you add
them in the order you want them displayed. This is quite a neat way to package
together the button functions with the dialog, unlike our custom dialog where the
functionality was specified independently of the dialog code.

Forms, Controls, and Dialogs

Quotes

In the above example, the second button’s name is in quotes, while the first one
isn’t. This is simply to illustrate the necessity of enclosing multiple-word buttons
in quotes; in your code, it might be preferable to put quotes around everything
for consistency and simplicity.

By default, the dialog will pop up as soon as you define it. This makes it easy to
create small and simple dialogs as you need them. For our example, though, we
want to set up the dialog first, and only have it pop up on a certain trigger (when
the user gives a poor celebrity a zero rating). To prevent the dialog popping up im-
mediately, we set the autoOpen property to false. Now, when the page is loaded,
the dialog sits and waits for further instructions.

When the user clicks the rating-0 link, we tell the dialog to display itself by passing
the string 'open' to the dialog method. This is a good way to communicate with
the dialog after the initialization phase:

chapter_07/18_jquery_ui_dialog/script.js (excerpt)

$('#rating-0"').click(function() {
$('#dialog').dialog('open');
})s

That’s a nice-looking dialog we have there! We can now execute any required code
inside the dialog button functions. As part of the code, we’ll also have to tell the
dialog when we want it to close. If you look back at the button definitions above,
you can see we have the line $(this).dialog('close'). As you might suspect, the
close command is the opposite of the open command. You can open and close the

dialogs as many times as you need.

What else can the plugin do? Well, we’ve specified the option modal to be true,
that’s why we have the nice stripey background; but by default, modal will be false,
which allows the user to continue working with the rest of the page while the dialog
is open. Additionally, we’ve set resizable to false (and left the draggable option
on default, which is true). These options make use of the jQuery Ul resizable and
draggable behaviors to add some desktop flavor to the dialog.

297

298

jQuery: Novice to Ninja

We specified the dialog’s title text in HTML, but you can also do it in jQuery via
the title property, just as you can set its width and height. One less obvious, but
extremely useful alternative is the bgiframe (background iframe) option. If this option
is set to true, the bgiframe plugin will be used to fix an issue in Internet Explorer
6 where select boxes show on top of other elements.

In terms of events, you can utilize the dialog’s open, close, and focus events if you
need to do some processing unrelated to buttons. But there’s also an extremely
useful beforeClose event that occurs when a dialog is asked to close—before it
actually does! This is a great place to handle any processes you’d have to do regard-
less of which button was clicked. It’s also useful if you need to stop the dialog from
closing unless certain conditions are satisfied.

By now, you're starting to appreciate the depth of the jQuery UI library. All the
controls are well thought-out and feature-rich. As always, you need to weigh the
leaner custom option against the more bandwidth-intensive (but quick to implement
and more fully featured) jQuery Ul alternative. Which one you choose should depend
on your project requirements.

Growl-style Notifications

Our client team are worried that StarTrackr! is lagging behind competitors in the
real-time web space. They want to be able to communicate with users and keep
them abreast of up-to-the-second information: new Twitter posts, news from the
RSS feed ... anything to show that StarTrackr! is buzzing with life.

The data is no problem—the back-end team can handle it ... but how can we notify
the user in a way that’s both cool and helpful? Once again we’ll look to the desktop
for inspiration, and implement Growl-style notification bubbles (Growl is a popular
notification system for the Mac OS X desktop).

When we have a message to share with the users, we’ll add a bubble to the page.
The bubble will be located at the bottom right-hand side of the screen. If we have
more messages to share, they’ll appear underneath the previous ones, in a kind of
upside-down stack. Each bubble will have a close button, enabling users to close

them after they’ve been read. The overall effect is shown in Figure 7.14.

Forms, Controls, and Dialogs

Welcome to StarTrackr! ®

Stay awhila!

Stay FOREVER!

WHEIC

Figure 7.14. Growl-style notifications

The real trick to the bubbles is CSS. It takes care of all the tough stuff involved in
positioning the dialogs and making them look really cool. In terms of HTML, all we
need is a simple container:

chapter_07/20_growl_style_notifications/index.html (excerpt)

<div id="growl"></div>

It needs to be able to be positioned in the bottom corner to achieve the effect we’re
aiming for. Placing it in the footer or outside of the page’s main container element
is common. Let’s apply some basic CSS to handle the positioning:

chapter_07/20_growl_style_notifications/style.css (excerpt)

#growl {
position: absolute;
bottom: O;
right: 5px;
width: 320px;
z-index: 10;

Now that the container is in place, we can start adding our message bubbles to it.
We’ll create a simple function that takes a message, wraps it in some structure, and
appends it to our positioned bubble holder:

chapter_07/20_growl_style_notifications/script.js (excerpt)

function addNotice(notice) {
$('<div class="notice"></div>")
.append('<div class="skin"></div>")
.append('close")
.append($('<div class="content"></div>").html(notice))

299

300

jQuery: Novice to Ninja

.hide()
.appendTo('#growl")
.fadeIn(1000);

The structure we’ve added consists of a containing element with an extra div

available for styling (we’re using it to lay the visible message over a semiopaque

background), a close button, and a container for the message contents.

One other point to note about this function is that any HTML we pass to it is wrapped

in the jQuery dollar selector. This means we can pass in either plain text, HTML,

or jQuery objects, and they’ll be displayed in the box. You can style it however suits

your site, though you’ll need to give the bubble container position: relative:

chapter_07/20_growl_style_notifications/style.css (excerpt)

.notice {

}

position: relative;
min-height: 30px;

.Skin {

}

position: absolute;

background-color: #000000;

bottom: 0;

left: 0;

opacity: 0.6;

right: 0;

top: 0O;

z-index: -1;

-moz-border-radius: 5px; -webkit-border-radius: 5px;

.close {

background: transparent url('button-close.png') O O no-repeat;
text-indent: -9999px;

position: absolute;

top: 2px;

right: 2px;

width: 26px;

height: 26px;

Forms, Controls, and Dialogs

This will position our bubbles correctly and give them some basic styles. Inside the
document-ready function, just call the addNotice function with a message, and it
will fade in at the bottom of the screen:

chapter_07/20_growl_style_notifications/script.js (excerpt)

addNotice("<p>Welcome to StarTrackr!</p>");
setTimeout (function() {

addNotice('<p>Stay awhile!</p><p>Stay FOREVER!</p>"');
}, 1000);

You can also pass in images, or indeed any HTML you like. Of course, most of the
time you’ll be displaying the result of a user interaction or an Ajax call; you just
need to call addNotice whenever you want to display a message to the user. The
only problem is ... once the bubbles are there, they’re unable to be removed—they
just keep stacking up! Let’s fix this:

chapter_07/20_growl_style_notifications/script.js (excerpt)

$('#growl')
.find('.close')
.on('click', function() {
// Remove the bubble
1)

Instead of adding the click handler directly to the close button, we’re using the on
function to keep an eye on any new .close elements that are added. This helps us
separate out the closing code and keep everything nice and readable. All that’s left
to do now is handle the actual removing:

chapter_07/20_growl_style_notifications/script.js (excerpt)

// Remove the bubble

$(this)
.closest('.notice')
.animate ({
border: 'none',
height: 0,

marginBottom: O,
marginTop: '-6px',
opacity: 0,
paddingBottom: O,

301

302

jQuery: Novice to Ninja

paddingTop: O,
queue: false

}, 1000, function() {
$(this).remove();

P

The removal code goes looking for the nearest parent container via the closest ac-
tion, and animates it to invisibility in an appealing way. Once it’s invisible, the
container is no longer needed, so we remove it from the DOM. The closest method
is another one of jQuery’s DOM traversing actions, and has the cool ability to locate
the closest parent element that matches the selector you give it, including itself.

1-up Notification

It’s Friday afternoon again, and the boss is out of the office. There’s nothing left to
do in this week’s blitz, and there’s still an hour left until office drinks. This seems
like the perfect time to sneak a cool little feature onto the site. Throughout the book
we’ve concentrated on enlivening tried-and-true controls and recreating desktop
effects, but jQuery’s best asset is that it lets you try out new effects extremely quickly.
We’ll embrace the creative spirit and make a notification mechanism that comes
straight out of 8-bit video gaming history: the 1-up notification.

The brainchild of web developer Jeremy Keith, 1-up notifications provide a non-
modal feedback mechanism to show your user that an action happened. A small
message (generally a single word) will appear at the point the action has taken place,
then fade upwards and quickly away—exactly like the point-scoring notifications
in classic platform video games! Perhaps you’d think that this effect is only useful
for novelty value, but it turns out to be a very satisfying and surprisingly subtle way

to message your users. Take a look for yourself in your favorite browser.

As this is jQuery, there are many ways to put this together. Our approach will be
to insert a new element that’s initially hidden, positioned such that it sits directly
centered and slightly above the element that triggers the action. For our triggers,
we have some simple anchor tags that act as Add to wishlist links. When they’re
clicked, a notice saying “Adding” will appear above the link and rapidly fade out
while moving upwards. Once the animation finishes, the button will change to Added

and the interaction is complete:

Forms, Controls, and Dialogs

chapter_07/21_1_up_notifications/index.html (excerpt)

Add to wishlist

The message elements we’ll insert will have the class adding, so let’s make sure
that when we append them, they’ll be invisible and properly located:

chapter_07/21_1_up_notifications/style.css

.adding {
position:relative;
left:-35px;
top: -4px;
display:none;

When the document is ready, we can then find all our targets and add the new
message element to each of them. When a target (an element that has the wishlist
class) is clicked, we call a custom function that sets our notification in motion.
The custom function takes a reference to the current object and a callback function
to run when the interaction is complete. This function will move the selection to
the link (via the prev action) and set its text to Added:

chapter_07/21_1_up_notifications/script.js (excerpt)

$('Adding"')
.addClass('adding"')
.insertAfter('.wishlist');

$('.wishlist"')
.click(function(e) {
doOneUp(this, function() {
$(this).prev().text('Added');

b
e.preventDefault();

b

Our custom function features nothing new to us at this point: it simply moves to
the hidden span element and displays it. Now the message is visible to the end user.
We then kick off an animation that adjusts the span’s top and opacity properties,

so as to move it upwards and fade it out simultaneously:

303

304 jQuery: Novice to Ninja

chapter_07/21_1_up_notifications/script.js (excerpt)

function doOneUp(which, callback) {
$(which)
.next ()
.show ()
.animate ({
top:"-=50px",
opacity:"toggle"
}s
1000,
function() {
$(this)
.css({top: ""})
.hide('slow', callback)
.remove();

)

@ Passing Callbacks

—
Notice the callback variable that’s being passed around in the example? We
supply a function as a parameter to our doOneUp code, but we don’t do anything
with it ourselves; we just pass it along as the callback to jQuery’s hide action.
When hide completes, it will run whatever code we gave it. In this case, it’s the
code to change the link text from Add to wishlist to Added.

We're in Good Form

To build usable, accessible, and impressive forms and interface controls we must
use all the tools we have at our disposal: HTML, CSS, JavaScript, and jQuery. As
developers, we need to be aware which tool is the right one for the job. Once we’ve
figured this out, though, all bets are off. Forms and controls are the core of applica-

tion development on the Web, so it’s an exciting area to be experimenting in.

Chapter

Lists, Trees, and Tables

The popularity of StarTrackr! has just skyrocketed, after exposing an ill-conceived
publicity stunt where a celebrity faked his own death and tried to leak the news via
Twitter. Thankfully, the celebrity happened to be “B-grader of the week” on

StarTrackr!, with several users alerting the media that his tracking device indicated

that he was, in fact, in an exclusive local day spa.

The droves of new users and intrigued old-school media types flocking to the site
have created a tidal wave of data, which the site’s administration section is struggling
to keep up with. Our client is worried that a lack of good information is being pro-
moted in favor of more tabloid pursuits, lost in a mountain of unstructured lists
and tables.

The admin area of a site is often the most neglected; it’s out of sight to the general
public, so there is a tendency to cut corners and put less thought into usability and
the user experience. Out the window can go best practices such as progressive en-
hancement and accessibility (usually due to extremely tight deadlines, mind you!).

306

jQuery: Novice to Ninja

But the rise of the Rich Internet Application (RIA) is changing that. Clients expect
our web-based systems to rival their desktop applications for usability and design.
Thankfully with jQuery by our side, that’s no problem!

Lists

Lists are the real unsung heroes of the post table-based layout period of the Web.
As designers were freed from the constraints of the tyrannical table cell, they started
to look for other semantically correct ways to recreate common user interface ele-
ments such as menus, navigation panels, tag clouds, and so on. And time after time,
as the redundant layout cruft was stripped from the underlying data, all that was
left behind was ... a list!

The StarTrackr! site is already home to an extensive array of lists: they form the
basis of our tabs, accordions, menus, image galleries, and more, but there’s far more

we can do to augment and enhance the humble list.

jQuery Ul Selectables

The ocean of user-generated content is proving a handful for our client. Thousands
of tags are pouring in from the site’s users, but now the client’s legal department is
saying that the manager—who also happens to be on our client team—has to approve

every single one manually, to avoid a repeat of a recent nasty litigation.

Because the site employs an unconstrained tag system, there are stacks of duplicate
tags in the lists. And with the current system, that means stacks of extra administra-
tion. What the client really wants is a way to easily see tags, select them (and any
duplicates), and click a button to approve or reject them.

Our plan of attack is to add jQuery Ul's selectable behavior to our list. Making an
element selectable gives the user the ability to lasso any of the element’s children
to select them: if you click on one element and then drag over subsequent elements,
they are all highlighted. You can then process the selection however you see fit.
Perfect for administrating boring lists! The behavior we’re aiming to create is illus-
trated in Figure 8.1.

Lists, Trees, and Tables 307

Recently Added Tags

bad old crazy broke
singer ;
broke sméllg.r electronic d-list
plastic brctfke sexy random
surgery
LS

Figure 8.1. Selectable list items

In addition to lassoing, the selectable behavior also lets you add nonsequential items
to the list using the Ctrl key (as you can do in most desktop applications).

Keep Your Users in the Loop

Although being able to click and drag selections on a list is very cool and useful,
it’s only cool and useful if your users know about it. Making selections in this
manner is a nonstandard form of interaction on the Web, so you’ll need to provide

instructions to your users about how to use your new functionality.

Let’s have a look at the markup. The server spits out a long list of tags, which is a
fine base for our selector grid. We’ll also throw in a few buttons that allow users to

approve or reject the tags in their selection, as well as a button to reset the selection:

chapter_08/01_jquery_ui_selectable/index.html (excerpt)

<ul id="tags">
pad singer
old</1li>
plastic surgery
broke</1i>

<button id="approve">Approve</button>
<button id="reject">Reject</button>
<button id="clear">Clear</button>

308 jQuery: Novice to Ninja

A big long list is a bit intimidating, so we’ll use some basic CSS to make the list
into a grid, and convert each tag into a small box:

fitags {
list-style-type: none;
margin: 0;

padding: O;

}

#tags 1i {

border: 1px solid #ccc;
float: left;

width: 60px;

height: 60px;
font-size:1.1em;
margin:3px;
padding:0.4em;
text-align:center;

}

With our grid ready to go, we have to add the jQuery UI library to the page. Now
it’s time to tell the tag list to become selectable:

chapter_08/01_jquery_ui_selectable/script.js (excerpt)

$("#tags").selectable();

Fire up your browser and check it out. Hrrm ... has anything actually happened?
Well, yes, it has, but it’s invisible. The selectable method works by adding class
attributes to selected items, so unless we assign styles to those classes, we’ll be
unable to see anything happening. If you inspect the list items with Firebug as you
select them, you’ll see the changes occurring. Let’s have a stab at styling selected

elements:

chapter_08/01_jquery_ui_selectable/style.css (excerpt)

#tags .ui-selecting {
background: #FEFF9F;

}

Lists, Trees, and Tables

#tags .ui-selected {
background-color:#eEeF8F;

}

The ui-selecting class is applied as the user is in the process of selecting elements,
and the ui-selected class is added as soon as they stop. If you try it now, you’ll
see you can lasso some squares. It’s quite a natural interaction, which is exactly
what you want from your page components. You can also click while holding down
the Ctrl key to select individual items.

Our next task is to help with the duplicate tags. In a tagging system, the number of
tags for each term is important; so, rather than just deleting duplicates, we’ll write
some code to select any tags that match the user’s selection. For instance, if a user
clicks on “A-lister,” all the “A-lister” tags will be highlighted.

We need to know which events we can hook into from the jQuery Ul component.
Consulting the documentation,1 we’re able to capture the start, stop, selecting,
unselecting, selected, and unselected events. We could capture the selecting
event and remove duplicates as the user moves the mouse, but it might be a bit
confusing. We’ll stick with the stop event, which fires as soon as the user completes

the selection:

chapter_08/01_jquery_ui_selectable/script.js (excerpt)

$('#tags').selectable({
stop: function() {
// The user stopped selecting!

}
P

Now we can begin our quest to find the duplicate tags. Our general approach will
be to make a list of all the tags the user has selected, then search for any duplicates

of those tags that appear in the greater tag list:

! http://docs.jquery.com/Ul/Selectable

309

http://docs.jquery.com/UI/Selectable

310

jQuery: Novice to Ninja

chapter_08/01_jquery_ui_selectable/script.js (excerpt)

var names = $.map($('.ui-selected, this'), function(element, i) {
return $(element).text();
})s

$('1i', this)
.filter(function() {
return ($.inArray($(this).text(), names) != -1); 1)
.addClass('ui-selected');

To find the duplicates, we’ve called on the service of an assortment of new jQuery

features, so hold on to your hats!

The first of these is the oddest: $(' .ui-selected', this). Thislooks like a regular
jQuery selector, but there’s a second parameter. It turns out that the complete
definition for the jQuery selector is actually $(expression, context); we’ve just
been omitting the second parameter. The context defines where jQuery should
look for your selector; by default, it looks everywhere on the page, but by specifying
our unordered list as the context, the expression will be limited to elements inside
the list.

$.map and $.inArray

Next we use a couple of jQuery utility methods to juggle the list items: $.map and
$.1inArray. The utility methods jQuery provides are mostly for working on JavaScript
arrays, and that’s what we’re doing here. First, we create an array called names,

which we populate using the $.map method.

The $.map method allows you to take each element in the array, process it in some
manner, and return the results as a new array. You use it when you want to transform
every element in the same way. We want to transform our jQuery selection into a

simple list of tag text, so we pass in the selection, and define an anonymous function

to return each element’s text. Hey presto: an array of tag text!

The map function can also be used directly on a selection, where we could rewrite

the name-grabbing code like so:

var names = $('.ui-selected, this').map(function(i, element){
return $(element).text();
})s

Lists, Trees, and Tables

@ map, filter, and Friends

The map and filter functions are examples of higher order functions; that is,
they are functions that take functions as parameters to apply to our lists. Providing
a conventional interface to list manipulation is quite powerful: it lets you transform
your data in a simple, readable manner. In fact, the map and filter operations
(as well as a bunch of other iteration methods) have been added to the recent
versions of]avaScript.2

We next use the context trick as before to retrieve all the list item elements, and
filter them based on whether or not they’re duplicates. Our filter function uses
the $.inArray utility method, which searches an array (but only plain JavaScript
arrays, not jQuery selections) for a specified value. Given an array and a search
term, like $.inArray(value, array), it will return the value’s index in the array.
Helpfully, it will return -1 if the value is not found in the array. Remember that
filter expects us to return either true or false—so we just check to see if
$.inArray returns -1, and return true or false as appropriate. Using filter in
this way allows us to search our array of tag texts for each list item’s text; if it’s in
there, it’s a duplicate, so we return it to the filter to be selected.

Accessing the Data

Now that we can make selections, how can we use them? The jQuery UI Selectable
component works with class names, so we will too. To acquire the list of selected

values, we simply search for any items that have the ui-selected class on them:

chapter_08/01_jquery_ui_selectable/script.js (excerpt)

$('#approve').click(function() {
$('#tags')
.find('.ui-selected')
.addClass('approve')
.removeClass('ui-selected reject');

P

$('#reject').click(function() {
$('#tags')
.find('.ui-selected')
.addClass('reject')

2 https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array

3N

https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Array

312 jQuery: Novice to Ninja

.removeClass('ui-selected approve');
})s

$('#clear').click(function() {

$('#tags')

.find('1i')

.removeClass('ui-selected approve reject');
$('#approved').val('"');
})s

We’re just adding an approve or reject class when the user clicks on our buttons,
also being sure to remove the ui-selected class, since we want to style approved
tags differently from selected ones.

But what if we wanted to, say, send this information to the server? Perhaps it would
be good to store the list of approved tags in a hidden form field, so that the server
can access it for processing. Let’s update the #approve click handler to iterate over
the approved items, and append each item’s index to a hidden field in a simple
pipe-delimited format:

chapter_08/01_jquery_ui_selectable/script.js (excerpt)

$('#approve').click(function() {
var approvedItems = "";
$('#tags')
.find('.ui-selected')
.addClass('approve')
.removeClass('ui-selected reject')
.each(function() {
approvedItems += $(this).index() + "|";
});
$('#approved').val(approvedItems);
1)

We’ll also add a line to our #clear button click handler to clear that input’s value:

chapter_08/01_jquery_ui_selectable/script.js (excerpt)

$('#approved').val('"');

Thanks to the index method, we now know which items in the list have been ap-

proved. index will tell you an item’s position inside its parent element. Our control

Lists, Trees, and Tables

is impressive in how easy it is to use. The jQuery UI Selectable plugin is doing a
lot of work behind the scenes to allow lists to be selectable, but the end result is a
natural-feeling component, and that’s exactly what we want.

Sorting Lists

With the tag system under control, it’s time to turn to some of the other lists that
are scattered throughout the admin section. Many of these lists are populated by
the server in the order they were entered into the system. This is handy for seeing
what’s new, but bad for finding particular items. Our client has asked us to build
some sorting capabilities into all the lists in the admin section, so that they can be

sorted in ascending or descending alphabetical order with the click of a button.

The markup consists of simple unordered lists, each containing a link:

chapter_08/02_sorting_lists/index.html (excerpt)

<ul class="sortable">
Beau Dandy</1li>
Glendatronix</1i>
BMX Spandex Corporation</1li>
Maxwell Zilog</1li>
Computadors</1i>

jQuery objects lack any built-in sorting functionality. This makes sense: a selection
could include various kinds of elements located in different parts of the page, so
sorting them in a consistent manner would be impossible. Therefore, to sort our
jQuery selections, we need to fall back on some JavaScript array methods. jQuery
selections aren’t actually arrays, but they’re “array-like,” and they allow us to use

the JavaScript sort function on them.

We’ll try to build a reusable list-sorting widget. We’ll call it SORTER, and then call
SORTER.sort(list) to sort a list in ascending order, and SORTER.sort (list,
‘desc') to sort in descending order. We’ll assume that the selector passed in will
match ordered or unordered lists, but let’s see if we can make that happen:

313

314

jQuery: Novice to Ninja

chapter_08/02_sorting_lists/script.js (excerpt)

var SORTER = {};
SORTER.sort = function(which, dir) {
SORTER.dir = (dir == "desc") ? -1 : 1;
$(which).each(function() {
// Find the list items and sort them
var sorted = $(this).find("> 1i").sort(function(a, b) {
return $(a).text().toLowerCase() > $(b).text().toLowerCase() ?
wSORTER.dir : -SORTER.dir;

1)
$(this) .append(sorted);

});
I

That code is deceptively short, because it happens to be doing a lot. First up, we
check to see if desc was passed in as the dir parameter, and set the SORTER.dir
variable accordingly. All we need to do is grab all the first-level child list elements
and give them a sort. We only want the first-level items; if we grabbed further levels,
they’d be sorted and dragged up to the parent level. Because calling sort reverts
our selections to raw JavaScript, we need to rewrap them in the $() to be able to
call the jQuery text method and compare their values. We also convert the values
to lowercase, which makes the sorting case-insensitive.

@ The sort Function

The sort function is plain old JavaScript. It sorts an array based on either default
rules such as sorting numerically for numbers and alphabetically for strings, or
by the results of the function you pass to it. sort will go over the contents of the
array and pass them to your function in pairs. If your function returns 1, sort
will swap the items and place the second one first. If your function returns -1,
JavaScript will put the first item first. Finally, if your function returns 0, sort
will consider that both items are equal and no sorting will take place.

We’re doing a little magic to let us use the same function for sorting in ascending

and descending order. We’ve set our SORTER. dir variable to -1 or 1, depending on
the direction. Then in the sort comparison function, we perform a further calcula-
tion: if a is less than b, we return -SORTER.dir. If the direction comes in as -1, we
process itas - (-1), which is 1; so if we're trying to sort descending, the return values

are swapped.

Lists, Trees, and Tables

Once we’ve sorted the items, we can reinsert them into the list in the correct order.
Remember, the append function removes the element first, so it removes the item
and appends it in the correct position.

To test it out, we’ll add some buttons to our HTML and call SORTER. sort from their
click event handlers:

chapter_08/02_sorting_lists/script.js (excerpt)

$('#ascending').click(function() {
SORTER.sort('.sortable');

1)
$('#descending') .click(function() {
SORTER.sort('.sortable', 'desc');

P

Manipulating Select Box Lists

Although we covered forms in the previous chapter, it’s definitely worth taking a
look at certain form elements in the context of lists. Here we’re going to examine
select elements, especially those with multiple="multiple" (that is, select boxes
which appear as selectable lists of items).

Swapping List Elements

The StarTrackr! client has asked us to improve the admin functionality for assigning
celebrities to the A-list. The current functionality consists of two select elements:
one contains A-list celebrities, and one has every other celebrity in the system. Yet
fame is extremely fickle, and an A-lister today can be a nobody tomorrow, so the
client wants to be able to easily swap the celebrities between lists. We’ll add a few
controls to the interface to enable this, as shown in Figure 8.2.

315

316 jQuery: Novice to Ninja
All Celebrities A-Listers
Beau Dandy Johnny Stardust
Mo' Fat Glendatronix
Mr Speaker Beau Dandy
Kelly Kellie The Punkless Brewster
Darth Fader Thome Angeles

C&C Music Pty Ltd
Computadors
Baron ven Jovi

Invert Selection Invert Selection

5 . N A
wap: (>) (<)

Fa N S
Swap All: [>>) [=<)

Search:

Figure 8.2. List boxes with controls

This is the HTML we’re dealing with, consisting of the two select elements and a

few buttons for performing various operations:

chapter_08/03_select_lists/index.html (excerpt)

<select id="candidates" multiple="multiple" size="8">
<option value="142">Beau Dandy</option>

</select>
<select id="a-listers" multiple="multiple" size="8">
<option value="232">Johnny Stardust</option>

</select>

<div id="controls">
<input type="button" id="swapLeft" value=">" />
<input type="button" id="swapRight" value="<" />

</div>

As we said, the client wants the ability to swap selected items from one list to an-
other. We’ll make a SWAPLIST object that will contain all the functionality we’ll
build. This can then be reused anytime we need to play with select elements:

chapter_08/03_select_lists/script.js (excerpt)

var SWAPLIST = {};
SWAPLIST.swap = function(from, to) {
$(from)

Lists, Trees, and Tables

.find(':selected')
.appendTo(to);

We’ve defined a swap function that accepts selector strings targeting two lists: a
source list and a destination list. The first task we want to do is to grab any items
that are currently selected. We can do this using the find action with the :selected
form filter. This filter will return any form elements that have the attribute selected
set. Then we can move the selection over to the destination list with appendTo.
Easy! And once we’ve defined this functionality, we can apply it to any two lists
by calling our swap method from appropriate click handlers:

chapter_08/03_select_lists/script.js (excerpt)

$('#swapLeft').click(function() {
SWAPLIST.swap('#candidates', '#a-listers');

})s
$('#swapRight').click(function() {
SWAPLIST.swap('#a-listers', '#candidates');

P

Now selected items can be swapped back and forth at will! Let’s add some more
functionality to our SWAPLIST object. How about swapping all elements? That’s even
easier:

chapter_08/03_select_lists/script.js (excerpt)

SWAPLIST.swapAll = function(from,to) {
$(from)
.children()
.appendTo(to);

We just take all the child elements (instead of only the selected elements) and append
them to the bottom of the destination. The whole list jumps from source list to
destination list.

Inverting a Selection

The next client request is to add a button that inverts the current selection, to make

it easier for staff when dealing with large selections. When this link is clicked, all

317

318

jQuery: Novice to Ninja

currently selected items in the target list become deselected, and vice versa. Let’s
create a function inside the SWAPLIST object that does this:

chapter_08/03_select_lists/script.js (excerpt)

SWAPLIST.invert = function(list) {
$(list)
.children()
.prop('selected', function(i, selected) {
return !selected;

P

All we have to do is retrieve every list item and swap its selected property using
the prop action. prop is very similar to attr (which we’ve seen before), except it is
used to set properties, rather than attributes. Generally, if it’s a Boolean true/false
value, we should use prop, but the full list of properties and attributes (as well as
an in-depth discussion about the two methods) can be found on the jQuery docu-

mentation site.>

We use the prop function to set our list items to !$(this).prop('selected'). The
JavaScript NOT (!) operator (the exclamation mark) inverts the Boolean value, so

if the value is true it becomes false, and if it is false it becomes true.

Q Calling prop with a Function Parameter

This is a great trick: we’ve used the prop action and seen it’s similar to the attr
action, but we’re taking advantage of some advanced functionality. Previously,
we used the attr(key, value) action to set attributes to a static value, but
prop and attr also lets us pass in a function to determine the value to set. The
function will be passed two parameters: the index of the element and its current
value. The returned value of the function becomes the attribute’s new value. For
our invert method, we return the opposite of the element’s current selection
value—so each element is toggled. We can do this kind of dynamic processing
with stacks of commands: text, html, val, addClass, wrap ... and many more!

3 http://blog.jquery.com/2011/05/12/jquery-1-6-1-released/

http://blog.jquery.com/2011/05/12/jquery-1-6-1-released/
http://blog.jquery.com/2011/05/12/jquery-1-6-1-released/

Lists, Trees, and Tables

Searching through Lists

After having to listen to the client group whine on and on about how hard it is to
find the celebrities they’re searching for, you decide to throw in a little freebie: a
quick search feature that lets the user type some characters and then automatically
select any matching elements:

chapter_08/03_select_lists/script.js (excerpt)

SWAPLIST.search = function(list, search) {
$(list)
.children()
.prop('selected', false)
.filter(function() {
if (!search) {
return false;

}
return $(this)
.text()
.toLowerCase()
.indexOf (search.toLowerCase()) > - 1
})

.prop('selected', true);

What’s going on here? First, we’re grabbing all list items and then clearing any
previous selections (by setting selected to false). Next, we're using the filter
action to find any elements we’re searching for.

The filter action accepts a function as a parameter, and runs that function against
every jQuery object in the selection. If the function returns true, the element stays
in the selection. But if the function returns false—it’s gone ... out of the selection,
and unaffected by further processing.

To find elements we care about, we check to see if the text they contain has the text
we’re looking for within it. To do this we use the text action that gives us a string.
We convert it to lowercase (so the search will be case-insensitive), and check to see
if our source text is located in the element string. The JavaScript index0f method
will find the position of a string inside another string; for example, "hello".index-
Of ('11"); will return 2 (the index starts at 0, as usual). If the substring is not found,

index0f will return -1, which is what we’re checking for here.

319

320

jQuery: Novice to Ninja

Whichever elements remain in the jQuery selection after the filter function runs
must contain the keyword we’re looking for. Once again, we use the prop method
to select them.

To use the search method we created, we could attach it to a click handler, so the
user types a word and then clicks a search button. Even better is to attach a keyup

handler to the input itself, so it selects as you type:

chapter_08/03_select_lists/script.js (excerpt)

$('#search').keyup(function() {
SWAPLIST.search("#a-listers, #candidates", $(this).val());
1)

Trees

“This is another mess. We have several subcategories of celebrities—you know, A-
listers who are in bands, or who are famous because their parents are rich; B-listers
who came in second on some reality TV contest, stuff like that. Right now, they’re
all in one big list. I need to see how the categories fit inside each other! Can you
build something to help me?”

One of the representatives of the client team is talking about a tree. Trees are few
and far between on the Web for two reasons: they’re hard to do well, and there are
few situations where they make sense. However, a nested set of categories is a valid
use of a tree structure (a more common one is representing a directory structure),
so let’s dive in!

Expandable Tree

Here’s the secret about trees: they’re really just nested lists. The key to dealing with
trees in jQuery is to make sure your HTML is consistent; that way we can figure out
where we are, and open and close the correct branches. The control we’ll build will
look like the one in Figure 8.3. We’ve kept the styling deliberately sparse, but as
always the potential for improving the appearance is limited only by your CSS
skills!

Lists, Trees, and Tables

—A-list Celebrities
*+In a successful band
~In an indie band

[Computadaors

[The Great Apes
[Bosom

*n film or television

~Famous because they're rich
+Famous parents
*+Dot-Com millionaires

+B-list Celebrities
+(C-list Celebrities
+Up and Comers

Figure 8.3. A basic expandable tree

The important part of our markup is the span that contains each category (or direc-
tory) name. We’ll use this span as a base for inserting a small plus/minus graphic
that acts as the branch toggle. Here’s a subset of the markup we’ll be working with:

chapter_08/04_expandable_tree/index.html (excerpt)

<ul id="celebTree">
A-1list Celebrities

In a successful band

Johnny Stardust
Glendatronix</1li>

</1li>

Famous because they're rich

Dot-Com millionaires

Joel Mynor

The tree can nest as far as is needed; just repeat the structure inside the appropriate
child list item. Because it’s nice and consistent, you can easily generate the HTML
on the server.

321

322

jQuery: Novice to Ninja

With the list on the page, the next step is to pretty it up with some CSS. That’s in
your court, but our code will add a few extra classes you can use to customize the
display. The handle class will be assigned to the element we’ll insert to act as the
toggle handle. When a branch of the tree is opened, it will receive the opened class;
otherwise, it will have the closed class. We’ve used these classes below to add a
CSS sprite, which will change between a plus sign and a minus sign:

chapter_08/04_expandable_tree/style.css (excerpt)

.handle {
background: transparent url(tree-handle.png) no-repeat left top;
display: block;
float: left;
width: 10px;
height: 10px;
cursor: pointer;

}
.closed { background-position: left top; }
.opened { background-position: left -10px; }

The code for the tree is remarkably simple, thanks to the recursive nature of a tree:
we just have to do one small piece of code, and attach it to each subcategory. Our
plan of attack for creating the expanding/collapsing tree effect is to first hide all the
nested ul categories. Then we’ll add in a new element before the category title that
contains a click event handler; this will open and close its branch:

chapter_08/04_expandable_tree/script.js (excerpt)

$('#celebTree ul')
.hide()
.prev('span')
.before('")
.prev()
.addClass('handle closed')
.click(function() {

// plus/minus handle click

P

Six chained actions. Bet you're feeling some of that jQuery power coursing through
your veins right about now! Here we see where consistent markup helps us out. In
each subcategory list, we look for the previous span element—that’s the subcategory
title. Then we insert a new span element right before the title.

Lists, Trees, and Tables

Because our handle was added before the title, we need to move back to it with the
prev action. We add the handle and closed (it’s closed by default because of the
hide action) classes to it, and an event handler for when it’s clicked.

At this stage the tree will be fully collapsed, with our brand-new handle prepended
to the titles. All that’s left to do is toggle the branches when we click on it:

chapter_08/04_expandable_tree/script.js (excerpt)

// plus/minus handle click
$(this)
.toggleClass('closed opened')
.nextAll('ul')
.toggle();

When the handle is clicked, we toggle the closed and opened classes with
toggleClass. If you specify multiple class names with toggleClass, any specified
class that exists on the element is removed, and any that are absent from the element

are added.

Advanced toggleClass

Another neat trick of toggleClass is that it accepts a second parameter: a Boolean
value that specifies whether the class should be added or removed. This might
sound strange, but it’s a nice shortcut. Consider this code:

if (x == 1) {
$(this).addClass('opened');
} else {

$(this).removeClass('opened');

}

With the toggleClass(class, switch) syntax, we canreplace the if statement
with the following concise syntax:

$(this).toggleClass('opened’', x == 1);

Finding the subcategory that we need to open and close is easy, thanks to the nextAll

action. jQuery will check the next sibling, see that it’s a span element (the category

323

324

jQuery: Novice to Ninja

title), filter it out based on our expression, and move to the next sibling ... which
is a ul item. Bingo! We just toggle this and the tree swings open and closed.

Event Delegation

Event delegation is a topic that’s applicable in jQuery, but is particularly important
if you're dealing with large trees. The idea is that instead of applying individual

event handlers to every node in your tree, you apply a single event handler to inter-
cept the click. Then you figure out who the click was aimed at and run the action.

We covered the on method in the section called “Prepare for the Future: on and
of f” in Chapter 6. on handles event delegation for you—that’s the magic that makes
it possible.

To acquire a better understanding of how event delegation works and why it’s im-
portant, let’s use it for real. We’ll start with the following HTML, which displays
our products in a categorized list:

chapter_08/05_event_delegation/index.html (excerpt)

Selection:
--Choose a celebrity--
<ul id="picker">
<li class="category">
A-List

Beau Dandy</1li>
Glendatronix

</1li>
<li class="category">
B-List

Mo' Fat</1li>
<1li>DJ Darth Fader

</1li>

When users click on a celebrity, their selection should appear above the list in the
format “category > celebrity” as in Figure 8.4. So what’s the best way to capture this
information?

Lists, Trees, and Tables

Selection: A-List > Glendatronix

A-List

Beau Dandy
Glendatronix
B-List

Mo' Fat

D) Darth Fader

Figure 8.4. Delegating events

If we added a click event handler to every list item—$ ('#picker 1i').click(..)
—we could end up with hundreds of handlers. This would severely impact perform-
ance, as the browser would need to keep track of them all, checking each one
whenever a click occurred on the page. With event delegation, we add our lone
event handler to the parent of the list, and then access the target of the event to de-
termine the element that was actually clicked on. The target property of an event
is the actual DOM element, so it needs to be wrapped in the jQuery selector to obtain
a jQuery object:

$('#picker').click(function(e) {
$('#current').text($(e.target).text());
})s

Our list acts as if each item has its own handler! But there’s one small gotcha to be
aware of: event delegation works because of event bubbling (which we looked at in
the section called “Event Propagation” in Chapter 5). The events will bubble up
until our parent handler catches them. The problem occurs if a handler catches the
event before the parent and stops the event from propagating (with e.stopPropaga-
tion, or "return false"). If the event is stopped on its way up, event delegation
will fail. That’s why it’s important that you know how events are being handled
under the hood; it will save you a lot of headaches when dealing with otherwise

incomprehensible bugs.

We’ve handled any clicks with a single handler, but we now need to find out a bit
more about where the element is located. Specifically, how can we find out which

category the element is in? How about this:

325

326 jQuery: Novice to Ninja

chapter_08/05_event_delegation/script.js (excerpt)

$('#picker').click(function(e) {
$('.selected').removeClass('selected');
$(e.target).addClass('selected');
var celebrity = $(e.target).text();
var category = $(e.target)
.closest('.category')
.find('.title')
.text();
$('#current').text(category + " > " + celebrity);
1)

We’ve asked the closest method to find the closest element with the category
class. If the element itself doesn’t have that class, closest will check its parent
and so on, until it finds a matching element. This saves us having long strings of
parent().parent().parent(),and also lets us be more flexible in how we structure
our HTML.

Tables

If HTML lists are the unsung heroes of the new Web, tables are that bad kid who
turns out good. The tables themselves were never to blame; we misused and abused
them for years as a hack to lay out our web designs in a reasonable cross-browser
manner. But that’s what CSS is for, not poor old tables. And now that CSS has come
of age, we can finally return to using tables solely for their original purpose: display-
ing tabular data.

StarTrackr! has stacks of data to display. So much so that it’s growing out of hand:
the tables are becoming overly large and unreadable, the information has no paging
or sorting mechanisms, and there’s no way to edit the information easily. We saw
how easy it was to add zebra striping and row highlighting to tables in Chapter 2;
this will give us a few quick wins, but to address the more serious table issues, we’re
going to need some extra help from jQuery.

Fixed Table Headers

The header row of a table is of paramount importance: without it, you’d be stuck
with rows of meaningless data. But if you’re dealing with a large number of rows,
you’ll find that the headers become less and less helpful as they scroll out of sight

Lists, Trees, and Tables

and out of mind. Paging the data generally takes care of the problem, but if you need
to have all the data on one page at the same time, you’ll have to think of another

option.

Keeping the header row fixed at the top of the table is an effective way to keep track
of what our columns are about, and it also looks really cool! As the user scrolls the

table to reveal new data, the header follows along. You can see this in action in

Figure 8.5.
Id Name Occupation Approx. Location Price
Q07F Kellie Kelly Singer Omaha $11.95
BAD5S Darth Fader (]| London $19.95

Figure 8.5. Fixed header row

If your table is the only element on the page, position: fixed can be used to affix
the thead element in place. However, position: fixed can only position an element
relative to the viewport, rather than its containing element. This means that for

tables contained inside other elements (which will almost always be the case), we

need to turn to jQuery.

Let’s look at how we can achieve this effect. Our markup is the same Celebrities

table we added zebra-striping to back in Chapter 2:

chapter_08/06_fixed_table_headers/index.html (excerpt)

<table id="celebs">
<thead>
<tr>
<th>Id</th>
<th>Name</th>
<th>0Occupation</th>
<th>Approx. Location</th>
<th>Price</th>
</tr>
</thead>
<tbody>

</tbody>
</table>

327

328

jQuery: Novice to Ninja

Moving the thead around is tricky. Some browsers let you move it with impunity,
while in others it’s surprisingly resistant to styling. So we’ll employ a trick: we’ll
duplicate the contents of the thead in the form of an unordered list, styled to look
exactly like the thead. Then we’ll give that position: absolute;, and move it
around the screen as the user scrolls.

We start by creating a TABLE widget to hold our code, with a fixHeader method that
we’ll use for our fixed headers effect. The method will expect to receive a selector
string pointing at a table on the page. We start by storing a few selections inside
variables and in data, to speed up our subsequent code:

chapter_08/06_fixed_table_headers/script.js (excerpt)

var TABLE = {};

TABLE.fixHeader = function(table) {
$(table).each(function() {

var $table = $(this);

var $thead = $table.find('thead');

var $ths = $thead.find('th');

$table.data('top', $thead.offset().top);

$table.data('left', $thead.offset().left);

$table.data('bottom', $table.data('top') + $table.height() -
wS$thead.height());

We first declare a closure to hold on to our widget’s context. Then we select any
tables that match the selector passed in to our method. We loop over them with
each, and store a reference to the table itself ($table), the thead ($thead), and the
collection of th elements it contains ($ths). Finally, we store the left and top offsets
of the $thead, as well as the location of the bottom of the table (to avoid the header
moving past the bottom!).

Use each When Writing Selector-based Functions

When writing this sort of utility function, you should always anticipate the pos-
sibility of your selector returning more than one element. In this case, our page
only has one table on it, so the method would work fine if we omitted the each
loop. But in the interests of preparing for the future, and making our code reusable,
we’ve included the loop anyway; even if the table selector returns multiple
tables, our function will handle them all with grace.

Lists, Trees, and Tables

Next, we create our faux header—a ul—and copy over the contents of the table
header:

chapter_08/06_fixed_table_headers/script.js (excerpt)

var $list = $('<ul class="faux-head">"');
$ths.each(function(i) {
_th = $(this);
$list.append($("</1i>")
.addClass(_th.attr("class"))
.html(_th.html())
.width(_th.width())
.click(function() {
_th.click()

})
).hide().css({left: $table.data('left'),top: $table.data('top')});

})s
$('body').append($list);

With the real th elements collected in $ths, we use an each action to go through
each one and craft our mimics. We copy the original elements’ class, HTML con-
tents, width, and click event handlers. Some of this is unnecessary in our simple
example, but it’s good to be prepared! After the list is fully populated, we hide it
and position it directly over our real thead before slipping it into the page.

@ Append as Infrequently as Possible

You may wonder why we wait until the list is fully constructed before appending
it to the page. While appending the list to the page first and subsequently append-
ing each item to it would have the same desired effect, the method we’ve chosen
to adopt executes much more quickly in the browser.

Every time you insert a new element into the DOM, the browser needs to recalculate
the position of every element on the page. If you do this a lot (especially if you
do it in a loop!), your script can become very slow. The method we’ve used
above—storing the new elements in a variable, processing them as necessary, and
then appending them all in one fell swoop—ensures optimal performance.

With our thead mimic now nicely in place, we need to react to the scroll event
and position it appropriately:

329

330 jQuery: Novice to Ninja

chapter_08/06_fixed_table_headers/script.js (excerpt)

$(window) .scroll(function() {
clearTimeout (timer);
timer = setTimeout (function() {
if ($table.data('top') < $(document).scrollTop() &&
w3 (document) .scrollTop() < $table.data('bottom')) {
$list
.show ()
.stop()
.animate ({
top: $(document).scrollTop(),
opacity: 1
})s
} else {
$list.fadeOut (function() {
$(this).css({top: $table.data('top')});
})s

We set the timeout for 100 milliseconds after the scroll event fires; it’s a very short
time, but enough to ensure that we avoid constantly animating as the user scrolls.
We check to see if we’ve scrolled the thead out of the viewport, but not past the
bottom of the table; if we have, we reveal our mimic and animate it to the correct
position. If we’ve scrolled back high enough so that the original thead is visible, or
down past the bottom of the table, we fade out the impostor list (and position it
back at the top, so that it animates from the correct position when it reappears).

And there you have it! We can call our TABLE. fixHeader ("#celebs") and scroll
the page, and the new “thead” follows along to keep the identifying labels visible
at all times.

Repeating Header

Another approach to the disappearing header row problem is to simply repeat the
header at regular intervals. This is particularly handy if the intention is for the data
to be printed out; as cool as it looks, our animated table header is unhelpful if you
need to sort through a dozen pages of printed tables! The goal would be to take the
first row of the table and copy it every, say, ten rows.

The result is shown in Figure 8.6.

Lists, Trees, and Tables

|d Name Occupation Approx. Location Price

2034 Johny Stardust Front-man Los Angeles $39.95
6636 Clendatronix Keytarist London $39.95
141E Beau Dandy Singer MNew York $39.95
2031 Mo’ Fat Producer New York £19.95
Q07F Kellie Kelly Singer Omaha $11.95
BA05 Darth Fader D) London £19.95
2034 Johny Stardust Front-man Los Angeles $39.95
6636 Clendatronix Keytarist London $39.95
141E Beau Dandy Singer MNew York $39.95
2031 Mo’ Fat Producer New York £19.95
|d Name Occupation Approx. Location Price

Q07F Kellie Kelly Singer Omaha $11.95
BA05 Darth Fader D) London £19.95

Figure 8.6. Repeating the table header

Copying the header row and putting it elsewhere should be old hat for you by now.

But how exactly do we add the header every ten rows? Do we loop over every row

and check its index? Well, we could ... but, yet again, jQuery comes to the rescue

with a powerful built-in filter:

$('#celebs')
.find('tr:first')
.clone()
.insertAfter('#celebs tr:nth-child(10n)"');

This solution starts out simply enough: grabbing the first table row and cloning it

with the clone method. Then comes the clever bit: the nth-child selector is perfect
for adding the rows right where we want them. You might be a little baffled by the

way we’ve used it, though, as its syntax differs a bit from the other filters we’'ve

331

332

jQuery: Novice to Ninja

seen. At its most basic, if you give it a simple integer, it will select that index. For
example, if you selected :nth-child(2), you’d receive the third child element.

But the :nth-child selector also accepts other values, which cause it to select
multiple rows at the same time. If you pass in the text values even or odd, you’ll
select all the even or odd child elements. Coolest of all, you can pass it an equation

to figure out which children to select!

You can use the letter “n” to indicate repetition; for example, :nth-child(10n)
will select every tenth row. You can then augment this with a plus or minus to offset
which rows are selected. For example, if you want to select the third row, and then
every tenth row after that, you could use :nth-child(10n+3). And if you like to
think backwards, you could achieve the same result with :nth-child(10n-7).

That all works okay, but it does have a bug: if the last row of the table matches our
equation, the header row will be repeated as the final row, which looks a bit weird.
Additionally, we want to apply the repeating header to a couple of tables, and avoid
having to copy and paste code. In the next chapter, we’ll look at making our code

reusable via plugins, but for now we’ll keep it simple and stick with a trusty widget

object:

chapter_08/07_repeating_table_header/script.js (excerpt)
var TABLE = {};

TABLE.repeatHeader = function(table, every) {
$(table).each(function() {
var $this = $(this);
var rowsLen = $this.find('tr:not(:first)').length;

$(this).find('tr:first')
.clone()
.insertAfter($this.find('tr:nth-child(' + every + 'n)'));

if ((rowsLen) % every === 0) {
$this.find('tr:last').remove();

1)
}

Lists, Trees, and Tables

We’ve created a function that accepts the selector string for our table, and a number
representing how many rows to leave between each repeat of the header. We then
cycle through each element our selector finds (so our function can be applied to
more than one table on the same page). For each item, we set up a shortcut to the
$(this) element and grab the number of rows in the table. It’s important to store
the number of rows in advance, because when we repeat our table headers the
number of rows is going to change.

Next comes the workhorse: we copy out the first row (as we did before) and insert
it every “nth” row. This needed to be slightly rewritten with a find action, so it
could be run on any of a number of tables matched by the selector; otherwise, it’s
exactly the same as our first effort.

The final part of the code does a small bit of math to determine whether we’ve added
a header as the final row of the table; if the total number of rows divides evenly by

our repeater number, we need to remove the last row.

Data Grids

“These changes to the admin section are just great,” says one of the members of our
client team in a here comes a big request kind of way, “but it would be fantastic if
we could replace the old desktop application that the marketing manager uses. It

hooks into the same database, but lets her sort and move around the data, and edit

different cells—all on the one page! But I suppose that’s impossible, right?”

Sure, we know he’s gone and laid the old reverse psychology on us, but it works
every time. “Of course it’s possible!” you laugh, looking at the crusty Windows
application he’s demonstrating. “In fact, I could do it even better—it’s just a matter
of taking ...”

“Great!” says the client, slapping you on the back. “Let me know when we can have
a look at it.” And out he walks—off to another one of his business meetings. Looking
back at the application, you realize that, yes indeed, you can do it better. What you

need to do is transform that simple table into a data grid.

There’s no set definition for what constitutes a data grid, but some of its common
features include sorting, filtering, searching, paging, column resizing, and row

editing. Let’s have a go at some paging and inline editing.

333

334

jQuery: Novice to Ninja

Pagination

A huge long table can be quite scary to encounter on a website, especially as screen
real estate is so valuable. Adding paging to a table lets us display a small subset of
the data at any one time, while allowing the user to move through it easily with
navigation buttons.

Pagination is often handled by the server. The user can request a specific page of
data and the server will return it. This makes a lot of sense for massive amounts of
data: if you loaded 10,000 table rows into your browser, it might become a little
sluggish. But for smaller sets, it can make sense to load everything onto the page at
once; all data is stored locally, and there are no refreshes every time the user wants
to move through the data. Our jQuery pagination widget is shown in Figure 8.7.

Celebs
Id Name Occupation Approx. Location Price
203A Johny Stardust Front-man Los Angeles $39.95
6636 Glendatronix Keytarist London $39.95
1418 Beau Dandy Singer New York $35.95

Figure 8.7. Paging tables

The table paging widget that we’ll create will have clickable Next and Previous but-
tons, as well as a display of the current page and total number of pages. The structure
of the HTML is quite important, as jQuery will need to traverse from the paginated
table to the navigation items:

chapter_08/08_pagination/index.html (excerpt)

<div class="table-wrapper">
<div class="wrapper-paging">

<</1li>
0 of x
w</1li>
></1li>

</div>
<div class="wrapper-panel">
<table id="celebs">

Lists, Trees, and Tables

</table>
</div>
</div>

@ Adding the Controls Dynamically

Another option would be to build the navigation controls completely in jQuery.
This means you could easily apply it to any table, and the controls would be added
automatically. Such an approach is often favored by plugin authors.

You can style the controls however you see fit, but it’s a good idea to hide the con-
trols container in CSS and then show it with jQuery when the page loads. This is
so anyone without JavaScript enabled can avoid seeing the redundant controls.

Our widget skeleton looks like this:

chapter_08/08_pagination/script.js (excerpt)

var TABLE = {};

TABLE.paginate = function(table, pagelLength) {
// 1. Set up paging information
// 2. Set up the navigation controls

// 3. Show initial rows

pagination = function (direction)
var reveal = function (current)

/ 4. Move previous and next

/
// 5. Reveal the correct rows

-

b
}
b

It looks as if there’s a lot to cover, but be assured, it’s stuff you already know. To
start off, we grab the table and rows we want to paginate, and perform some calcu-
lations to figure out how many pages there will be:

335

336

jQuery: Novice to Ninja

chapter_08/08_pagination/script.js (excerpt)

// 1. Set up paging information

var $table = $(table);

var $rows = $table.find('tbody > tr');

var numPages = Math.ceil($rows.length / pagelLength) - 1;
var current = 0;

Now we have to configure the navigation controls. This is where our structure is
important, as we find the controls by climbing up the DOM from our table selection
to the wrapper div, then back down to the navigation section. This approach lets
you apply the same code to any tables that have been structured appropriately:

chapter_08/08_pagination/script.js (excerpt)

// 2. Set up the navigation controls

var $nav = $table
.parents('.table-wrapper')
.find('.wrapper-paging ul');

var $back = $nav.find('li:first-child a');

var $next $nav.find('li:last-child a');

We then set the text in the display boxes for the current page and the total length
(adding one, because our counters are zero-based). Next, we attach the event handlers
for the Previous/Next buttons. When these buttons are clicked, we call our pagination
function with the direction we want to move:

chapter_08/08_pagination/script.js (excerpt)

$nav.find('a.paging-this strong').text(current + 1);
$nav.find('a.paging-this span').text(numPages + 1);
$back

.addClass('paging-disabled"')

.click(function() {

pagination('<");

})s
$next.click(function() {
pagination('>");

P

The last part of the setup is to limit how many rows the user sees to begin with.

The easiest way to do this is to hide all the table rows, and show only the rows

Lists, Trees, and Tables

within the range we’re interested in. But how can we select a range of elements
with jQuery? We could use the :1t() and :gt() filters, but when it comes time to
show, say, rows 10 to 20, the selectors will get a bit messy. Luckily for us there’s
the slice action, which takes a start index and an end index as parameters, and

returns only the objects within that range:

chapter_08/08_pagination/script.js (excerpt)

// 3. Show initial rows
$rows
.hide()
.slice(0, pageLength)
.show();

Everything looks in order now: our navigation controls are showing the correct page
and total, and the first page of data is displaying correctly. But our paging buttons
have no function yet. We’ll add some logic to move the current page, and work out
whether we should disable either button (if we’re at either end of the table):

chapter_08/08_pagination/script.js (excerpt)

// 4. Move previous and next

if (direction == "<") { // previous
if (current > 1) {
(current -= 1);
}
else if (current == 1) {
(current -= 1);

$back.addClass("paging-disabled");
}
} else { // next
if (current < numPages - 1) {
current += 1;

}
else if (current == numPages - 1) {
current += 1;
$next.addClass("paging-disabled");
}
}

reveal(current);

337

338

jQuery: Novice to Ninja

We update the current variable but not the table itself. To do so, we create an in-
ternal function called reveal:

chapter_08/08_pagination/script.js (excerpt)

// 5. Reveal the correct rows

var reveal = function (current) {
$back.removeClass("paging-disabled");
$next.removeClass("paging-disabled");

$rows
.hide()
.slice(current * pagelLength, current * pagelLength + pagelLength)
.show();

$nav.find("a.paging-this b").text(current + 1);

}

reveal starts by clearing the disabled classes, so that our buttons avoid becoming
stranded in a disabled state. We then use the s1lice method again to select the correct
rows to display.

@ Nested Functions

The structure we’ve used here is a little odd—but when you think about it, it’s
straightforward: we’ve nested a function declaration inside another function. All
this does is restrict the scope of the function (see the section called “Scope” in
Chapter 6), so it can only be called from within its parent function. Why is this a
good idea? In this case our function has no purpose outside its parent, and placing
it in a wider scope would only put it at greater risk of conflicting with other
function or variable names.

Editing a Row

We’ve already handled inline editing on a single element, but what if you want to
make an entire table editable? We’ll add editing functionality to the data grid by
inserting an Edit button at the end of each row, turning that entire row of cells into
input elements, as shown in Figure 8.8.

Lists, Trees, and Tables 339

Celebs
Id Name Occupation ’Eggt?;h Price
203A Johny Stardust Front-man Los Angeles §39.95 !@!
E Glendatronix Keytarist <a href="http:// E {ﬁ}
1418 Beau Dandy Singer New York $39.95 (Edit)

Figure 8.8. Editable rows in action

The cells that contain your tabular data provide an excellent opportunity to store
information as we manipulate the markup; this is actually a trick we used in our
form controls. What we’ve yet to experience, though, is a row element to group our

work area. Let’s see how to use it:
chapter_08/09_editable_table_cells/index.html (excerpt)

<form action="null" method="post">
<table id="celebs">
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>0ccupation</th>
<th>Approx. Location</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>203A</td>
<td>Johnny Stardust</td>
<td>Front-man</td>
<td>Los Angeles</td>
<td>$39.95</td>
</tr>

Looks quite normal, right? And so it should, as all the editable features will be added
progressively—the better to keep your visitors happy and coming back for more!
There’s also another payoff: by not including any of the editing controls in the table’s

340 jQuery: Novice to Ninja

HTML, we can easily add any number of rows to it, relying on jQuery to do our
heavy lifting.

We’ll start with a setup method, to initialize our table and add the required buttons:

chapter_08/09_editable_table_cells/script.js (excerpt)

TABLE.formwork = function(table) {
var $tables = $(table);

$tables.each(function () {
var _table = $(this);
_table
.find('thead tr')
.append($('<th class="edit"> </th>"));
_table
.find('tbody tr')
.append ($('<td class="edit"><input type="button"
wvalue="Edit"/></td>"))
});

$tables.find('.edit :button').on('click', function(e) {
TABLE.editable(this);
e.preventDefault();

P
}

Our TABLE. formwork method looks for the selector we pass in, and then the rows
in the thead and tbody, adding an extra edit cell to each. The thead cell is empty,
but it’s there to retain the table’s column structure, and the tbody addition holds

the button that switches the row into edit mode.

Now comes the good part. We want our buttons to work in two states: an edit mode
and a save mode. We also want all the cells other than our button-containing cells
to become editable. Here’s how we’re going to do it:

chapter_08/09_editable_table_cells/script.js (excerpt)

TABLE.editable = function(button) {
var $button = $(button);
var $row = $button.parents('tbody tr');
var $cells = $row.children('td').not('.edit');

Lists, Trees, and Tables

if ($row.data('flag')) { // in edit mode, move back to table
// cell methods

$row.data('flag', false);
$button.text('Edit');
}

else { // in table mode, move to edit mode
// cell methods

$row.data('flag', true);
$button.text('Save');
}
s

The live click event from TABLE. formwork passes in the button for the row we
want to edit, so we’ll use that to cache references to the parent row and the other
cells it contains. We use parents on the $button object to find the row, and children
on the $row (excluding the edit cell with not) to find all the other cells.

In the if statement, we set a data flag to let us know that the row is in edit mode,
and change the button text to reflect that. All that remains is to switch out the cell

contents.

We’ll look at the code in reverse order, to present the simpler code first. The easiest

part of what we need to do is exit edit mode:

chapter_08/09_editable_table_cells/script.js (excerpt)

$cells.each(function () {

var _cell = $(this);
_cell.html(_cell.find('input').val());
})s

To move out of edit mode, we take the val of the input in the cell, and add it as
the _cell’s html. Since we need to refer to the cell more than once (even if it’s only

twice!), we save it in a variable first to speed up performance.

Now for the code required to change into edit mode:

341

342 jQuery: Novice to Ninja

chapter_08/09_editable_table_cells/script.js (excerpt)

$cells.each(function () {
var _cell = $(this);
_cell.data('text',_cell.html())
.html('');

var $input = $('<input type="text" />')
.val(_cell.data('text'))
.width(_cell.width() - 16);

_cell.append($input);
1)

To make the cells editable is only slightly trickier. We’ll need to empty out the
current cell contents before we can add in the inputs, or we’ll break the layout.
Before we empty each cell, though, we store the current contents in data so that

we can use them later.

We’re going to append an input we create, and as we’ve seen, it’s important to ma-
nipulate anything we create before we add it to the DOM. The input’s width is set
smaller than the width of the cell to avoid any layout breakage, and we grab the
data we just saved to serve as the input element’s default value.

Try it out, and you’ll be impressed by how smoothly it works. Are you starting to
feel like a ninja now?

Data Grid Plugins

We’ve started down the path of creating a reusable data grid. There is an infinite
number of ways to go from here: the table could be sortable by column, and
searchable, and resizable—we could pack it with every crazy feature imaginable.
But if you're pressed for time, and need a lot of features fast, you’ll want to research
the plugin options that are out there, such as the DataTables plugin.*

DataTables is a truly impressive plugin for turning your HTML tables into fully
functional data grids, complete with pagination, column sorting, searching,

ThemeRoller support, Ajax loading, and more.

4 http://www.datatables.net/index

http://www.datatables.net/index

Lists, Trees, and Tables

As always, the decision to use a plugin or build custom functionality comes down
to how much time you have, how many features you need, and how big a file you’re
willing to serve to your visitors. Oh, and also how much fun you think you’d have

developing the functionality yourself!

For the moment, we’ve been able to add all the features required for our client’s
table-based needs on our own, and we’ve learned a lot about jQuery in doing it.
Before we move on to the next (and final) chapter, let’s revisit our check-all check-

boxes in the context of tables.

Selecting Rows with Checkboxes

Another feature that the public are becoming increasingly used to having is the
ability to select rows of a table (or any kind of list) by checking a checkbox associated
with the row. As well as selections being able to be made on an individual basis,
there are often shortcuts for selecting all items, selecting none, or inverting the
current selection of checkboxes. None of this is new to us: we’ve already built check-
all checkboxes and selection-inverting buttons.

But, dissatisfied with this, some users also want to be able to select continuous rows
by using the Shift key, just like in their desktop applications.

Selecting a Column of Checkboxes

Dealing with columns of data is much trickier than dealing with rows of data. They
may appear closely tied when viewed together onscreen, but when it comes to the
DOM they’re merely distant relatives. There are no handy next or previous functions
we can hook into.

Naturally, jQuery can help us out. Thanks to its sophisticated selector engine, we
can do whatever we want; it might just require a bit of thinking. To start with, we
know we need to grab the table; in our case, it’s good old #celebs. From here we

need to try to find the checkboxes in the first column of each row.

Next, we should retrieve the table rows, #celebs tr, and then the first columns of
each row, #celebs tr td:nth-child(1). Finally, we make sure we’re only selecting
checkboxes: #celebs tr td:nth-child(1) :checkbox. That’s quite the selector!

How far we’ve come from our simple $('tr:odd').

343

344

jQuery: Novice to Ninja

We place another checkbox (with an id of checker) in the thead of our table. Because
it’s in a th rather than a td, our selector will ignore it. To this we can attach a click
handler to turn on/off all the checkboxes by setting all the checkboxes’ checked
property to that of the top checkbox:

chapter_08/10_select_column_checkboxes/script.js (excerpt)

var chkSelector = 'tr td:nth-child(1) :checkbox';

$('#checker').click(function() {
$('#celebs ' + chkSelector)
.prop('checked', $(this).prop('checked'));
})s

The selector is stored as a string (chkSelector) because we want to reuse it later.

Shift-selecting Checkboxes

All on or all off is one thing, but our client now has high expectations of us. The
team demand that they be able to Shift+Click on checkboxes to select a bunch at a

time within a range of rows. Just like in a webmail client.

Shift-selecting presents some fun problems. For starters, how do we know if the
user is pressing Shift? Luckily for us, jQuery events tell us! We can find out from
an event the state of the Shift key by checking the Boolean property e.shiftKey
contained within the click event itself; there’s no need for us to capture keystrokes

or the like! We can also check the ctrlKey, altKey, and metaKey in the same manner.

How about finding out which row was clicked on? For that we can just jump up
the DOM and find the parent row of the checkbox, then fetch its index using index.
Another easy one.

Next, we have to know where the user last clicked, so that we can have a start and
end point for checking boxes. The easiest way for us to do this is to store each click
in the table using the data method. That’s a lot of information, so let’s put it into

practice:

Lists, Trees, and Tables

chapter_08/10_select_column_checkboxes/script.js (i excerpt)

$('#celebs ' + chkSelector).click(function(e) {
var $table = $(this).parents('table');
var lastRow = $table.data('lastRow');
var thisRow = $(this).parents('tr').index();

if (lastRow !== undefined && e.shiftKey) ({
var numChecked = 0;
var start = lastRow < thisRow ? lastRow : thisRow;
var end = lastRow > thisRow ? lastRow : thisRow;
$table
.find (chkSelector)
.slice(start, end)
.prop(‘'checked', true);

}
$table.data('lastRow', thisRow);

P

We spring into action only when there’s a 1astRow value (it will be undefined the
first time through, before we’ve stored a click value on the table), and the user is
also holding down Shift.

With the source and destination rows in hand, we now need to figure out which is
further down the table, so we can make sure that the starting point is before the end
point. Then we slice up our checkbox selection with jQuery’s slice method. With
our freshly sliced jQuery selection in hand, we can finish it off by checking all the
remaining checkboxes in the selection. Now you can easily select ranges of rows in

a highly intuitive manner!

We've Made the A-list!

We’ve transformed the admin section of StarTrackr! from a horrible mess of poorly
formatted data into a usable desktop-style application and, in the process, trans-
formed raw data into useful information. The ease with which jQuery lets us mold
standard HTML elements into powerful application-like controls means that the
holy grail of responsive, impressive, and accessible Rich Internet Applications is

well within our grasp.

What’s truly awesome to note at this stage is that, in terms of the core jQuery library,
almost all the functions we find ourselves using we’ve seen at some earlier stage.

345

346

jQuery: Novice to Ninja

Surely this means we’re gaining a strong understanding of this powerful tool? Now
you just need to start trying out your own ideas; the time of automatically reaching
for the plugin should be well behind you. Try implementing a quick proof of concept
yourself, and you’ll be surprised how easy it is to reach the results you’re looking

for. Before long, you’ll be writing code that others will want to use in their projects.

And here’s a secret: sharing your code is what being a ninja is all about! So in the
next chapter, you’ll learn how to take all this fantastic functionality you're building
and make it available to the whole world, in plugin form. We’ll also cover a few

other advanced topics to round out your jQuery ninja training!

Chapter

Plugins, Themes, and Advanced Topics

jQuery, like the game of chess, or any version of Tetris, is simple to learn but difficult
to master. Thanks to its seamless integration with the Document Object Model, it
feels natural and easy to use. But jQuery is a quiet achiever: it doesn’t like to brag
about it, but under that hood lies an extensible architecture, a powerful event-
handling system, and a robust plugin framework.

Plugins

“Hey, now that everything’s in place, can you just go back and put that menu from
Phase 3 into the admin section? And can you add the cool lists you made in the last
phase to those lists on the front end, and add the scroller effect you did—you can
just copy and paste the code, right?”

Ah, copy/paste—our good friend and worst enemy. Sure, it might seem like a quick
way to get a piece of functionality up and running, but we all know that this kind
of code reuse can so easily degenerate into our worst JavaScript nightmares. And
we can’t let that happen to our beautiful jQuery creations.

348

jQuery: Novice to Ninja

You’ve seen throughout the book how extremely useful the jQuery plugin architec-
ture is. We have made use of all manner of third-party creations: from styleable
scrollbars to shuffling image galleries and autocompleting form fields. The good
news is that it’s extremely easy to package your code as a plugin for reuse in your
other projects—and, if your code is really special, in other developers’ projects as
well!

Creating a Plugin

It will only be a short time into your jQuery-writing life before you have the urge
to turn some of your code into a plugin. There’s nothing better than seeing a bit of
your own code being called from the middle of a jQuery chain! The best part is that
it’s a very simple process to convert your existing jQuery into a plugin, and you can
make it as customizable as you like.

Setting Up

Before we start, we need an idea for our plugin. Some time ago, one of the client
team mentioned that they’d like to highlight all the text paragraphs on the page, so
that when a user moved their mouse over the paragraphs, text would become un-
highlighted to indicate it had been read. While you’ll agree this is far from being
the best user interface idea, it’s sufficiently simple for the purpose of demonstrating
how to make a plugin, without having to concentrate on the effect’s code itself.

All we need to do to make a plugin callable like regular jQuery methods is attach
a function to the jQuery prototype. In JavaScript, the prototype property of any
object or built-in data type can be used to extend it with new methods or properties.
For this exercise, we’ll be using the prototype property of the core jQuery object
itself to add our new methods to our plugin.

The safest (read: only!) way to do this is to create a private scope for the jQuery
function. This JavaScript trick ensures that your plugin will work nicely, even on

pages where a person is using the $ function for non-jQuery purposes:

(function($) {
// Scope for your plugin code
}) (iQuery);

Plugins, Themes, and Advanced Topics

This code can go anywhere in your script, but standard practice is to put it in a
separate JavaScript file named jquery.pluginname.js, and include it as you’d include
any plugin. Now that you have a stand-alone file, you can easily use it in future
projects or share it with the world! And you can rest assured that inside this pro-
tective shell you can use the $ alias with impunity.

That’s all there is in the way of preliminaries, so it’s time to start to writing our
plugin. First we need to give it a name, HighlightOnce, and attach it to the jQuery
plugin hook, $. fn:

chapter_09/01_plugins/jquery.highlightonce.js (excerpt)

(function($) {
// Shell for your plugin code
$.fn.highlightOnce = function() {
// Plugin code

}
}) (iQuery);

Internally $.fn is an alias of the jQuery.prototype JavaScript property, and it’s
the perfect place to put our plugins. This is where jQuery puts its actions, so now

that we’ve added our custom action, we can call it as if it was built into jQuery.

At this point, our code looks like a jQuery plugin, but it won’t act like one; there’s
still one more task. If we were to perform some operations inside our plugin code
right now, we would actually be working on the entire selection at once; for example,
ifweran $('p').highlightOnce(), we’d be operating on every paragraph element
as a single selection. What we need to do is work on each element, one at a time,
and return the element so that the jQuery chain can continue. Here’s a fairly
standard construct for plugins:

chapter_09/01_plugins/jquery.highlightonce.js (excerpt)

// Plugin code
return this.each(function() {
// Do something to each item

P

So you now have a nice skeleton for creating simple plugins. Save this outline so
that you can quickly create new plugins on a whim.

349

350

jQuery: Novice to Ninja

Adding the Plugin’s Functionality
Our HighlightOnce plugin is ready to roll, so let’s give it a job to do. All the structure

we’ve added so far is just the scaffolding; it’s now time to create a building! The
type of code we can run in the guts of our plugin is exactly the same as the code
we’re used to writing; we can access the current object with the $(this) construct
and execute any jQuery or JavaScript code we need to.

The first function our plugin needs to accomplish is to highlight every selected
element, so we’ll just set the background to a bright yellow color. Next, we need to
handle when the user mouses over the element so that we can remove the highlight.
We only want this to happen once, as soon as the element is faded back to the ori-
ginal color (don’t forget, we need the jQuery Ul Effects component to do this, or at
least the jQuery color plugin):

chapter_09/01_plugins/jquery.highlightonce.js (excerpt)

// Do something to each item
$(this)
.data('original-color', $(this).css('background-color'))
.css('background-color', '#fff47f')
.one('mouseenter', function() {
$(this).animate ({
'background-color': $(this).data('original-color')
}, 'fast');
1)

There just happens to be a jQuery action that fits our needs exactly: the one action.
Functionally, the one action is identical to the bind action we saw earlier, in that
it lets us attach an event handler to our element. The distinction with one is that
the event will only ever run once, after which the event will automatically unbind

itself. Be careful not to confuse one with on, though!.

For our code, we save the current background color in the element’s data store;
then bind the mouseover event to the DOM elements that are selected. When the
user mouses over the element, our code runs and the background color is animated

back to the original. And with that, our plugin is ready to be used:

Plugins, Themes, and Advanced Topics

chapter_09/01_plugins/script.js (excerpt)

$('p")
.hide ()
.highlightOnce /()
.slideDown() ;

It’s quite exciting: our functionality is captured in a chainable, reusable plugin that
we’ve nestled in between the hide and slideDown actions. Given that 11 lines of
code is all that was required (and six of those are stock-standard plugin scaffolding),
you can see it’s worth turning any functionality you intend to reuse into a plugin.

Adding Options

jQuery plugins are an excellent way to produce reusable code, but to be truly useful,
our plugins need to be applicable outside the context for which we created
them—they need to be customizable. We can add user-specified options to our
plugins, which can then be used to modify the plugin’s behavior when it’s put to
use.

We’re familiar with how options work from a plugin user’s perspective, as we’ve
passed in options to just about every plugin we’ve used throughout the book. Options
let us modify the plugin’s functionality in both obvious and more subtle ways, so

that it can be used in as wide a range of situations as we can imagine.

There are two types of plugin options: simple values and object literals. Let’s start
with the simpler one to see how this works. For our HighlightOnce plugin, it seems
quite limiting to have the color hard-coded. We’d like to give developers the choice
of highlighting their elements in any color they’d like. Let’s make that an option:

chapter_09/02_plugin_options/jquery.highlightonce.js (excerpt)

$.fn.highlightOnce = function(color) {
$(this).css('background-color', color || '#fff47f')
s

The plugin can be called with a color, but can also be called without parameters,
in which case a default value will be used (thanks to the JavaScript | | operator).
Let’s highlight our paragraphs in green:

351

352

jQuery: Novice to Ninja

chapter_09/02_plugin_options/script.js (excerpt)

$('p")
.hide()
.highlightOnce('green')
.slideDown () ;

If you have one or two simple options that are always required, this approach is
fine. But the more complicated your plugins, the more numerous your settings, and
users will want to override some and keep the default values for others. This is
where we turn to the more complex object literal notation.

It’s not scary; you already know how to define this type of settings object. We’ve
used them for animate, css, and most jQuery Ul components. The key/value object
has the benefit of needing only one parameter to be defined, in which users can
specify multiple settings. Our first step is to set up default values for each option:

chapter_09/03_plugin_options_with_defaults/jquery.highlightonce.js (excerpt)

$.fn.highlightOnce.defaults = {
color : '#fff47f',
duration : 'fast'

s

We now have the defaults as an object, so we need to make use of the jQuery
$.extend function. This handy function has several uses, but for our purposes we’ll
use it to extend an object by adding all the properties from another object. This way,
we can extend the options the user passes in with our default settings—the plugin
will have values specified for every option already, and if the user specifies one of
them, the default will be overridden. Perfect! Let’s look at the code:

chapter_09/03_plugin_options_with_defaults/jquery.highlightonce.js (excerpt)

$.fn.highlightOnce = function(options) {
options = $.extend({}, $.fn.highlightOnce.defaults, options);

return this.each(..);
s

Plugins, Themes, and Advanced Topics

Our options variable contains the correct settings inside it, whether they’ve been
defined by the user or by the default object. Now we can use the settings in our
code:

chapter_09/03_plugin_options_with_defaults/jquery.highlightonce.js (excerpt)

$(this)
.data('original-color', $(this).css('background-color'))
.css('background-color', options.color)
.one('mouseenter', function() {
$(this).animate ({
'background-color': $(this).data('original-color')
}, options.duration);
1)

As the plugin user, we can specify the color or duration of the highlight, or accept
the defaults. In the following example, we’ll accept the default color, but override
the duration to be 2,000 milliseconds rather than “fast”:

chapter_09/03_plugin_options_with_defaults/script.js (excerpt)

$('p')
.hide()
.highlightOnce ({duration: 2000})
.slideDown() ;

Adding Callbacks

You've seen how useful callback functions and events can be. Many of the effects
and controls throughout the book rely on them, and many of the plugins we’ve used
have given us access to callbacks to customize their functionality. Callbacks are a
mechanism for giving your plugin’s users a place to run their own code, based on
events occurring inside your plugin. Generally, you’ll have a fairly good idea of
what events you’d like to expose to your users. For our HighlightOnce plugin, for
example, we might want to run additional code when the effect is set up, when the

effect concludes, and perhaps when the fade-out commences.

To demonstrate, let’s try exposing a setup event (which will run after the mouseover
handlers are attached), and a complete event (which will run after the final animate
method concludes):

353

354 jQuery: Novice to Ninja

chapter_09/04_plugin_callbacks/jquery.highlightonce.js (excerpt)

$.fn.highlightOnce.defaults = {
color: '#fff47f',
duration: 'fast',
setup: null,
complete: null
b

The callback functions shouldn’t do anything by default, so we’ll set them to null.
When the time comes to run the callbacks, there are a few possible ways of proceed-
ing. If our callback needs to run in the place of a jQuery callback, we can simply
provide the function passed in by our users to the jQuery action. Otherwise, we’ll
need to call the function manually at the appropriate location:

chapter_09/04_plugin_callbacks/jquery.highlightonce.js (excerpt)

$(this)
.data('original-color', $(this).css('background-color'))
.css('background-color', options.color)
.one('mouseenter', function() {
$(this).animate(
{'background-color': $(this).data('original-color')},
options.duration,
options.complete
)5
1)

// Fire the setup callback
if ($.isFunction(options.setup)) {
options.setup.call(this);

}

Above we can see both types of callbacks. The complete callback handler is easy:
the effect is completed when the animate method is finished, and the animate action
accepts a callback function itself, so we just pass the function along. No such luck
with the setup handler, though; we’ll have to fire that one ourselves. We turn to
jQuery and a dash of advanced JavaScript to execute the code. First, we check to
see if the callback is a function with the handy $.isFunction jQuery action that
returns a Boolean value: true if the callback is a function, false if it’s not. If it’s
the latter (which is most likely given the user left the defaults as they were, in which
case it will still be null), there’s no point trying to execute it!

Plugins, Themes, and Advanced Topics

More Utility Functions

In addition to $.isFunction, jQuery also provides the following functions:
$.1isArray (for testing if a variable is an array), $.isPlainObject (for simple
JavaScript objects), and $.1isEmptyObject (for an object that has no properties).
These functions provide you with a number of ways to ascertain the nature and
properties of a JavaScript construct.

If the callback has been defined, we need to run it. There are several ways to run a
JavaScript function, and the easiest is to just call it: options.setup(). This will
run fine, but the problem is that it’s called in the scope of the default object, instead
of in the scope of the event’s target element (as we’re used to). So the callback
function would be unable to determine what DOM element it was dealing with. To
remedy this, we use the JavaScript method call. The first parameter you pass to
call will override this in the method you’re calling. In our example, we pass in
this, which is the DOM element we want.

With the scope corrected, we can now use $(this) inside the complete event
handler to slide up the element once the effect is done and dusted:

chapter_09/04_plugin_callbacks/script.js (excerpt)

$('p")

.hide()

.highlightOnce({
color: '#FFA86F',
complete: function() {

$(this).slideUp();

}

})

.slideDown();

jQuery-style Callback

You might have noticed that the jQuery callbacks seem better integrated than our
plugin’s named events. For example, in the hide action, you can specify the callback
function as either the first (and only) parameter, or you can include the speed
parameter and then the callback function. It’s unnecessary to include a key/value
pair as we did above. What'’s the secret? It turns out to be a little bit of a JavaScript

355

356 jQuery: Novice to Ninja

hack. If you detect that the first parameter is a function rather than an object, you

can assume that only a callback has been specified, so you shift the parameters over.

Here’s a truncated example from the jQuery core library, part of the Ajax load action.
The params parameter is optional, so if it isn’t supplied, the second parameter is
assumed to be the callback:

load: function(url, params, callback){
// If the second parameter is a function
if (jQuery.isFunction(params)){
// We assume that it's the callback
callback = params;
params = null;
}
}

The params parameter is supposed to be an object filled with various settings. But
if we detect that it’s actually a function, we assign the function to the callback
variable and clear the params variable. It’s a cool trick and a good way to make your

plugins feel more jQuery-ish.
Let’s modify our HighlightOnce plugin to use this callback detection trick:

chapter_09/05_jquery_style_callbacks/jquery.highlightonce.js (excerpt)

$.fn.highlightOnce = function(options, callback) {
if ($.isFunction(options)) {
callback = options;
options = null;
}
options = $.extend($.fn.highlightOnce.defaults,options);

return this.each(function() {
// Do something to each item
$(this)
.data('original-color', $(this).css('background-color'))
.css('background-color', options.color)
.one('mouseenter', function() {
$(this).css('background-color', '');
$.isFunction(callback) && callback();
})s
})s
3

Plugins, Themes, and Advanced Topics

Advanced Topics

Eventually the thrill of creating plugins will wear off a smidgen, and you’ll start to
wonder if there are any other gems hidden within jQuery. And you’d be right to
wonder. In addition to the fantastic plugin architecture we’ve just explored, jQuery
provides a mechanism for extending and overwriting its core functionality, and a
flexible event system for defining and fine-tuning how your components respond

to your users and other components.

Extending jQuery

Plugins are not the only jQuery mechanisms for code reuse and extensibility; at

your disposal is a system to add plugin-like functionality, as well as customize and
override elements of the core jQuery system on the fly. If you have a chunk of code
you’d like to execute in a native jQuery fashion, you can extend jQuery with your
new functionality without creating a plugin, directly from inside your script. This
way you can fine-tune your code to more closely fit the jQuery feel, and fine-tune

jQuery to suit your exact requirements.

Adding Methods to jQuery

Sometimes sections of the code you’re writing are such a pivotal part of your applic-
ation that you find yourself using them over and over again. When this happens,
you may have found a candidate for extending jQuery. Hidden away in the plugins
section of the jQuery core library, the extend method is normally the domain of the
plugin developer. But don’t let that stop you!

jQuery.fn.extend(),or $.fn.extend(), accepts an object that allows us to provide
a new set of methods to extend jQuery—adding new actions that can be performed
on jQuery selections. This is closely linked to jQuery.extend (), which extends the
jQuery object itself. The net result is exactly the same as the plugins we wrote
earlier. Generally, you'll use the extend method when you have a group of small
related methods you want to add, or when you’d like to override some existing
functionality (we’ll look at that shortly).

So let’s take a look at some code we’ve already created and see how it evolves using

extend. Back in Chapter 8, we looked at sorting lists:

357

358 jQuery: Novice to Ninja

var SORTER = {};
SORTER.sort = function(which) {
// Sort the selected list

Having to call our widgets like this lacks that jQuery feel. So we’ll convert the
SORTER method to integrate it more closely with jQuery, using extend:

chapter_09/06_extending_jquery/script.js (excerpt)

$.fn.extend({
sorter: function() {
return this.each(function() {
var sorted = $(this).children('1li').sort(function(a,b) {
// Find the 1list items and sort them
return $(a).text().toLowerCase() >
w3 (b).text().toLowerCase() ?2 1 : -1;

1)
$(this) .append(sorted);

P
}
P

Inside the new sorter method, we return the results of running the function from
our original example against each member of the selection on which we called the
action. This return structure allows us to use the action in a chain:

chapter_09/06_extending_jquery/script.js (excerpt)

$('#ascending').click(function() {
$('ul.sortable')
.hide()
.sorter()
.slideDown () ;

P

The biggest change from our original SORTER widget is that once the extend is in
place, we no longer call the functions and pass in parameters; instead, we treat it
like a normal jQuery action, much as we would had we packaged it into a plugin.
Of course, you could take this same code and make it into a plugin. Doing it on the

fly like this is just another option available to you.

Plugins, Themes, and Advanced Topics

$. Prefixed Functions

At the beginning of the book, we praised jQuery for being a very consistent library:
each time we call on it we have a selector, an action, and maybe a few parameters.
Once you learned that basic pattern, it would essentially be all you had to remember.
Then, only a few paragraphs later, we snuck in some code that didn’t use a selector
at all! Subsequently, we’ve seen several of these kinds of actions: $.ajax, $.map,
$.slice, $.trim, and more.

The $. prefixed functions don’t work on a selection; rather, they’re general utility
commands that can have a place outside a jQuery command chain. For example,
$.map can be used to map any arbitrary array, but it can also be used to modify a
jQuery selection.

The client team likes the Ajax Twitter-search component we developed in Chapter 6,
but wants a more human-readable time displayed for the tweets: for example, rather
than “56 seconds ago,” they’d prefer it to say “about a minute ago.” This sounds

like a good candidate for adding to the jQuery object, since it’s the sort of function-
ality you’d want to be able to use outside of a selection. Anytime we need a friendly-
looking time period, we’d like to be able to call $.1lapsed(time) and obtain a nice

string.

To get underway, we’ll omit the actual logic for a second while we look at the
function’s structure. The skeleton looks very similar to the plugins we created—
passing the jQuery object to the wrapped function—so our code will work even if
the $ alias has been redefined:

chapter_09/07_$_prefixed_functions/script.js (excerp t)

(function($) {
$.lapsed = function(time) {
var then = new Date(Date.parse(time));
now = new Date();
minutes = Math.round((now-then) / 60000);
lapsed, seconds;

// Determine pretty time

}s
}) (jQuery);

359

360 jQuery: Novice to Ninja

Now we just need to attach our function to the jQuery object itself. Because we're
extending jQuery, we’ll have to be careful to avoid unintentionally overwriting any
of the built-in function names. The code we’ll use to determine the “pretty” time
is nothing more than a series of if/else structures. To keep the example simple,
our helper will only go as far as “more than a minute ago”—but you’ll want to extend
this to account for larger time spans:

chapter_09/07_$_prefixed_functions/script.js (excerpt)

// Determine pretty time

if (minutes === 0) {
seconds = Math.round((now - then) / 1000);
if (seconds < 10) {

lapsed = "less than 10 seconds ago";
}
else if (seconds < 20) {
lapsed = "less than 20 seconds ago";
}
else {
lapsed = "half a minute ago";
}
}
else if (minutes === 1) {
seconds = Math.round((now - then) / 1000);
if (seconds === 30) {
lapsed = "half a minute ago";
} else if (seconds < 60) {
lapsed = "about a minute ago";
} else {
lapsed = "1 minute ago";
}
} else {
lapsed = "more than a minute ago";
}

return lapsed;

To use this extension in our jQuery code, we pass a timestamp to the new lapsed
function, and append the result wherever we need it. Our functionality is neatly
encapsulated, and ready for use on any number of future projects:

Plugins, Themes, and Advanced Topics

chapter_09/07_$_prefixed_functions/script.js (excerpt)

.append('' + $.lapsed(this.created_at)
=+ '"')

Overwriting Existing Functionality

One of the main differences between adding plugins via $.fn.myPlugin rather than
$.extend({ myPlugin : .. }),isthat the extend mechanism augments the element
you're extending, rather than replacing it entirely. This is what makes it possible
to extend jQuery itself (or existing plugins) with additional functionality. As well
as adding new methods to jQuery, as we did above, we can extend the functionality

of existing methods!

As a simple example, we’re going to extend the functionality of the $.trim method.
$.trimtakes a string and removes any leading or trailing spaces. We’ll add an extra
parameter to the method that, if set to true, will remove all spaces from the given

string:

chapter_09/08_overwriting_existing_function/script.js (excerpt)

(function($) {
var _trim = $.trim;
$.extend({
trim:function(text, clear) {
if (clear) {
return text.replace(/\s+/g,"'"');

}

return _trim.call(this, text);
}
1)
}) (iQuery);

First, as always, we're playing nice for people who don’t want to use the $ for jQuery
(see the section called “Plugins”). Next, we’re storing the original trim function in
a variable so we can access it later on. Finally, we reach the important bit: extending
the trim function. Our version of trim is going to accept an extra Boolean parameter.
If it’s set, we run our custom regular expression to remove all whitespace, and if

it’s not set, we call the original jQuery trim function.

361

362

jQuery: Novice to Ninja

Extending code in this way is particularly useful when dealing with more complex
objects; for example, if you need to modify the $.ajax method to do some additional
processing on every request. In that situation, you’d only want to modify the partic-
ular aspects of the code that you needed to, and leave everything else alone. By
storing the original function, and referring to it as necessary, it becomes a simple
task.

Don’t believe that it’s that simple? Let’s take another run at it, this time with a

slightly more complicated method.

Throughout the book, we’ve spoken of how much easier life is going to be for de-
velopers when the HTML5 standard becomes the norm. The hardest part about
HTMLS5 is the waiting. And waiting ... and waiting. So let’s strike a blow for HTML5
and extend the jQuery animate method to use CSS3 animations when the browser’s
ready for it. We’ll flip back to using the current animate method if we find the
punter isn’t ready.

If you've been on the Web looking for jQuery CSS3 solutions, you might recognize
the hand of Addy Osmani in what we’ll create.' Rest assured, we’ve asked him if
we could draw on his code; we’ve changed it so much that only the concept re-
mains—and even that’s been reworked! So let’s take a look at the bare bones of what

we’ll be doing:

chapter_09/09_extending_jquery_animate/script.js (excerpt)

$.fn.extend({
defaultAnimate: $.fn.animate,
animate: function(props, options) {
// detect support

if (jQuery.support.transitions) {
// use CSS3 animations

}
else {
// use jQuery default animation
}
}
})s

! http://addyosmani.com/blog/css3transitions-jquery/

http://addyosmani.com/blog/css3transitions-jquery/

Plugins, Themes, and Advanced Topics

Our first task is to store the default animate method as defaultAnimate. When we
need to use the default method, we can call it by its new name, and everything we’re

accustomed to will be available there.

Next up, we set about implementing our new animate method under the animate
name. We’ll perform some initial feature detection, and then use that to fork between

our CSS3 animation and the trusty jQuery version:

chapter_09/09_extending_jquery_animate/script.js (excerpt)

animate: function(props, options) {
var prefixes = ['Moz', 'Webkit','0'],//, 'Khtml', 'Ms'
length = prefixes.length,
effects = {
duration: 2000,
easing: "ease-in-out",
complete: null
b
effect, i;
jQuery.extend(effects, options);
effect = ['all ', effects.duration / 1000, 's ',
weffects.easing].join("");

if (!jQuery.support.transitions) {
if (jQuery.support.transitions !
jQuery.support.transitions =

false) {
false;
for (1 = 0; 1 < length; i += 1) {
if ((prefixes[i] + "Transition") in this[O0]

- . style) {
jQuery.support.transitions = ["-",
wprefixes[i], "-transition"].join("");

}
}

return $(this).each(function() {
if (jQuery.support.transitions) {
$(this).css(jQuery.support.transitions, effect)
= . CSS(props);

if ($.isFunction(effects.complete)) {
setTimeout (function() {
effects.complete();

363

364

jQuery: Novice to Ninja

}, effects.duration);

}
}
else {
options.easing = "linear";
$(this).defaultAnimate(props, options);
}

1)

Once again, if you’ve been following along, there’s absolutely no new jQuery in that
block of code; we’ve covered everything in the chapters getting here. But let’s have

a quick recap just to drive it home.

Passing in props and options parameters give us two clear benefits: we stay as close
to the default animate method as practicable, which helps with forward and back-
ward compatibility, and we can pass the required parameters to defaultAnimate

when we need to. We accomplish a lot without having to remember very much at

all.

Our variables are also straightforward. prefixes is an array of the proprietary exten-
sions we’ll use for the animation, length is how many of those there are, and effects
are the default effects we’ll animate with. We then have an undefined effect, which
will be what we’re actually animating, and an i for the index of a loop we’ll use.
And that comment after prefixes holds the other two legal proprietary extensions;
we can add them back into our array when those browser vendors support CSS3

animations.

Next, as we saw earlier in the chapter, we extend effects using defaults; hence,
we pass through default values for anything the user doesn’t give us, and then
populate effect using values from our extended effects:

chapter_09/09_extending_jquery_animate/script.js (excerpt)

if (!jQuery.support.transitions) {
for (1 = 0; 1 < length; i += 1) {
if ((prefixes[i] + "Transition") in this[0].style) {
jQuery.support.transitions = ["-", prefixes[i],
w"-transition"].join("");

Plugins, Themes, and Advanced Topics

The first condition we check in that if block doesn’t exist in jQuery.support as a
native property, and so JavaScript is going to always run the code inside this condi-
tion at least once. Its real job in our code is to stop the next element we call our
animate method on needing to check if CSS3 transitions are supported—if we’ve
run it once, we’ll know one way or the other! The next if condition check makes
sure jQuery.support.transitions is really false, and only continues if it’s just

falsy.

@ What's Truthy and Falsy?

A quick aside here: what do we mean by “falsy”? JavaScript supports Boolean
data types; values which can be set to true or false. In addition, every value in
JavaScript has an inherent Boolean value, generally known as either truthy or
falsy. Falsy values include 0, " " (an empty string), null or undefined. Truthy
values can include 1, "0" or "false" (the last two being non-empty strings). You
can leap ahead to Appendix B to find out more about truthiness and falsiness.

If it looks as if this check performs the same task as the previous conditional, that’s
because it pretty much does. The difference, though, is that now we’re providing

that only-run-it-once feature for non-compliant browsers too.

Once inside both our conditional blocks, we firstly set the value of jQuery.sup-
port.transitions to false, the property we just tested for those older browsers.
With that set, a for loop appends the members of our prefixes array to the string
“Transition” and compares the concatenated values against the style properties
of the elements we want to animate. Compliant browsers will report true for this
check, and we’ll then use our CSS3 animation. So Chrome will report true for
WebKitTransition, and we’re away. And since Internet Explorer is yet to support
CSS3 animation, we removed Ms from that array—as we said, there’s no point
checking for support we know doesn’t exist. When IE10 comes out, we can add in

support if it’s compliant.

Next up, we perform a return so that we can keep chaining and run an each loop
over the selection we’re calling animate on (see? You do know all this!):

365

366 jQuery: Novice to Ninja

chapter_09/09_extending_jquery_animate/script.js (excerpt)

if (jQuery.support.transitions) {
$(this).css(jQuery.support.transitions, effect).css(props);

if ($.isFunction(effects.complete)) {
setTimeout (function() {
effects.complete();
}, effects.duration);

}
}

Now, if our browser is compliant to the CSS3 specification, jQuery.support.trans-
itions will have a value such as:

“-WebKit-transition”

Well, it would if we were still using our Chrome browser. It has two characteristics:
it’s truthy (see Appendix B) and a valid CSS proprietary extension property name.
So our browser will be animating with CSS3!

To perform its animation, we pass jQuery.support.transitions into a garden-
variety css method call, along with the value we stored in effect. Using the default
values, it would look like this:

“all 2s ease-in-out”

Lastly, if we're in a compliant browser, we check to see if we’ve been passed a
callback. If we have, we wait till after the animation is finished and call the callback
method. The result is super-smooth animation using the best solution the browser
has to run animation. jQuery’s animation is good, but CSS3 animation takes it to
the next level.

But our code’s not quite done yet. What if jQuery.support.transitions still isn’t
truthy? That’s where we go back to what jQuery knows best: we apply its default
animation method, the one we stored as defaultAnimate:

Plugins, Themes, and Advanced Topics

chapter_09/09_extending_jquery_animate/script.js (excerpt)

else {
options.easing = "linear";
$(this).defaultAnimate (props, options);

This makes sense, but what is that options.easing doing? CSS3 is really good at
animating, but its range of animation styles is less comprehensive than jQuery’s;
even more annoyingly, it uses hyphen-separated names in the styles, rather than
the camel case that we’re familiar with. To remove as many possible conflicts as
we can with our easing styles, we’re going to give all our noncompliant visitors the
one easing: linear. They may lack the experience of a compliant browser, but they’ll
still receive animation. Progressive enhancement, remember?

So how does it look? All we need to do to see it in all its glory is call it:

chapter_09/09_extending_jquery_animate/script.js (excerpt)

$('#star_0 div').animate({ width: "580px" }, {
complete: function () {
$("#star_0") .addClass("barred")
.find("span").html("Made it");
}
}
);

$('#star_1 div').animate({ width: "580px" }, {
duration: 2000,
easing: 'linear',
complete: function () {
$("#star_1").addClass("barred")
.find("span").html("Arrived");
}
}
);

$('#star_2 div').animate({ width: "580px" }, {
duration: 7000,
easing: 'ease-in-out',
complete: function () {
$("#star_2").addClass("barred")
.find("span").html("Star status");

367

368

jQuery: Novice to Ninja

}
}
);

Our first selection is only passing through the callback, and relying on the defaults
for its other properties. The second sends all options, but doubles in duration as
it’s sending through the default as its value. The last takes a while, but arrives in
style with its classy ease-in-out.

When our animation starts, the second bar leaps out as seen in Figure 9.1, but is
soon overtaken by the first bar evident in Figure 9.2. Even though their durations
are the same at two seconds each, the variation caused by the easing is dramatic.
They both finish at the same point, as shown in Figure 9.3, but look different getting
there.

iid Class

Figure 9.1. Animation starting

Figure 9.2. Animation progressing

Plugins, Themes, and Advanced Topics

Figure 9.3. Nearing completion

Our final script won’t outlast an official jQuery solution to the problem of cross-
browser support for utilizing the opportunities offered by CSS3, but it’s a step in
the right direction. And who knows, with the popularity of StarTrackr!, maybe the
jQuery core team will take note and step up the schedule. We can only hope!

Create Your Own Selectors

Ten basic filters, four content filters, two visibility filters, six or so attribute filters,
four child filters, and 14 form-focused filters. This is more than just the makings of
a wicked Christmas carol: jQuery’s built-in filters allow you to easily select just
about anything on the page. But what do we do when we want all the advertisement
units in a page, or all the links that were clicked to leave a page, or all the break-out
items below the fold?

The Fold

"Above the fold” in web design terms refers to the area of a page visible on page
load, without scrolling. Hence, “below the fold” refers to the total area beneath

that, which is invisible without scrolling.

Admittedly these are odd requests, but let’s use the opportunity to examine custom

filters in detail; besides, in certain situations they can definitely work in your favor.

Rather than finding elements below the fold, let’s turn to a more useful purpose and
detect when an element is visible, or above the fold, on page load. If the element is
above the fold, we can load its content via Ajax straight away. If not, we can delay
the Ajax request until later, saving both bandwidth and page-load time:

369

370

jQuery: Novice to Ninja

chapter_09/10_custom_selectors/script.js (excerpt)

$.extend($.expr[':'], {
abovethefold: function(el) {
return $(el).offset().top < $(window).scrollTop() +
w$(window) .height () ;
}
1)

We’ve already looked at $.extend a few times, so accessing the selector engine
should be quite familiar. The $.expr[:1 object is what we need to extend in order
to add our custom filters. We pass in a key/value pair, where the key is the name
of our filter and the value is a function that takes a reference to an element. The
function should return true or false. If it returns true, the element tested (el) will
be added to the selection. Otherwise, it will be filtered out:

chapter_09/10_custom_selectors/script.js (excerpt)

$('p:abovethefold').css('color', 'red');

If we test our new :abovethefold filter once the page has loaded, we will see that

only paragraphs visible without scrolling will have turned red.

The extensibility of the selector engine is a little-known feature of jQuery, and one
that distinguishes the novices from the ninjas!

Events

The event system in jQuery is very powerful. Its primary purpose is to normalize
all browser events to match the W3C standards, thus allowing us to perform cross-
browser event handling with relative ease—but that’s just the tip of the iceberg. A
lot of thought has gone into the internal event system in the core library, and this
functionality has also been exposed to those developers who are keen to do more
than just react to simple events.

Custom Events

We saw earlier that bind and trigger do all the real work for the events that we
fire; they’re behind the scenes of click, mouseover, toggle ... every one of them.
The shorthand actions make for shorter, more readable code, and the expanded
bind and trigger syntax provides exactly the same functionality. So why use bind

Plugins, Themes, and Advanced Topics 371

and trigger? It turns out that they’re far more versatile and powerful than we’ve
witnessed thus far. For starters, we can break away from browser-specified events

and start creating some of our own!

Creating your own events helps to make your code clearer; for instance, a function
buried in a click handler needs to be analyzed to determine its purpose, whereas
an event with a specific name might be easier to comprehend at a glance. Let’s have
a look at creating a custom do-toggle event. To do so, we’ll go all the way back to

the disclaimer message example we saw in Chapter 2:

chapter_09/11_custom_events/index.html (excerpt)

<p id="disclaimer">
Disclaimer! This service is not intended ..
</p>
<input type="button" id="toggleButton" value="toggle" />

This time, instead of the button being responsible for toggling the disclaimer, the

disclaimer will be responsible for toggling itself:

chapter_09/11_custom_events/script.js (excerpt)

$('#disclaimer').bind('do-toggle', function() {
$(this).toggle('slow');
})s;

We have bound our custom do-toggle event to the disclaimer element. When the
do-toggle event fires, the function will run and the disclaimer will hide or show
itself. But how do we fire the do-toggle event? By using the trigger method:

chapter_09/11_custom_events/script.js (excerpt)

$('#toggleButton').click(function() {
$('#disclaimer').trigger('do-toggle');
})

When the button is clicked, the disclaimer is toggled. It might seem like the long
way round compared to just hiding and showing with the toggle button, but now
we’ve completed two very important tasks: we’ve moved the code responsibility to
the element itself, and given ourselves the ability to fire the event from any other
location. Whether we want to toggle the disclaimer via our toggle button or via a

372

jQuery: Novice to Ninja

small icon at the top of the screen, there’s no need to replicate the code; we just fire

the do-toggle event from wherever we choose.

But wait, there’s more. The bind/trigger system also lets you append parameters
when you fire events. Each triggering element can pass different data, so the event
handler can customize its response. This makes custom events very powerful; you
can now create widgets that can be elegantly controlled by multiple elements on

the page, so you can cleanly separate and isolate page behavior and make your code

far more reusable.

As an example, we’re going to put an alternate trigger mechanism on the page for
the animated content panes we created in the section called “Bouncy Content Panes”
in Chapter 3. In this example, we made cool-looking content panes showing celebrity
biographies that bounced open and closed when their headings were clicked. For
clarity we’ll omit the bouncing effect here, so that when the user clicks on the bio-

graphy headings the panes will toggle instantly.

However, there will also be a select box above the panes. When a celebrity is
chosen from the list, the biography will toggle in the same manner; the same event
handler will fire, except that this time we’ll have a nice sliding effect.

Our select box trigger contains a list of the available biographies that the user can
view. Later, we’ll attach a change event handler to it to trigger the sliding effect:

chapter_09/12_custom_events_with_params/index.html (excerpt)

<select id="chooser">
<option>Beau Dandy</option>
<option>Johnny Stardust</option>
<option>Glendatronix</option>
</select>

Here is the important part. We are binding our custom reveal event to all the bio-
graphy headings. The code will accept an extra parameter, which we can use to
determine how to display the biographies. If the effect parameter is set to ease,

we’ll slideToggle; otherwise, the user will see the standard nonsliding toggle:

Plugins, Themes, and Advanced Topics

chapter_09/12_custom_events_with_params/script.js (excerpt)

$('#bio h3').bind('reveal', function(e, effect, duration) {
if (effect == 'ease') {
$(this) .next().slideToggle(duration);
} else {
$(this) .next().toggle();
}
})
.click(function() {
// Trigger 1 : plain toggle
$(this).trigger('reveal');
})s

Because our first trigger has no need to add any effect, we won’t add any parameters
to the trigger call. When the bind code runs, it finds no effect parameter, so it

does the regular toggle:

chapter_09/12_custom_events_with_params/script.js (excerpt)

$('#chooser')
.change (function() {
// Trigger 2: slidey toggle
$('#bio h3:contains(' + $(this).val() + ")')
.trigger('reveal', 'ease');

});

When the user changes the current selection in the select list, we find the correct
content pane and trigger the reveal event again. But this time we add the 'ease’

parameter, so the user experiences the fancy sliding version.

Adding data to custom events is a fantastic way to encapsulate your widget’s code,
and expose an interface that other developers can use to customize your functional-
ity. To pass multiple items to the bind function, you need to wrap the trigger’s
parameters in an array:

chapter_09/12_custom_events_with_params/script.js (excerpt)

$('#bio h3:contains(' + $(this).val() + ")")
.trigger('reveal', ['ease',2000]);

373

374

jQuery: Novice to Ninja

Unbinding and Namespacing

jQuery can create some amazing effects with just a handful of actions: the majority
of our controls used no more than a few actions, and very little JavaScript code. As
you expand your controls and effects—converting them to plugins and using multiple
controls together to make bigger, cooler controls—you’ll find that your events start
to become a bit unwieldy. Handlers are attached and never removed, even after
your effect has finished, and this can clash with any new behavior that you attempt
to add later on. We’re not always able to rely on the set-it-and-forget-it approach
we’ve been using so far.

The jQuery library provides us with two mechanisms for dealing with this problem:
event unbinding and event namespacing. Event unbinding lets us remove event
handlers from objects, and event namespacing provides a way for us to break our
event handlers into logical groups that can be unbound without affecting other
events. This is especially useful when we’re developing plugins.

Event unbinding is simple: we use the bind action to add events to an object, so we
use the unbind action to remove them! There are three ways we can use unbind: to
remove all events from objects in a selection, to remove all events of a particular
type from our selection, or to remove one specific event handler. Here’s the first
form:

$('p').unbind();

This will remove all event handlers associated with all paragraphs on the page. It’s
a little extreme; more commonly, we’ll just want to remove events of a certain type.
For example, to remove all the mouseover events we pass the event type into the
unbind action:

$('p').unbind('mouseover');

And finally, to unbind a single event handler we pass the function to unbind. This
is a little more complicated, because we need to have named the function when we
bound it. For our example, we bind two functions to the click event. We then
unbind one of the events:

Plugins, Themes, and Advanced Topics

chapter_09/13_event_unbinding/script.js (excerpt)

var doToggle = function() { $(this).toggle(); };
var doSlide = function() { $(this).slideToggle(); };

$('p")
.click(doToggle)
.click(doSlide);

$('p').unbind('click', doToggle);

Thanks to our unbind call, any subsequent clicking on the paragraph tags would
still trigger the doS1lide method, but no longer trigger the doToggle method.

@ Shorthand Unbinding?

If you can also use the shorthand click and mouseover methods to bind events,
are there unclick and unmouseover shorthand methods too? Nope. Those
methods used to exist in jQuery, a long time ago, but they were removed because
they made the core API a lot bigger, and were very seldom necessary.

As extensive as all those unbinding options seem, they’re unable to cater for all
situations. When you’re doing lots of binding and unbinding, it’s easy to lose track
of what’s going on, so jQuery provides a way to group related events via event
namespacing. Namespaced events can be triggered independently of other events
of the same type, and all events in the same namespace can be unbound with a

single command.

To define a namespace, you append a period (.) and your namespace name to the
event you want to attach a handler to. Without doing anything further, the event

will work just like a regular non-namespaced event; however, you now have a handle
that you can use to be more specific about which events are fired, without needing

to maintain a reference to each event’s function (as we did above):

chapter_09/14_event_namespacing/script.js (excerpt)

$('p').bind('mouseover.colorize', function() {
$(this).css('background-color', 'lemonchiffon')

})

.bind('mouseout.colorize', function() {
$(this).css('background-color', '');

375

376

jQuery: Novice to Ninja

})
.click(function() {
$(this)
.trigger('mouseout.colorize')
.unbind('.colorize');

P

In this example, we’ve bound regular mouseover and mouseout event handlers to
every paragraph on the page. This creates a simple and convincing highlight effect
as the user moves a mouse over the elements. But there’s an extra trick to this

highlight: when the user clicks on an element, the highlight will be removed.

When the click occurs, the user will be hovering over the element; if we remove

the handlers, the mouseout code will never run and the element will remain high-
lighted. To combat this, we trigger the mouseout manually. We can specify that only
the mouseout code relating to our effect should run because we’ve namespaced the

event. Any other mouseout handlers will remain dormant.

With our element no longer highlighted, we can remove all the event handlers in
our effect’s namespace with a single unbind command. We target the namespace
by passing only '.colorize' as a parameter.

Namespacing your events is particularly useful when you’re creating plugins. You
now have an easy way to control all the events that your plugin adds to the DOM
without worrying about what the user (or other plugins) might have also attached.

When it comes time to tear everything down, you can clean up with a simple unbind.

Multiple Namespaces

You're not limited to playing with a single namespace; if you need to target mul-
tiple namespaces in one statement, simply concatenate them with periods.

Binding the iPhone: Nonstandard Events

As if the jQuery event system hadn’t already proven itself to be a little winner, it
has yet another trick up its sleeve: it can respond to events it should have no
knowledge of! This ability is going to become more and more important as we start
to move away from the PC as our primary tool for accessing the Web. The number
and type of devices on which people will be viewing your pages in the future is

Plugins, Themes, and Advanced Topics

going to explode: smartphones, tablets, PSPs, “the next big thing,” and so on. While
most of them are going to have to respect the DOM, they will all try to add their

own twist to improve human-computer interaction.

And that will mean new hardware-triggered events for us to handle. The iPhone’s
touch interface is a great example of this. Although the iPhone can react to mousedown
and mouseup events, it has other preferred events to use. There’s a collection of
specific events that handle interaction with the iPhone touchscreen that make no
sense on most other devices. Although jQuery doesn’t provide direct access to these
events (after all, it would soon be a huge library if it had to support every device’s

events!), the bind method is generic enough to catch any events that are fired:

$(document).bind('touchstart', function(event) {
var original = event.originalEvent;

var x = original.changedTouches[0].pageX;
var y original.changedTouches[0].pageY;

$('#block').css({top: y, left: x});
})s

The touch events are defined by a third party, but as long as we have access to the
documentation about the events (or can collect our own data with Firebug or another
debugging tool), we can easily capture and respond. In our example, we’re catching
the touchstart event that’s fired whenever the user touches the screen.

Because jQuery has no knowledge of touchstart, we access the originalEvent
from the jQuery event object that’s passed to our callback function. originalEvent
gives us access to the unwrapped JavaScript event, free of any jQuery additions.
We can now make use of the event exactly as it’s documented. We’re grabbing the
X and Y position of the screen touch, and updating an absolutely positioned block
element at the touch location.

Disable mousedown and mouseup

If you're writing handlers for the iPhone, you might need to disable the default
actions for mousedown and mouseup. You can do this by capturing them on the
$(document), and using the event.preventDefault action. Otherwise, you

377

378

jQuery: Novice to Ninja

run the risk of running the same code twice, because you’ll be triggering both
touch and mouse events.

The special Event

Creating your own custom events is undoubtedly quite advanced, but jQuery’s
special event construct is downright ninja-like. If you're feeling a bit restricted by
the regular old DOM events, this is for you! Using special is a way to create native-
seeming events of your own, or overwrite and augment existing events. You can do
some custom code handling every time a handler is bound, as well as when the
event is removed (which occurs during the beforeUnload phase). A special event
is a first-class jQuery citizen.

click events fire when the user clicks an element, and load events fire when an
element has loaded; now we’re going to create an event that fires when the user
hovers multiple times over an element. By default, when an element receives three
mouseovers, the bound event handler runs, but we’ll see how this can be customized
on an element-by-element basis. As with regular events, it’s up to you to specify
the code that executes in the event handler.

To create a special event, you attach a JavaScript object to the $.event.special
namespace. The event system provides four hooks for you to define how the event
works. The setup function runs when the event is first bound, the add function
runs every time it’s bound, the remove function runs when it’s unbound, and the
teardown function runs when the Jast event is unbound (that is, when no more
events of this type remain bound to handlers).

Let’s have a look at the skeleton of our multihover event:

chapter_09/15_special_event/script.js (excerpt)

jQuery.event.special.multihover = {

setup: function(data, namespaces) {
// Do when the first event is bound

s

add: function(handler, data, namespaces) {
// Do every time you bind another event

s

remove: function(namespaces) {
// Do when an event is unbound

bs

Plugins, Themes, and Advanced Topics

teardown: function(namespaces) {
// Do when the last event is unbound

s
handler: function(event) {

// Do your logic
}
}

Once you’ve created your event, you can bind it as you would any event. Obviously
there’s no shortcut method to bind your custom events, so you have to use the bind
method to attach it to page elements:

chapter_09/15_special_event/script.js (excerpt)

$('p').bind('multihover', {times: 4}, function() {
$(this).css('background-color', 'lemonchiffon');
})s

We’ve bound our new multihover event to all the paragraphs on the page, and then
specified how many times we want to hover over an element before the event fires.
We saw in the the section called “Custom Events” that you can pass data to an event
with the trigger method, but now we learn that you can specify data to pass to an
event when you bind it as well!

Our special event isn’t going to use the add or remove hooks, because we only want
to allow one multihover event to be attached to each element. In the setup hook,
we’ll store the required number of hovers on the element itself using the data action.
We’ll default to 3 in the absence of a user-specified value. Next up, we bind our
custom event handler (which we call jQuery.event.special.handler) to the
mouseover event, since we’ll need to perform our logic there to determine when
the third hover has taken place:

chapter_09/15_special_event/script.js (excerpt)

setup: function(data, namespaces) {
$(this)
.data('times', data && data.times || 3)
.bind('mouseover', jQuery.event.special.multihover.handler);

},

teardown: function(namespaces) {

379

380

jQuery: Novice to Ninja

$(this)
.removeData('times"')
.unbind('mouseover', jQuery.event.special.multihover.handler);

The data Parameter

The data parameter on the bind method is not specific to the special event. It
will work exactly the same on any of your events, so take advantage of it!

We also undo all this setup in the corresponding teardown handler. Here we remove
the data item we added, and unbind the mouseover binding. This tidies everything
up. Now we have a new event that calls our custom handler every time a mouseover
event occurs, so let’s implement our multihover logic:

chapter_09/15_special_event/script.js (excerpt)

handler: function(event) {
// Do your logic
var times = $(this).data('times') || O;
times--;
$(this).data('times', times);

if (times <= 0) {
event.type = 'multihover';
jQuery.event.handle.apply(this,arguments);

$(this) .unbind('multihover');
}
}

This is the meat of the functionality. We’ve separated it into its own function only
to keep it clear; we could just as easily handle it with an anonymous function.

The multihover logic first subtracts 1 from the times data item. When it reaches 0
(which is to say that all the hovers are done), we modify the event property type
and set it to multihover, then call the internal handle function. This will cause any

bound callbacks that the user has specified to be executed, just like a native event.

The special event is a beautiful way to wrap up custom events to be reused
throughout your projects. As well as creating new functionality, like our multihover

event, you can also redefine existing events; for example, you could overwrite the

Plugins, Themes, and Advanced Topics

internal click event by providing the appropriate hooks to $.event.special.click.
Creating special events is a relatively rare requirement, but when you do need
them, you’ll see that they’re a killer advanced feature of jQuery.

A jQuery Ninja's Miscellany

Even once we’ve explored the full-blown systems and frameworks on offer within
jQuery, there are still countless treasures planted throughout the library for you to
take advantage of. Some of these are well documented, though perhaps quite specific,

functions; others are more obscure advanced topics.

Avoiding Conflicts

As we mentioned, the $ and jQuery objects and methods we use when writing our
code are namespaces, just like those we’ve been creating ourselves. As a namespace,

jQuery is unique, clear, and fairly short.

And while the dollar sign certainly scores points for brevity, it’s hardly unique.
This lack of uniqueness can be cause for concern if another developer overwrites
what we assume to be $. For example, the JavaScript framework Prototype.js uses
$() as shorthand for the JavaScript getElementById method, and if we’re careless,
such namespacing conflicts can be catastrophic. To defend against this possibility,

jQuery gives us access to noConflict:

jQuery.noConflict();

Basically this means that jQuery will relinquish any rights to the $ namespace, but
still respond to the jQuery namespace:

jQuery.noConflict();

// Do something with jQuery

jQuery("div p").hide();

// Do something with another library's $()
$("content").style.display = 'none';

This means that you’d have to remove any references to the $ in your code, replacing
them with jQuery, and, frankly, that might be unfeasible. But there’s a way to ease
that workload:

381

382

jQuery: Novice to Ninja

jQuery.noConflict();
jQuery (function($) {
$(function() {
[/ more code using $ as alias to jQuery
1)
})s
// other code using $ as an alias to the other library

By wrapping all our jQuery commands in an anonymous function and passing in
references to jQuery and $, we create a shell that protects the jQuery methods and
properties inside. And there’s yet another option available to us: we can assign
noConflict’s return value to a variable, and use that instead of jQuery or $. In this
case, we’ve chosen to use trkr as the jQuery alias:

var trkr = jQuery.noConflict();

// Do something with jQuery

trkr ("div p").hide();

// Do something with another library's $()
$("content").style.display = 'none';

There’s one further process we can use, and that’s to assign the noConflict to a
new namespace:

var trkr = {};
trkr.$ = jQuery.noConflict(true);

Among all these options you’re bound to find a solution to suit your needs!

Queuing and Dequeuing Animations

Despite the multitude of animation options you have at your disposal, they some-
times fall short of what you need; you might want an animation to pause, or perhaps
have an element outside it react when the animation reaches a certain point. There
are plenty of interesting moments in an animation sequence, and it would be good
to be able to harness them. And you can, with queue!

Generally speaking, actions we chain together on a selection are asynchronous,
happening more or less at the same time:

Plugins, Themes, and Advanced Topics

chapter_09/16_queue_dequeue_animations/script.js (excerpt)

$('#button1').click(function() {
$(this).animate({
height: 200,
width: 200
}, 'slow').text("rollin'");
})s

When you click that button, it will slowly grow to a size of 200x200 pixels, but the
text will update almost immediately. When we use the animate action, it adds an
fx stack to the element, and any animations we add will go on that stack. Being
animation-focused, the text action ignores the fx stack, while queue honors the
stack:

chapter_09/16_queue_dequeue_animations/script.js (excerpt)

$('#button2').click(function() {
$(this).animate({
height: 200,
width: 200
}, 'slow').queue(function() {
$(this).text('rolled!"');
}).text("rollin'");
})s

Now the animate and text actions happen together, but the queue also changes the
text once the animation has concluded. And it doesn’t stop there ... or more accur-
ately, it does! If we add another animate action to the chain, the queue will hold
the fx stack and will stop the chained action from proceeding:

chapter_09/16_queue_dequeue_animations/script.js (excerpt)

$('#button3').click(function() {

$(this).animate ({
height: 200,
width: 200

}, 'slow').queue(function() {
$(this).text('rolled!"');

}).text("rollin'").animate({ // This animate won't fire
height: 100,

383

384

jQuery: Novice to Ninja

width: 100
}, ‘slow');
});

The queue action now needs some help to release the stack once more. Just as on
has off, and animate has stop, queue also has its opposite: dequeue.

The dequeue method is a little peculiar; rather than being linked into the jQuery

chain, the dequeue action is called from within queue’s callback:

chapter_09/16_queue_dequeue_animations/script.js (excerpt)

$('#buttond').click(function() {
$(this).animate ({
height: 200,
width: 200
}, 'slow').queue(function() {
$(this).text('rolled!"').dequeue();
}).text("rollin'").animate({ // This animate WILL fire
height: 100,
width: 100
}, 'slow');

P

When we click the button now, its text will change to “rollin’,” and it will grow to
200x200; then its text will change to “rolled,” and it will shrink to 100x100. Not an
animation that will change your world, perhaps, but queue is likely to change the

way you look at animations.

Treating JavaScript Objects as jQuery Objects

jQuery works by selecting DOM elements and then acting on them. But a little-
known secret is that jQuery can act on more than just the DOM,; it can be applied
to regular JavaScript objects as well. This is less a deliberate feature than a con-
sequence of the library’s internal design. Although at first glance it might appear a
little bizarre (why would you want to slideUp a JavaScript object?), it does have
some potentially interesting ramifications.

It’s impossible to s1lideUp a JavaScript object; after all, it lacks a height property,
or any visible properties for that matter. But you can, nonetheless, select it just as
if it were a DOM element:

Plugins, Themes, and Advanced Topics 385

$(myobj);

There are a number of jQuery actions unrelated to visual properties, but which we
could imagine employing on a generic object. The amazingly useful data action can
be used to store arbitrary data against the selected element. We can use this to add
metadata to any object in our code. In this way, we could establish a bidirectional
link between two JavaScript objects. For example, we want to store additional in-

formation on a map. The map holds locator information to the locator that can be

retrieved when the pin is clicked:

// Our map pin location's meta data
var locationData = {
name : "Bourgeois Burger Cafe",
celebCount : 3,
lat : latitude,
lon : longitude,

}

// Get a pin locator from our mapping service
var locator = Map.getLocator(latitude, longitude);

We have two objects: the third party locator pin object, and our locationData
object that contains data relating to the pin. If we select the locator with jQuery,
we can apply the data action and attach the locationData object. Internally, jQuery

will store the relationship in the data store, so neither object is modified effectively:

// Attach our data object to the JavaScript pin object
$(locator).data('pin_data', locationData);

Now at a future point when the user clicks on the map and the locator’s click
handler fires, we’ll have access to the locationData object:

// Later, when a location is clicked
var currentData = $(clickedLocation).data('pin_data');

// We can retrieve the metadata stored on the object!
alert("You selected the location: " + currentData.name);

P

Although in many cases we’d probably want to store the element reference in the

object itself, when the objects are coming from third-party code, you have to be very

386

jQuery: Novice to Ninja
careful with adding or removing properties. In addition, since any changes the third

party makes in the future could affect your code, it’s best to play it safe. The data
action lets us augment the object without changing it.

Theme Rolling

Throughout the preceding pages, we’ve traversed and conquered much of the jQuery
UI APL One of the most attractive features of jQuery Ul is ... its attractiveness! Out
of the box the UI components look great, and (as much as we might hate to admit
it) looking great is incredibly important. Sometimes it can be even more important
than the functionality itself! There’s nothing worse than showing a colleague or
boss a technically brilliant proof of concept for a control you’ve created, only to be
met with criticism about its design. Worse still, sometimes your lack of initial
thought regarding skinning and theming results in a product that’s inherently diffi-
cult to style.

This is not a problem for jQuery UI components; there’s a gallery of themes available,
and picking or customizing a new funky design is simple, thanks to the ThemeRoller
web application.? ThemeRoller lets you tweak, design, and download jQuery UI
themes. Additionally, if you follow some simple conventions when creating your
own controls, you can easily take advantage of existing and customized themes to
ensure everything you create looks as awesome as it works.

Using Gallery Themes

We’ve mentioned themes on a few occasions on our jQuery Ul expedition; it’s one
of the options we had to specify when we downloaded the library. By default you
receive the Ul lightness theme, but we’ve also made use of the Sunny theme, and

perhaps you’ve had a look at a couple more as you went along. To see what default

themes you can use, head over to the ThemeRoller site.

Now click the Gallery tab in the left sidebar. Here you can view various predesigned
themes and find one that fits your needs. If you hit the download button, you’ll be
taken to the familiar jQuery Ul build screen. If you need the whole library, customize
the components you want. The theme you choose will be preselected in the theme

drop-down box.

2 http://jqueryui.com/themeroller/

http://jqueryui.com/themeroller/
http://jqueryui.com/themeroller/

Plugins, Themes, and Advanced Topics

On the other hand, if you only want the theme, don’t worry about which components
are selected; just download the library. The bundled files will include your theme,
so copy the css folder out of the download and into your project. Then update the
theme name in the stylesheet 1ink inside your page, so that your components will
look for the correct CSS file. That’s all there is to it.

Rolling Your Own

Chances are the default themes may prove unsuitable for your site. Thankfully, the
ThemeRoller tool is here to make customizing the available themes a breeze. As
you update properties in the sidebar, the changes are instantly reflected in the pre-

view area, as illustrated in Figure 9.4.

A Accordion Slider
ThemeRoller_ augp
: + Section 1
Roll Your Own | Gallery | Help s Sadtion 2 Datepicker
- Section 3
Sovmicadthens © December2008 ©
~ Font Settings Nam enim risus, molestie et, porta ac, aliqguam ac, B Moy s WeiiTh Er iAw
risus. Quisque lobortis. Phasellus pellentesque purus & 2 3 a
Family verdana,Arial,sans-serlf in massa. Aenean in pede. Phasellus ac libero ac ¢ 7 8l g 101112
tellus pellentesque semper. Sed ac felis. Sed

Welght | normal -1 commaodo, magna quis lacinla ornare, quam ante 13| 14| 15 16/ 17 | 18] 15
Size | 1.1en

aliquam nisi, eu iaculis leo purus venenatis dui. 20 [21)[22| 3] 24) 25 =8
* List item one 27 |28 [923] [i3t

¥ Corner Radius * List item two

* List item three

» Header/Toolbar Progressbar

} Content Tabs

able: default state

b Clickable: h ate First Second Third
Highlight / Error
¥ Clickable: active state = Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
+ Highlight eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut
i b enim ad minim veniam, guis nostrud exercitation ullameo © Hey! Sample ui-state-highlight
Vitrar 2o laboris nisi ut aliquip ex ea commodo consequat. style.
¥ Modal Screen for Overlays
» Drop Shadows
Drop Shadows Dialog A Alert: Sample ui-state-error style.
1 Open Dialog

Figure 9.4. The jQuery Ul ThemeRoller

Once you’ve tweaked your theme to perfection, you can download it by hitting the
Download theme button. The changes are passed over to the jQuery UI download
builder, just like a regular gallery theme, except that the theme drop-down box will
now say “Custom Theme.” If you downloaded the bundle now, your theme would
be called custom-theme (and your CSS files would be stored in the custom-theme
folder). If you feel your creation demands a more fitting title, drop down the Advanced

Theme Settings panel and update the Theme Folder Name input box.

387

388

jQuery: Novice to Ninja

@ Limited IE6 Support

Although ThemeRoller themes are incredibly nice-looking and easy to use, there’s
a catch. The jQuery UI team is less obsessed with supporting Internet Explorer 6
than its jQuery core counterparts and, as a result, the themes use some CSS3 styles
and semitransparent PNGs that will look quite ugly in IE6. It recommends that
you use a PNG support library to ensure attractive icons, and you’ll have to find
a non-CSS solution to your round-corner woes!

Making Your Components Themeable

ThemeRoller may have a groovy-sounding name, and the results you gain from it
may be fairly impressive, but all it’s really doing is generating a block of CSS classes
that can be used to style any set of DOM elements. If you build your own custom
Ul components in a way that follows the jQuery UI's markup and naming conven-

tions, they’ll also be skinnable.

In Figure 9.5, we’ve applied the appropriate CSS classes to the bouncy content
panes from Chapter 3, so now we have a very jQuery Ul-like component. The default
themes (or our custom ThemeRoller themes) can be included at the top of our page,
and our chameleon widget will instantly have a new look and feel (here you can

see the Ul lightness, Dot Luv, and Eggplant predesigned themes in action).

Glendatronix
Mr Speaker
Johnny Stardust
T After smashing into the
‘\‘ _ limelight after a controversial
‘ ’ 4‘4 run as "local weather forecaster
-

with something to say”, Johny

Glendatronix

Mr Speaker
Johnny Stardust

After smashing into the limelight

M after a cortroversial run as "local
weather forecaster with something

to say”, Johny Stardust has gone

&Y After smashing into the

run as "local weather 2

from strength-to-strength. His
current spot as front-man of super-group
Pahoopt makes his exact location a valuable
commodity.

A S0LD OUT!

“\l@f limelight after a controversial
e
-

forecaster with something to
say", Johny Stardust has gone from
strength-to-strength. His current spot as

Stardust has gone from
strength-to-strength. His current spot as
front-man of super-group Pahoopt makes
his exact location a valuable commodity.

front-man of super-group Pahoopt makes A SOLD OUT!

his exact location a valuable commodity.

A SOLD OUT! Amelia

Amelia

Figure 9.5. ThemeRolled content panes

If you're accustomed to building semantically correct structures, you’ll probably
only need to add a class here and there to access all the ThemeRoller goodness.
The themes assume your widget will have at least a containing element that it can
use as the base for styling. Our original HTML for the biography panes looked like
this:

Plugins, Themes, and Advanced Topics

<div id="bio">

<h3>Beau Dandy</h3>

<div>

Glendatronix is the queen of ..

</div>

<h3>Mr Speaker</h3>

<div>

After smashing into the limelight ..

</div>

</div>

To start off, we’ll designate the #bio div as the container by applying the ui-widget
class. Then we’ll reset any styles we may have already applied that might mess
up the widget styling, by adding ui-helper-reset:

chapter_09/17_themable_components/index.html (excerpt)

<div id="bio" class="ui-widget ui-helper-reset">

This already gives us the fonts and colors of the current theme. Next, we can start
to work additional classes into our component to style the heading and content

areas:

chapter_09/17_themable_components/index.html (excerpt)

<h3 class="ui-widget-header ui-corner-all">Johnny Stardust</h3>
<div class="ui-widget-content">

After smashing into the limelight ..
</div>

The ui-widget-header gives us the shiny toolbar look, and the ui-corner-all will
make the widget nice and round (where supported, of course). You can specify
ui-corner-all or the more specific classes that style individual edges, such as the
ui-corner-tl for the top-left edge or ui-corner-bottom for both bottom edges, to
achieve rounded corners on most elements.

We’ve also added the dramatic “SOLD OUT!” message to our panes using some

additional classes that display as warnings and icons:

389

390

jQuery: Novice to Ninja

chapter_09/17_themable_components/index.html (excerpt)

<div class="ui-state-error">
SOLD OUT!
</div>

The ui-state-error class gives the error-style messages, and the ui-icon-alert
adds a small icon to the span.

As you’d expect from witnessing the jQuery UI library in full flight, there are a lot
more options available for controlling how your code is styled by the ThemeRoller
themes. There are classes for defining interaction states of buttons, disabled form
elements, and component shadows. There’s even some great helper classes for
z-index fixes (for Internet Explorer 6), as well as shortcut links for accessibility.
The documentation? is quite detailed and will give you a good grounding for most
of your widgets.

The best way to get your head around everything that’s available is to read over the
documentation, see what elements are affected in the ThemeRoller tool, and inspect
the classes applied to elements in the jQuery UI library. Remember, when you’re
making plugins that have a strong UI focus, you can easily add the ThemeRoller
classes via jQuery in your plugin code; this will give your users fully skinnable

components with very little effort!

And By No Means Least

No exploration of advanced jQuery and jQuery plugins could be complete without
a hat-tip to the newest kid on the block, jQuery Mobile.* Mobile moves jQuery away
from the desktop and onto, well, “mobile” devices. Better yet, it builds on the lessons
learned by both Core and U, so even if you have only a passing understanding of
those projects you’ll be ready to roll with Mobile. In fact one of the toughest things
to come to terms with when you’re developing with Mobile is the extra steps it’ll
take to view your handiwork in the target platforms. No more ALT+TAB and refresh
for Mobile developers—it’s now CTRL+S, pick up your phone or tablet PC, and hit
reload.

3 http://jqueryui.com/docs/Theming/API
4 http://jquerymobile.com/

http://jqueryui.com/docs/Theming/API
http://jquerymobile.com/

Plugins, Themes, and Advanced Topics

jQuery Mobile blends the cross-browser and cross-platform support we know and
love from jQuery with the power, flexibility, and design we turn to Ul for—it’s a

plugin, but not only does it extend jQuery, it extends the places where you can rely
on jQuery. You can select, bind, animate, and chain as you’d expect from a plugin,
but you can also tap and swipe, use more CSS3 than ever before, and, most import-

antly, use your mastery of jQuery to make that next must-have application.

You're able to focus on your application’s goal and let Mobile help you out without

getting in the way—include two files, a la jQuery UI, and you’re away!

<link rel=stylesheet href="http://code.jquery.com/mobile/1.0/
= jquery.mobile-1.0.min.css">

<script src="http://code.jquery.com/mobile/1.0/
= jquery.mobile-1.0.min.js"></script>

Looks familiar! Like you’re accustomed to, you can use jQuery’s own CDN to deliver
your files as we’ve done here, or you can grab the files yourself and include them
locally.

Using jQuery’s CDN, your minified and zipped files come in at 7kB and 24kB re-
spectively—easily small enough to be useful on a mobile network. And you’ve got
a host of platform options to access those mobile networks with. As it says on the
jQuery Mobile website,” “Mobile has broad support for the vast majority of all
modern desktop, smartphone, tablet, and e-reader platforms.” And this is no small
claim: jQuery Mobile’s graded browser support matrix sees it catering to an impress-
ive two dozen target platforms. This is not bad if you consider that some of the
competitor products officially support only one.

@ Four Grades of Support

There are too many platforms for us to duplicate the full list of the graded support
matrix, but you can find them all on the jQuery Mobile site.®

Instead, let’s take a look at the coverage levels you can expect for each grade:

A-grade: full, enhanced experience with Ajax-based animated page transitions

> http://jquerymobile.com/gbs/
® http://jquerymobile.com/gbs/

391

http://jquerymobile.com/gbs/
http://jquerymobile.com/gbs/

392

jQuery: Novice to Ninja

B-grade: enhanced experience without Ajax navigation features

C-grade: basic, non-enhanced HTML experience that is still functional

Not Officially Supported: might work, but hasn’t been thoroughly tested or
debugged

Mobile’s documentation is nearly as comprehensive as the support is. Each method
and property is covered, and the documentation itself is written using Mobile
—clever, huh? Arguably the documentation is easier to navigate on a smartphone
than it is on the desktop!

As plugins go, jQuery Mobile is even more rich than jQuery Ul—it has more features
baked in, and more functionality that works as soon as you add the files to your
application. And as Mobile is grounded in the HTML5 and CSS3 that are driving
desktop development, it can even be enticing to non-mobile use cases. Its support
is still growing, and there are possibly some features that we’ll see added in later
releases. While Mobile doesn’t yet rate a mention in the navigation of jQuery Core
or Ul sites, there are myriad features to make applications that belie just how new

the library is. Let’s take a look at some of those features.

Playing Your Trump

By now we know our client nearly as well as we know jQuery and jQuery UI, so
it’s a safe bet for us that a mobile application with a social aspect is on the cards.
Let’s up the ante and deal with their next request by creating a mobile-based card

game.

We’ll implement jQuery Mobile by making Pop Trumps: The Jemimas, the world’s
first card game that combines the thrill of trumping your friends with the face of

the newest rock star to hit the charts, as seen in Figure 9.6, Figure 9.7, and Figure 9.8.

Plugins, Themes, and Advanced Topics 393

Figure 9.6. The face of Pop Trumps

il B =
Pop Trumps

Select an album by The Jemimas to play

The Jemimas: Debut

This is The Jemimas

Awkward Third

Best of The Jemimas

HOME

Figure 9.7. Our Pop Trumps home page

394 jQuery: Novice to Ninja

™ =
Congratulations!

The game was a win

So far you've played one game,
and won all of them.

CONTINUE HOME

Figure 9.8. The winner's screen

Rather than go through every line of code, let’s focus on the Mobile-specific code

where we can:

chapter_09/18_getting_mobile/index.html (excerpt)

<link rel=stylesheet href="http://code.jquery.com/mobile/1.0/
= jquery.mobile-1.0.min.css">

<script src="http://code.jquery.com/mobile/1.0/
= jquery.mobile-1.0.min.js"></script>

We have already looked at the Mobile requirement includes, but they are worth
mentioning again. Unlike other jQuery projects, and in order to achieve the wide
range of platform support, a great deal of manipulation occurs well before the doc -
ument.ready event fires. As a result, we need to add our includes in the head of

our document to achieve the best user experience.

While we’re in the document head, let’s look at that new meta element:

chapter_09/18_getting_mobile/index.html (excerpt)

<meta name=viewport content="width=device-width, initial-scale=1,
wyuser-scalable=0">

Plugins, Themes, and Advanced Topics

jQuery Mobile draws heavily on HTMLS5, and here we have an HTML5 element that
normalizes the cross-platform display of our application. It tells our browser that
our content should be as wide as it can be and that it should be at a 1:1 scale. This
is important, given the wide range of resolutions our application may encounter.
That last content value—user-scalable=0—tells our browser not to make our
content zoom. If zooming is something you’d like in your app, just omit that value
and go with the browser’s default behavior.

Speaking of HTMLS5, let’s take a look now at our document structure. Again, if you
have already worked with HTMLS5, there should be few surprises for you—except
possibly how well Mobile embraces the language:

chapter_09/18_ getting_mobile/index.html (excerpt)
<section data-role="page" id="home">

</section>
<section data-role="page" id="albums">
<header data-role="header">

</header>
<div data-role="content">

</div>
<footer data-role="footer">

</footer>
</section>
<section data-role="page" id="album">

</section>
<section data-role="page" id="results">

</section>

At its heart, our page is a group of section elements with a data-role attribute of
page. You could also use div elements instead of sections—here, the attribute is
more important than the element, as the data-role tells Mobile each of the sections
will be a page in our application. We further delineate our pages with unique id
attributes that serve as anchor targets for our navigation. Where a desktop might
use ids to jump or scroll to content, Mobile uses them to transition between

pageviews.

395

396

jQuery: Novice to Ninja

Inside our second section we’ve shown our basic pageview layout—a header, div,
and footer, again all with data-role attributes that help Mobile apply its under-

the-hood changes. Inside these elements we just add whatever HTML we need and
apply data-role attributes where it suits. Let’s try some now:

chapter_09/18_getting_mobile/index.html (excerpt)

START

Our first section with the id of home has an anchor which we tell Mobile we’d like
to display as a button in our Ul—we simply provide the data-role of button, and
Mobile does the heavy lifting for us. Using the hash reference in our anchor is all
we need do to load our next section, with an id of albums, into view.

In our albums section we continue using the simple HTML5 data attribute-driven
approach. We tell our header to apply a theme using, you guessed it, data-theme.
We do the same for our unordered list, as well as telling it to be a data-1listview,
and the anchors in the list to have a data-transition of flip to control how our

pages “turn”:

chapter_09/18_ getting_mobile/index.html (excerpt)

<header data-role="header" data-theme="b">
<h1>Pop Trumps</h1>
</header>

<div data-role="content">
<p>Select an album by The Jemimas to play</p>

<ul data-role="listview" data-inset="true" data-theme="b">

wThe Jemimas: Debut</1li>

wThis is The Jemimas

wAwkward Third</1i>

wBest of The Jemimas</1li>

</div>

Plugins, Themes, and Advanced Topics

Tapping the anchors in our attractively styled 1istview will now cause the
album-designated page to “flip” into to view, which adds nicely to our card-like
effect. You can also use slide, slideup, slidedown, pop, and fade; if you're a fan
of jQTouch,” you might notice that these transitions have been ported from that
library with only minor changes. After our f1lip we’ll have dealt one of our cards,
and the players can get into some serious trumping. For us, though, the real interest
lies in three new data-roles and a seamless DOM manipulation:

chapter_09/18_ getting_mobile/index.html (excerpt)

<div data-role="content">
<div data-role="fieldcontain">
<label for="flip-a" class="ui-hidden-accessible">
wSelect slider:</label>
<select name="slider" id="flip-a" data-role="slider"
wdata-theme="c">
<option value="no">☜ Number 1s</option>
<option value="yes">6</option>
</select>

</div>
</div>

<footer data-role="footer" data-theme="c">
<div data-role="controlgroup" data-type="horizontal">

</div>
</footer>

The first new data-roleisa fieldcontain, which does what you’d expect: contains
fields. If you like, this data-role can be applied to a fieldset for some extra se-
mantic sugar. The next is the slider role inside our fieldcontain, and the last is
acontrolgroup, which draws its name from an HTML5 hgroup and is used to group
buttons.

The DOM manipulation triggered from a slider data-role shows Mobile’s roots
in jQuery Ul—the select element and its associated label are hidden in the interface
and replaced by a sliding flip-toggle switch popular in mobile devices and illustrated
in Figure 9.9.

7 http://www.jgtouch.com/

397

http://www.jqtouch.com/

398

jQuery: Novice to Ninja

REDRAW WIN LOSE OVER

Figure 9.9. jQuery Mobile flip-toggle and grouped buttons

The controlgroup value has a no-less-striking effect in the interface, which it
achieves using CSS alone (no DOM manipulation). By itself, the controlgroup value
draws the links together and applies rounded corners to the first and last elements
in the group. If you also add data-type="horizontal” to the div containing the
controlgroup value, as we’ve done in the preceding markup, the grouped buttons
display in a row as you’d expect.

And our last data attribute is data-direction="reverse”, which works with our
transitions by reversing them. For example, where the default behavior is for a view
to move in from the right of the screen, our data-direction attribute causes it to
go out toward the right. When controlled, it provides the user with a strong sense
of movement within the application. It doesn’t simply shift along an apparently
endless series of views; rather, it moves around a series of pages like moving through
chapters in a book:

Plugins, Themes, and Advanced Topics

chapter_09/18_getting_mobile/index.html (excerpt)

<a href="#album" data-role="button" data-direction="reverse"
wid="continue">CONTINUE

And speaking of moving through chapters, we’ve reached the point where we can
start talking about writing our jQuery Mobile code. Well, almost.

Before we talk about the code we’ll write, we need to cover one more piece of code
that runs without us doing anything: the mobileinit event. jQuery Mobile’s default
transformations and styling are so good you’ll have little need to apply any changes,
but for those rare times when they are required, you can leverage the mobileinit
event—it allows you to extend or configure options as soon as the event fires. This
means you won’t need to overcome defaults—you can change settings before they’re
applied, and there’s no need to wait for the DOM to load. So you won’t have to wait
for $ (document) .ready () to take effect, nor document.loaded

As aresult, it’s recommended you reference your own local script files after refer-
encing the jQuery library, as normal, and before referencing Mobile, like so:

<script src="http://code.jquery.com/jquery-1.7.1.min.js"></script>
<script src="../path/to/your/scripts.js"></script>

<script src="http://code.jquery.com/mobile/1.0/
wjquery.mobile-1.0.min.js"></script>

So we have sorted our semantic HTML, our source files are all in place, and the
mobileinit event has fired. Let’s take a look at the code we’ve written to bring our
game to life. Our first method is a tiny tweak of some code we first used back in

Chapter 7—our 1-up notifier:

chapter_09/18_getting_mobile/scripts.js (excerpt)

function doOneUp(which, callback) {
$(which) .next().show().animate ({

top: "-=50px",
opacity: "toggle"
}, 1000,

function() {
$(this).css("top", "").hide("slow", callback);
})s

399

400

jQuery: Novice to Ninja

Sure, we could have added it as a plugin, but for our proof-of-concept, minimum-
viable-product game development, this is perfect. Our tiny tweak, which you
probably spotted, is to omit the remove () on the end of the line after the callback.
It just means we can call the method repeatedly without it chomping elements from
our code.

Now to create the bare bones of our Trumps method:

chapter_09/18_getting_mobile/script.js (excerpt)

function Trumps () {

// code goes here

this.init = function () {
// code goes here
}
}

var TRUMPS = new Trumps();

$(document) .ready(function (event) {
TRUMPS. init();

P

Here, we’ve established a constructor method, created an instance of it by declaring
anew Trumps(), and then called the instance’s init method. We could have called
the init from within the Trumps method itself, but this way we can delay the exe-
cution of it till the DOM is ready for us. Try it both ways and see how it works for
you!

Our first property in Trumps is this.datastore, which is where we’ll hold the game
statistics we’ll use to provide feedback to our players:

chapter_09/18_getting_mobile/script.js (excerpt)

this.datastore = {

games: {
win: O,
draw: O,
loss: 0,

total: O,

Plugins, Themes, and Advanced Topics

last: null,
s
tally: {
wins: O,
losses: 0

}

}s

While this property isn’t strictly Mobile code, it is required to overcome the fact
that Mobile doesn’t yet have a process by which to pass data from one view to the
next. We could have used HTML5’s localStorage () API if we were certain that
all our platforms supported it—but we’re not, so we won’t. We also could have used
jQuery’s data() method, which would have been fine cross-platform, but wouldn’t
have offered the strong visualization that we have with datastore. So let’s play the
hand we’re dealt and look at our first method:

chapter_09/18_getting_mobile/script.js (excerpt)

this.gameover = function () {
var wins = TRUMPS.datastore.tally.wins,
losses = TRUMPS.datastore.tally.losses,
result = (wins > losses) ? "win" : (wins === losses) ?
w'draw" : "loss";

TRUMPS.datastore.games[result] += 1;
TRUMPS.datastore.games["total"] += 1;
TRUMPS .datastore.games["last"] = result;

$.mobile.showPagelLoadingMsg() ;

setTimeout (function() {
$.mobile.changePage ("#results");
TRUMPS.result();
}, 999);
s

Our first method is actually one of the last things we will do in the game, but
JavaScript’s not biased that way and cheekily we’ve arranged the methods in alpha-
betic order. It won’t speed up or slow down any JavaScript engines, but it will make
it easier for the next developer who looks at your code. And making it more access-
ible for the next developer should always be a priority—the “next developer” who
looks at your code might well be you.

401

402

jQuery: Novice to Ninja

Let’s quickly review the method. First, we set some variables based in the datastore
object. By drawing the values directly from the object, we remove the need to

maintain state between views. We then set a result variable using ternary operators
to tell us whether the game was a win, draw, or loss, and use that variable to move
the result from tally, which we employ during a game, to games, which stores data

between games.

Now we’ve reached our first Mobile method, which should be easy to spot as it’s

cunningly called from $.mobile:

chapter_09/18_getting_mobile/script.js (excerpt)

$.mobile.showPagelLoadingMsg() ;

This particular method causes a dialog to appear with a loading graphic in it. It’s
normally really useful when we’re dynamically loading content via Ajax, but it

serves us well to tell the player that the game is over and the result is being analyzed.

The last task in this method is to create a delay so it looks as though it’s taking a
team of sports statisticians to compile the results—then we call our second Mobile

method and move to our Trumps method:

chapter_09/18_getting_mobile/script.js (excerpt)

$.mobile.changePage("#results");

You should be starting to perceive that the method names in Mobile are easily
readable and predictable. Want to change your page location? Call changePage. This
method allows us to move around our application almost as easily as the predictable
method names make it for us to search the Mobile documentation.®

Our next method is short and sweet and we’ve constructed it in case our landing,
or home, page completely baffles our players. If you dawdle on the landing page
for more than three seconds without taking any action, a button fades in to help

you along:

8 http://jquerymobile.com/demos/

http://jquerymobile.com/demos/

Plugins, Themes, and Advanced Topics

chapter_09/18_getting_mobile/scripts.js (excerpt)

this.prompt = function () {
setTimeout (function() {
$("#home").find("a").fadeIn("slow");
}, 3000);
s

Our this.reset method comes in next:

chapter_09/18_getting_mobile/script.js (excerpt)

this.reset = function () {
var switches = ["#flip-a", "#flip-b"],
length = switches.length,
current, i;

for (1 = 0; 1 < length; i += 1) {
current = $(switches[i]);
current[0] .selectedIndex = 0;
current.slider("refresh").next()
w find(".ui-slider-label-a").text(random());

}

function random () {
return Math.floor(Math.random() * 11)

}s
I

This method will reset the positions of our flip toggles so that they close, as well
as have new random values applied to them. With this little trick, our application
becomes so much more playable. And, again, we have a method with a single line

of code not to be found in Core, but which you will find in UL

current.slider("refresh").next().find(".ui-slider-label-a").
wtext(random());

And the Mobile code among it? That’s right: rather than reinventing the wheel,
Mobile makes use of the slider method we looked at in Chapter 7, and bases our
toggle on a binary slider. Why fix what ain’t broken?

On the topic of things that ain’t broke, let’s look at our next method, this.result.

There’s only the one line of Mobile-specific code here, so this will be quick. Like

403

404

jQuery: Novice to Ninja

gameover, we're working again with our state-freeing datastore object, this time
to build the page contents for a results page shown when the player has reached a
best-of-three in either wins or losses. We run through some conditions in order to
provide our players with some “fuzzy” results; none of this “You’ve won 8 games
out of 12”—that’s too robotic. We’d rather something to the effect of “You’ve played
12 games and won most of them.” That’s far less clinical, especially if you’re on a
bit of losing streak. Ouch!

chapter_09/18_getting_mobile/script.js (excerpt)

this.result = function () {

var result = TRUMPS.datastore.games.last,

salutation = (result !== "loss") ? "Congratulations!"
= "Sorry about that!",

total = TRUMPS.datastore.games.total,
wins = TRUMPS.datastore.games.win,
draws = TRUMPS.datastore.games.draw,
losses = TRUMPS.datastore.games.loss,

played = (total === 1) ? "one game" : total + " games",
record;
if (wins === total) { record = "all"; }
else if (losses === total) { record = "none"; }
else if (wins > (draws + losses)) { record = "most"; }
else if (losses > (draws + wins)) { record = "some"; }
else { record = "a few"; }
$("#results").find("h2").text(salutation);
$("#results").find("h3").find("span").text(result);
$("#results").find("p").find("b").text(played);
$("#results").find("p").find("span").text(record);

$.mobile.hidePagelLoadingMsg() ;
s

No losing streaks for us in any case. We’re all about the win, so let’s look at the
Mobile code from result:

chapter_09/18_getting_mobile/script.js (excerpt)

$.mobile.hidePagelLoadingMsg () ;

Plugins, Themes, and Advanced Topics

You’ll have guessed from the name that this is the reverse of the popup-creating
script, showPageLoadingMsg, which we called in the gameover method. And where
the latter method rendered the loading dialog on the interface, this one lets our
users know that we’ve tallied their score. Together, this.gameover and this.result
work with the data collected by our next method to create our gameplay:

chapter_09/18_getting_mobile/scripts.js (excerpt)

this.scored = function (which) {
var result = ($(which).find(".ui-btn-text").text() === "WIN")
w? "wins" : "losses";

this.datastore.tally[result] += 1;
if (this.datastore.tally[result] > 2) {
this.gameover();
}
s

this.scored is passed information about which button in the footer of the album
view was clicked, and uses that information to populate the tallies area of our
datastore object. Nothing really Mobile-specific in there, so let’s move on to our
penultimate method, this.set. And as this is a biggie, containing almost as much
new Mobile code as everything so far, let’s take it in bite-sized chunks:

chapter_09/18_getting_mobile/script.js (excerpt)

this.set = function () {
$(document) .bind("mobileinit", function(){
$.mobile.touchOverflowEnabled = true;
1)

$("#home") .bind("swipe", function(event){
document.location = "#albums";

P

$("#albums") .bind("vclick", function(event){
$("#home") .find(".ui-btn-text").text ("NEW GAME");
}).find("ul").find("a").each(function(i){
var albums = ["O_debut", "1_thisis", "2_awkward",
= "3 pestof"];

$(this).bind("tap", function(event){
$("#album").css("background-image",

405

406

jQuery: Novice to Ninja

w["url(graphics/albums/", albums[i], ".png)"].join(""));
})s
})s

Okay, so half the code is a big bite, but it’s really easy to digest. When all is said
and done, it’s the same jQuery code syntax that makes Mobile so simple to imple-
ment, with the occasional new event thrown in for good measure. As we expect
from a jQuery project, the team have done the hard work and we do the victory
dance. But let’s not spend too long in the end zone just yet. We still have a review
of this.set ahead of us.

this.set’s first order of business is to bind a method to the mobileinit event we’ve
been discussing. The method will set the property $.mobile.touchOverflowEnabled
to true. In this state, the property tells Mobile to use the overflow: auto CSS

property on platforms that support it when using fixed scrollbars, making them far
more reliable. It’s this level of detail which sets up the project to respond to changes

ahead across platforms.

Our next three blocks of code contain one bind each to a Mobile event:

$("#home") .bind("swipe", function(event){
$("#albums").bind("vclick", function(event){
$(this).bind("tap", function(event){

tap and swipe shouldn’t require any explanation—but in the interests of being
thorough, they refer to when someone taps the screen, and when someone swipes
the screen. And perhaps they do warrant an explanation—because the jQuery team
have gone that extra step and mapped these events to not only the obvious mobile-
specific touch events, but also to their equivalent counterparts on a desktop, should
your operating system supports them. Use your mouse to click an element with a
tap event bound to it, and you should see the method fire. Thanks, team!

From our perspective, though, a swipe will change the document location and a
tap will reset a background image on a view. The event you might not be too sure
about is a vclick event, though if we say the “v” is for “virtual” you’ll doubtless
be able to work out what it’s for. Mobile offers a suite of virtual event mappers
which normalize mouse interactions across platforms, routing the fastest event
through at each option and calculating virtual coordinates for where your vmouse

Plugins, Themes, and Advanced Topics

is interacting with the interface. vmouseover, vmousedown, vmousemove, vmouseup,
and vmousecancel are all supported in addition to velick, which in our case is
being used to change the text of the button displayed on our landing page from
START to NEW GAME. It’s the little touches like this that will go a long way in making
a test application such as Pop Trumps offer a great user experience.

And with those events explained, we’ve neared the end of our application’s code.
Let’s round it out:

chapter_09/18_getting_mobile/script.js (excerpt)

$("#album").bind("pagebeforehide", function(){
TRUMPS.reset();

P

$(".score").click(function(event) {
doOneUp(this);
TRUMPS.scored(this);

event.preventDefault();
}).after("+1");

$("#gameover") .bind("tap", this.gameover);// assign, not invoke

$("#results").find("a").bind("tap", function(){
// reset the datastore
TRUMPS.datastore.tally.wins = O;

TRUMPS.datastore.tally.losses 0;

})
b

After explaining the first half of the this.set method, this is almost a revision.
Working in reverse, we bind a tap to the anchors on the results page, and use
those to reset the running this.datastore.tally, as well as bind a tap to the OVER
button that calls this.gameover. Notice how we only assign, not invoke, the
method here? A tap from the user will invoke it later.

Our second-last code block uses our trusted click shortcut from Core. Here we call
our doOneUp method and our this.scored method, before we add after to append
the spans that will house those little floating +1s. And our final block contains our
last new Mobile event:

407

408

jQuery: Novice to Ninja

chapter_09/18_getting_mobile/script.js (excerpt)

$("#album") .bind("pagebeforehide", function() { ...

You wouldn’t be the ninja you are if you couldn’t work out that the event is fired
on the “page” “before” it “hides.” It’s like OnPageUnload for our pageviews. And in
our application the event is being used to call the this.reset method, which we
know resets our toggles.

We establish some simple methods and call them on events. This approach has
become a foundation on which we can build our Mobile ingenuity, so that next time
the client team calls you’ll be ready for them, no matter how many buzzwords they
have at the ready. Actually, speaking of our client ...

StarTrackr!: Epilogue

“We stand here today as creators of the most notorious celebrity-hunting website
on the planet!” booms the client’s manager to a roomful of employees and share-
holders. The final phase of the project is live. It sure has been a long journey since
the client team asked us to spruce up their company website’s disclaimer message—a
journey that has taken us through fading and sliding, easing and scrolling, enhancing
and Ajaxifying. A journey that has taken us from novice to ninja.

“But there was one person who made all this possible,” the manager continues.
“One person we owe all this to ...” and he turns to face you, but the space you
previously occupied is empty. You’ve performed one last $("#ninja").hide(),

and mysteriously vanished without a trace.

You have no need for the praise of your clients and co-workers; your reward is that
good web development practices have been instilled in yet another project. That,
and the significant payments you received. A bit of both, really.

Appendix A: Reference Material

jQuery is all about being flexible and applicable to as many situations as possible.
Both the core library and the plugin architecture encourage this philosophy. The
most common usage scenarios are usually catered for straight out of the box, so
jQuery’s flexibility rests in the ability to override those defaults. This results in a
lot of options! No need to memorize them all, though; just have a good reference
on hand, and always check jQuery’s online documentation." And don’t be afraid
to dive into the jQuery or plugin source code to look for anything the documentation
may have missed.

$.ajax Options

The powerful array of Ajax functions in jQuery is underpinned by a single method:
$.ajax. This method accepts a plethora of options, giving it the flexibility to be

used in countless situations. We examined some of the options throughout the book,
but as always with jQuery, there’s more! You should double-check the documentation
for changes, but in case you feel like delving into the details while on the bus, here

we go:

Flags

The “flaggable” options accept a Boolean value—true or false—to enable or disable
the given functionality. Most of the time the defaults will be satisfactory, but it’s
easy to override them to customize your request.

async
The async option is true by default, but if you need to do a synchronous request
(which you should try to minimize, as it locks the browser while it’s working),
you can set this to false. It’s such a bad idea, though, that the feature will likely
be deprecated in the future.

cache
Caching data can be an issue when performing Ajax requests; if a user’s browser
stores old requests, it might not fetch the latest data. To disable caching, you

! http://api.jquery.com/

http://api.jquery.com/

410

jQuery: Novice to Ninja

can set the cache option to false. Script and JSONP requests are uncached by
default.

crossDomain
jQuery will set this flag false for same-domain requests and true for cross-
domain requests automatically. But if you need to force it on, you can set it

here.

global
We saw that we could handle events from any Ajax request using global event
handlers. You also have the option of stopping global event handlers from
handling a particular event by specifying false for the global parameter.

ifModified
By setting the ifModified flag, you can force a request to be “successful” (that
is, to fire the success handler) only if the document was modified since the last
request. This can be useful if you only want to do some processing when there’s
new data to display.

isLocal
This is used to force the current environment to be recognized as “local,” such

as when you browse your site from a file:/// url (rather than via a server).

processData
When you have data to send along with your request, jQuery will process it and
convert it to an appropriate query string value. If this is undesirable (for example,
if you need to pass a DOM document, or some other sort of structure) you can
set the processData flag to false.

traditional
This flag deals with serializing nested data; recent versions of jQuery will seri-
alize objects and more complicated structures. But some server-side languages
do not support this. If you need to use the old, flat style of serialization, set this
flag to true.

Settings

Many of the Ajax options allow you to specify more than just a simple on/off value;
they generally accept strings or objects to customize and define your Ajax request.

Appendix A: Reference Material

accepts
You can specify what kind of response you will handle from the server by
passing a map to the accepts setting; for example: { xml: 'application/xml
', text: 'text/plain ' }. However, if you need to modify this, it’s recom-
mended you do it just once in the global Ajax setup.

contents
This setting lets you override or specify how jQuery will pass a given content
type, such as mapping a type to a string or regular expression. For example, by
default the type xml is matched to the regex /xml/ and text to /text/.

contentType
The contentType setting allows you to set the content type for the request. By
default it’s application/x-www-form-urlencoded, which is fine for most cases.

context
When Ajax callbacks execute, their context is the window object, which is not
overly useful. You set the context option so that the this property in a callback
refers to a handy tool, like a custom JavaScript object or a jQuery element.

converters
This is another advanced setting that maps dataType values to other dataType

values.

data
To pass data to the server, you specify a string, JavaScript array, or object for
the data setting. If you pass in an array or object (and you haven’t disabled the
processData flag), the data will be serialized with the jQuery.params utility
function. This takes the input and converts it into a query-string format (very
handy)! If it’s a GET request, the string will be appended to the URL.

dataType
Whereas contentType sets the content type of the data you were sending to the
server, the dataType parameter sets the type of data you're expecting to receive
from the server. The default type is “everything” (*/*), but you could specify
xml, html, script, json, or text—in which case jQuery will use the appropriate
content type string.

41

412

jQuery: Novice to Ninja

headers
If you need to add or modify headers for the current request, you can specify
them in a map here.

jsonp
When you make JSONP calls (which allow cross-domain requests), it’s expected
that the callback function name will be callback. If the service you’re using
requires a different name, you can define it with the jsonp setting.

mimeType

Use this setting if you need to override the default mime type.

password
Authentication requests require your username and password. You can specify
the latter in the password setting.

scriptCharset
The scriptCharset property allows you to specify the character set of script
tags injected by script or jsonp Ajax calls.

statusCode
This is a nifty map of “status code-to-functions” for handling certain responses
from the server. If the status code is matched (for example, 404 not found), the
related JavaScript function is called.

timeout
The timeout parameter has the honor of being the only ajax setting that accepts
a number: it defines how many milliseconds need to elapse before aborting an
Ajax request.

type
One of the most important settings for an Ajax request, the type property defines
the HTTP request type: GET, POST, PUT, or DELETE.

url
The other most important setting along with type, the url string defines the
address of the location you want to call.

Appendix A: Reference Material 413

username
The companion to the password field, the username option specifies the user-
name to send with any authentication requests.

xhrFields
This is a final advanced setting for mapping a field name to field values to be

set on the underlying XHR object.

Callbacks and Functions

Finally, there’s a bunch of callbacks and functions you can define to tweak your

request and handle events that occur during the request’s life cycle.

We covered event handlers in Chapter 6. The complete handler will fire whenever
an $.ajax call completes—regardless of success or failure—so it’s a good place to

clean up any loose ends. The error handler is called whenever the call fails, and

the success handler fires whenever it completes correctly.

As well as the event callbacks, there’s also a handful of functions existing as hooks;
these let you modify various parts of a request on a call-by-call basis. The beforeSend
function fires before the send message is executed, and gives you a place to modify
the request if you require. Your handler is given the request object and the current
jQuery object. This is a common place to modify the request headers when it’s re-
quired. Also, it’s your last chance to stop anything from happening: if you return
false from this function, the request will be aborted.

The jsonpCallback (string name or function) can be used in place of the randomly
generated name that jQuery provides by default when performing JSONP requests.
You’d do this if you wanted to have greater control over how requests are cached.

At the lowest level, the magic of Ajax comes from the browser’s implementation of
the XMLHTTPRequest (or XHR for short) object. This is the fellow that lets us commu-
nicate with the server from the client. By default, jQuery looks for the appropriate
XHR object and uses this for any Ajax calls. You can modify this if you want to
augment or replace it by specifying your own xhr function. The function needs to
return the object that should be used.

The last hook that’s available is the dataFilter function. This is called after a request
successfully returns, and is a place for you to make sure the response data is okay.

414

jQuery: Novice to Ninja
If you need to do any data sanitizing, this is the spot. The dataFilter function is

passed the raw response data and the type; you should return the data once you’ve
processed it so the request cycle can continue.

$.support Options

In the old days, we’d use browser sniffing to determine which version of which
browser was being used, and adjust our code to work around known bugs. Those
days are over: we now have a more reliable alternative; where possible, we should
use feature detection to check whether the browser supports a particular piece of
functionality, and supply a workaround or fallback if needed.

If you use pure jQuery, most of these issues are taken care of internally, but if you're
getting your hands dirty with some raw JavaScript, there’s a nifty mechanism for
feature detection available via the support action. We looked at this in Chapter 6,
but only briefly spoke of the many options available. They all return a true or false
value to indicate if they’re supported, which can then be used in an if/then/else
block to provide support for both cases. For example:

var domObject = document.getElementById('content');
if ($.support.cssFloat) {
domObject.style.cssFloat = "left";
} else {
domObject.style.styleFloat = "left";
}

Here are the available properties:

ajax
This value will be true if the user’s browser has the ability to create an XHR
object.

boxModel
The boxModel property (which is initially set to null, and changed to true or
false after the document has loaded) will be true if the browser renders in
accordance with the W3C box model.

Appendix A: Reference Material

checkClone
When cloning a checkbox or radio button, if the checked attribute’s value is not
maintained, the checkClone value will be false.

checkOn
This is true if the value of a checkbox defaults to “on” when no value has been

specified.

cors
This will be true if the user’s browser can create an XHR object that lets you
specify the withCredentials property, which is itself required for making cross-
domain calls using the Cross-Origin Resource Sharing mechanism.

changeBubbles
Detecting browser features as they pertain to events can be a tricky business—it
used to be a very common reason to do browser sniffing. Thankfully some
clever people figured it all out, so now if you want to know if you can (reliably)
react to the change event, you can check the changeBubbles property.

cssFloat
We saw the cssFloat in action in the example above. It detects whether the
browser uses the cssFloat label to address the float style in JavaScript. (It’s
impossible to simply float, because that’s a JavaScript keyword referring to

floating-point numbers). Internet Explorer uses styleFloat instead of cssFloat.

hrefNormalized
Some browsers fiddle around with links that they’ve determined have been
constructed incorrectly—which is a problem if it’s unexpected! The
hrefNormalized property will return true if the browser modifies the links.

htmlSerialize
If you need to make sure that link elements (such as 1ink and script tags) are
serialized correctly when using innerHTML, you can use the htmlSerialize
property. Internet Explorer has problems with this, and you’ll need to wrap the
offending tags in your own wrapper elements if you want it to play nice.

leadingWhitespace
The leadingWhitespace option lets you know if the browser leaves the first
node in a DOM child as whitespace or not. When innerHTML is used, Internet

415

416

jQuery: Novice to Ninja

Explorer strips out the first child if it’s a whitespace text node; this can mess

up your jQuery code if you're relying on a set number of children.

noCloneEvent
When you clone a DOM node, some browsers will also clone the event handlers
that are attached to it, while others won’t. If events aren’t cloned the

noCloneEvent property will be true.

opacity
We’re all big fans of opacity: it makes sites look futuristic. Unfortunately some
browsers are unable to play with opacity via JavaScript (of course, if you use
jQuery you’re safe). The opacity property tests to see if the rendering engine
understands opacity; otherwise, you will need to resort to using the browser’s

filters.

optDisabled
This is true if option elements that are inside a select element are disabled

automatically.

optSelected
This is true if option elements that are selected by default correctly report being

selected.

scriptEval
Browsers also behave differently with regard to executing scripts with injected
script tags. The scriptEval property will let you know if it’s safe to inject via
appendChild, or if you should use the script.text property.

style
To find the style currently applied to an element, use the getAttribute method
and ask for style—in some browsers. To test whether getAttribute("style")

will work on your user’s browser, check the style property.

submitBubbles
Another event you can check for is the submit event via the submitBubbles
property. Internally, this uses the same feature detection tricks as changeBubbles.

Appendix A: Reference Material

tbhody
And finally, in some browsers a tbody element will be automatically inserted
into an empty table—which can mess up your DOM manipulations. To check
whether you need to look out for this, there’s the tbody property. This will return
true (confusingly) if you can have a table without a tbody element being auto-
matically inserted.

The best part about the support action is that it forces you to understand what bugs
you’re working around. With browser sniffing, it’s easy to become complacent and
start putting more code than is necessary in conditional blocks. By using support
you only target specific aspects, ensuring your users enjoy a consistent experience,
regardless of how the vendors modify their browser code.

Events

We’ve spent a lot of time looking at events, and as we’ve mentioned on a few occa-
sions, jQuery simplifies the cross-browser event handling process by normalizing
events to conform to the W3C standard. A normalized event object has a stack of
properties and methods that can be useful. We’ve used some of them throughout
the book, and now we’ll look at the ones that got away! You can find the full list of

event properties in the jQuery Events documentation.?

Event Properties

We saw this briefly in Chapter 9: the type property will give you the name of the
event that fired (even for custom events, if you’ve named them).

When an event handler is called, you can obtain the DOM element that was the
source of the event via the target property. This can also be wrapped in a jQuery
selector to escape the DOM and back into jQuery land. Additionally, if the event is
a mouse movement, you can find the element that was the previous target (where
the mouse previously was) with the relatedTarget property. And if the event is
moving up through the hierarchy—when you’re dealing with bubbling events—the
currentTarget will inform you of the target for the current bubbling phase.

The data property returns you any data you’ve attached when binding the event,
and which will let you know which button or key was pressed for keyboard events.

2 http://docs.jquery.com/Events/jQuery.Event

417

http://docs.jquery.com/Events/jQuery.Event

418

jQuery: Novice to Ninja

A final, extremely useful property is the event’s timeStamp. This gives you the
precise time when the event occurred, and it’s most commonly employed when
implementing time-based effects. For example, if you wanted to create a special
triple-click event on your page, you could consult the event’s timestamps to see if
three clicks had occurred in a given span of time.

Event Methods

We’ve seen event methods we could use, like preventDefault and stopPropagation,
which let us control how events bubble and are handled by the browser. One more
in the same vein is the stopImmediatePropagation method, which is a bit more
hardcore than stopPropagation. While stopPropagation prevents parent handlers
from running, stopImmediatePropagation stops any further event handlers from
running—even on the same element.

The rest of the methods simply report whether or not any of the other methods have
been called. The methods isDefaultPrevented, isPropagationStopped, and
isImmediatePropagationStopped return a Boolean value that would be false,

unless the respective commands have been issued.

DIY Event Objects

While we’re talking about events, there’s one final aspect you might like to know
about them: you can create your own event objects and pass them directly to
handlers. Check out this code:

// Regular event binding

$('p').bind('click', function(e) {
$(this).text(e.pageX);

})s

// Home-made event object!

var e = $.Event('click');

e.pageX = 100;

e.pageY = 100;

$('p').trigger(e);

We’ve created an artificial click event and manually set its pageX and pageY prop-
erties. This gives you ultimate control over the details of the event that triggers an

event handler.

Appendix B: JavaScript Tidbits

We can’t stress this enough: jQuery is just JavaScript, so the best way to improve
your jQuery skills is to brush up on your JavaScript knowledge! We’ll have a look
now at a few aspects of JavaScript we used throughout the book that you might be
wondering about.

@ Learning More about JavaScript

If you're looking to take your JavaScript to the next level, we highly recommend
Douglas Crockford’s JavaScript: The Good Parts (Sebastopol: O’Reilly, 2008). It’s
not particularly light reading, but it’s a succinct and pragmatic explanation of
how and why JavaScript rocks!

Type Coercion

JavaScript is what’s known as a loosely typed language. Some languages, such as
Java, are strictly typed: this means that the type of a variable must be set when the
variable is declared. JavaScript, on the other hand, allows for variables to be coerced.

That is, their type can change depending on what we require of them:

var a = 2;
var b = "two";
var ¢ = "2";

alert(typeof a);// alerts "number"
alert(typeof b);// alerts "string"
alert(typeof c);// alerts "string"

No surprises here: the variables are behaving as we expect. It looks different, though,
when we ask JavaScript to take its best guess at what type we want the variables to
be:

alert(a * a);// alerts 4
alert(a + b);// alerts 2two
alert(a * c);// alerts 4

alert
alert
alert

typeof (a * a));// alerts "number"
typeof (a + b));// alerts "string"
typeof (a * c));// alerts "number"

—~ e~~~ o~~~

420

jQuery: Novice to Ninja

When we “add” a string and a number using the + operator, JavaScript assumes
we’re trying to concatenate the two, so it creates a new string. It would appear to
change the number’s variable type to string. When we use the multiplication oper-
ator (*), though, JavaScript assumes that we want to treat the two variables as

numbers.

The variable itself remains the same throughout, it’s just treated differently. We can
always explicitly tell JavaScript how we intend to treat a variable, but if we don'’t,

we need to understand just what JavaScript is doing for us. Here’s another example:

alert(a + c);// alerts 22
alert(a + parseInt(c));// alerts 4

@ jQuery Knows It's JavaScript

=
jQuery can help us out a bit in this area too, using the $.type helper function.
This function accepts a variable or expression and returns its type. For example,
entering $.type(5) will return “number,” and $.type([]) will return “array.”

Equality Operators

The equal sign (=) and its related operators can also provide a trap for young players.
And where it was once just a little odd, it became even more so in JavaScript 1.3.
The first trick is that the equal sign has a different meaning to that which you’ll re-
member from your school mathematics classes:

var a = 2;
var b = "2";

A single equal sign is an assignment operator, and is used to assign values to vari-
ables. We all knew what it did, but now we know what it’s called:

var ¢ = (a == b);
Two = signs together, ==, is the equality operator, and establishes a Boolean value.

In our example, the variable ¢ will have a value of true, as JavaScript compares the
values before and after the equality operator, and considers them to be equal. Using

Appendix B: JavaScript Tidbits

the equality operator, JavaScript pays no heed to the variable’s type, and attempts
to coerce the values to assess them.

Switch out the first equal sign for an exclamation mark, and you have yourself an
inequality operator (!=). This operator will return false if the variables are equal,
or true if they aren’t:

var d = (a != b);

The variable d will now have a value of false, since a and b are equal. It may be a

little complex, but at least it’s consistent.

In JavaScript 1.3, the situation became less simple still, with the introduction of
one further operator: the strict equality operator, shown as ===.

var e = (a === Db);

The strict equality operator differs from the equality operator, in that it pays strict
attention to type as well as value when it assigns its Boolean. In the above case, d
is set to false: while a and b both have a value of 2, they have different types.

And as you might have guessed, where the inequality operator was paired with the
equality operator, the strict equality operator has a corresponding strict inequality
operator:

var f = (a !== b);

In this case the variable f will return true, as we know the two compared variables

are of different types, though similar values.

Suffice to say that some equal signs are more equal than others!

Truthiness and Falsiness

JavaScript’s Boolean type has two possible values: true and false:

var jQueryIsFun = true;
var javaScriptIsdava = false;

421

422

jQuery: Novice to Ninja

But we know that JavaScript likes to be trickier than this. In reality, there are a
multitude of ways that variables can evaluate to true or false. These values are
referred to as being truthy or falsy. So when we write if (variable) { .. },variable
need not be a Boolean value: the code between the brackets will run if variable
contains the number 5, or the string "Hello World!", or even an empty array. Any
value that acts as though it were the Boolean value true in this type of context is
called truthy, and any value that acts like false is called falsy.

JavaScript treats all these values as truthy:

true

1 (because it’s a non-zero number)

"0" (because it’s a non-empty string)
"false" (because it’s a non-empty string)
function() {} (any function)

{} (any object)

[]1 (any array)

And these values are falsy:

false

0 (the number zero)
"" (an empty string)
null

undefined

NaN (a special number value meaning Not a Number)

These values can be combined with the logical NOT operator to great effect. A single

exclamation mark is used:

var a = 0;
var b = 1;
if (!b) {

// do something

}
else if (la) {
// do something else

Appendix B: JavaScript Tidbits

The logical NOT operator returns true if the value of the variable is false and,
conversely, it will return false if the value is true. In the example above, b is truthy
and so !b returns false, and a is falsy so !a returns true—so the code in the else
if block would execute.

It’s important to remember that while a value may be == true, it may only be truthy,
and not strictly true:

var a = true;

var b = 1;

alert(a == b);// alerts true
alert(a === b);// alerts false
alert(a != b); // alerts false
alert(a !== b); // alerts true

If you have the option, always elect to use the Boolean values of true and false.
If there’s one thing that’s undoubtedly true, it’s that hunting down a truthy or falsy
logic error is truly painstaking!

@ It's Not Even THAT Simple

As we’re in an appendix, it’s worth mentioning here that x === null || x
=== undefined is equivalent to x == null. This is one case where double-
equal should be used!

Unmasking jQuery

As we’ve mentioned before, jQuery isn’t magical. It’s just JavaScript. And as
JavaScript continues to improve, many of the holes that jQuery filled are being
patched.

Here are some comparisons on jQuery versus plain old JavaScript:

$("div"); // in jQuery
document.querySelectorAll("div"); // in JavaScript

$("<div/>"); // in jQuery
document.createElement ("div"); // in JavaScript

423

424 jQuery: Novice to Ninja

myElement.addClass("classy"); // in jQuery
newDiv.classList.add("classy"); // in JavaScript

newDiv.toggleClass("classy"); // in jQuery
newDiv.classList.toggle("classy"); // in JavaScript

$("#myElement").next(); // in jQuery
document.getElementById("myElement").nextSibling; // in JavaScript

Even from these short examples, you can see that jQuery is more succinct. Addition-
ally, the JavaScript version uses new features unavailable in all older browsers.

What’s important to realize is that jQuery is a wrapper, and understanding what is
underneath that wrapper will make you better at JavaScript, jQuery, and web devel-

opment in general.

And if you're just writing a small proof-of-concept demo, it may be unnecessary for
you to even reach for that jQuery include after all.

Appendix C: Plugin Helpers

There are a few jQuery properties and actions that, although applying to any jQuery
selection, are particularly useful for plugin development. The reason they’re hidden
away in this appendix is that they’re not commonly used. Despite this, they’re quite
powerful, and you should familiarize yourself with them if you intend to spend

time developing plugins.

Selector and Context

The first ones we’ll look at are the selector and context properties. These work
together to show you what jQuery thinks it’s working on. These are basically internal
methods, but depending on what your plugin is doing, it can be good to know.

The selector property returns a string value of the current jQuery selector string,
so the command $('p:first').selector will return the string "p:first". This is

useful in your plugins if you need to know what the user originally selected.

You might think that the optional second parameter to the jQuery selector, which
is called context, is what you’d obtain with the context property—but it’s a bit
trickier than that. In fact, if you supply context as a string, it’s converted internally
to a regular jQuery statement, which will actually affect the selector property:

var selector = $('p:first', '#content').selector
var context = $('p:first', '#content').context

In the aforementioned example, the selector resolves to "#content p:first" and
the context resolves to Document (the context that all your selectors will default
to). The context property is only modified if you supply an actual DOM node to
it:

var domContext = $('#content')[0]; // Get the DOM element
var selector = $('p:first', domContext).selector;
var context = $('p:first', domContext).context;

In this case, the selector will be reported as "p:first", and the context will be
the DOM element itself (for this example, it’s the <div id="content"> element).

426

jQuery: Novice to Ninja

Specifying the DOM node provides no guarantee that your queries will run faster;
internally jQuery’s selector engine will only search inside the context you specify

anyway, even though the context property will be reported as Document.

The jQuery Stack

To make our plugins play nicely with jQuery, we’ve learned that we should return
each jQuery element from our code, so that commands can continue to be chained
after our plugin. Generally, we just modify elements in the selection before we pass
them back, but sometimes we want to alter the items that are returned—perhaps

remove some elements, or add some new ones. The best way to accomplish this is
via the pushStack action. This is a convenient way to create a jQuery selection for

inclusion in the chain.

By way of example, we’ll set up a small plugin that retrieves the elements that sur-
round the selected element. The use case might be to highlight the next and previous
items in a list of elements. Our plugin will also wrap around if the selected item is
the first or last in the list:

jQuery.fn.surrounds = function() {
var prev = this.index() == 0 ?
this.siblings(':last"')
this.prev();
var next = this.index() == this.siblings().length ?
this.siblings(':first"')
this.next();

var newStack = prev.add(next);
return this.pushStack(newStack, 'surrounds', '');

b

The plugin retrieves the previous and next elements, and combines them into one
selection with the add action. This new collection is returned via pushStack, which
accepts the collection, a name for it, and a name for the selector string. The two

name parameters will be readable by the selector property we looked at above. To

use this plugin, we might apply it to an unordered list called categories, like so:

Appendix C: Plugin Helpers

$('#categories li:first')
.surrounds ()

.css('color', 'red')
.end()
.css('color', 'blue');

This will select the two elements that surround the first list item, then color them
red. Because we’ve used pushStack, the jQuery chain remains intact; we can then
use the end command to move back to the original selection (the first list item), and

color it blue. You can use pushStack anytime you want to manipulate the chain
like this.

The last trick we’ll look at in regard to the jQuery internal chain is the ability to
access other steps in the chain. As you might remember, the end action takes you
back up one level to the last command that modified the jQuery selection. If you
look into the jQuery core, you'll see that end is implemented using the prevObject
property. Inside your plugin you can gain access to the previous jQuery object by
using this.prevObject. If the previous object has a previous object, you can access
this too!

Minification

You know there are two versions of jQuery, jQuery Ul, and many jQuery plugins:
an uncompressed version and a minified version. Why is this so?

Regardless of which one you choose, when you add them to your page you gain
access to all the features of jQuery (or the plugin in question). The difference is, of
course, that the file size of the “.min” version is markedly smaller. With jQuery
coming in at around 250kB and the minified version at less than 100kB, you save
well over half the file size in bandwidth. If your server, and your users’ browsers,

support sending Gzipped files (most do these days), this can easily be halved again.

And if the file is half as big, it’s delivered twice as fast. Faster downloads mean
faster page loads, so you may be wondering how to enjoy the benefit of minified
files with your own script files, and—more importantly—your plugins.

There are a number of utilities you can use to compress your files, so we’ll go over

a few of the more commonly used ones.

427

428

jQuery: Novice to Ninja

The world of JavaScript minifiers ebbs and flows like the tide, as there have been
a lot of players come and go over the last five years. Those who have been around
for a while include Yahoo’s YUI Compressor' and Google’s Closure Compiler.?
Another major player is Uglify]S,3 which the jQuery team themselves use for
minification.

Both solutions work by eliminating whitespace and shortening variable and function
names. The code becomes obfuscated by human standards, but the browser’s
JavaScript engine has no trouble interpreting the code output. So, for example, this
human-readable code:

$growl.animate ({
border: "none",

height: 0,
marginBottom: O,
marginTop: "-6px",
opacity : O,

paddingBottom: O,
paddingTop: O,
queue: false

});
... would be shortened to this:

$growl.animate ({border:"none",height:0,marginBottom:0,marginTop:
=" -6px",opacity :0,paddingBottom:0,paddingTop:0,queue:false}

The second statement has the whitespace removed, and you can already see that
it’s taking up less space to achieve the same results. You can also see how it’s become
more difficult to read. Multiply this effect by the 9,000-odd lines in the jQuery
source, and you can imagine how difficult it would be to make any sense of it. And
that’s without altering any names.

The minifier you choose depends largely on your development environment and
workflow. Both the Closure Compiler and YUI Compressor are Java applications
that can be called from the command line. Uglify]S is written in JavaScript and runs

! http://developer.yahoo.com/yui/compressor/
2 http://code.google.com/closure/compiler/
3 https://github.com/mishoo/Uglify]S

http://developer.yahoo.com/yui/compressor/
http://code.google.com/closure/compiler/
https://github.com/mishoo/UglifyJS

Appendix C: Plugin Helpers

on Node.JS. The overhead per run is a lot lower for Node compared to the Java
Virtual Machine, which is important if you’re minifying a lot of individual files.
Whichever option you choose, the method for minification is similar. For example,
to compress a file such as hello.js using Closure Compiler, you could do this:

java -jar compiler.jar --js hello.js --js_output_file
whello-compiled.js

It can then be integrated into your build process, so you will automatically have
minified and non-minified versions of your latest code.

If you just need to minimize once-off, or are interested in what minifiers do, you
could also try the online version of the Closure Compiler* by pasting in the code
and hitting “compile.”

In the end, your choice of minifier mostly comes down to personal preference

(though, seeing as it’s our book, we can say we like Uglify]JS!). Some minifiers have
a slightly smaller output, while others are faster to compile; ultimately, they are all
continually refining their solutions, and are responsive to industry and community

feedback.

4 http://closure-compiler.appspot.com/

429

http://closure-compiler.appspot.com/

Index

| | operator, 182, 351

Symbols

! operator, 157, 318, 422-423 A

!= operator, 421 a++ operator, 118
== operator, 421 above the fold, 369

"" (quotes), 31, 54, 297
(hash), 16, 78, 163

absolute value, 126
accept option, 283

$() alias accepts setting, 411
avoiding conflicts, 348 accessibility issues
for getElementById(), 381 alt attribute, 233
for jQuery, 22 color contrast, 172

$. prefix, 13, 359 transparency, 172

% operator, 117, 268 accordion menus

&& operator, 182 about, 153

*/,189 jQuery UI, 160—161

+ operator, 163 multi-level, 158-160

++ operator, 118, 230 simple, 153-158

++a operator, 118 actions

+= operator, 54, 118, 230 about, 14

. (dot), 16, 24, 133, 375

/*, 189

// (double slash), 188

1-up notifications
Dialog, 302—-304

chaining, 64—66
activeClass option, 282
add() method

jQuery, 156, 426

special events, 378

in Mobile, 399-400 addClass() function, 32-33, 268

: (colon), 26 addHandlers() method, 266
= operator, 420 Ajax
== operator, 420 about, 200-201

=== operator, 421 autocomplete arrays, 262
> selector, 62 caching, 409

? operator (if), 114

[] (attribute selector), 78
_ (closure prefix), 193

{} (object literal indicator), 30

call underway check, 226
document modification testing, 410
error handling, 227-231, 412
hijacking links, 201-203

432

hooks, 413-414 setting scope, 227
loading page content, 164—165 spinner, 221-222
loading scripts, 211-212 spinners, 223-224
mapping content types, 411 ajax method
mapping data types, 411 about, 209-210, 409
reading JSON data, 234-235 callbacks, 413
reading XML data, 231-233 chainable promises, 213
sending form data, 235-237 flags, 409—410
serialization, 410, 411 hooks, 413-414
setting content types, 411 local events, 214
setting context, 227, 411 settings, 410—413
setting data types, 232, 411 ajax property, 414
setting local environment, 410 Ajax requests
setting MIME type, 412 aborting, 412
setting request headers, 412 callbacks, 193, 413
setting scope, 227 cross-domain, 410
setting URL to be called, 412 deferred responses, 213—-214
settings, 211 GET, 212
specifying character set, 412 HTTP, 412
timeouts, 228-231, 412 JSONP, 412
Ajax events POST, 212
error events, 214—-215 synchronous, 409
local vs global, 214, 224 XMLHTTPRequest, 214, 229, 413
send events, 215 Ajax settings, 211, 410—413
Ajax functions ajaxComplete event, 215
get]SON(), 208-209 ajaxError event, 214
getScript(), 211-212 ajaxError handler, 231
load() (see load() method) ajaxSend event, 215
off(), 207 ajaxSetup() action, 211, 228
on(), 206—207 ajaxStart event, 215, 223
Ajax galleries ajaxStop event, 215, 223
basic, 216219 ajaxSuccess event, 215
loading problems, 219 alert boxes, 25, 99
progress indicator, 223—224 alias, jQuery, 13
randomizing images, 219-221 alt attribute, 173, 233
scrolling, endless, 224-226 altKey property, 344

setting context, 227 always event, 215

always() method, 213-214
ancestor, finding, 326
AND operator (&&), 182
andSelf() action, 268
animate option, 277
animate() method
color, 56-57
CSS3 support, 55-56, 362—-364
easing (see easing)
fx option vs, 166
options, 63—-64
properties, 54-55
:animated filter, 173
animation
CSS3, 55-56, 367
heading tags and, 62
of navigation (see navigation)
performance issues, 111
preloading images, 285
testing browser support, 365—-366
using discrete images, 283—-286
animation queue
about, 64
clearing, 71, 109
controlling, 64
delaying, 65
dequeue() method, 384
queue() method, 382-384
animations
(see also hide; show)
Cycle plugin, 121-123
easing, 57
fading, 45-46
Internet Explorer support, 365
relative values, 54
sliding, 46—47
stopping, 109

433

timing, 54, 65
anonymous functions, 47
APIs (Application Programming Inter-
faces)
about, 207, 209
Facebook, 208
localStorage(), 401
special events, 378-381
Twitter, 208—209
append() method, 329
appendChild() method, 416
appendTo() method, 41-42, 176
arrays
autocomplete data, 262
creating from lists, 310-311
creating with callback, 217-218
iterating over, 209
searching, 311
sorting, 314
testing for, 355
ASCII codes, for keypress, 250
assignment operator (=), 420
asterisk slash (*/), 189
async flag, 409
asynchronous events, 382—-383
Asynchronous JavaScript and XML (see
Ajax)
attr() method, 97, 318
attribute selector ([]), 78
attributes
with filters, 270
grouping by, 102-103
retrieving, 97, 233, 416
setting, 97, 318
authentication requests, 412, 413
Autocomplete plugin, 261-263
autocompletion, 261-264

434

autoFill option, 262 C

i tion, 282
axis option cache flag, 409

B cache option, 166
calculated values, 28, 67
background images, 70 calendar (see date picker)
background-color property, 29 call() method, 355
background-position property, 265 callbacks

beforeClose event, 298
beforeSend event, 215, 222, 413
bgiframe option, 298

about, 47—48, 353
adding to plugins, 353-355
Ajax, 193, 413
complete(), 211, 413
error(), 211
event object, 136—137
function test, 354
data parameter, 380 GET and POST, 212, 213
non-standard events, 376-378 iQuery-style, 355-356
one() vs., 350 JSONP, 412
passing multiple items, 373
unbinding, 374-375
blur event, 243
Boolean data type, 421423
bouncing, 60-63

bind() action
about, 257-258
creating custom events, 370—372

custom parameters, 372—-373

multiple, 49

null default, 354
passing, 304

scope issues, 193, 355
setting context, 411

success(), 211, 413
browser compatibility (see cross-browser with load() method, 205

boxModel property, 414

compatibility) camel case, 31, 54

browser property, 198
browser sniffing, 3, 198-199, 414

case, converting, 314
CDN (Content Delivery Network), 8, 10—

(see also feature detection) 11
browser support (see feature detection) chaining
browser.version property, 199 about, 6466

bubbles, message, 298-302
bubbling (see event propagation)
button data-role, 396
buttonImage option, 274

asynchronicity of, 382-383
empty(), 256
promises, 213

remove(), 256
buttonIlmageOnly option, 274

buttons, 271-272, 396, 397, 398
buttons property, 296

selectors, 184
traversing, 427

change event, 243, 415
changeBubbles property, 415
changePage() method, 402
character set, specifying, 412
:checkbox filter, 254
checkboxes
change event, 243
checkOn property, 415
retrieving selected, 242
selecting all, 253-254
selecting table rows with, 343-345
checkClone property, 415
:checked filter, 242, 268
checked property, 254
checkOn property, 415
Cherne, Brian, 152
child elements
about, 15
removing, 256-257
selecting, 62, 142, 260
child selector (>), 62, 142
children() method, 260
class attribute
about, 15, 22
adding, 32-33
controlling image position with, 169
grouping elements using, 16-17
removing, 33—-34
selecting by, 16, 24, 184
state management with, 148, 172
toggling, 49-50
class selector, 16, 24, 184
clearInterval() method, 112-113
clearQueue parameter, 109
clearTimeout() method, 112-113, 180
click event
firing via code, 148

435

handling, 35, 51
identifying key pressed, 344
location of, 136
propagation, 144
virtual, 406
clone() method, 197
cloning, 197, 282, 293, 415, 416
close command, 297
close event, 298
closest() action, 302, 326
closure, 193
Closure Compiler, 428, 429
coding practices
about, 188
comments, 188—189
inline scripting, 6
map objects, 189—190
namespacing, 190-192
setting scope, 192—-194
coercion, type, 419—420
collision detection, 182—-183
colon (:), 26
color
accessibility issues, 172
animating, 56-57, 212
Color Animations plugin, 56, 212
ColorBox plugin, 100-103
comments, 188—189
complete event, 220, 222, 353, 354
complete handler, 413
complete option, 63
complete() function, 211
compression, 427—429
concatenate operator (+), 163
conditional logic, 242
console.error, 100
console.log, 99-100, 237

436

console.warn, 100
containers, 15
containment option, 282
containment parameter, 87
:contains filter, 44
Content Delivery Network (CDN), 8, 10—
11

content panes, 60—-63, 388
content types

mapping, 411

setting, 411
contents setting, 411
contents() method, 259-260
contentType setting, 411
context

about, 194

setting with context option, 227, 411

setting with proxy(), 194
context option, 227, 411
context parameter, 254, 310, 425—426
contrast, importance of, 172
controlgroup data-role, 397, 398
controls

about, 270

adding dynamically, 335

buttons, 271-272

date pickers, 272-275

drag and drop, 279-283

edit, 338-342

pagination, 334-338

progress bar, 289-291

puff effect, 283—-286

sliders, 275-279

sortable, 287—289

tabs (see tab controls)
converters setting, 411
cors property, 415

count property, 285
create() method, 267
Crockford, Douglas, 419
cropping, 104-107
cross-browser compatibility, 2-3, 55-56,
78-79, 184
crossDomain flag, 410
cross-domain requests, 202, 208, 219,
410, 415
cross-fading
fake, 113—-115
rollover, 108—110
true, 115-118
Cross-Origin Resource Sharing, 415
Cross-site Scripting attacks, 202
css() action, 14, 28
CSS3
animation support, 362, 367
properties (see properties)
selector specification, 3
cssFloat property, 415
ctrlKey property, 344
curly braces ({}), 30
currentTarget property, 417
cursor style, 280
curtainX effect, 122
Cycle plugin, 121-123

D

data
key/value pairs, 189
passing in Mobile, 401
passing to server, 205, 411
sanitizing, 414
serializing, 411
storing in hidden fields, 312
storing in loops, 180

storing in variables, 117
data conversion, 279, 410
data grids

about, 333

DataTables plugin, 342—343

editing a row, 338-342

pagination, 334—338
data parameter, 205, 212, 380
data property, 417
data setting, 411
data types

mapping, 411

setting, 232, 411
data typing, 419—420
data() method, 77, 129-130, 172, 176,

252, 385—-386
data-direction attribute, 398
dataFilter() function, 413
data-role attribute, 395—-398
DataTables plugin, 342—343
data-theme attribute, 396
data-transition attribute, 396-397, 398
dataType setting, 411
date pickers, 272—-275
dates, validating, 275
debugging, 31, 99-100, 237
default actions, preventing, 78, 97, 145,

418
Deferred object, 213-214
delay property, 180
delay() action, 65
dequeue() action, 64
descendant selector, 24
development code, 12
dialog boxes

about, 177-178, 291

alerts, 25

basic, 179
collision detection, 182—-183
determining position of, 180-181
Growl notifications, 298—-302
jQuery UI, 295-298
modal, 291-295
non-modal (l-up), 302-304, 399-400
positioning, 183-184
sprite for, 178, 183
timing, 179-180
die() method, 206
dimensions, normalizing, 67
:disabled filter, 242
disableSelection() action, 288
display property, 108
document-ready event, 20-21, 29
DOM (Document Object Model)
about, 15-17
inspecting, 31
traversing (see traversal methods)
done event, 215
done() method, 213-214
dot (.), 24, 133, 375
drag and drop, 279-283
drag event, 282
draggable behavior, 280-282, 283, 297
drop event, 283
drop-down menus, 148-153
droppable behavior, 280281, 282-283
duration option, 63
dynamic HTML (see load method)
dynamic text, 194-198

E

each loops, 180, 328
each() method, 209, 218
easeOutBounce() function, 63

438

easing
advanced, 58—-60
bouncy, 60-63
ease-in-out, 368
linear, 57-58, 367—369
swing, 57-58
easing option, 63
easing plugin, 58—-60
Effects package, 73-74
elements
changing content, 44—45
creating, 40-42, 97
creating with advanced syntax, 42—43
finding ancestor, 326
grouping with rel, 102-103
hiding, 34-35, 55
removing, 43—44
resizing, 85—86
retrieving content, 45
retrieving name of, 143
retrieving position, 312
selecting (see selecting; selectors)
showing, 36, 55
toggling, 36-39, 55
email rule, 248
empty() action, 256-257
:enabled filter, 242
enableSelection() action, 288
end() method, 250, 260, 427
endless scrolling, 224-226
:eq filter, 26, 109, 128
.eq selector, 117, 163
equality operator (==), 420
equality operators, 420—421
equalTo rule, 248
error event, 228-229

error handling
in Ajax, 227-231
load() method, 229-230
local vs global, 214-215
mapping status codes, 412
error message, 100
error() function, 211
:even filter, 26
event delegation, 144, 324—-326
event handlers
about, 35
cloning and, 294
function requirements, 49
global, 410
local vs global, 214-215, 224
event listeners, 155, 206
event objects, 136-137, 418
event option, 166
event propagation, 143—-144, 155, 325,
418
event properties, 417418
events
about, 370, 417
asynchronous, 382—-383
binding (see bind() action)
click (see click event)
custom, 370-373, 418
custom parameters, 372—373
getting location of, 176
getting source of, 325, 417
getting time of, 418
hover (see hover event)
keypress, 136, 250-251, 417
local vs global, 214
mouseout, 48—49
mouseover, 48—49, 152
namespacing, 375—-376

non-standard, 376-378
passing multiple items, 373
special, 378-381
triggering (see trigger() function)
unbinding, 374-375
expand/collapse indicators, 145-147
exprl:] object, 370
extend() method, 357-358, 361

F

Facebook API, 208
fade effect, 122
fadeln method, 46
fadeOut method, 46
fadeToggle() method, 46
fading
basic, 46
cross- (see cross-fading)
Cycle plugin, 121-123
InnerFade plugin, 119-121
fail event, 214
fail() method, 213-214
falsy values, 365, 422
feature detection, 199-200, 414—417
fieldcontain data-role, 397
fields
clearing, 312
hidden, 312
filter() method, 155, 156, 311, 319
filters
about, 26
:animated, 173
with attributes, 270
:checkbox, 254
:checked, 242, 268
:contains, 44
custom, 369-370

:disabled, 242
drawbacks of, 241-242
:enabled, 242
:eq, 26, 109, 128
:even, 26
first, 26
functions as, 319
:gt, 337
:last, 26
:1t, 337
:not, 156, 173
:nth-child, 331-332
:0dd, 26
:radio, 268, 270
:selected, 242, 317
find() action, 128, 232, 317
Firebug, 31, 99-100, 237
Firebug console, 237
first filter, 26
flags, Ajax, 409-410
Flash, imitating, 66
float style, 415
floating panes, 7577
fn hook, 349
fn.extend() method, 357—-358, 361
focus
losing, 243
shifting, 245
focus event, 252, 298
footer data-role, 397
for loops, 180
formatDate() method, 275
forms
about, 239-240
autocompleting, 261-264
checking field length, 248
comparing two fields, 248

439

440

displaying field length, 249-251 get() method, 212-214
forms, 240 getAttribute() method, 416
hidden fields, 312 getElementByld() method, 381
hints, 251-253 getElementsByClassName() method, 241
inline editing, 254-261 get]SON() method, 202, 208-209
native validation, 245 GitHub, 12, 103, 120
overvalidating, 244 global event handlers, 410
required attribute, 244—245 global flag, 410
resizing text areas, 86—87 Google CDN, 10-11
retrieving values, 242—243 Google loader, 11
selecting all checkboxes, 253—-254 gotoEnd parameter, 109
selecting elements, 241-242 greater-than (>), 62
sending data from, 235-237 grid option, 87, 282
simple validation, 240, 243-244 grids, creating from lists, 308
star ratings, 264—270 grouping
submitting, 245246 checkboxes, 253
validation error messages, 248—249 code, 190
Validation plugin, 246—-249 elements, 102—103
functions Growl notifications, 298-302
anonymous, 47 growY effect, 122
assigning as property, 190 :gt filter, 337
assigning to objects, 133
callback (see callbacks) H
as filters, 319 handle option, 282
higher order, 311 handles parameter, 87
named, 84, 207 hasClass() method, 256
nested, 338 hash symbol (#), 16, 78, 163
passing vs. invoking, 84 headers, hTTP, setting, 412
prefixed, 359-361 headers, table
running, 355 fixed, 326—-330
self-executing, 286 repeating, 330-333
fx option, 166 heading tags, 62
height property, 67
G helper option, 282
galleries (see Ajax galleries; iPhoto wid- hide() action, 34-35, 51, 250, 304
get; lightboxes) hijax, 201-203

GET requests, 205, 212 hints, form, 251-253

hooks

Ajax request, 413—414

fn, 349

for dynamic text, 195
hover event

delaying, 147-148, 152—153

highlight response, 48—49

menu changes, 147-148
Hover Intent plugin, 152-153
:hover pseudo-selector, 149, 151
hover() action, 54, 151, 152
hoverClass option, 282
hrefNormalized property, 415
html() action, 44—45, 176, 194
htmlSerialize property, 415
HTTP requests, 412
hyphen (-), 31, 54

id attribute, 15, 1617, 22, 23-24
IE browser (see Internet Explorer)
if operator (7), 114
if statements, 37—38, 182
if/else statements, 360
ifModified flag, 410
image galleries (see Ajax galleries; iPhoto
widget; lightboxes)
image tagging
about, 231
displaying tag data, 234-235
reading image XML, 231-233
sending tag data, 235-237
images
alt attribute, 173, 233
cropping, 104-107
currently selected, 107

441

galleries (see Ajax galleries; iPhoto
widget; lightboxes)
preloading, 285
shuffling, 122
slideshows (see slideshows)
tagging (see image tagging)
transitioning (see cross-fading; fading)
inArray() method, 311
index() method, 312
indexOf() method, 319
inequality operator (!=), 421
inline editing, 254—-261
inline styles, 31-32
InnerFade plugin, 119-121
innerHTML property, 40, 415
insertAfter() method, 40—41
insertBefore() method, 41, 51
Internet Explorer
animation support, 365
chaining selectors, 184
serialization, 415
ThemeRoller support, 388
whitespace child, 415
iPhone, 377
iPhoto widget
about, 130
creating, 132-136
CSS setup, 130-132
HTML setup, 130
is() action, 37—-38
isArray() method, 355
isDefaultPrevented() method, 145, 418
isEmptyObject() method, 355
isFunction() action, 354
islmmediatePropagationStopped()
method, 418
isLocal flag, 410

442

is08601Week() method, 275
isPlainObject() method, 355

isPropagationStopped() method, 145, 418

J

JavaScript

comments, 188—189
equality operators, 420—421
jQuery vs., 8, 423—424
key/value pairs, 189-190
loading via Ajax, 211
namespace objects, 190-192
scope, 192-194

templates, 196198

type coercion, 419-420
unsupported, 39—-40
variables, 91

JavaScript objects

converting to jQuery, 35
jQuery used on, 384-386

Jerop objects, 106

Jerop plugin, 104-107
jQuery

benefits, 2—-7

compressed vs uncompressed, 12
downloading, 8-10

drawbacks, 7-8

error event, 228-229

extending (see jQuery extensions)
getting latest version, 11, 12
hosting on Google CDN, 10-11
hosting on jQuery CDN, 11

inline scripting, 6

JavaScript objects and, 35, 384—386
JavaScript vs., 8, 423—424

libraries (see jQuery UI library; Mo-
bile)
nightly builds, 11-12
pseudo-selectors in, 151
website, 8
jQuery CDN, 11
jQuery extensions
adding methods, 357358
creating selectors, 369-370
overwriting, 361-369
prefixed functions, 359-361
jQuery libraries (see jQuery UI library;
Mobile)
jQuery Mobile (see Mobile)
jQuery Stack, 426—427
jQuery statements, 13—14
jQuery Templates., 198
jQuery UI library
about, 4-5
accordion menus, 160-161
Autocompleting, 263
buttons, 271-272
date pickers, 272-275
Dialog, 295—-298
drag and drop, 279-283
effects, 73-74
hosting on Google CDN, 10
installing, 72-73
plugins, 59
progress bar, 289-291
puff effect, 283-286
Selectable plugin (see selectable lists)
sliders, 275-279
sortable behavior, 287—289
tabs (see tab controls)
themes, 281 (see themes)
jQuery() function, 13, 348

jQuery.extend() method, 357
jQuery.fn.extend() method, 357-358, 361
jquery.pluginname.js, 349

jScrollPane plugin, 80—-81

JSON, 207-209, 234-235

JSONP, 202, 208, 412

jsonp setting, 412

jsonpCallback, 413

jsRender, 198

K
Keith, Jeremy, 302

key/value pairs
in animate(), 54
creating properties with, 42
form data, 236
map objects, 189—190
in object literals, 30-31
with expr[:], 370
keypress event, 136, 250-251, 417
keystrokes, identifying, 344

L

lassoing, 306
:last filter, 26
leadingWhitespace property, 415
left property, 68
length property, 25-26, 250
lightboxes

about, 94

basic, 94—-98

ColorBox plugin, 100-103
linear easing, 57-58, 367—369
links

disabling, 145

hijacking, 201-203

normalizing, 415
serializing, 415
title attribute, 173-174, 176
lists
about, 306
creating arrays from, 310-311
inverting selection, 317-318
in Mobile, 396
nonsequential items, 307
retrieving selected items, 311-313
searching, 319-320
selectable, 306—309
selecting matching items, 309-310
sorting, 313-315
swapping elements between, 315-317
listview data-role, 396
live() method, 206
load event, 97, 201
load time, reducing, 10
load() method
about, 201
callbacks, 205
error handling, 229-230
hijacking links, 201-203
limitations, 202
passing data, 205
selectors, 203—204
"loading" icon, 95, 166, 221-222, 402
(see also progress indicator)
local environment, setting, 410
localStorage() API, 401
login form, 168-169
loops
each(), 180, 218
self-executing, 285
:1t filter, 337

443

444

M

map objects (see key/value pairs)
map() method, 310-311
mashups, 207
matchContains option, 262
Math.abs() function, 126
Math.floor() function, 126
Math.random() function, 128
max keyword, 79
max option, 277
maxDate option, 274
maxHeight property, 87
maxlength rule, 248
maxWidth property, 87
menus
accordion (see accordion menus)
drop-down, 148-153
expandable/collapsible, 140-143
hover response, 147148
open/closed indicators, 145147
meta element, 394—-395
metaKey property, 344
methods
adding to jQuery, 357—-358
chaining, 64-66
mimeType setting, 412
min option, 277
minDate option, 274
minHeight property, 87
minification, 12, 427—429
minlength rule, 248
minSize option, 106
minWidth property, 87
Mobile
1-up notifications, 399-400
about, 4, 390-391

adding fields, 397

applying a theme, 396

browser support, 391-392

buttons, 396, 397, 398

changing pages, 402

initializing, 399

initializing event, 406

lists, 396

"loading" icon, 402

page structure, 395—-396

pagebeforehide event, 408

passing data, 401

plugins, 392

reference order, 399

in scrollbars, 406

touch events, 406—407

transitions, 396—397, 398

viewport meta, 394-395
mobile() function

changePage(), 402

showPageLoadingMsg(), 402

touchOverflowEnabled property, 406

mobileinit event, 399, 406
modal dialogs, 291-295
modal option, 297

Modernizr, 4

modification, testing for, 410
modulus (%), 117, 268
Moore, Jack, 101

mouse events, Mobile, 406
mousedown event, disabling, 377
mouseout event, 48—49
mouseover event, 48—49, 152
mouseup event, disabling, 377
Mousewheel plugin, 81
Mustache templates, 198
MVC framework, 7

N

name attribute, 253
named functions, 207
namespace objects, 190-192, 193
namespacing

about, 13

conflicts, 381-382

events, 375—-376

multiple, 376

namespace objects, 190-192, 193
navigation

bouncy, 69-71

Flash-like, 66—69

floating, 75-77

menus (see menus)
nesting (functions), 338
news ticker, 119-121
next() method, 51, 115, 232, 250
nextAll() method, 268, 323
nextUntil() method, 269
nightly builds, 11-12
noCloneEvent property, 416
noConflict() method, 381-382
nodeType property, 260
non-modal dialogs, 302—304, 399-400
normalization

dimensions, 67

links, 415
<noscript> tag, 43
:not filter, 156, 173
NOT operator, 157, 318, 422—423
:nth-child filter, 331-332
null value, 423
numberOfMonths option, 274

445

0

object literals
about, 30-31
in plugins, 352-353
syntax, 54, 57
in widgets, 132
object type utilities, 355
:odd filter, 26
off() method, 207
on() method, 206-207, 294, 301, 324
onChange event, 106
one() action, 350
onSelect event, 106
opacity property, 95, 172, 199, 416
open command, 297
open event, 298
open/closed indicators, 145-147
optDisabled property, 416
option element, 416
options
adding to plugins, 351-353
object literals, 352—-353
simple values, 351-352
optSelected property, 416
OR operator (1 1), 182
orientation option, 278
originalEvent property, 377
Osmani, Addy, 362
out event, 283
outerHeight() function, 91
outerWidth() function, 91
over event, 283
overflow property, 124, 284
overlays, 169-173

446

P plugins

about, 347-348

adding callbacks, 353—-355

adding functionality, 350-351

adding jQuery-style callbacks, 355—
356

adding options, 351-353

Autocomplete, 261-263

Color Animations, 56, 212

ColorBox, 101-103

Cycle, 121-123

DataTables, 342—343

easing, 58—60

pagebeforehide event, 408
pageX property, 176, 418
pageY property, 176, 418
pagination, 334-338
pane splitters, 88—92
panels
about, 167
slide-down, 168—169
sliding overlays, 169—173
splitting, 88—92
panes, 167
parameters, 14, 372-373

evaluating, 119
parent elements, 15 8

file name, 349

for lightboxes, 100
Hover Intent, 152-153
InnerFade, 119-121
Jcrop, 104-107
jScrollPane, 80-81
minifying, 427-429
for Mobile, 392
Mousewheel, 81
repository, 5—-6
Resizable, 85-86

retrieving context, 425—426

parent keyword, 87
parent selector, 125, 169
parseDate() method, 275
parselnt() method, 279
parsererror event, 229
filters,

:password, 241
password setting, 412
Penner, Robert, 60
percent sign (%), 117, 268
performance issues

with animations, 111 o
retrieving selector, 425—-426

ScrollTo, 79, 126-130
Selectable (see selectable lists)
setting up, 348-349
stack manipulation, 426—427
Validation, 246-249
popups, 291-295
position property, 108, 180-181, 327
position() method, 68
POST requests, 205, 211, 212
post() method, 212-214, 236

with appending, 329
with editing, 341
with event listeners, 206
with forms, 254
with lists, 325
with loops, 180
with scrolling, 225
period (.), 16
placeholder attribute, 252

postback, 200
prefixed functions, 359-361
prependTo() method, 41-42
prev() action, 51, 232, 303
prevAll() action, 268
preventDefault() method, 78, 145, 418
prevObject property, 427
prevUntil() method, 268-269
processData flag, 410
progress bar, 289—-291
progress indicator, 223-224
progressive enhancement
about, 39—40
drag and drop, 280
in slideshows, 130
promises, 213-214
prop() action, 318
propagation, 143-144, 155, 325, 418
properties
calculated values, 28, 67
functions as, 190
hyphenated, 54
pseudo selectors and, 151
reading, 28, 133
relative values, 54
setting, 14, 28-31, 97, 133, 318
storing (see state management)
prototype property, 348
proxy() method, 194
pseudo-selectors
hover, 149, 151
setting properties with, 151
visible, 37
puff effect, 283-286
pushStack() action, 426—427

447

Q
querySelectorAll() method (qSA), 241

question mark (if operator), 114
queue option, 63—64

queue() action, 64, 382—-384
quirks mode, 78

quotes (" "), 31, 54, 297

R

radio buttons, 242, 243, 264—-270
:radio filter, 268, 270
random numbers, generating, 128
range option, 277
rapture() method, 259
ratings control, 264-270
ready event, 97
receive event, 289
rel attribute, 102—103
related Target property, 417
relative values, 54
remove() method
jQuery, 43-44
special events, 378
removeAttr() method, 175
removeClass function, 33—34
replace method, 256
replaceWith() function, 259
requestAnimationFrame timer, 110
requests
authentication, 412, 413
HTTP, 412
JSON, 207-209, 234—-235
JSONP, 202, 208, 412
XMLHTTPRequest, 214, 229, 413,
414, 415
required attribute, 244

448

required rule, 248 Mobile, 406
resizable behavior, 297 scrollHeight property, 225
Resizable plugin, 85-86 scrolling
resize event, 82, 90 about, 74
resizing endless, 224-226
elements, 85—-86 in floating pane, 75-77
handles, 87 scroll event, 74-75, 76, 225
panes, 88—92 slideshows, 123—-130
textareas, 86—87 to top/bottom, 77-79
windows, 82 ScrollTo plugin, 79, 126-130
result event, 263 scrollTop() action, 76
revert option, 282 select box lists
Rich Internet Applications (RIA), 306 about, 315
rounding, 126 inverting selection, 317-318
rules option, 247 swapping elements, 315-317
select boxes, 242, 243, 372
S selectable lists
sanitizing data, 414 about, 306—-309
"Saving ..." message, 258 events, 309
scope retrieving selected items, 311-313
about, 192—-194 selecting matching items, 309-310
callback issues, 193, 355 selected event, 309
private, 348 filters,
setting, 227 :selected, 242, 317
storing, 193, 217 selecting
timer problems, 111 about, 21-22
screen edge, detecting, 182—183 additional elements, 156
script tags, injecting, 416 by attribute, 78
script.text property, 416 child elements, 62
scriptCharset setting, 412 by class, 24, 184, 241
scriptEval property, 416 descendants, 24-25
scripting attacks, 202 by element type, 14, 22-23
scripting, inline, 6 event-firing element, 35-36
scroll event, 74-75, 76, 225 by filter and attribute, 270
scrollbars by id, 23-24
custom, 80—81 by index number, 109, 156

displaying, 224 multiple elements, 26-27, 28

by name attribute, 254
nth elements, 331-332
parent elements, 87, 125
using filters (see filters)
ways of, 109
selecting event, 309
selector property, 425—426
selectors
about, 14, 15-17
attribute ([]), 78
child (>), 62
class, 24, 184

context parameter, 254, 310, 425-426

CSS3 specification, 3
custom, 369-370
descendant (space), 24
.eq, 117, 163

id (#), 163

is, 37—38

in load() method, 203-204
parent, 125, 169

retrieving current, 425-426

$(this), 35-36

traversal (see traversal methods)

self-executing functions, 286
self-executing loops, 285
send events, 215
serialize() method, 235-236
serializeArray() action, 236
serializing
complex structures, 410
data, 411
form fields, 235-236
link elements, 415
server latency, 223
setDefaults() method, 275
setInterval() timer, 110-112

setSelect property, 106

setTimeout() timer, 110-111, 112, 118,

180, 220
setup event, 353, 354
setup() method, 378, 379
shiftKey property, 344
shift-selecting, 344—345
show() action, 36
showOn option, 274

showPagelL.oadingMsg() method, 402

shuffle effect, 122

siblings, 15, 41, 232

slash asterisk (/*), 189

slashes (//), 188

slice() action, 337

slide event, 278

slideDown() method, 46

slide-downs, 168—169

slider data-role, 397

sliders, 275-279

slideshows
(see also iPhoto widget)
auto-advancing, 110-113
basic fade, 113-115
cross-fading, 115-118
Cycle plugin, 121-123
InnerFade plugin, 119-121
rollover fade, 108—-110
ScrollTo plugin, 126-130
thumbnail scrolling, 123-126

slideToggle() method, 47

slideUp() method, 47

sliding overlays, 169-173

sort() function, 313-314

sortable behavior, 287—289

sorting, 287—-289, 313-315

space, 24

449

450

special events, 378-381
specificity, 83
spinner option, 166
spinners, 221-222
(see also "loading" icon; progress indic-
ator)
splitters, 88—92
splitting text, 216
spoiler revealer, 50—52
sprites, 146—147, 178, 183, 265-2686,
269, 270
square brackets ([]), 78
star rating control, 264-270
start event, 282, 309
state management
data() method, 77, 129-130, 172, 176
using classes, 148, 172
statusCode setting, 412
step option, 63
stop command, 109
stop event, 282, 309
stop() action, 64, 71
stopImmediatePropagation() method, 418
stopPropagation() method, 142, 144, 418
strict equality operator (===), 421
strict inequality operator(!==), 421
style property, 416
styleFloat, 415
styles
inline, 31-32
retrieving current, 416
stylesheets, switching, 83—-84
submit event, 245—-246, 416
submitBubbles property, 416
substring() function, 279
substrings, matching, 319
success handler, 413

success() function, 211

Suckerfish drop-downs, 149-150, 152

support utility, 3, 199—200, 365—366,
414-417

swing easing, 57-58

swipe event, 406

T

tab controls
about, 164—-165
methods, 167
options, 166
tables
about, 326
checkboxes for row selection, 343—-345
data grids, 333
DataTables plugin, 342—343
editing a row, 338—342
fixed headers, 326—-330
pagination, 334—338
repeating headers, 330-333
tbody property, 417
tabs
about, 161
basic, 161-163
controls (see tab controls)
getting current, 167
jQuery UI (see tab controls)
setting current, 167
tap event, 406
target property, 325, 417
tbody property, 417
teardown() method, 378, 380
tellSelect() method, 107
template() function, 196-197
templates, 196—198
ternary operators, 114-115, 268

text
dynamic, 194-198
editing in place, 254-261
highlighting, 350
matching, 44, 319
modifying, 44-45
replacing, 256
retrieving, 45
splitting, 216
storing, 176
substrings, 279, 319
toggling, 38
text() method, 44—45, 176, 319
textarea
change event, 243
resizing, 86—87
that variable, 193
thead element, 328
theme gallery, 386—-387
ThemeRoller, 296, 387—390
themes
about, 72, 386
on custom components, 388—390
customizing, 387-390
gallery, 386—387
in Mobile, 396
this property, 411
this selector, 35—-36
_this variable, 193
thumbnail scrolling, 123-126
time frame parameter, 54
timeout event, 229
timeout setting, 412
timeouts, 228-231
timers, 110-113, 179-180, 220-221
timeStamp property, 418
title attribute, 173-174, 176

451

title property, 298
toggle() action, 38-39
toggleClass() method, 49-50, 323
toggling
classes, 49-50
content panes, 60—63
custom event, 371-372
effects, 46
elements, 36—39, 55
slides, 47
text, 38
tooltips
about, 173
basic, 174
markup content (see dialog boxes)
plain text, 174-177
top property, 68
toss effect, 122
touch events, 377, 406
touchOverflowEnabled property, 406
touchstart event, 377
traditional flag, 410
transitions
(see also cross-fading; fading)
Cycle plugin, 121-123
in Mobile, 396-397, 398
testing browser support, 365—-366
transparency, 172
traversal methods, 268—269
about, 27
children(), 260
closest(), 302, 326
contents(), 259-260
end(), 250, 260, 427
find(), 232
next(), 51, 115, 232, 250
nextAll(), 268, 323

452

nextUntil(), 269 Vv
parent(), 125

prev(), 51, 232, 303
prevUntil(), 268—269

val() function, 242243
validate() method, 247

validation
t
rees about, 240
about, 320
dates, 275

event delegation, 324-326

expandable, 320-324
trigger() function

about, 257

arrays in, 373

email address, 248
empty fields, 243-244
error messages, 248—249
field length, 248

inline, 243, 246, 249

custom events, 370 .
native browser, 244—245

custom parameters, 372—-373
syntax, 371-372
trim() method, 256, 361

over-, 244
server-side, 240

) URL, 248
troubleshooting, 31, 99-100, 237 I .
Validation plugin, 246—-249
truthy values, 365, 422
values

Twitter API, 208—209
type coercion, 419-420

calculated, 28, 67
change in, 243
of objects, 189

relative, 54

type parameter, 212
type setting, 412

type() function, 420 L.
ype() retrieving, 242-243

U values option, 277

variables
Uglify]S, 428

ui-selected class, 309

conditional assignment, 114—115
decrementing, 118-119, 230

ui-selecting class, 309 incrementing, 118-119, 230

unbind() action, 374-375
unclick event, 375

JavaScript, 91
scope, 192-194

undefined value, 423 setting, 117

underscore (), 193 type coercion, 419-420

unmouseover event, 375 typing, 420

unselected event, 309 velick event, 406
unselecting event, 309
url rule, 248

url setting, 412

viewport meta, 394—-395
visibility, checking for, 157

:visible pseudo-selector, 37
username setting, 413

453

Visual Studio, 7
vmousecancel event, 407
vmousedown event, 407
vmousemove event, 407
vmouseover event, 407

vmouseup event, 407

W

warning message, 100
which property, 250
white space
leading, 415
trimming, 256
widgets, creating, 132—-136
width property, 67
wipe effect, 122
withCredentials property, 415

X

Xampp, 219
xhrFields setting, 413
XML
reading, 231-233
setting data types, 232
XMLHTTPRequest, 214, 229, 413, 414,
415

Y

YUI Compressor, 428

z

zebra stripes, in table, 26
z-index property, 115, 118

zoom effect, 122

Congratulations on Finishing the Book

But have you mastered
the jQuery way?

Test yourself with our online
quiz. With questions based on
the content in the book, only
true jQuery ninjas can achieve
a perfect score.

Take the Quiz Here:

http://www.sitepoint.com/quiz-jquery

ALL SOURCE CODE AVAILABLE FOR DOWNLOAD

USING THE POWER OF JQUERY

jQuery: Novice to Ninja is your fast track to mastering jQuery—the
all-conquering JavaScript framework. Used by over half the world’s top
10,000 websites, jQuery is the fastest, most efficient way to add killer
functionality to your site.

In the second edition of this practical and fun-to-read book, you’ll
learn the fundamentals of jQuery, adding interactivity and animation to
your websites. You’ll then move on to more sophisticated techniques,
including using plugins, Ul widgets, and the brand new jQuery Mobile

framework.

* Effortlessly control any page element with powerful jQuery selectors
* Construct impressive animations with just a few lines of code

* Tap the power of jQuery Ul to create complex menus, tooltips, and panels
* Add intelligent interactive forms and elegant drop-down menus

* Build a complete working application, StarTrackr!, as you learn

* NEW! Use jQuery Mobile to create compelling mobile apps

And much more ...

THE AUTHORS

Sporting a Masters in Information
Technology and a lifetime of
experience on the Web of Hard
Knocks, Earle Castledine (aka Mr
Speaker) is a world-renowned
expert on the jQuery framework.
When not conducting countless
mrspeaker.net . s
EARLE web-based experiments, he’s
CASTLEDINE sharing his expertise to

audiences all over the globe.

SITEPOINT BOOKS

Craig started his jQuery journey
as a fine arts graduate turned
programmer, working with some of
the Web's biggest names, including
AOL, Microsoft, and Yahoo. Craig
discovered JavaScript in 1995 and
was an evangelist for the “good
parts” before Douglas Crockford
coined the term. He now brings that
extensive experience to jQuery.

machinetag.com

CRAIG
SHARKIE

v’ Advocate best practice techniques
v’ Lead you through practical examples
v’ Provide working code for your web site

v’ Make learning easy and fun

WHAT’S INSIDE?

Glendatronix

ThemeRoller ~ Mr Speaker

Johnny Stardust

Master the jQuery Way
Create Ajax effects and animations in half
the usual time.

Time to Become Mobile!
Use jQuery Mobile to target a profusion
of mobile devices.

Achieve Ninja Status
Take your newfound jQuery expertise to
the real world.

WEB DESIGN
PRINT ISBN: 978-0-9871530-1-2
EBOOK ISBN: 978-0-9871530-7-4

098711530

US$39.95 CA$39.95

Visit us on the Web at sitepoint.com or for sales and support email books@sitepoint.com

	Front cover
	Summary of Contents
	jQuery: Novice to Ninja
	Table of Contents
	Preface
	Who Should Read This Book
	What’s in This Book
	Where to Find Help
	The SitePoint Forums
	The Book’s Website
	The Code Archive
	Updates and Errata

	The SitePoint Newsletters
	The SitePoint Podcast
	Your Feedback
	Acknowledgments
	Earle Castledine
	Craig Sharkie

	Conventions Used in This Book
	Code Samples
	Tips, Notes, and Warnings

	Falling in Love with jQuery
	What’s so good about jQuery?
	Cross-browser Compatibility
	CSS3 Selectors
	Helpful Utilities
	jQuery UI
	Plugins
	Keeping Markup Clean
	Widespread Adoption

	What’s the downside?
	Downloading and Including jQuery
	Downloading jQuery
	The Google Content Distribution Network (CDN)
	Other CDN Options
	Nightlies and Github
	Uncompressed or Compressed?

	Anatomy of a jQuery Script
	The jQuery Alias
	Dissecting a jQuery Statement

	Bits of HTML, aka “The DOM”
	If You Choose to Accept It …

	Selecting, Decorating, and Enhancing
	Making Sure the Page Is Ready
	Selecting: The Core of jQuery
	Simple Selecting
	Narrowing Down Our Selection
	Testing Our Selection
	Filters
	Using Multiple Selectors
	Becoming a Good Selector

	Decorating: CSS with jQuery
	Reading CSS Properties
	Setting CSS Properties
	Classes
	Adding and Removing Classes

	Enhancing: Adding Effects with jQuery
	Hiding and Revealing Elements
	Event Handlers
	this
	Revealing Hidden Elements
	Toggling Elements

	Progressive Enhancement
	Adding New Elements
	Removing Existing Elements
	Modifying Content
	Basic Animation: Hiding and Revealing with Flair
	Fading In and Out
	Toggling Effects and Animations

	Callback Functions

	A Few Tricks
	Highlighting When Hovering
	Spoiler Revealer

	Before We Move On

	Animating, Scrolling, and Resizing
	Animating
	Animating CSS Properties
	Color Animation
	Easing
	Advanced Easing
	Bouncy Content Panes
	The Animation Queue
	Chaining Actions
	Pausing the Chain
	Animated Navigation
	Animated Navigation, Take Two
	The jQuery UI Library
	Get Animated!

	Scrolling
	The scroll Event
	Floating Navigation
	Scrolling the Document
	Custom Scrollbars

	Resizing
	The resize Event
	Layout Switcher

	Resizable Elements
	Resizable textarea
	Pane Splitter

	That’s How We Scroll. And Animate

	Images and Slideshows
	Lightboxes
	Custom Lightbox
	Troubleshooting with console.log
	ColorBox: A Lightbox Plugin

	Cropping Images with Jcrop
	Slideshows
	Cross-fading Slideshows
	Rollover Fader
	JavaScript Timers
	Setting up a Timer
	Stopping Timers

	Fading Slideshow
	True Cross-fading
	Advanced Fading with Plugins
	News Ticker with InnerFade
	The Cycle Plugin

	Scrolling Slideshows
	Thumbnail Scroller
	A Scrolling Gallery with scrollTo
	Smarter Scrolling with the data Method

	iPhoto-like Slideshow Widget
	Creating a Widget
	Event Handler Parameters

	Image-ine That!

	Menus, Tabs, Tooltips, and Panels
	Menus
	Expandable/Collapsible Menus
	Event Propagation
	Default Event Actions

	Open/Closed Indicators
	Menu Expand on Hover
	Drop-down Menus
	Cross-browser Menus
	Hover Intent

	Accordion Menus
	A Simple Accordion
	Multiple-level Accordions
	jQuery UI Accordion

	Tabs
	Basic Tabs
	jQuery UI Tabs
	Tab Options
	Tab Control Methods

	Panels and Panes
	Slide-down Login Form
	Sliding Overlay

	Tooltips
	Simple Styled Tooltips
	Advanced Tooltips and Dialogs

	Order off the Menu

	Construction, Ajax, and Interactivity
	Construction and Best Practices
	Cleaner jQuery
	Code Comments
	Map Objects
	Namespacing Your Code
	Scope

	Client-side Templating
	Templating Systems

	Browser Sniffing (… Is Bad!)
	Feature Detection

	Ajax Crash Course
	What Is Ajax?
	Loading Remote HTML
	Enhancing Hyperlinks with Hijax
	Picking HTML with Selectors
	Advanced loading
	Prepare for the Future: on and off
	Fetching Data with $.getJSON
	A Client-side Twitter Searcher
	The jQuery Ajax Workhorse
	Common Ajax Settings
	Loading External Scripts with $.getScript
	GET and POST Requests
	Handling Responses with Promises

	jQuery Ajax Events

	Interactivity: Using Ajax
	Ajax Image Gallery
	Randomizing the Images
	Adding a Spinner
	Global Progress Indicator
	Endless Scrolling
	Keeping Context
	Handling Errors

	Image Tagging
	Consuming XML
	Sending Form Data

	Ajax Ninjas? Check!

	Forms, Controls, and Dialogs
	Forms
	Simple Form Validation
	Speaking of Over-validating …
	The submit Event

	Form Validation with the Validation Plugin
	Maximum Length Indicator
	Form Hints
	Check All Checkboxes
	Inline Editing
	Autocomplete
	Star Rating Control

	Controls
	Buttons
	Date Picker
	Date Picker Utilities

	Sliders
	Drag and Drop
	draggable
	droppable
	The “Puff” Effect

	jQuery UI sortable
	Progress Bar

	Dialogs and Notifications
	Simple Modal Dialog
	jQuery UI Dialog
	Growl-style Notifications
	1-up Notification

	We’re in Good Form

	Lists, Trees, and Tables
	Lists
	jQuery UI Selectables
	$.map and $.inArray
	Accessing the Data

	Sorting Lists
	Manipulating Select Box Lists
	Swapping List Elements
	Inverting a Selection
	Searching through Lists

	Trees
	Expandable Tree
	Event Delegation

	Tables
	Fixed Table Headers
	Repeating Header
	Data Grids
	Pagination
	Editing a Row
	Data Grid Plugins

	Selecting Rows with Checkboxes
	Selecting a Column of Checkboxes
	Shift-selecting Checkboxes

	We’ve Made the A-list!

	Plugins, Themes, and Advanced Topics
	Plugins
	Creating a Plugin
	Setting Up
	Adding the Plugin’s Functionality
	Adding Options
	Adding Callbacks
	jQuery-style Callback

	Advanced Topics
	Extending jQuery
	Adding Methods to jQuery
	$. Prefixed Functions
	Overwriting Existing Functionality
	Create Your Own Selectors

	Events
	Custom Events
	Unbinding and Namespacing
	Binding the iPhone: Nonstandard Events
	The special Event

	A jQuery Ninja’s Miscellany
	Avoiding Conflicts
	Queuing and Dequeuing Animations
	Treating JavaScript Objects as jQuery Objects

	Theme Rolling
	Using Gallery Themes
	Rolling Your Own
	Making Your Components Themeable

	And By No Means Least
	Playing Your Trump

	StarTrackr!: Epilogue

	Appendix A: Reference Material
	$.ajax Options
	Flags
	Settings
	Callbacks and Functions

	$.support Options
	Events
	Event Properties
	Event Methods
	DIY Event Objects

	Appendix B: JavaScript Tidbits
	Type Coercion
	Equality Operators
	Truthiness and Falsiness
	Unmasking jQuery

	Appendix C: Plugin Helpers
	Selector and Context
	The jQuery Stack
	Minification

	Index
	jQuery Quiz
	Back Cover

